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Abstract: We study a broad class of nonlocal advection-diffusion models describing the behaviour

of an arbitrary number of interacting species, each moving in response to the nonlocal presence of

others. Our model allows for different nonlocal interaction kernels for each species and arbitrarily

many spatial dimensions. We prove the global existence of both non-negative weak solutions in any

spatial dimension and positive classical solutions in one spatial dimension. These results generalise

and unify various existing results regarding existence of nonlocal advection-diffusion equations. We

demonstrate that solutions can blow up in finite time when the detection radius becomes zero, i.e. when

the system is local, thus showing that nonlocality is essential for the global existence of solutions. We

verify our results with numerical simulations on 2D spatial domains.

Keywords: nonlocal advection; positivity of PDEs; global existence; blow-up; numerical PDEs
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1. Introduction

We consider a multispecies model of interacting species, which sense their environment and other

species in a nonlocal way [15, 32, 37]. The individual populations are denoted by ui(x, t), where t ≥ 0

denotes time, x ∈ Ω denotes space and the index i = 1, . . . ,N denotes the species. The model is given
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by

∂tui = Di∆ui + ∇ ·




ui

N∑

j=1

γi j∇(Ki j ∗ u j)




, i = 1, . . . ,N. (1.1)

Here, Ki j is a twice-differentiable function, with ∇Ki j ∈ L∞, and Ki j ∗u j denotes a convolution operator

defined as

Ki j ∗ u j(x) =

∫

Ω

Ki j(x − y)u j(y)dy.

From a biological perspective, Ki j describes the nonlocal sensing of species j by species i. The

constants Di > 0 are diffusion coefficients of species i and the values of γi j denote the extent to

which species i avoids (if γi j > 0) or is attracted to (if γi j < 0) species j. For the definition of the

nonlocal term to make sense, here we let Ω = Tn, the n-torus defined by identifying the boundaries of

[−L1, L1] × · · · × [−Ln, Ln] in a periodic fashion.

Nonlocal interaction models, such as (1.1), have become important tools in the mathematical

modelling of biological species [3, 4, 11, 29, 32, 40]. Key to their specification are the nonlocal

kernels, Ki j, which model the interactions within and between species. Organisms do not typically

make movement decisions only based on the local information they have about prey, predator, or food

sources. Rather, movement decisions are based on information gathered over a certain ‘perceptual

radius’ via sight, smell, sounds, or other means of sensing [37]. These biological considerations have

given rise to certain popular functional forms for the kernels, such as the top hat kernel, whereby Ki j is

constant on a ball of radius Ri j around the origin and zero elsewhere, so that Ri j directly corresponds

to an organism’s perceptual radius [35]. Other works have considered exponentially decaying or

normally-distributed kernels [14]. From the mathematical perspective, different choices of Ki j have

sometimes been made for mathematical convenience, to enable either exact calculations [7] or proofs

[28]. However, often there are only small modifications required to move between a biologically-

inspired kernel (e.g. the top hat distribution) and a mathematically convenient one (e.g. a smooth

mollification of the top hat kernel, allowing for certain existence proofs [17]). Here, we assume that

each Ki j is integrable and twice differentiable with maxi, j ∥∇Ki j∥∞ < ∞, which encompasses all the

examples just mentioned, possibly up to an arbitrarily small mollification. Importantly, however, our

assumption does not encompass the Dirac delta function, where nonlocality vanishes.

Currently, the mathematical analysis of organism movement based on nonlocal perception is at full

swing [32]. Several authors consider models of the form (1.1) to study species aggregation, segregation,

avoidance, home ranges, territories, mixing, and spatio-temporal patterns [3, 5, 6, 8, 12, 16, 18, 20, 27,

32, 34, 37]. In many of these papers, the analysis starts with results on local and global existence and

positivity. These results are generated through various methods, such as energy functionals [6, 18, 28,

32], semigroup theory and fixed-point arguments [4], or direct PDE-type estimates [24], all depending

on the specific model at hand. In [6], using methods from [9], the authors consider model (1.1) for

one species with smooth interaction kernel and they show global existence of classical solutions, using

energy-entropy methods. In [28] the assumption of smooth interaction kernels is relaxed, and assuming

a detailed balance condition on the kernels, global existence for weak solutions is shown. Our previous

work in [17] proves existence of local solutions in any space dimension and global solutions in 1D for

the case of equal interaction kernels, i.e. Ki j = K.

Here we combine these results into a unifying existence theory for nonlocal models of type (1.1).

In contrast to previous models, we allow the interaction kernels Ki j to vary from species to species, and
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we have no restriction on the space dimension. This is somewhat surprising, since global existence for

local versions of our model do strongly depend on the spatial dimension [10, 30, 38]. This behaviour

is similar to the well known chemotaxis model [22, 26]. Solutions to the standard chemotaxis model

are globally bounded in 1-D, while they blow-up in higher dimensions, if the initial population is large

enough in the Ln/2-norm, where n denotes the space dimension [26]. Guided by these observations, we

consider the local limit of (1.1) and we also find cases in n ≥ 2 dimensions where finite time blow-up

is possible.

The paper is organised as follows. In Section 2 we define a modified version of Equation (1.1) and

prove some preliminary results. This modified model is then analysed in Section 3, where we prove

the local existence of mild solutions, and in Section 4, where we prove the global existence of positive

solutions. We conclude our proof by showing that every positive solution of the modified model is also

a solution of Equation (1.1). In Section 5 we show that in the corresponding local system the solutions

can blow up in finite time. Section 6 concludes with numerical simulations showing that the solutions

of the nonlocal problem, although they become steeper as the detection radius becomes smaller, still

remain bounded.

2. A modified version of our system

To establish our existence results for Equation (1.1), our approach is first to prove existence and

non-negativity of weak solutions to a slightly modified version of Equation (1.1). We then show that

any solution of this modified system is also a solution of Equation (1.1). The modified system is as

follows

uit = Di∆ui + ∇ ·




h(ui)

N∑

j=1

γi j∇(Ki j ∗ u j)




, i = 1, . . . ,N, (2.1)

where h(u) = u if u ≥ 0 and h(u) = 0 if u < 0. Note that whenever ui ≥ 0, Equations (1.1) and (2.1)

are identical. In Equation (2.1), derivatives are understood weakly. In particular, the weak derivative

of h(u) is h′(u) = 1 if u > 0 and h′(u) = 0 if u < 0. We collect some basic properties of h(u) in the

following Lemma.

Lemma 1. For any v ∈ H1(T), we have ∥h(v)∥L2 ≤ ∥v∥L2 , ∥∇h(v)∥L2 ≤ ∥∇v∥L2 , and ∥h(v)∇v∥L1 ≤

∥v∇v∥L1 . For any v1, v2 ∈ L2(T), we have ∥h(v1) − h(v2)∥L2 ≤ ∥v1 − v2∥L2 .

Proof. The inequality ∥h(v)∥L2 ≤ ∥v∥L2 follows from the definitions of h and the L2-norm. The

inequality ∥∇h(v)∥L2 ≤ ∥∇v∥L2 follows from the same definitions, and also that ∇h(v) = h′(v)∇v. The

inequality ∥h(v)∇v∥L1 ≤ ∥v∇v∥L1 follows from the definitions of h and the L1-norm.

For the final inequality, we observe that

∥h(v1) − h(v2)∥2
L2 =

∫

T

(h(v1(x)) − h(v2(x)))2dx =

∫

S 1

(v1(x) − v2(x))2dx +

∫

S 2

v2
1(x)dx +

∫

S 3

v2
2(x)dx,

where S 1 = {x ∈ T : v1(x) > 0, v2(x) > 0}, S 2 = {x ∈ T : v1(x) > 0, v2(x) ≤ 0}, and S 3 = {x ∈ T :

v1(x) ≤ 0, v2(x) > 0}. Now, for x ∈ S 2, we have v2(x) ≤ 0 and v1(x) > 0 so v1(x) ≤ v1(x)−v2(x), and then

v2
1
(x) ≤ (v1(x)−v2(x))2. Similarly, for x ∈ S 3, we have v2(x) ≤ v2(x)−v1(x) and v2

2
(x) ≤ (v2(x)−v1(x))2.

AIMS Mathematics Volume 10, Issue 9, 21254±21272.
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Hence
∫

S 1

(v1(x) − v2(x))2dx +

∫

S 2

v2
1(x)dx +

∫

S 3

v2
2(x)dx ≤

∫

S 1∪S 2∪S 3

(v1(x) − v2(x))2dx ≤ ∥v1 − v2∥
2
L2 ,

so that ∥h(v1) − h(v2)∥L2 ≤ ∥v1 − v2∥L2 . □

3. Local existence of mild solutions

We begin by proving local existence of mild solutions to Equation (2.1).

Definition 1. Given u0 = (u10, ..., uN0) ∈ (L2(Tn))N and T > 0, we say that u(x, t) =

(u1(x, t), ..., uN(x, t)) ∈ L∞((0,T ), L2(Tn))N is a mild solution of Equation (2.1) if

ui = eDi∆tui,0 −

∫ t

0

eDi∆(t−s)∇ ·




h(ui)∇





N∑

j=1

γi jKi j ∗ u j








ds (3.1)

for each 0 < t ≤ T, where eDi∆t denotes the solution semigroup of the heat equation uit = Di∆ui on Tn,

and ui,0(x) = ui(x, 0) is the initial condition.

Theorem 2. Assume u0 ∈ H2(Tn)N and each Ki j is twice differentiable with maxi, j ∥∇Ki j∥∞ < ∞.

For each u0 ∈ L2(Tn)N there exists a time T∗ > 0 and a unique mild solution of Equation (2.1) with

u ∈ L∞((0,T∗), L
2(Tn))N . Moreover, u ∈ C1((0,T∗), L

2(Tn))N ∩C0([0,T∗),H
2(Tn))N .

Proof. In [17, Theorem 3.6] we showed local existence of mild solutions for Equation (1.1) using

a fixed point argument. In that case the sensing mechanism for each species was equal Ki j = K

for all i, j = 1, . . . ,N where K is twice differentiable. To prove the same result for variable Ki j is

straightforward. It requires replacing each ∥∇K∥∞ with maxi, j=1,...,N ∥∇Ki j∥∞. To prove this for Equation

(2.1) rather than Equation (1.1) requires additionally employing the estimates on h from Lemma 1.

Other than this, the proof remains unchanged from that in [17, Theorem 3.6] so we do not repeat it

here. □

4. Global existence and positivity

Following the strategy of [17], we define a time T∗ as follows. If ∥u∥L1 is bounded for all time then

let T∗ = ∞. Otherwise ∥u∥L1 → ∞ as t → Tmax for some time Tmax ∈ (0,∞). In this case, let T∗ be

the earliest time such that ∥u∥L1 = 2∥u0∥L1 . Our aim is to establish existence and positivity up to time

T∗, then use this to prove that T∗ < ∞ leads to a contradiction. This means that T∗ = ∞, establishing

global existence of weak solutions. To show that T∗ = ∞, we need the following positivity result.

Lemma 3. Keep all assumptions from Theorem 2 and also assume ui(x, 0) ≥ 0 in Tn for all i = 1, . . . ,N.

Then u(x, t) ≥ 0 for solutions of Equation (2.1) for t ∈ (0,T∗). Here we understand u ≥ 0 a.e. in Tn

component-wise.

Proof. Suppose u = (u1, ..., uN) is a solution to Equation (2.1) and let us fix an index i ∈ {1, . . . ,N}.

We use a standard idea of cutting off the negative part of the solution. Such a method has, for example,

been used in [21] for chemotaxis models. We define the negative part as u−i (x, t) := ui(x, t) if ui(x, t) < 0
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and u−i (x, t) := 0 if ui(x, t) ≥ 0, and we split the domain Tn as J−(t) = {x ∈ T
n : ui(x, t) < 0}, J 0(t) =

{x ∈ Tn : ui(x, t) = 0}, and J+(t) = {x ∈ T
n : ui(x, t) > 0}. Since the L2-norm of ui is differentiable in

time, we can write

d

dt

1

2
∥u−i (., t)∥2

L2 =

∫

J−(t)

u−i u−itdx +

∫

J0(t)

u−i u−itdx

︸         ︷︷         ︸

=0

+

∫

J+(t)

u−i u−itdx

︸         ︷︷         ︸

=0

=

∫

J−(t)

u−i u−itdx. (4.1)

Since J−(t) is an open set and ui and its weak spatial derivatives are continuous and differentiable in

time, we have u−it = uit and ∇u−i = ∇ui, on J−(t). Then from Equation (2.1) we obtain

d

dt

1

2
∥u−i (., t)∥2

L2 =

∫

J−(t)

u−i




Di∆ui + ∇ ·




h(ui)

N∑

j=1

γi j∇(Ki j ∗ u j)








dx

= −Di

∫

J−(t)

|∇u−i |
2dx +

∫

∂J−(t)

u−i Di(∇ui · n)dS −

∫

J−(t)

(∇u−i ) ·

[

h(ui)

N∑

j=1

γi j∇(Ki j ∗ u j)

]

dx

+

∫

∂J−(t)

u−i h(ui)

N∑

j=1

γi j

(

∇(Ki j ∗ u j) · n
)

dS , (4.2)

where dS is used to denote the boundary measure on ∂J−(t) and n denotes the outward normal vector

on ∂J−(t). On ∂J−(t), we have u−i = 0, hence both boundary integral terms vanish. The third term on

the right hand side also vanishes, since on J−(t) we have h(ui) = 0. Hence we find

d

dt

1

2
∥u−i (., t)∥2

L2 = −2Di

(

1

2
∥∇u−i (., t)∥2

L2

)

≤ 0.

Therefore ∥u−i ∥
2
L2 is a Lyapunov function and when ∥u−i (., 0)∥L2 = 0 then ∥u−i (., t)∥2

L2 = 0 for all t > 0. □

Theorem 4. Let u0 = (u10, ..., uN0) ∈ H2(Tn)N and make the same assumptions as in Lemma 3.

Then in the solution from Theorem 2, we have T∗ = ∞. In other words, u ∈ C1((0,∞), L2(Tn))N ∩

C0([0,∞),H2(Tn))N .

Proof. Since ui(x, t) ≥ 0 for all x, t, we have, for each t ≥ 0,

∥ui∥L1 =

∫

T

ui(x, t)dx. (4.3)

However, the right-hand integral (total population size) remains constant over time. Therefore ∥ui∥L1 is

constant over time. Now recall the definition of T∗, which states that if ∥ui∥L1 is bounded for all i then

T∗ = ∞. □

This establishes global existence of weak positive solutions to Equation (2.1). To establish the

analogous result for Equation (1.1), we note that any positive solution to Equation (2.1) is also a

positive solution to Equation (1.1), since h(ui(x, t)) = ui(x, t) whenever ui(x, t) ≥ 0. Hence we have

established the following.

Theorem 5. The solution u ∈ C1((0,∞), L2(Tn))N ∩C0([0,∞),H2(Tn))N from Theorem 4, is a positive,

global, weak solution to Equation (1.1).
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In particular, in one spatial dimension the solutions are classical and strictly positive, as proved in

the following.

Theorem 6. On 1D domains, the solution to Equation (1.1) given in Theorem 5 is a classical strictly

positive solution.

Proof. In one spatial dimension we have the Sobolev embedding from H2 to C1. By using the same

argument of [17, Lemma 3.8], we can show that the solution u given in Theorem 5 is such that u(·, t) ∈

C2. Therefore, in 1D the solution to Equation (1.1) satisfies

u ∈ C1((0,∞), L2(T))N ∩C0([0,∞),C2(T))N , (4.4)

which is therefore a classical solution. To prove that this solution is strictly positive in 1D, we consider

the following linear parabolic PDE problem

σit = Di∂xxσi + ∂x




σi

N∑

j=1

γi j∂x(Ki j ∗ u j)




, i = 1, . . . ,N, (4.5)

where u = (u1, . . . , uN) is the solution to the one dimensional version of Equation (1.1) satisfying (4.4).

Notice that the coefficients of the linear problem in Equation (4.5) are continuous. Letσ = (σ1, . . . , σN)

be a non-negative (component-wise) classical solution to Equation (4.5). Then Harnack’s inequality

for parabolic systems (see [13, Theorem 10, page 370]) ensures that for each 0 < t1 < t2 there exists a

positive constant C such that

sup
T

σi(x, t1) ≤ C inf
T

σi(x, t2), i = 1, . . . ,N. (4.6)

In particular, u = (u1, . . . , uN) is a solution to Equation (4.6), and therefore it satisfies the inequalities

in Equation (4.6), that is

sup
T

ui(x, t1) ≤ C inf
T

ui(x, t2), i = 1, . . . ,N, (4.7)

for each 0 < t1 < t2. Since ui ≥ 0 and ∥ui∥L1 = ∥ui0∥L1 > 0, it follows that sup ui(x, t1) > 0, which

implies that inf ui(x, t) > 0 at any positive time t. The above Harnack’s inequality is not available for

weak solutions in higher dimensions, hence we prove strict positivity only for the 1D case. □

5. Blow-up of the solutions in the local limit

In this section we formally show that solutions of the local version of Equation (1.1) (i.e., the

equation obtained by choosing the kernels Ki j equal to the δ-Dirac function) can have finite time blow-

up solutions for n ≥ 2, where n denotes the spatial dimension. To this end, we use an argument

previously used for chemotaxis models (see [33]). Namely, we consider a case where an aggregation

arises at a certain location and we orient the torus Tn in such a way that the ‘boundary’ locations ± i.e.

where xk = ±Lk/2 for some k where x = (x1, . . . , xn) ± are far away from this aggregation. Then we

consider the second moment of this aggregate and show that for a bounded solution, the second moment

becomes negative over time. This contradicts the assumption of the solution to be bounded and hence

implies blow-up. We will consider two cases: γi j < 0, for all i, j = 1, . . . ,N (mutual attraction and

self-attraction); γii < 0, i = 1, . . . ,N (self-attraction) and γi j > 0, i , j (mutual avoidance).

AIMS Mathematics Volume 10, Issue 9, 21254±21272.
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Theorem 7 (Formal Blow-up). Consider the PDE

uit = Di∆ui + ∇ ·




ui

N∑

j=1

γi j∇u j




, (5.1)

obtained from Equation (1.1) with Ki j = δ, for all i, j = 1, . . . ,N, where δ denotes the δ-Dirac

distribution. Let

P :=

N∑

i=1

∫

Tn

ui0(x)dx, γ(i j) := max
i, j=1,...,N

{γi j}, γ
(ii) := max

i=1,...,N
{γii}, D := max

i=1,...,N
{Di}. (5.2)

Assume that u(x, t) = (u1(x, t), u2(x, t), . . . , uN(x, t)) is the solution with initial condition u0 =

(u10, . . . , uN0). Assume further that, for all i = 1, . . . ,N, ui0 decays to zero as xk → −Lk, Lk for any

k = 1, . . . , n.

Case 1. Let γi j < 0 (mutual and self- attraction), for all i, j = 1, . . . ,N. If

P >
|Tn|

2
and γ(i j) < −

2PD

2P − |Tn|
(5.3)

then the solution u becomes unbounded in finite time.

Case 2. Let γii < 0 (self-attraction), for i = 1, . . . ,N, and γi j > 0 (mutual avoidance), for i , j and

i, j = 1, . . . ,N, such that

N∑

j=1
j,i

(γi j + γ ji) < −γii, for all i = 1, . . . ,N. (5.4)

If

P > N
|Tn|

2
and γ(ii) < −

4PD

2P − N|Tn|
, (5.5)

then the solution u becomes unbounded in finite time.

Proof. Case 1. Define the second moment as

M(t) :=

N∑

i=1

∫

Tn

|x|2ui(x, t)dx, (5.6)
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and compute

d

dt
M =

N∑

i=1

∫

Tn

|x|2uitdx

=

N∑

i=1

Di

∫

Tn

|x|2∆uidx +

N∑

i, j=1

γi j

∫

Tn

|x|2∇ · (ui∇u j)dx

=

N∑

i=1

Di

(∫

Tn

∇ · (|x|2∇ui)dx −

∫

Tn

∇(|x|2) · ∇uidx

)

dx

+

N∑

i, j=1

γi j

(∫

Tn

∇ · (|x|2ui∇u j)xdx −

∫

Tn

∇(|x|2) · (ui∇u j)dx

)

= −

N∑

i=1

Di

∫

Tn

∇(|x|2) · ∇uidx −

N∑

i, j=1

γi j

∫

Tn

∇(|x|2) · (ui∇u j)dx

= −2

N∑

i=1

Di

∫

Tn

x · ∇uidx − 2

N∑

i, j=1

γi j

∫

Tn

x · (ui∇u j)dx

= −2

N∑

i=1

Di

∫

Tn

x · ∇uidx −

N∑

i, j=1

γi j

∫

Tn

x · ∇(uiu j)dx

= −2

N∑

i=1

Di

∫

Tn

∇ · (xui)dx + 2n

N∑

i=1

Di

∫

Tn

ui dx −

N∑

i, j=1

γi j

∫

Tn

∇ · (xuiu j) dx + n

N∑

i, j=1

γi j

∫

Tn

uiu j dx

= 2n

N∑

i=1

Di

∫

Tn

ui dx + n

N∑

i, j=1

γi j

∫

Tn

uiu j dx

≤ 2n

N∑

i=1

Di

∫

Tn

ui dx + γ(ii)n

N∑

i, j=1

∫

Tn

uiu j dx

= 2n

N∑

i=1

Di

∫

Tn

uidx + γ(ii)n

∫

Tn





N∑

i=1

ui





2

dx

≤ 2Dn

N∑

i=1

∫

Tn

uidx + γ(ii)n

∫

Tn





N∑

i=1

ui





2

dx

≤ 2Dn

N∑

i=1

∫

Tn

uidx + γ(ii)n



2

N∑

i=1

∫

Tn

uidx − |Tn|





= 2Dn

N∑

i=1

∫

Tn

ui0dx + γ(ii)n



2

N∑

i=1

∫

Tn

ui0dx − |Tn|





(5.7)

where γ(ii) and D are defined in Equation (5.2). The third and seventh equalities are obtained integrating

by parts. The third inequality follows from γ(ii) < 0 and the Young’s inequality a2 ≥ 2a − 1. The last

equality follows from conservation of total population size, i.e.
∫

Tn ui(x, t)dx =
∫

Tn ui0(x)dx, for all t ≥
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0, where ui0 is the initial condition.

By using the definition of P =
∑N

i=1

∫

Tn ui0(x)dx, Equation (5.7) can be rewritten as

d

dt
M ≤ 2DnP + γ(ii)n (2P − |Tn|) . (5.8)

Since

P >
|Tn|

2
and γ(ii) = −

2PD + ε

2P − |Tn|
, (5.9)

for some ε > 0, then d
dt

M < −εn. Since the derivative of M(t) is bounded above by a strictly negative

constant, −εn, there exists a finite time T > 0 such that M(T ) = 0 (by Mean Value Theorem). Hence,

by Equation (5.6) and since ui(x, t) conserves its total mass, it follows that, for all i = 1, . . . ,N, ui tends

to δ(x), the Dirac delta function, as t → T . This completes the proof of Case 1.

Case 2. As in the previous case, we compute the time-derivative of the second moment of M(t) as

follows

d

dt
M = 2n

N∑

i=1

Di

∫

Tn

ui dx + n

N∑

i, j=1

γi j

∫

Tn

uiu j dx

= 2n

N∑

i=1

Di

∫

Tn

ui dx + n

N∑

i=1

γii

∫

Tn

u2
i dx + n

N∑

i, j=1
i, j

γi j

∫

Tn

uiu j dx

≤ 2n

N∑

i=1

Di

∫

Tn

ui dx + n

N∑

i=1

γii

∫

Tn

u2
i dx +

n

2

N∑

i, j=1
i, j

(γi j + γ ji)

∫

Tn

u2
i dx

≤ 2n

N∑

i=1

Di

∫

Tn

ui dx +
n

2

N∑

i=1

γii

∫

Tn

u2
i dx

≤ 2Dn

N∑

i=1

∫

Tn

ui dx + γ(ii) n

2

N∑

i=1

∫

Tn

u2
i dx

≤ 2Dn

N∑

i=1

∫

Tn

uidx + γ(ii) n

2

N∑

i=1

∫

Tn

(2ui − 1)dx

= 2Dn

N∑

i=1

∫

Tn

uidx + γ(ii)n

N∑

i=1

∫

Tn

uidx − γ(ii) n

2
N |Tn|

= 2Dn

N∑

i=1

∫

Tn

ui0dx + γ(ii)n

N∑

i=1

∫

Tn

ui0dx − γ(ii) n

2
N|Tn|,

(5.10)

where γ(ii) and D are defined in Equation (5.2). Since P =
∑N

i=1

∫

Tn ui0(x)dx, Equation (5.10) can be

rewritten as
d

dt
M ≤ 2DnP + γ(ii)n

(

P −
N

2
|Tn|

)

. (5.11)

Since

P > N
|Tn|

2
and γ(ii) = −

4PD + ε

2P − N|Tn|
, (5.12)
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for some ε > 0, then d
dt

M < −εn/2. Then, by the same argument as Case 1, ui tends to δ(x) as t → T ,

for all i = 1, . . . ,N. □

The above calculations do not give a complete categorisation of blow-up regimes, but do

demonstrate the singular nature of non-linear and local cross-diffusion terms. As with chemotaxis

models [1, 22, 23, 25], such a categorisation requires advanced machinery such as energy estimates

or multiscale arguments, which are beyond the scope of this work. We leave the general question of

blow-up in Equation (5.1) as an interesting open problem.

6. Numerical simulations

The aim of this section is to demonstrate numerically how the existence of solutions breaks down

in the spatially-local limit of Equation (1.1) for a few choice examples. For our numerical solutions,

we use a spectral method and the numerical scheme described in [17]. First, we analyse the behaviour

of the numerical solutions when adopting the following interaction kernel:

Ki j(x, y) =






π

r2
i j

(π2−4)

(

1 + cos
(
π
ri j

√

x2 + y2
))

, if x2 + y2 ≤ r2
i j,

0, otherwise,
(6.1)

which satisfies the assumptions of Theorem 2.

Figure 1 shows three sets of numerical simulations obtained by fixing N = 1 population (in (a) and

(b)), N = 2 populations (in (c) and (d)) and N = 3 populations (in (e) and (f)), with γi j < 0 (mutual

attraction) and ri j = r ji, for all i, j. The simulated populations become steeper as the detection radius,

ri j, decreases. This is suggestive of blow-up as ri j vanishes, even though solutions remain bounded

for all strictly positive ri j. Note that in the limit ri j → 0 for all i and j, this example reduces to Case

1 analysed in the previous section. There, we show that the local system may undergo a finite time

blow-up for large enough initial data. The appearance of spike solutions becomes more pronounced

with the addition of populations. In fact, for fixed values of ri j, the addition of populations makes

the solution higher and steeper, due to the fact that, in addition to self-attraction, the populations also

exhibit mutual attraction (compare panels a, c, and e).

Figure 2 shows a similar analysis to Figure 1, but this time focusing on the situation relevant to

Case 2, i.e. populations exhibiting mutual avoidance and a sufficiently strong self-attraction. As with

Figure 1, we observe that as ri j decreases, the population profiles become steeper, suggesting blow-up

as ri j tends to zero.
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Case 1. γi j < 0: Self attraction and Mutual attraction

N = 1

(a) r11 =

0.3

(b) r11 =

0.2

N = 2

(c) ri j = 0.3 (d) ri j = 0.2

N = 3

(e) ri j = 0.3 (f) ri j = 0.2

Figure 1. Numerical simulations of Equations (1.1), with Ki j defined as in (6.1), on square

domains for different numbers N of populations: N = 1 in (a)-(b), N = 2 in (c)-(d), and N = 3

in (e)-(f), for decreasing values of the sensing ranges ri j, with ri j = r ji, for i, j = 1, 2, 3. The

other parameter values are: Di = 1, γi j = γ ji = −1, for all i, j = 1, 2, 3. For each value of

N, the stationary states with ri j = 0.3 (panels (a), (c), and (e)) emerge from a small random

perturbation of the homogeneous steady state. The resulting stationary solution is then used

as the initial condition for the simulation with ri j = 0.2. All panels show the solutions at time

T = 10, after transient dynamics have subsided.
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Case 2. γii < 0, γi j > 0 for i , j: Self attraction and Mutual avoidance

(a) ri j = 0.3 (b) ri j = 0.2

Figure 2. Numerical simulations of Equations (1.1), with Ki j defined as in (6.1), on square

domains with N = 2, for decreasing values of the sensing ranges ri j, with ri j = r ji, for

i, j = 1, 2. The other parameter values are: D1 = D2 = 1, γ11 = γ22 = −5, γ12 = γ21 = 1.

The stationary solution in (a) emerges from a small random perturbation of the homogeneous

steady state with ri j = 0.3. This stationary solution is then used as the initial condition for

the simulation with ri j = 0.2 (panel (b)). All panels show the solutions at time T = 10, after

transient dynamics have subsided.

In addition to these two examples inspired by the Case 1 and Case 2, we also examine some

cases where we do not currently have blow-up results. For example, Figure 3 shows the case of two

populations that attract each other (γ12, γ21 < 0) but do not exhibit self-attraction (γii = 0). Likewise,

in Figure 4 we consider a mixture of self-avoidance and self-attraction, mutual avoidance and mutual

attraction, again observing a peak narrowing as ri j decreases. Note also that, in Figures 3 and 4, only

one of the detection radii is reduced, suggesting that solutions of System (1.1) may blow-up even in

situations where just one of the kernels Ki j is the δ-Dirac function. A detailed analysis of various

blow-up scenarios is a fruitful direction of future research.

Case 3. γii = 0, γi j < 0 for i , j: No-Self attraction and Mutual attraction

(a) r2 j = 0.3 (b) r2 j = 0.1

Figure 3. Numerical simulations of Equations (1.1), with Ki j defined as in (6.1), on square

domains with N = 2, for decreasing values of the sensing ranges r21 = r22, with r11 = r12 =

0.4 fixed. The other parameter values are: D1 = D2 = 1, γ11 = γ22 = 0, γ12 = γ21 = −1.2,

γ12 = γ21 = 1. The stationary solution in (a) emerges from a small random perturbation of

the homogeneous steady state with ri j = 0.3. This resulting stationary solution is then used

as the initial condition for the simulation with ri j = 0.1 (panel (b)). All panels show the

solutions at time T = 10, after transient dynamics have subsided.
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Case 4. Miscellaneous

(a) r3 j = 0.3 (b) r3 j = 0.1

Figure 4. Numerical simulations of Equations (1.1), with Ki j defined as in (6.1), on square

domains with N = 3 for decreasing values of the sensing ranges r31 = r32 = r33, while

r1 j = 0.4 and r2 j = 0.3, for j = 1, 2, 3, are kept fixed. The other parameter values are:

D1 = D2 = D3 = 1, γ11 = 1, γ22 = −1, γ33 = −1, γ12 = γ21 = 1, γ13 = γ31 = 1,

γ23 = γ32−1. The stationary solution in (a) emerges from a small random perturbation of the

homogeneous steady state with ri j = 0.3. This resulting stationary solution is then used as the

initial condition for the simulation with ri j = 0.1 (panel (b)). All panels show the solutions

at time T = 30, after transient dynamics have subsided.

To assess the consistency of the observed steepening behaviour with respect to the choice of kernel,

we performed additional simulations using two alternative smooth kernels: the following bump kernel

K(x, y) =






C

(

e
−

|x|2/r2

σ2(1−|x|2/r2)

)

, if |x|2 = x2 + y2 ≤ r2,

0, otherwise,

(6.2)

and the following mollified top-hat kernel

K(x, y) =






C1, if x2 + y2 < r2
I ,

C1 exp



1 −
1

1−

(
|x|−rI
r−r1

)2



 , if r2
I ≤ x2 + y2 < r2,

0, otherwise.

(6.3)

Both kernels are supported on a disk of radius r and satisfy the assumptions of Theorem 2. The

constants C and C1 in the kernel definitions are chosen so that the resulting functions are probability

densities, i.e., they integrate to one over their support, and we set σ = 0.5 and rI = 0.9r throughout. We

carried out a similar investigation to that of the cosine kernel (Equation (6.1)) and observed comparable

steepening behaviour for decreasing values of the interaction range r. Here, we present results for a

representative case: the two-population setting under Case 1, where γi j < 0, and ri j = ri j =: r, for all

i, j. In our simulations, we observe that, as r decreases, the stationary solutions become increasingly

peaked (see Figure 5), suggesting a tendency towards blow-up in the local limit. However, the rate at

which this steepening occurs depends on the kernel. Specifically, the bump kernel produces sharper

peaks more quickly as r decreases (see Figure 5 (a) and (b)), whereas the smooth top-hat kernel

produces a more gradual increase in peak height (see Figure 5(c)-(e)). This difference appears to

be related to the shape of the kernel, with more sharply concentrated kernels inducing stronger local
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aggregation effects (see Figure 6). Overall, the simulations confirm that the steepening phenomenon is

not specific to the cosine kernel and persists across a range of smooth, compactly supported interaction

kernels.

Increasing the values of the diffusion coefficients tends to inhibit peak formation, eventually driving

the system towards a homogeneous distribution. For this reason, in our simulations, we selected the

diffusion coefficients Di sufficiently small and the interaction strengths |γi j| sufficiently large to ensure

that the homogeneous steady state is linearly unstable, as shown in [19]. A small diffusion coefficient

is necessary not only for this linear instability but also for the blow-up phenomenon described in

Theorem 7, although the two regions are distinct. Indeed, there are cases where the homogeneous

steady state is stable, yet stable steady state solutions also exist with steep peaks [18].

Case 1. γi j < 0: Self attraction and Mutual attraction for different kernels

(a) r = 0.3 (b) r = 0.2

(c) r = 0.3 (d) r = 0.2 (e) r = 0.1

Figure 5. Numerical solutions of Equations (1.1), with N = 2 and r := ri j = r ji, for i, j = 1, 2.

In (a)-(b): K is defined as in (6.2) with σ = 0.5; in (c)-(e): K is defined as in (6.3) with

rI = 0.9r. The other parameter values are: Di = 1, γi j = γ ji = −1, for all i, j = 1, 2. In each

set of simulations, the stationary solution shown for r = 0.3 emerges from a small random

perturbation of the homogeneous steady state. This stationary state is then used as initial

condition for the simulations with r = 0.2 and r = 0.1. All panels show the solutions at time

T = 10, after transient dynamics have subsided.
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Figure 6. One-dimensional profiles of the three interaction kernels used in the simulations:

cosine kernel in red (Equations (6.1)), bump kernel in blue (Equation (6.2)) and smooth top-

hat kernel in green (Equation (6.3)), all supported on a disk of radius r = 0.3. For the bump

kernel, we used σ = 0.5; for the smooth top-hat kernel, rI = 0.9r. Each kernel is normalized

so that its integral over the disk equals one.

7. Conclusions

We have established a comprehensive framework for understanding nonlocal advection-diffusion

models of any number of interacting populations, which unifies and extends many previous results

on existence of solutions, together with insights into blow-up of singular situations. We have shown

that, under the assumption of sufficiently smooth kernels, positive solutions exist globally in any spatial

dimension. This finding not only generalises existing knowledge, but also reveals a remarkable contrast

with local models, where global existence often depends critically on the dimension of the spatial

domain [10, 30, 38].

We also provide strong evidence for the critical role of nonlocal interactions in preventing the blow-

up of solutions in finite time. Our analysis in Section 5 highlights the role of local cross-diffusion terms

and their ability to create sudden singularities in finite time. Similar phenomena have been observed

and analysed in chemotaxis models [1, 22, 26]. While a complete categorisation of blow-up would

require sophisticated tools beyond the scope of this paper, the analysis of local limits and numerical

simulations provide solid support for the crucial role of nonlocality in preventing blow-up, paving the

way for future explorations of the long-term behaviour and applications of these models in a variety of

fields.

From a practical perspective, existence and blow-up results can be very useful in informing users of

PDE models whether they are sensibly defined. In particular, when performing numerics, knowledge

of existence and blow-up regimes can inform whether those numerics are likely to produce meaningful

results a priori, regardless of the numerical scheme being used. Here, we demonstrate how our insights

on existence and blow-up translate to the appearance of spike-like solutions as the detection radius

decreases to zero. As the limit is approached, it is necessary to use ever-higher spatial resolution to
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capture the behaviour of the PDE accurately. However, away from this limit, solutions are nicely

mollified, allowing for more rapid numerical analysis.

The general global existence result presented here paves the way to a systematic analysis of nonlocal

biological interactions. Our main interest is to gain a better understanding of animal space use

and oriented animal movement. Possible applications of the model (1.1) are widespread, including

animal home ranges [2], space use by territorial competitors [36], swarming and flocking [11], species

reactions to anthropogenic disturbances [31], and biodiversity in heterogeneous environments [39].

The results presented here put us at ease to freely use nonlocal PDE models of type (1.1) to describe

complex spatio-temporal interactions arising from such applications.
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