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We show, both numerically and analytically, that for the modulated double well potential given by 
− 1

2
mω2x2(1 + ǫ cos(�t)) + mλ

4
x4, a particle initially placed with zero momentum at the bottom of one 

of the wells can oscillate back and forth between the two wells for an infinitesimal value of ǫ when the 
modulating frequency � equals 

√
2ω. The effect is also present, but in a less dramatic fashion where 

� = 2
√
2ω. In the ǫ − � plane, around the point � =

√
2ω, the boundary separating the region where 

the tunnelling occurs from the region where it does not, is a fractal curve whose fractal dimension is 
1.45.

 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

The issue of tunnelling across a potential barrier has generally 
been associated with quantum mechanics. The calculational strat-
egy for obtaining the tunnelling time (classical ‘dwell-time’) has 
often made use of semi-classical techniques ([1], [2]). The ques-
tion of ‘dwell-time’ in a completely classical set-up seems to have 
been introduced by Mateos and José [3] and Mateos [4] in study-
ing the classical dynamics of a particle inside a rigid box with an 
internal oscillating square well potential. Scaling properties of the 
dynamics of a classical particle in a time dependent potential have 
been extensively investigated by Leonel, and da Silva [5] and by 
MaClintock and Leonel [6–8]. In this work, we would like to report 
an apparently overlooked resonant tunnelling in a modulated dou-
ble well potential. We would like to emphasise that the tunnelling 
we are referring to occurs within a purely classical context. We 
will show that for a particular value of the modulation frequency 
(we call this the resonance frequency), a particle placed at rest in 
one of the minima of the potential will make a transition to the 
other well even if the modulation amplitude is a couple of orders 
of magnitude smaller than the well depth.

Forced nonlinear oscillators have been extensively studied since 
these are one-dimensional systems which are capable of showing 
a wide variety of bifurcation and clear demonstration of chaotic 
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behaviour. Our interest is in the double well oscillator shown in 
Fig. 1.

Fig. 1. Double well oscillating potential V (x, t) = −mω2x2(1 + ǫ cos(�t))/2 +
mλx4/4, is plotted for three values of λ at fixed ω = 3, ǫ = 0.05 and m = 1. The 
Minima of the potential at t = 0 are, x0(t = 0) = ±ω

√
(1+ ǫ)/λ, denoted by circles.

The time independent form has attracted more attention in 
quantum mechanics than in classical mechanics. In particular, 
quantum dynamics is very important because of the phenomenon 
of tunnelling in which a particle localised strongly in one of the 
wells can tunnel back and forth between the two wells. In driven 
double well quantum oscillators, the regular and irregular dy-
namics and tunnelling have been studied by Lin and Ballentine 
[9], Igarashi and Yamada [10], Marthaler and Dykman [11] under 
different circumstances. Dynamics of moments for the quantum 
Mathieu oscillator [12] and different facets of parametrically driven 
classical systems [13] have also been studied. Using a double well 
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with a small added stochasticity led to a weak tunnelling in the 
classical limit [14]. This signal was significantly enhanced if the 
wells were subjected to an oscillation width of a frequency which 
was of the order of the frequency (very low) of transferring from 
one well to another. In this work, we show that in a parametrically 
modulated well double oscillator with the Hamiltonian,

H =
p2

2m
−

1

2
mω2x2(1 + ǫ cos(�t)) +

mλ

4
x4, (1)

a strongly localised (i.e. particle at rest in one of the wells) par-
ticle in one well at t = 0, can execute oscillations from one well 
to another for a very tiny modulation strength ǫc when the mod-

ulating frequency is given by � =
√
2ω + δ, where δ is O(ǫ). We 

show the effect very clearly in Fig. 2. In Fig. 2(a), the value of ǫ is 

Fig. 2. The particle position (initially placed at x0(t = 0) = 30
√
1+ ǫ) as function of 

time for λ = 0.01, � = 3.9 and ω = 3. For ǫ < ǫc ∼ 0.03, (a), the particle is localised 
at one well. At very small modulation i.e. ǫ = 0.05 (b), the particle tunnels from its 
initial well.

chosen as 0.01, which is below the threshold required for crossing. 
We clearly see the particle oscillating in one well. For the choice 
of ǫ = 0.05 (Fig. 2(b)), it is clear that the particle oscillates be-
tween the left and right wells. We see that when the tunnelling 
begins, small changes in the value of ǫ can lead to large changes 
in the dynamics. If a particular value of ǫ shows tunnelling, then 
a small increment can show the absence of tunnelling and vice 
versa. We show this clearly in Fig. 3 by considering different val-
ues of ǫ , which are all quite close to each other. We further find 

Fig. 3. The particle position (x) and its normalised energy (E/|E|0) as a function 
of time are shown for various ǫ values, with fixed ω = 3, λ = 0.01, and � = 3.9. 
Notably, particle tunnelling doesn’t exhibit a linear relationship with ǫ values. In 
panel, (a) for ǫ = 0.0399, a quick particle tunnelling occurs, while in panel (b) with 
ǫ = 0.041, the particle remains confined to one well side along with its energy. 
Panel (c) for ǫ = 0.0434, depicts the particle successfully tunnelling to the opposite 
side, overcoming the energy barrier. Lastly, for ǫ = 0.045 in panel (d), the particle 
oscillates within its initial well on this time scale, with energy below the barrier 
height.

that there is a rather unusual boundary in the ǫ vs � plane sep-
arating regions which exhibit tunnelling from regions which do 
not. As shown in Fig. 4 (for λ = 0.01, ω = 3), the tunnelling re-
gion originating from � ≃

√
2ω has a structured boundary which 

can be characterised by the fractal dimension. The resonance near 
� ≃

√
2ω is stronger than the one near � ≃ 2

√
2ω which requires 

larger values of ǫ for particle tunnelling. Quite surprisingly, this 
picture is independent of the value of λ. We also find that the 

Fig. 4. Solution of the parametric double well oscillator in the � − ǫ paramet-

ric space for ω = 3, where, λ = 0.01, initial position is at one of well’s minima 
x0 = ω

√
(1+ ǫ)/λ, and initial velocity ẋ0 = 0. Shaded regions correspond to pa-

rameters which allow tunnelling, and the white region corresponds to confined 
oscillation in the initial well. The zoomed region with colourmap near the primary 
resonance in (b) shows the escaping time t from the initial well. The darker re-
gion corresponds to early escape, whereas the lighter region infers a delayed escape 
from its initial well. The above pictures are similar to the instability zones of the 
Mathieu equations except for the fact that the modulating frequency is an irrational 
multiple of the natural frequency and the boundaries are fractal curves [15–17].

boundary curve separating the zone in which the particle can es-
cape to the other well from the zone where the particle is confined 
in an initial well manifest a fractal nature with a fractal dimension 
of 1.45 around � =

√
2ω and 1.75 for � = 2

√
2ω.

We now describe the fractal nature of the basin boundary sep-
arating the escape zone from the confined one (see Fig. 4(a)). 
The more spectacular escape is for frequencies � ≃

√
2ω and the 

boundary, as shown in Fig. 4(b), is a fractal curve of dimension 
D = 1.45. For the frequencies near � ≃ 2

√
2ω, we have similar 

fractal behaviour for the separating border, and its fractal dimen-

sion is 1.75. We note that the fractal dimensions of the set of 
points of the attractor for the Poincare maps of chaotic motion 
in the periodically driven double-well oscillator with dumping can 
span a range of values around 1.5 as the damping coefficient is 
varied [18]. However, we are unable to observe any apparent cor-
relation with our specific system.

The dimensions have been computed using the box counting al-
gorithm, and the procedure is shown in Fig. 5. For � ≃ 2

√
2ω, 

Fig. 5. Box counting for particle tunnelling at differing spatial resolutions of box 
length ℓ in (a-c). Using the definition of the counting method, the slope of the 
logN and log1/ℓ gives the fractal dimension. The fractal dimension is 1.45 near 
� ≃ 3.9, where ω = 3, λ = 0.01. The darker colour of the Colourbar indicates in (a-
c), a higher number of points in a box, whereas brighter points represent a small 
number of points counts in a box (see SI Movie 1).
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Fig. 6. Position of the particle as a function of time is shown for four different ǫ
values around � = 2

√
2ω, where, � = 8.1, ω = 3, λ = 0.01. Particle tunnelling is 

not linearly related to the ǫ values. As seen in (a) ǫ = 0.1413 particle can tunnel 
quickly, however, for a larger value of ǫ = 0.236 in (b) particle is still trapped in 
one side of the well. Furthermore, with a stronger value of ǫ = 0.25 in (c), the 
particle tunnels to the other side, however, for ǫ = 0.2828 in (d), the particle is still 
oscillating in one well in this time scale (see SI Movie 3).

the time series for escape/confinement in the initial well is shown 
in Fig. 6(a-d). We have also explored how the possibilities of es-
cape from a well change as the initial position of the particle vary. 
In Fig. 7, we show escape/confined zones for three values of �. 
We vary the initial position from near x0 = 0 to that correspond-
ing to the maximum potential depth (= 30

√
2 where ǫ = 1). The 

dashed line represents the minimum position of the well, where 
the rest of the simulation’s initial position is considered. It should 
be noted that Fig. 7(a & c) demonstrate that if the initial posi-
tion of the particle lies between maxima and minima of the well, 
escaping possibility is higher for lower values of ǫ . Surprisingly, 
Fig. 7(b), reveals that the probability of escape is lower when the 
particle’s initial position is intermediate between the highest and 
lowest points of the barrier, even when ǫ > ǫc . This finding indi-
cates that the probability of escape is associated with the phase 
relationship between the frequency of the forced oscillation and 
the frequency of the particle oscillation (see SI Movie 2). It has also 
been observed that the phenomenon is independent of the value 
of λ and this is demonstrated in Fig. 8. Our results are independent 
of the frequency ω as well. Hence the results are independent of 
the well depth.

To get an analytic handle, we use the coordinate transformation 
y = x − ω√

λ
, which centres the coordinate system at the bottom of 

the unperturbed right well and finds the dynamics to be given by

d2 y

dt2
+ 2ω2 y + 3

√
λωy2 + λy3 =

ǫω3

√
λ

cos(�t) + ω2ǫ cos(�t)y.

(2)

The interesting thing is that in the above dynamics, there is going 
to be both forced resonance near ω = �√

2
and a parametric reso-

nance near ω = �

2
√
2
. We note that the quadratic nonlinearity and 

the cubic one will both contribute at O(λ) and try a solution near 
ω = �√

2
of the form,

Fig. 8. The boundaries of escape from the initial well and confined in the initial 
well are independent of the well depth ω

√
(1+ ǫ)/λ. We consider three different 

λ = 0.01, 0.1 and 1.0, where all the cases the region boundaries superpose.

y = C1 + C2 cos2(�t + φ(t)) + A(t) cos(�t + φ(t)). (3)

In the above C1 and C2 are constants of O(
√

λ) and A(t) and 
φ(t) are the slowly varying amplitude and phase at O(λ). We set 
2ω2 = �2 + ǫ	 (ǫ << 1) and by matching terms of the same 
trigonometric variation obtain

2�2C1 = −3ω
√

λA2 − ǫω2A cosφ, (4)

6�2C2 = 3ω
√

λA2 − ǫω2A cosφ. (5)

Using these values of C1 and C2 and the usual Bogoliubov-
Krykov technique, we arrive at the slow dynamics given by,

2� Ȧ = −
ǫω3

2
√

λ
sinφ

(

1−
7λ

8ω2
A2

)

, (6a)

and

2�Aφ̇ = ǫ	A −
ǫω3

√
λ

cosφ +
5

8
ǫω

√
λA2 − 3λA3. (6b)

We have dropped all terms of O(ǫ2) in the above equations. 
The novel feature in the above set of equations is the phase de-
pendence obtained in Eq. (6a). This is a real effect that can be seen 
in the movie (see SI), showing the dynamics of escape from the 
well. From Eq. (6a), we see there are three possible fixed points, 
(i) φ∗ = 0, (ii) φ∗ = π and (iii) A∗2 = 8ω2/7λ. In the case of (i) 
and (ii), the corresponding A∗ has to be found from Eq. (6b). In 
case of (iii), the phase dynamics will be obtained from Eq. (6b). 
For the fixed points (i) and (ii), the relevant values of A are found 
from,

3λA∗3 = ǫ

[

	A∗ +
5

8
ǫω

√
λA∗2 −

ω3

√
λ
cosφ

]

, (7)

Fig. 7. Dependence on initial conditions for tunnelling at (a) � = 2.0 (b) � = 3.9 (c) � = 8.1 while keeping other parameter fixed at ω = 3 and λ = 0.01. Blue regions 
represent the tunnelling region, while white regions correspond to the particle confined in the initial well. The minimum position, x0 = ω

√
(1+ ǫ)/λ, is indicated by the 

dotted line.
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for ǫ << 1, the largest value is O(ǫ1/3). This amplitude is not 
strong enough to provide tunnelling from one well to the other. 
Thus, the only relevant fixed point is the one for which A∗2 =
8ω2/7λ. This is a large enough amplitude for the particle to es-
cape from the well. It should be noted that this ability to traverse 
to the other well is independent of the well depth. This is rather 
an extraordinary situation where, however deep the well is, a very 
small modulation is capable of sending a particle from one well 
to the other. In Fig. 6, we set three values of λ = 1, 0.1, and 0.01
(the potential forms are shown in Fig. 1) keeping other parameters 
fixed, one observes the same tunnelling phase diagram in ǫ − �

phase space. A similar analysis can be carried out near the para-
metric resonance case of 

√
2ω = �

2
+ ǫδ(ǫ << 1), but we do not 

show them here as the results around the resonance is less spec-
tacular than near 

√
2ω = �.

It is interesting to look at the dynamics of the energy E in this 

context, where E = p2

2
− ω2x2

2
+ λx4

4
is the total energy for a par-

ticle of unit mass in a double well potential. The rate of charge of 
energy is

Ė = pṗ − ω2xẋ + λx3 ẋ = ǫω2xp cos(�t). (8)

To get the approximate dynamics when the particle is near the 
bottom of the left well, we make the coordinate transformation 
x = y − ω√

λ
, which puts the minimum of the left-hand well at 

y = 0, with the dynamics around the minimum governed by the 

Hamiltonian H = p2

2
+ ω2 y2 at low energies. In terms of y, the 

energy variation is

Ė = ǫω2

(

y −
ω
√

λ

)

p cos(�t). (9)

The dynamics at the bottom of the well is approximately y(t) =
A cos(

√
2ωt) + B sin(

√
2ωt) and p = ẏ =

√
2ω[A sin(

√
2ωt) −

B cos(
√
2ωt)]. On carrying out a time average 〈yp cos�t〉 = 0, 

while 〈p cos�t〉 = −B
√
2ω〈cos

√
2ωt cos�t〉 = −Bω/

√
2 if � =√

2ω. This leads to Ė = ǫ ω4B√
2λ

and is the reason for the increase 

of energy on an average for � =
√
2ω. As evident in Fig. (3), the 

particle jumps to the other well while it surpasses the energy bar-
rier height. While the energy is lower than the energy barrier, the 
particle is confined in its initial well.

Our results have an analogue in the restricted three-body 
problem under mutual gravitational attraction known as the Sit-
nikov problem. In this three-body dynamics, an amazing setup is 
achieved where the third body is restricted to move in a line (the 
z-axis) with the dynamics given by z̈ + 2Gmz/(r(t)2 + z2) = 0, 
where G is the gravitational constant and r(t) is the separation 
distance of the two other bodies. Sitnikov [19] showed for the 
first time the existence of unbounded oscillations in the restricted 
three-body problem. The result was first shown for a zero mass 
situation for the third body and then generalised to finite mass by 
Alekseev [20] and is analogous to our escape from the bottom of a 
well with zero initial velocity (see in Fig. 7(b)).

In conclusion, we have shown that the modulated double well 
potential governed by the Hamiltonian of Eq. (1) has a large num-

ber of somewhat unusual characteristics. An extremely small mod-

ulation amplitude allows for tunnelling in the most adverse sit-
uation namely the particle being rest at the minimum of one of 
the wells. The tunnelling is found to be independent of the depth 
of the well in our numerical work and can also be arrived at by 
deriving an amplitude equation where the amplitude evolution is 
dependent on the phase. Further, the boundary separating the tun-
nelling zone from the confined one is a fractal curve with fractal 
dimensions depending on whether one is near a forced resonance 
or a parametric resonance.
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