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Abstract. We study the backreaction of a quantum scalar field on anti-de Sitter (AdS)
space-time. The renormalized expectation value of the stress-energy tensor operator
(RSET) for a quantum scalar field acts as a source term on the right-hand-side of the
Einstein equations for the quantum-corrected metric. We find the RSET for a nonro-
tating thermal state on global AdS in three dimensions and compare this with results
from relativistic kinetic theory. We then solve the linearized quantum-corrected Einstein
equations. We interpret these quantum-corrected metrics as asymptotically-AdS solitons.

1 Introduction
In general relativity, all energy and matter gravitates, and thus results in the curvature of space-time,
governed by the classical Einstein equations:

Gµν + Λgµν = Tµν , (1)

where Gµν is the Einstein tensor for the metric gµν , the energy and matter distribution is described by
the stress-energy tensor Tµν , and Λ is the cosmological constant (we use units in which 8πG = c = h̄ =
kB = 1). Let us consider a simple type of matter field, namely a massless, conformally-coupled scalar
field. In four space-time dimensions, the only asymptotically flat solutions of the Einstein equations
(1) with Tµν for such a scalar field are black holes [1]. However, in asymptotically anti-de Sitter (AdS)
space-time with Λ < 0 such a scalar field can generate soliton-like solutions [2].

A natural question is whether solitons can also be generated when the classical scalar field is replaced
by a massless, conformally-coupled, quantum scalar field. In this situation the classical stress-energy
tensor Tµν in (1) is replaced by the renormalized expectation value of the stress-energy tensor operator

(RSET) ⟨T̂µν⟩. The RSET is computed on a fixed AdS background, and a suitable quantum state has
to be chosen for the scalar field. On pure AdS space-time, the RSET for the global vacuum state results
simply in a renormalization of the cosmological constant Λ [3], so we consider instead a global thermal

state. In four dimensions, it is found [4] that the thermal RSET ⟨T̂µν [g
0]⟩ (where g0 is the background

AdS metric) generates quantum-corrected (QC) solitons.
In this note, we consider the simpler situation of three-dimensional AdS, inspired by the work of [5]

on quantum-corrections to the three-dimensional, asymptotically AdS, BTZ black hole. While in [5] the
background space-time possesses a singularity, here we work on the regular global AdS space-time. In
our previous work [4], we solved the nonlinear Einstein equations. However, it is expected that the RSET
(and therefore quantum corrections to the AdS metric) will be small, of order the Planck length ℓP. We
therefore follow [5] and take a perturbative approach, writing the QC metric as gQC = g0+ℓP δg+O(ℓ2P),
and solve the O(ℓP) linearized quantum-corrected Einstein equations (LQCEE)

δGµν + Λ δgµν = ⟨T̂µν [g
0]⟩, (2)

where δGµν is the linearized perturbation of the Einstein tensor. In the following we briefly review the

properties of the RSET source ⟨T̂µν [g
0]⟩ [6] before discussing soliton-like solutions of the LQCEE (2).

Since this is a brief note, we consider only static solitons, and plan to return to rotating solitons in a
future work [7].
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2 RSET on AdS3

Our background is three-dimensional global AdS space-time with metric g0µν given by the line element

ds20 = a−2
(

1− r2
)−2

[

−
(

1 + r2
)2

dt2 + 4dr2 + 4r2 dθ2
]

, (3)

where a is the inverse AdS length scale, related to the negative cosmological constant Λ by a =
√
−Λ

and the coordinates have ranges −∞ < t < ∞, 0 ≤ r < 1 and 0 ≤ θ < 2π. We consider a mass-
less, conformally-coupled, quantum scalar field in a thermal state on the background metric (3). The

quantum field theory (QFT) expectation value ⟨T̂µν [g
0]⟩ is computed in [6] for a rigidly-rotating thermal

state at inverse temperature β (using a different coordinate system to that employed here). Setting the
angular speed of rotation Ω to zero, and changing to the coordinate system in (3), the QFT-RSET has
nonvanishing components QFTT t

t ,
QFTT r

r and QFTT θ
θ given by

QFTT r
r =

a3

16
√
2π

(

1− r2
)3

(1 + r2)
3

∞
∑

j=1

[

1

4
√
2
[3 + cosh (jβ)] cosech3

(

jβ

2

)

−A−
3

2

j sinh2
(

jβ

2

)]

, (4a)

QFTT θ
θ = QFTT r

r − 3a3r2

2
√
2π

(

1− r2
)3

(1 + r2)
5

∞
∑

j=1

A−
5

2

j sinh2
(

jβ

2

)

, (4b)

with QFTT t
t +

QFTT r
r +QFTT θ

θ = 0 and Aj = cosh (jβ)+
(

1 + r2
)

−2 (

1− 6r2 + r4
)

. Since the expressions
(4) are somewhat unwieldy, we also take an alternative approach, namely relativistic kinetic theory
(RKT). In RKT, the quantum scalar field is modelled as a classical gas of massless bosonic particles with
a Bose-Einstein distribution function at inverse temperature β. The resulting classical RKT-SET takes
the much simpler form (here ζ(3) is the Riemann-zeta function) [6]

RKTT ν
µ =

a3ζ(3)

2πβ3

(

1− r2
)3

(1 + r2)
3
Diag {−2, 1, 1} . (5)

In Fig. 1 we show the energy density E = −T t
t for low temperatures (left-hand-plot) and high tempera-

tures (middle plot), with the RKT results given by dashed lines and the QFT results by solid lines. At
high temperatures (small β), the RKT-SET (5) is a very good approximation to the QFT-RSET (4),
but it ceases to be a good approximation at low temperatures (large β) [6]. For all fixed temperatures,
the energy density computed using RKT is larger than than in QFT at the same value of the radial
coordinate r. In both QFT and RKT, the energy density is positive throughout the space-time and has
a soliton-like profile: for fixed inverse temperature β, the energy density has a maximum at the origin
r = 0 and decreases to zero as r → 1 and the AdS boundary is approached [6].

Figure 1: Energy density E = −T t
t for β ∈ {3π/4, 5π/6, 11π/12, π} (left) and β ∈ {π/6, π/4, π/3, 5π/12}

(middle). QC soliton mass M (10) (right) as a function of inverse temperature β. Dotted lines denote
results from RKT, while solid lines are those from QFT. We set the AdS inverse length scale a = 1.

3 QC AdS3 solitons
We now use the QFT-RSET (4) and the RKT-SET (5) as source terms in the LQCEE (2) and seek soliton-
like solutions of these equations. We assume that the QC metric is static and spherically-symmetric, and
takes the form

ds2QC = a−2
[

−A(r) dt2 +B(r) dr2 + C(r) dθ2
]

. (6)



We write each of the metric functions A(r), B(r) and C(r) as their expressions for the background
metric (3) plus small O (aℓP) perturbations δA(r), δB(r) and δC(r). By a suitable choice of gauge
(corresponding to a perturbation of the radial coordinate r) we may take the perturbation of the metric
function B(r) to be

δB(r) =

(

1− r2
)2

r2 (1 + r2)
2
δA(r). (7)

With this choice, the LQCEE (2) reduce to two ordinary differential equations, a second order equation
for δA(r) and a first order equation for δA(r) + δC(r). Employing, respectively, the method of variation
of parameters and an integrating factor, these can be solved to give explicit expressions for the metric
perturbations in terms of integrals over the RSET components (for details, see [7]):

δA(r) = C1 +
C2r2

(1− r2)
2
−
∫

1 + r2

ar (1− r2)
Tθθ dr +

r2

(1− r2)
2

∫

(

1− r4
)

ar3
Tθθ dr, (8a)

δA(r) + δC(r) =
r2

(1− r2)
2

[

C3 + 2

∫

1− r4

ar
Trr dr

]

, (8b)

where C1, C2 and C3 are arbitrary constants, which are fixed by the requirement that the metric per-
turbations are regular at the origin r = 0 and that the QC space-time approaches pure AdS as r → 1.
Substituting the RKT-SET (5) and QFT-RSET (4) into the integrals in (8), explicit algebraic expressions
for the metric perturbations can be obtained [7], which are quite complicated in the QFT case.

While the metric ansatz (6) is useful for explicitly finding the metric perturbations, in order to aid our
soliton intepretation of the QC metric, we change to a new radial coordinate R, given by R2 = C(r) ∈
[0,∞) and consider the alternative metric (following the QC BTZ ansatz in [5]):

ds2QC = a−2
[

−N(R)f(R) dt2 +N(R)−1 dR2 +R2 dθ2
]

, (9)

where N(R) = R2 + 1 + aℓPm(R) + O
(

a2ℓ2P
)

and f(R) = 1 + O (aℓP). It is the metric perturbation
m(R) which is of particular interest for our purposes. This is given as a linear combination of the metric
perturbations δA and δC and satisfies the differential equation m′(R) = 2RE/a2, where E = −T t

t is the
local scalar field energy density [7]. In the BTZ black hole metric, m(R) is a constant, corresponding to
the mass of the black hole [8]. In order to have a regular origin at R = 0 (which corresponds to r = 0), it
must be the case that m(0) = 0 (which is not satisfied for the BTZ black hole, hence there is a singularity
at the origin). The condition m(0) = 0 is satisfied by an appropriate choice of the integration constants
in (8) [7]. Using both the RKT-SET and QFT-RSET in the LQCEE, since E > 0, we find that m(R) is
a monotonically increasing function of R and tends to a finite limit as R → ∞ (which corresponds to the
AdS boundary at r = 1). By analogy with the BTZ metric [8], we interpret this limit as the mass M of
the QC solitons, which takes the simple expressions

M = lim
R→∞

m(R) =



















2ζ(3)

πβ3
, RKT,

1

32π

∞
∑

j=1

[3 + cosh (jβ)− sinh (jβ)] cosech3
(

jβ

2

)

, QFT,
(10)

when evaluated using the RKT-SET and QFT-RSET, respectively. The soliton mass M is shown in
the right-hand plot in Fig. 1 as a function of the inverse temperature β. It can be seen that the mass
computed using the RKT-SET is larger than that derived from the QFT-RSET, as expected since the
local energy density E is greater in RKT than QFT. Furthermore, the mass increases rapidly as the
temperature of the thermal state increases.

4 Conclusions
In this note we have studied the backreaction of a massless, conformally-coupled, quantum scalar field in a
static thermal state on three-dimensional global AdS space-time. Using a perturbative approach, we have
solved the linearized, quantum-corrected, Einstein equations (LQCEE) to find the metric perturbations
of pure AdS, with the scalar field RSET acting as a source. We have computed the RSET in two
complementary approaches: RKT and QFT. We find globally regular, static soliton solutions of the
LQCEE, whose mass increases rapidly as the temperature of the thermal state increases. We are currently
working on the corresponding rotating quantum-corrected solitons sourced by a rigidly-rotating thermal
state on three-dimensional AdS, and plan to report our results in the near future [7].
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