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 a b s t r a c t

We study the stress-energy tensor of a massless, conformally-coupled, quantum scalar field in a rigidly-rotating 
thermal state on three- and four-dimensional anti-de Sitter space-time. We first find the stress-energy tensor 
using relativistic kinetic theory, modelling the field as a thermal gas of massless bosons. We then compute the 
renormalized stress-energy tensor of the scalar field in quantum field theory and compare it with that resulting 
from relativistic kinetic theory.

1.  Introduction

Anti-de Sitter (AdS) space-time is a maximally-symmetric solution 
of the Einstein equations having constant negative scalar curvature, of 
particular importance for holography and the AdS/CFT correspondence 
[1]. The simplicity of this space-time geometry facilitates the study of 
quantum field theory (QFT) on this background, rendering AdS a useful 
prototype for exploring QFT effects on more general curved space-times, 
while nonetheless giving nontrivial results.

A global vacuum state can be defined on AdS [2], in analogy with 
the global Minkowski vacuum state, and both of these preserve the max-
imal symmetry of the underlying space-time. In contrast, while a global 
thermal state on Minkowski space-time also inherits maximal symme-
try, this is not the case for a global thermal state on AdS [3]. Due to the 
curvature of AdS, thermal radiation tends to ªclumpº, and is localized 
near the origin [3,4].

Our focus in this letter is rigidly-rotating thermal states. No rigidly-
rotating vacuum or thermal states can be defined for a quantum scalar 
field on unbounded Minkowski space-time [5]. For a quantum fermion 
field, rigidly-rotating thermal states can be defined, but the latter are 
regular only inside the speed-of-light surface (the surface outside which 
rigidly-rotating observers must be travelling at speeds greater than the 
speed of light) [6]. Regular rigidly-rotating thermal states on Minkowski 
space-time can be constructed for both bosonic and fermionic quantum 
fields if the space-time is bounded by a perfectly reflecting mirror inside 
the speed-of-light surface [5,7,8], but at the cost of introducing Casimir-
like divergences on the mirror [5,7].

The global structure of AdS space-time provides a natural bound-
ary, and thus rigidly-rotating vacuum and thermal states can be defined 
without recourse to an artificial mirror (thus avoiding the consequent 
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Casimir divergences), providing that the rate of rotation is sufficiently 
small that there is no speed-of-light surface. In this case, rigidly-rotating 
thermal states have been extensively studied for fermions [9,10], but no 
similar study for a quantum scalar field has been performed to date.

In this letter we investigate the properties of the renormalized stress-
energy tensor (RSET) for a massless, conformally-coupled quantum 
scalar field in a rigidly-rotating thermal state on AdS, assuming that 
there is no speed-of-light surface. For fermions [9], when the rate of ro-
tation is sufficiently small, thermal radiation again ªclumpsº in a neigh-
bourhood of the origin, but increasing the rate of rotation results in an 
increasingly energetic thermal state, with the location of the maximum 
energy density moving from the origin outwards towards the space-time 
boundary. One purpose of our analysis is to explore whether a similar 
effect occurs for a quantum scalar field.

We also compare our QFT results with those arising from relativistic 
kinetic theory (RKT), in which the quantum scalar field is modelled as 
a relativistic gas of massless classical bosonic particles. For nonrotating 
thermal states, RKT yields results which are identical to those in QFT 
on Minkowski space-time [4,11], while on AdS quantum effects give 
small corrections to the RKT results, the relative magnitude of the cor-
rections decreasing as the temperature increases [4,11]. Away from the 
reflecting mirror, RKT also gives a good approximation to the RSET for 
a quantum scalar field in a rigidly-rotating thermal state on bounded 
Minkowski space-time [5].

The outline of this letter is as follows. In Section 2 we describe the 
metric for rigidly-rotating AdS space-time in global coordinates, work-
ing in three and four space-time dimensions. The SET (stress-energy ten-
sor) is derived using RKT in Section 3, followed by the corresponding 
QFT construction in Section 4. In Section 5 we compare our results from 
RKT and QFT. Finally, Section 6 contains our conclusions.
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2.  Rotating AdS space-time

AdS space-time in global coordinates in 𝑛 space-time dimensions has 
line element 
d𝑠2 = 𝑎−2 sec2 𝜌

[
−d𝜏2 + d𝜌2 + sin2 𝜌 d𝑆2

𝑛−2

]
, (2.1a)

where d𝑆2
𝑛−2

 is the metric on the (𝑛 − 2)-dimensional sphere and 𝑎 is the 
inverse AdS radius of curvature. Throughout this paper, we use units in 
which 𝑐 = 𝐺 = ℏ = 𝑘B = 1. The coordinate ranges are −∞ < 𝜏 < ∞ and 
0 ≤ 𝜌 < 𝜋∕2. For simplicity, we focus in this paper on three- and four-
dimensional AdS, for which cases we have 

d𝑆2
𝑛−2

=

{
d𝜑̃2, 𝑛 = 3,

d𝜃2 + sin2 𝜃 d𝜑̃2, 𝑛 = 4,
(2.1b)

where 0 ≤ 𝜃 ≤ 𝜋 and 0 ≤ 𝜑̃ < 2𝜋.
We are interested in states which are rigidly-rotating with angular 

speed Ω in the ̃𝜑 direction. We therefore define a corotating angle 𝜑 by 
𝜑 = 𝜑̃ − Ω𝜏, in terms of which the metric (2.1) becomes, for 𝑛 = 3, 

d𝑠2 = 𝑎−2 sec2 𝜌

[
−
(
1 − Ω2 sin2 𝜌

)
d𝜏2 + 2Ω sin2 𝜌 d𝜏 d𝜑

+ d𝜌2 + sin2 𝜌 d𝜑2

]
, (2.2a)

while for 𝑛 = 4 we have

d𝑠2 = 𝑎−2 sec2 𝜌

[
−
(
1 − Ω2 sin2 𝜌 sin2 𝜃

)
d𝜏2 + d𝜌2

+ 2Ω sin2 𝜌 sin2 𝜃 d𝜏 d𝜑 + sin2 𝜌
{
d𝜃2 + sin2 𝜃 d𝜑2

}]
. (2.2b)

Particles at constant (𝜌, 𝜑) (𝑛 = 3) or constant (𝜌, 𝜃, 𝜑) (𝑛 = 4) have a 
speed which is greater than the speed of light if the metric component 
𝑔𝜏𝜏 > 0. From the line elements (2.2), this cannot happen if |Ω| < 1. For 
the rest of this paper, we therefore assume this inequality holds.

In our RKT analysis in the next section, we will require an orthonor-
mal dreibein/vierbein of basis vectors 𝑒(𝑎) for the metric (2.2), where 
drei/vierbein indices are enclosed in round brackets. These have a cor-
responding basis of one-forms 𝜔(𝑎) given by, for both 𝑛 = 3 and 𝑛 = 4, 

𝜔(𝜌) = 𝑎−1 sec 𝜌 d𝜌, (2.3a)

while for 𝑛 = 3 we also have
𝜔(𝑡,3) = 𝑎−1 sec 𝜌

(
Γ−1 d𝜏 − ΩΓ sin2 𝜌 d𝜑

)
, (2.3b)

𝜔(𝜑,3) = 𝑎−1Γ tan 𝜌 d𝜑, (2.3c)

and, for 𝑛 = 4,

𝜔(𝑡,4) = 𝑎−1 sec 𝜌
(
Γ−1 d𝜏 − ΩΓ sin2 𝜌 sin2 𝜃 d𝜑

)
, (2.3d)

𝜔(𝜃) = 𝑎−1 tan 𝜌 d𝜃, (2.3e)

𝜔(𝜑,4) = 𝑎−1Γ tan 𝜌 sin 𝜃 d𝜑, (2.3f)

where we have defined 

Γ =

⎧⎪⎨⎪⎩

(
1 − Ω2 sin2 𝜌

)− 1
2 , 𝑛 = 3,

(
1 − Ω2 sin2 𝜌 sin2 𝜃

)− 1
2 , 𝑛 = 4.

(2.4)

3.  Relativistic kinetic theory analysis

In this section we use RKT to find the SET (which we will refer to as 
the RKT-SET from now on) for a rigidly-rotating thermal gas of massless 
bosonic particles in AdS. We model the gas of classical particles as a fluid 
described by the following distribution function in 𝑛 dimensions [12]

𝑓 =
1

(2𝜋)𝑛−1
1

exp
[
𝛽𝑢(𝑎)𝑝

(𝑎)
]
− 1

, (3.1)

where 𝑢(𝑎) and 𝑝(𝑎) are the 𝑛-velocity and 𝑛-momentum of the fluid parti-
cles, 𝛽 is the (local) inverse temperature and we have assumed that the 

chemical potential vanishes. We assume that the fluid is at rest relative 
to the frame of vectors 𝑒(𝑎), so that we are considering a rigidly-rotating 
distribution. We then have 𝑢(𝑎)𝑝(𝑎) = 𝑝(0), which simplifies both the dis-
tribution function (3.1), and the integrals required to find the RKT-SET, 
which is given by 
𝑛𝑇

(𝑎)(𝑏)

RKT
= ∫

d𝑛−1𝐩

𝑝(0)
𝑓 𝑝(𝑎)𝑝(𝑏), (3.2)

where the integral is taken over the spatial components of the 𝑛-
momentum. Since we are considering massless particles, we have 𝑝(0) =
|𝐩|, which also simplifies the integrals in (3.2).

In a curved space-time, the local inverse temperature 𝛽 is not a con-
stant, but given by [13,14] 
𝛽 = 𝛽

√
−𝑔𝜏𝜏 = 𝑎−1𝛽Γ−1 sec 𝜌, (3.3)

where 𝛽 is the inverse temperature at the origin 𝜌 = 0, and we have 
used the line element (2.2) and the definition (2.4). The local inverse 
temperature (3.3) depends on the radial coordinate 𝜌 when 𝑛 = 3 and 
on both 𝜌 and the polar angle 𝜃 when 𝑛 = 4. From (3.3), we have that 𝛽
diverges as 𝜌 → 𝜋∕2, and hence the local temperature 𝛽−1 vanishes on 
the AdS boundary, as is the case for nonrotating states [4].

The momentum-space integrals in (3.2) are straightforward to com-
pute in both three and four dimensions. We find the drei/vierbein com-
ponents of the RKT-SET to be 

𝑛𝑇
(𝑎)(𝑏)

RKT
=

⎧⎪⎪⎨⎪⎪⎩

𝜁 (3)

2𝜋𝛽3
Diag {2, 1, 1}, 𝑛 = 3,

𝜋2

90𝛽4
Diag {3, 1, 1, 1}, 𝑛 = 4,

(3.4)

where 𝜁 (3) ≈ 1.20206 is the Riemann zeta function. It is straightforward 
to check that the RKT-SET (3.4) is traceless and conserved. In the zero-
temperature limit 𝛽 → ∞, the RKT-SET (3.4) vanishes. Thus the RKT 
approximation does not incorporate vacuum energy effects [4,11]. For 
this reason, in the following sections, we will compare the RKT-SET (3.4) 
with the difference in RSET expectation values between rigidly-rotating 
thermal and vacuum states.

4.  Quantum field theory analysis

We consider a massless, conformally coupled scalar field Φ satisfying 
the field equation 
(
∇𝜇∇

𝜇 − 𝜉𝑅
)
Φ = 0, (4.1)

where 𝜉 is the coupling constant and 𝑅 the Ricci scalar curvature, which 
equals −6𝑎2 when 𝑛 = 3 and −12𝑎2 when 𝑛 = 4. Considering conformal 
coupling, we have 𝜉 = 1∕8 for 𝑛 = 3 and 𝜉 = 1∕6 for 𝑛 = 4. In the absence 
of a speed-of-light surface, the rigidly-rotating vacuum state is the same 
as the nonrotating AdS vacuum [15,16], and the RSET for the massless, 
conformally-coupled scalar field in the vacuum state is [17] 

⟨𝑇̂𝜇𝜈⟩0 =
⎧⎪⎨⎪⎩

0, 𝑛 = 3,

−
𝑎4

960𝜋2
𝑔𝜇𝜈 , 𝑛 = 4.

(4.2)

Since the difference in expectation values between two quantum states 
does not require renormalization, to find the RSET for a rigidly-rotating 
thermal state we consider the difference 
Δ𝑇̂𝜇𝜈 = ⟨𝑇̂𝜇𝜈⟩𝛽 − ⟨𝑇̂𝜇𝜈⟩0 (4.3)

between the RSET in a rigidly-rotating thermal state at inverse tempera-
ture 𝛽 and the vacuum RSET (4.2). This difference in expectation values 
is constructed as follows.

We start with the vacuum Green function 𝑛𝐺0(𝑥, 𝑥
′) for the scalar 

field (that is, −i multiplied by the Feynman propagator), which takes 
the form 
3𝐺0(𝑥, 𝑥

′) =
𝑎

4
√
2𝜋

[
1√

𝑍 − 1
−

1√
𝑍 + 1

]
, (4.4a)
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4𝐺0(𝑥, 𝑥
′) =

𝑎2

8𝜋2

[
1

𝑍 − 1
−

1

𝑍 + 1

]
, (4.4b)

in three and four dimensions, respectively, where 
𝑍(𝑥, 𝑥′) = sec 𝜌 sec 𝜌′ cos

(
𝜏 − 𝜏′

)
− tan 𝜌 tan 𝜌′ cos 𝛾𝑛, (4.5)

and, in rotating coordinates, 
cos 𝛾3 = cos

(
𝜑 − 𝜑′ + Ω

[
𝜏 − 𝜏′

])
, (4.6a)

cos 𝛾4 = cos 𝜃 cos 𝜃′ + sin 𝜃 sin 𝜃′ cos
(
𝜑 − 𝜑′+Ω

[
𝜏 − 𝜏′

])
. (4.6b)

Our purpose in this paper is to compare the results for the RKT-SET (3.4) 
with the QFT-RSET which we derive in this section. In RKT, the quantum 
scalar field is modelled as a thermal gas of classical particles and thus 
there can be no flux of energy through the AdS boundary at 𝜌 = 𝜋∕2. For 
a scalar field on AdS, it is necessary to apply boundary conditions to have 
a well-defined quantum field theory [2]. In order for there to be no flux 
of energy through the AdS boundary, the scalar field must satisfy either 
Dirichlet or Neumann boundary conditions [18]. Comparing the results 
of [4,19] for a massless, conformally-coupled, quantum scalar field in a 
nonrotating thermal state in four-dimensional AdS, it can be seen that 
it is the RSET when Dirichlet boundary conditions are applied which is 
better approximated by the corresponding RKT quantity, rather than 
that with Neumann boundary conditions applied. We have therefore 
applied Dirichlet boundary conditions to the quantum scalar field in 
the vacuum Green function (4.4).

The Green function for a rigidly-rotating thermal state with inverse 
temperature 𝛽 is then given by the Matsubara sum 

𝑛𝐺𝛽 (𝑥, 𝑥
′) =

∞∑
𝑗=−∞

𝑛𝐺0(𝑥𝛽 , 𝑥
′), (4.7)

where 

𝑥𝛽 =

{
(𝜏 + i𝑗𝛽, 𝜌, 𝜑), 𝑛 = 3,

(𝜏 + i𝑗𝛽, 𝜌, 𝜃, 𝜑), 𝑛 = 4.
(4.8)

The difference Δ𝐺(𝑥, 𝑥′) = 𝑛𝐺𝛽 (𝑥, 𝑥
′) − 𝑛𝐺0(𝑥, 𝑥

′) between the thermal 
and vacuum Green functions corresponds to simply removing the 𝑗 = 0

term in the sum in (4.7).
The difference in RSETs (4.3) is built up from the coincidence limit 

of Δ𝐺(𝑥, 𝑥′) (which is finite) and its derivatives [20]: 

Δ𝑇̂𝜇𝜈 = −𝑤𝜇𝜈 +
(1 − 2𝜉)

2
∇𝜇∇𝜈𝑤 +

(4𝜉 − 1)

4
𝑔𝜇𝜈∇𝜆∇

𝜆𝑤 +
𝜉𝑅

𝑛
𝑔𝜇𝜈𝑤, (4.9)

where 
𝑤 = lim

𝑥′→𝑥

[
Δ𝐺(𝑥, 𝑥′)

]
, 𝑤𝜇𝜈 = lim

𝑥′→𝑥

[
∇𝜇∇𝜈

{
Δ𝐺(𝑥, 𝑥′)

}]
, (4.10)

and we have used the fact that the Ricci tensor on AdS is 𝑅𝜇𝜈 = 𝑛−1𝑅𝑔𝜇𝜈 .
After some lengthy algebra, we find that Δ𝑇̂𝜇𝜈 takes the following 

form in three dimensions: 
3Δ𝑇̂𝜇𝜈 =

𝑎

32
√
2𝜋

∑
𝑗≠0

𝜛𝜇𝜈 [+] −𝜛𝜇𝜈 [−], (4.11)

where we have defined 
± = ±1 + cosh(𝑗𝛽) sec2 𝜌 − cosh(𝑗𝛽Ω) tan2 𝜌, (4.12)

and the nonzero quantities 𝜛∙∙[±] are 

𝜛𝜏𝜏 [±] = −
1

(±)
5
2

{
2𝜏𝜏 (±)

2 + 1𝜏𝜏 (±) + 0𝜏𝜏

}
, (4.13a)

𝜛𝜏𝜑[±] =
6

(±)
5
2

sec2 𝜌 tan2 𝜌 sinh(𝑗𝛽) sinh(𝑗𝛽Ω)

+ Ω𝜛𝜑𝜑[±], (4.13b)

𝜛𝜌𝜌[±] =
sec2 𝜌

(±)
3
2

{
2(±) − 0𝜌𝜌

}
, (4.13c)

𝜛𝜑𝜑[±] =
tan2 𝜌

(±)
5
2

{
2(±)

2 + 1𝜑𝜑(±) + 0𝜑𝜑

}
, (4.13d)

with coefficients 
2𝜏𝜏 = 2

[
Ω2 −

(
Ω2 − 1

)
sec2 𝜌

]
, (4.14a)

1𝜏𝜏 = cosh(𝑗𝛽)
[
2Ω2 − (7Ω2 + 1) sec2 𝜌 + 5(Ω2 − 1) sec4 𝜌

]

− cosh(𝑗𝛽Ω)
[
6Ω2 − (11Ω2 − 3) sec2 𝜌 +5(Ω2 − 1) sec4 𝜌

]
, (4.14b)

0𝜏𝜏 = 3 tan2 𝜌 sec2 𝜌
[
Ω2 −

(
Ω2 − 1

)
sec2 𝜌

]
[cosh(𝑗𝛽) − cosh(𝑗𝛽Ω)]2

+ 6
[
sinh(𝑗𝛽) sec2 𝜌 − Ω sinh(𝑗𝛽Ω) tan2 𝜌

]2
, (4.14c)

0𝜌𝜌 = cosh(𝑗𝛽)
[
1 + 2 sec2 𝜌

]
+ cosh(𝑗𝛽Ω)

[
3 − 2 sec2 𝜌

]
, (4.14d)

1𝜑𝜑 = cosh(𝑗𝛽)
[
2 − 5 sec2 𝜌

]
− cosh(𝑗𝛽Ω)

[
6 − 5 sec2 𝜌

]
, (4.14e)

0𝜑𝜑 = 3 tan2 𝜌
{
sec2 𝜌[cosh(𝑗𝛽) − cosh(𝑗𝛽Ω)]2 −2 sinh2(𝑗𝛽Ω)

}
. (4.14f)

The corresponding expressions in four dimensions are too lengthy to 
reproduce here, but can be found in a Mathematica notebook provided 
in the Supplementary Material [21].

For comparison with the RKT-SET, we convert the space-time com-
ponents Δ𝑇̂ 𝜇𝜈 to frame components using the one-forms (2.3): 
𝑛𝑇

(𝑎)(𝑏)

QFT
= 𝜔(𝑎)

𝜇 𝜔(𝑏)
𝜈 Δ𝑇̂ 𝜇𝜈 , (4.15)

and from now on we will refer to (4.15) as the QFT-RSET. It should be 
emphasized that, for comparison with our RKT results, we are interested 
in the difference in QFT expectation values between the rigidly-rotating 
thermal and vacuum states, and therefore (4.15) will be a traceless ten-
sor in both three and four dimensions. If one were interested in the 
thermal expectation value of the RSET in QFT (as derived, for exam-
ple, using Hadamard renormalization), it would be necessary to add the 
anomalous trace contribution (4.2) to the difference (4.3).

5.  Comparing the QFT-RSET and the RKT-SET

In order to compare the SETs arising from RKT and QFT, we employ 
the thermometer frame decomposition [22,23], writing, with 𝜂(𝑎)(𝑏) the 
Minkowski metric, 
𝑛𝑇

(𝑎)(𝑏)

RKT∕QFT
= (𝐸 + 𝑃 )𝑢(𝑎)𝑢(𝑏) + 𝑃𝜂(𝑎)(𝑏) + 𝑢(𝑎)𝑊 (𝑏) +𝑊 (𝑎)𝑢(𝑏) + Π(𝑎)(𝑏), (5.1)

where 𝐸 is the energy density, 𝑃  the isotropic pressure, 𝑊 (𝑎) the heat 
flux and Π(𝑎)(𝑏) the anisotropic stress. These quantities can be computed 
from the components of the SET in the dreibein/veirbein frame as fol-
lows [10]: 

𝐸 = 𝑢(𝑎)𝑢(𝑏)𝑇(𝑎)(𝑏), (5.2a)

𝑃 =
1

𝑛 − 1
Δ(𝑎)(𝑏)𝑇(𝑎)(𝑏), (5.2b)

𝑊 (𝑎) = −Δ(𝑎)(𝑏)𝑢(𝑐)𝑇(𝑏)(𝑐), (5.2c)

Π(𝑎)(𝑏) =
[
Δ(𝑎)(𝑐)Δ(𝑏)(𝑑) −

1

𝑛 − 1
Δ(𝑎)(𝑏)Δ(𝑐)(𝑑)

]
𝑇(𝑐)(𝑑), (5.2d)

where Δ(𝑎)(𝑏) = 𝑢(𝑎)𝑢(𝑏) + 𝜂(𝑎)(𝑏) is the projector. In RKT, the heat flux 
𝑊 (𝑎) and anisotropic stress Π(𝑎)(𝑏) vanish identically, while 𝐸 = (𝑛 − 1)𝑃

since we are considering massless particles. The QFT-RSET (4.15) is also 
traceless and has 𝐸 = (𝑛 − 1)𝑃 . Hence we may quantify quantum ef-
fects by considering the nonzero components of 𝑊 (𝑎) and Π(𝑎)(𝑏), which 
are 𝑊 (𝜑) in both three and four dimensions, and 3Π(𝜌)(𝜌) = −3Π(𝜑)(𝜑) for 
𝑛 = 3, while for 𝑛 = 4, the nonzero components of the anisotropic stress 
are 4Π(𝜌)(𝜌), 4Π(𝜌)(𝜃), 4Π(𝜃)(𝜃) and 4Π(𝜑)(𝜑), satisfying 4Π(𝜌)(𝜌) + 4Π(𝜃)(𝜃) +
4Π(𝜑)(𝜑) = 0. When Ω = 0, it is the case that 4Π(𝜃)(𝜃) = 4Π(𝜑)(𝜑), but this 
does not hold for rigidly-rotating states.

5.1.  Three dimensions

We begin, in Fig. 1, by comparing the energy density 𝐸 in three 
dimensions for the RKT-SET and QFT-RSET. For all values of the in-
verse temperature 𝛽 and angular speed Ω shown, the energy density 
has a maximum at the origin and monotonically decreases to zero on 
the space-time boundary. The rate at which 𝐸 decays to zero is lower 
for higher Ω and higher temperatures. At high temperatures (right-hand-
plots), the RKT-SET is an excellent approximation to the QFT-RSET, even 
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Fig. 1. Energy density 𝐸 for a rigidly-rotating thermal state in three-dimensional AdS, for angular speed Ω = 0.5 (top row) and Ω = 0.96 (bottom row). In the left-
hand-plots, the inverse temperature 𝛽 takes the values 𝛽 ∈ {3𝜋∕4, 5𝜋∕6, 11𝜋∕12, 𝜋}, while in the right-hand-plots we have 𝛽 ∈ {𝜋∕6, 𝜋∕4, 𝜋∕3, 5𝜋∕12}. Solid lines are 
the results for the QFT-RSET, while dotted lines are results from the RKT-SET.

at high angular speeds (bottom row). In contrast, at low temperatures 
(left-hand-plots), quantum effects are significant, with the RKT-SET giv-
ing an energy density which is considerably larger than that arising in 
QFT. The pressure 𝑃 = 𝐸∕2 in both QFT and RKT and therefore has the 
same properties as the energy density 𝐸.

We now study the quantities 𝑊 (𝑏) and Π(𝑎)(𝑏), which vanish identi-
cally in the RKT approximation. The heat flux 𝑊 (𝑏) has a single nonzero 
component, 𝑊 (𝜑), which is shown in Fig. 2. This quantity vanishes both 
at the origin 𝜌 = 0 and on the boundary 𝜌 → 𝜋∕2. Elsewhere, the mag-
nitude of 𝑊 (𝜑) is at least an order of magnitude smaller than that of 
the energy density 𝐸. For all values of 𝛽 and Ω studied, the heat flux is 
negative, indicating that, in the rigidly-rotating frame, the heat flux is 
in the negative 𝜑 direction, that is, opposite to the direction of rotation. 
This implies that the quantum radiation is rotating less quickly than the 
angular speed Ω corresponding to the rigid rotation. Finally, we observe 
that the location of the minimum of the heat flux moves closer to the 
AdS boundary as the angular speed Ω increases.

The single nonzero component of the pressure deviator, Π(𝜌)(𝜌)

𝛽
=

−Π
(𝜑)(𝜑)

𝛽
 is shown in Fig. 3. Like the heat flux, this vanishes at the ori-

gin and AdS boundary. Its magnitude is roughly an order of magnitude 
smaller than that of the heat flux. For the smaller rotation speed, Π(𝜌)(𝜌)

𝛽

is positive throughout the space-time, with its maximum slightly closer 
to the AdS boundary at high temperatures. When Ω = 0.96, we observe 
rather different behaviour, with Π(𝜌)(𝜌)

𝛽
 negative close to the origin, and 

positive close to the AdS boundary, with a sharp peak which is even 
closer to the boundary at high temperatures.

5.2.  Four dimensions

In four dimensions, SET components depend on the polar angle 𝜃
which complicates the analysis. We therefore begin by considering the 
SET in the equatorial plane, 𝜃 = 𝜋∕2. For this value of 𝜃, the profiles of 
the energy density 𝐸 = 3𝑃  and heat flux 𝑊 (𝜑) as functions of 𝜌 are very 
similar to those depicted in Figs. 1 and 2 respectively for 𝑛 = 3. At high 

temperatures, the differences between the RKT and QFT results for the 
energy density are even smaller for 𝑛 = 4 than for 𝑛 = 3.

The profiles of the components of the pressure deviator are rather 
different for 𝑛 = 4 compared to 𝑛 = 3. In Fig. 4 we plot the components 
Π(𝜌)(𝜌) (top row) and Π(𝜑)(𝜑) (bottom row) as functions of 𝜌 for 𝜃 = 𝜋∕2

and angular speed Ω = 0.5. Both these quantities vanish on the AdS 
boundary 𝜌 → 𝜋∕2, but, unlike the corresponding 𝑛 = 3 quantities de-
picted in Fig. 3, they do not vanish when 𝜌 = 0. This is a consequence 
of the rotation; when Ω = 0, the components of the pressure deviators 
do vanish at the origin [4,24]. In Fig. 4 it can be seen that both Π(𝜌)(𝜌)

and Π(𝜑)(𝜑) have a maximum at the origin. While Π(𝜌)(𝜌) is positive for all 
values of 𝜌 and decreasing as 𝜌 increases, we find that Π(𝜑)(𝜑) is negative 
close to the boundary.

We further explore how the angular speed Ω affects the components 
of the pressure deviator in Fig. 5, where we have chosen a large value of 
the temperature 𝛽−1 = 6∕𝜋. When the angular speed is very small, the 
components of the pressure deviator vary only a small amount as the 
polar angle 𝜃 varies, and are negligible at the origin. When Ω = 0, we 
have Π(𝜃)(𝜃) = Π(𝜑)(𝜑) = −Π(𝜌)(𝜌)∕2 [24], and this remains approximately 
true for sufficiently small Ω. As the angular speed Ω increases, we ob-
serve quite different behaviours for these three pressure deviator com-
ponents. At 𝜌 = 0, the component Π(𝜌)(𝜌) increases close to the equatorial 
plane 𝜃 = 𝜋∕2 as Ω increases, but decreases close to the axis of rotation 
at 𝜃 = 0, 𝜋. For sufficiently large values of Ω, near the axis, Π(𝜌)(𝜌) is 
monotonically increasing as 𝜌 increases, but near the equatorial plane, 
it is monotonically decreasing as 𝜌 increases. The component Π(𝜃)(𝜃) has 
the opposite behaviour to Π(𝜌)(𝜌): at 𝜌 = 0 it decreases close to the equa-
torial plane as Ω increases, but increases close to the axis of rotation. 
For large Ω, as 𝜌 increases, Π(𝜃)(𝜃) is monotonically increasing near the 
equatorial plane but monotonically decreasing near the axis of rota-
tion. In contrast to Π(𝜌)(𝜌) and Π(𝜃)(𝜃), a noticeable dependence of Π(𝜑)(𝜑)

on the polar angle 𝜃 is apparent only for large values of Ω, in which 
case Π(𝜑)(𝜑) is monotonically decreasing as 𝜌 increases for all values
of 𝜃.
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Fig. 2. Heat flux −𝑊 (𝜑) for a rigidly-rotating thermal state in three-dimensional AdS, for angular speed Ω = 0.5 (top row) and Ω = 0.96 (bottom row). In the left-
hand-plots, the inverse temperature 𝛽 takes the values 𝛽 ∈ {3𝜋∕4, 5𝜋∕6, 11𝜋∕12, 𝜋}, while in the right-hand-plots we have 𝛽 ∈ {𝜋∕6, 𝜋∕4, 𝜋∕3, 5𝜋∕12}. Solid lines are 
the results for the QFT-RSET, while dotted lines are results from the RKT-SET (which are identically zero).

Fig. 3. Pressure deviator Π(𝜌)(𝜌) = −Π(𝜑)(𝜑) for a rigidly-rotating thermal state in three-dimensional AdS, for angular speed Ω = 0.5 (top row) and Ω = 0.96 (bottom 
row). In the left-hand-plots, the inverse temperature 𝛽 takes the values 𝛽 ∈ {3𝜋∕4, 5𝜋∕6, 11𝜋∕12, 𝜋}, while in the right-hand-plots we have 𝛽 ∈ {𝜋∕6, 𝜋∕4, 𝜋∕3, 5𝜋∕12}. 
Solid lines are the results for the QFT-RSET, while dotted lines are results from the RKT-SET (which are identically zero).

Finally, in Fig. 6, we consider the dependence of the quantities 𝐸, 
−𝑊 (𝜑), the remaining nonzero pressure deviator component Π(𝜌)(𝜃) and 
the combination Π(𝜑)(𝜑) − Π(𝜃)(𝜃) on 𝜌 and 𝜃 for 𝛽 = 𝜋∕6 and Ω = 0.96. 
These quantities have qualitatively similar properties for other values 
of the inverse temperature 𝛽 and angular speed Ω. All except for the 
energy density 𝐸 are vanishing when Ω = 0 and in RKT.

In the top-left plot in Fig. 6, we show the energy density 𝐸 com-
puted in both RKT (blue surface) and QFT (orange surface). The RKT 
energy density is an excellent approximation to that computed in QFT 
for the high temperature considered here. The QFT energy density is 
slightly larger than that in RKT for smaller 𝜌, and the RKT energy den-
sity is slightly larger than that in QFT close to the AdS boundary. The 
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Fig. 4. Pressure deviator components Π(𝜌)(𝜌) (top row) and Π(𝜑)(𝜑) (bottom row) for a rigidly-rotating thermal state in the equatorial plane (𝜃 = 𝜋∕2) of four-dimensional 
AdS, for angular speed Ω = 0.5. In the left-hand-plots, the inverse temperature 𝛽 takes the values 𝛽 ∈ {3𝜋∕4, 5𝜋∕6, 11𝜋∕12, 𝜋}, while in the right-hand-plots we have 
𝛽 ∈ {𝜋∕6, 𝜋∕4, 𝜋∕3, 5𝜋∕12}. Solid lines are the results for the QFT-RSET, while dotted lines are results from the RKT-SET (which are identically zero).

Fig. 5. Components of the pressure deviator Π(𝜌)(𝜌) (top row), Π(𝜃)(𝜃) (middle row) and Π(𝜑)(𝜑) (bottom row) for a rigidly-rotating thermal state on four-dimensional 
AdS, for angular speeds Ω = 0.02 (left column), Ω = 0.1 (left-centre column), Ω = 0.5 (right-centre column) and Ω = 0.96 (right column). The inverse temperature is 
𝛽 = 𝜋∕6.
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Fig. 6. Energy density 𝐸 (top left), heat flux −𝑊 (𝜑) (top right) and the pressure deviator components Π(𝜌)(𝜃) (bottom left) and Π(𝜑)(𝜑) − Π(𝜃)(𝜃) (bottom right) for a 
rigidly-rotating thermal state on four-dimensional AdS. The inverse temperature is 𝛽 = 𝜋∕6 and the angular speed is Ω = 0.96.

dependence of 𝐸 on the coordinates (𝜌, 𝜃) is qualitatively similar to that 
of the pressure deviator component Π(𝜑)(𝜑) in the bottom-right plot in 
Fig. 5 (albeit the energy density is much larger in magnitude). These 
two surfaces mimic the dependence of the local temperature 𝛽−1 (3.3) 
on (𝜌, 𝜃).

The heat flux 𝑊 (𝜑) (top-right plot) vanishes on the axis of rotation 
and at the AdS boundary. As in three dimensions, we find that this quan-
tity is always negative. Furthermore, it has a peak on the equatorial 
plane, the location of the peak moving towards larger 𝜌 as Ω increases. 
The pressure deviator component Π(𝜌)(𝜃) (bottom-left plot) vanishes in 
the equatorial plane and on the axis of rotation, and is antisymmetric 
under the mapping 𝜃 → 𝜋 − 𝜃. It is notable that, unlike the situation ob-
served here for a quantum scalar field, Π(𝜌)(𝜃) vanishes identically for 
a quantum fermion field [9,10]. Finally, the combination of pressure 
deviator components Π(𝜑)(𝜑) − Π(𝜃)(𝜃) (bottom-right plot) vanishes at the 
AdS boundary and on the axis of rotation. For fixed 𝜌, it has a maximum 
on the equatorial plane.

6.  Conclusions

In this letter we have studied rigidly-rotating thermal states for 
a massless, conformally-coupled quantum scalar field on three- and
four-dimensional AdS. The rate of rotation is assumed to be sufficiently 
small that there is no speed-of-light surface. We have compared the 
SETs resulting from RKT (modelling the scalar field as a classical gas 
of bosonic particles) and a full QFT analysis. We find that RKT pro-

vides an excellent approximation to QFT at high temperatures, for all 
values of the angular speed. At low temperatures, quantum effects be-
come more significant, as previously observed for both scalars [4] and 
fermions [11] in nonrotating thermal states on AdS. This result is not 
unexpected, since a thermal state at high temperature contains a very 
large number of quantum particles, and is thus well-approximated by a 
thermal gas of classical particles.

We find that the profiles of the energy density (and hence the pres-
sure) always have a maximum at the AdS origin, and are monotonically 
decreasing towards the space-time boundary. This is in contrast to the 
corresponding results for rigidly-rotating states of fermions [9], where 
the location of the maximum energy density moves outwards towards 
the AdS boundary as the angular speed increases. Therefore rotation 
has a less dramatic effect on a scalar field compared to a fermion field. 
This is due to the nonzero spin of a fermion field coupling to the rigid 
rotation.

Rigidly-rotating states have more complex SETs than nonrotating 
states, with a nonzero azimuthal heat flux component, and additional 
independent pressure deviator components. In four dimensions, the lo-
cal temperature and SET components depend on the polar angle as well 
as the radial coordinate, introducing further complexity. Perhaps sur-
prisingly, the SET for the quantum scalar field considered here has less 
symmetry than that for the quantum fermion field [10], with an ad-
ditional nonzero pressure deviator component. We have explored how 
all these SET components depend on the space-time coordinates, as 
well as the temperature of the state and the rate of rotation. In four
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dimensions, increasing the angular speed has the greatest effect in the 
equatorial plane for almost all the quantities studied.

It would be interesting to explore the backreaction of these rigidly-
rotating quantum thermal states on the AdS metric. Using the SET com-
puted in this paper as a source term in the Einstein equations, one could 
seek rotating quantum-corrected solitons, generalizing the nonrotating 
quantum-corrected solitons found in [24]. It would also be of great in-
terest to go beyond the quantum-corrected space-time approximation. 
Very recently [25], solutions of the full semiclassical Einstein equations 
on AdS have been found for vacuum states. We anticipate that gener-
alizing the results of [25] to (either rotating or nonrotating) thermal 
states would be considerably more challenging than the vacuum case, 
since the resulting space-times will no longer be maximally symmetric. 
We therefore leave such investigations for future work.
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