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Locally resonant metamaterials are among the most studied types of elastic and acoustic metamaterials, with

significant research focused on wave propagation in a periodic array of “meta-atoms.” Here we investigate the

collision dynamics of two identical pendulum-suspended mass-in-mass resonators, essentially a two-sphere

Newton’s cradle, emphasizing the readily realizable scenario where the internal resonator frequency is much

greater than the pendulum frequency. We first show that the dynamics of a collision can be described using

effective parameters, similar to how previous metamaterials research has characterized wave propagation through

effective material parameters. Nonconventional collision dynamics—observed in two colliding mass-in-mass

systems where one is initially at rest—include behaviors such as the moving sphere rebounding as if from

a fixed wall while the other remains essentially stationary, the spheres coupling and moving forward in

near-unison, and the spheres recoiling in opposite directions. These responses can be achieved by tuning the

effective parameters. We demonstrate that these parameters can take on values that differ significantly from

those in a conventional Newton’s cradle. Additionally, we investigate multiple collisions of the two spheres,

revealing complex dynamics. This work paves the way for the development and study of new “collision-based

metamaterial” structures.

DOI: 10.1103/2whk-jc4b

I. INTRODUCTION

Metamaterials are engineered structures that exhibit effec-

tive parameters not typically found in conventional materials

[1]. Some of the most widely discussed parameters are those

that affect wave propagation within the bulk of the metama-

terial, such as the effective density and modulus. Methods

for designing such metamaterials, in which one or more of

these effective parameters is negative for a desired frequency

band, are of particular interest [2], since negative effective val-

ues fundamentally modify behavior compared to conventional

materials and enable novel applications [3,4].

Wave propagation in elastic metamaterials is typically

considered in the context of an effective continuum that is

permanently elastically connected. A class of widely stud-

ied structures corresponds to mass-in-mass locally resonant

metamaterials [2,5,6], where a lattice of connected masses

each has a local resonator attached. In most formulations of

mass-in-mass systems, the resulting dynamics are described

by a frequency-dependent effective mass. A sufficiently strong
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resonance creates a frequency band in which the effective

mass is negative, resulting in a complex modulus that at-

tenuates wave propagation within this band. Some research

has focused on wave propagation in granular metamaterials,

composed of closely packed discrete entities [7]. The contact

between these entities is inherently nonlinear, with individual

entities resisting compression but separating under tension.

Some studies have concentrated on precompressed systems

that do not separate under tension forces smaller than the

precompressing force. This includes a one-dimensional array

of beads with local “ring” resonators [8], which showed a

transmission bandgap typical of single-negative metamateri-

als. The effect of resonant inclusions on the transmission,

reflection, and localization of energy has been investigated

for a single bead, and subsequently extended to two and three

beads in a sequence initially in contact [9].

Other related work on granular metamaterials has exam-

ined their response as the ratio of resonator mass to trans-

mission medium mass tends to zero [10]. Separate work has

also explored the generation and identification of stationary

and traveling waves in such structures [11–15]. A “woodpile”

metamaterial design has also been investigated [16], where

the meta-atoms are not permanently elastically connected but

stacked so that they can separate and collide under specific

conditions. One common feature across this previous work

is the focus on multiple collisions and their associated wave

propagation. However, the fundamental processes involved in

individual collisions in such metamaterials and their effect
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on the overall dynamics have not been extensively studied or

compared to conventional collision dynamics.

The best-known demonstration of collisions between con-

ventional entities is Newton’s cradle. Although commonly

seen as an executive toy, it still holds significance from a re-

search perspective. Its relatively simple setup can be modified

to test collisions between “nonstandard” entities. An inter-

esting example involves a modified Newton’s cradle where

the spheres are coated in fluid, creating a “Stokes cradle”

[17,18]. In a conventional three-sphere Newton’s cradle with

elastic collisions, releasing one sphere causes the opposite

sphere to swing away. However, in a Stokes cradle with

liquid-coated spheres, four responses can occur depending on

Stokes number: the standard response (last sphere moves, first

two remain), all three cluster, the last two cluster and move

together, or all three separate. These outcomes depend on the

Stokes number and liquid coating thickness.

In this paper, we use a model of a frictionless two-sphere

Newton’s cradle, modified so that the colliding entities are

hollow mass-in-mass resonators. We investigate the effect of

the local resonators on the fundamental properties of individ-

ual collisions between the outer spherical shells in a readily

realizable case where the internal resonator frequency is sig-

nificantly greater than the pendulum frequency. We show that

the calculated velocities at the moment of separation can be

expressed in a form equivalent to conventional sphere colli-

sions. From this, we derive effective coefficients of restitution

and motion using an approach similar to those typically ap-

plied in continuum metamaterials. However, unlike previous

approaches, we determine these effective parameters in the

time domain, as they are strictly defined only at the moment

the shells separate at the end of a collision. These effective

parameters can take nonconventional values, including nega-

tive ones. We show that by varying the ratio of the resonator

frequency to the fundamental “compression frequency” of the

colliding outer masses and the energy stored in the local res-

onators, it is possible to achieve separation velocities that do

not comply with the conventional conservation of momentum

for the outer masses. We also elucidate the possible temporal

evolutions of this two-sphere cradle.

II. THEORY AND MODELING

A. Basic equations of motion

The colliding spheres are assumed to be two identical,

suspended, frictionless mass-in-mass resonators, as shown in

Fig. 1(a), which can swing in a single plane, resembling

a two-sphere Newton’s cradle. In a practical Newton’s cra-

dle configuration, a single suspension wire for each mass is

replaced by two wires to ensure such motion. The spheres

can be visualized as spherical shells, inside which a linear

one-dimensional mass-spring resonator is attached. We refer

to the shell on the left, along with its internal resonator, as

mass-in-mass system 1, and the equivalent structure on the

right as mass-in-mass system 2. The angle θi (i = 1, 2) is the

angular displacement of the shell of system i. The spherical

shells are assumed to be suspended by identical wires of neg-

ligible mass attached to a fixed point above. This provides an

external gravitational potential that acts to return both shells to

FIG. 1. (a) The two-sphere mass-in-mass colliding pendulum

system (a modified Newton’s cradle), along with (b) the equivalent

approximate pure mass-and-spring model applicable for small dis-

placements and stiff spherical shells, which exhibits one-dimensional

motion. The chosen model for the dynamics during a collision, which

depends on the collision stiffness kc in a linear approximation, is

not shown. In this paper, we assume that the right-hand shell and

its internal mass are in their equilibrium positions before the first

collision.

their undisturbed positions, defined by the condition θ1,2 = 0.

In these positions the external shells are positioned so that

they are just touching, with their gravitational potential energy

at its minimum. The resonator masses are assumed to be

spherical (although this is not a required assumption) and, for

simplicity, are assumed to be in their central positions when

in equilibrium. They are constrained to move perpendicular

to the supporting wire, and �xri
is the component of the

extension of a spring connected to its internal mass. The mass

of the springs is assumed to be negligible compared to the

other masses.

To simplify the analysis of this colliding mass-in-mass

system, a one-dimensional motion approximation is applied.

This is illustrated in Fig. 1(b), where xi (xri) represent the

relative displacements of the outer spherical shells (internal

resonators) from their equilibrium positions. As demonstrated

in the Supplemental Material [19], and under the assumption

of small displacements, the effect of gravity on the angu-

lar motion of the spherical shells can be approximated by

modeling the wires as linear springs, with a spring constant

given by kg = mg/L. Here, m represents the mass of the spher-

ical shells, g is the acceleration due to gravity, and L is the
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effective length of the pendulums, measured from the support

to the center of the shells. This represents the gravitational

potential relative to the undisturbed position of each shell

(which is taken as zero for an undisturbed shell). In Fig. 1(b),

gravitational effects are indicated in green, whereas the effect

of gravity on an internal mass is represented as an exter-

nal force, given by (mr/m)kgxri
, since it cannot be depicted

solely by a spring attached to the internal mass. The resulting

resonance frequency is given by ωg =
√

kg/m =
√

g/L. The

mass and spring constant of the internal linear resonators are

defined as mr and kr , respectively, with the associated angular

resonance frequency ωr =
√

kr/mr . The motion is assumed

to be lossless. The present work does not focus on exploring

various resonator designs that could physically realize the

desired dynamics. Instead, we use the simple representative

example shown in Fig. 1(b), featuring spherical masses, to

investigate the fundamental dynamics of such systems.

The equations of motion for the two shells with internal

resonators, which oscillate freely in a one-dimensional po-

tential field until they come into contact with one another,

can be modeled as a piecewise system. A similar approach

has previously been used to model the conventional Newton’s

cradle [20]. To ensure that the contact force only acts under

compression (i.e., that no forces act to resist tension), we use

Eqs. (1) to describe the motion when the shells are in contact

for x2 − x1 � 0 and Eqs. (2) (describing pendulum dynamics)

when the shells are not in contact:

when x2 − x1 � 0,

mẍ1 = kc(x2 − x1) − kgx1 + kr

(

xr1
− x1

)

, (1a)

mr ẍr1
= −

mr

m
kgx1 + kr

(

x1 − xr1

)

, (1b)

mẍ2 = −kc(x2 − x1) − kgx2 + kr

(

xr2
− x2

)

, (1c)

mr ẍr2
= −

mr

m
kgx2 + kr

(

x2 − xr2

)

, (1d)

otherwise,

mẍ1 = −kgx1 + kr

(

xr1
− x1

)

, (2a)

mr ẍr1
= −

mr

m
kgx1 + kr

(

x1 − xr1

)

, (2b)

mẍ2 = −kgx2 + kr

(

xr2
− x2

)

, (2c)

mr ẍr2
= −

mr

m
kgx2 + kr

(

x2 − xr2

)

. (2d)

During contact, the force between the spherical shells is

assumed to be compressive. Contact forces result from the

relatively small indentation of the shells in the region around

the contact point, and for purposes of approximation we ig-

nore in Eqs. (1) the Hertzian-contact nonlinearity and assume

this compressive force to be linear in indentation, as was

done previously for the case of contacting spherical shells

[21–23]. The contact stiffness of the shell is defined as kc =
O(Eh2/2R), where E is the Young’s modulus of the shell

material, h is the thickness of the shell, and R is the shell outer

radius. In contrast, the indentation of solid spheres requires

precise treatment using (nonlinear) Hertzian theory [24], com-

bined with the theory of shell deformation. We also define a

characteristic compression angular frequency ωc =
√

2kc/m,

which is useful in the elucidation of the contact dynamics.

Equations (1) represent a set of unforced equations gov-

erning the contact dynamics. During a collision, the initial

conditions of Eqs. (1) are determined by the pendulum dy-

namics given by Eqs. (2) at the time of contact tc, defined

by (x2 − x1)tc = 0. For simplicity of the analysis throughout

this paper, the state of the shells at the start of a collision are

taken as those of a conventional Newton’s cradle; the first shell

moves and collides with the second shell, which, along with

its internal resonator, is initially stationary at the equilibrium

position (i.e., having zero potential and kinetic energy). This

gives x1,tc = x2,tc = ẋ2,tc = 0 and ẋ1,tc �= 0. The contact period

is defined as the period [tc, ts] between the shells making

contact at time tc and then separating at time ts, that is, the

period during which (x2 − x1) � 0. The state of the system at

the end of the contact period (i.e., at ts) then defines the initial

conditions for the pendulum dynamics governing the motion

after separation.

B. Derivation of the effective parameters and determination

of the postcollision velocities

The coefficient of restitution (CR) is one of the most com-

monly used quantities used to describe the collision between

two bodies. It is usually defined in terms of the ratio of the

relative separation to relative collision velocity:

CR = (ẋ2 − ẋ1)ts/(ẋ1 − ẋ2)tc . (3)

The postcollision velocities for a simple collision between two

hard, solid spheres, such as in a basic model of a conven-

tional Newton’s cradle, where the second sphere is initially

at rest (ẋ2,tc = 0) and where momentum is conserved and as-

sumed to be transferred instantaneously, can be written in the

following form:

ẋ1,ts =
m1 − m2CR

m1 + m2

ẋ1,tc , (4a)

ẋ2,ts =
m1 + m1CR

m1 + m2

ẋ1,tc . (4b)

For identical spheres this reduces to

ẋ1,ts = 1
2
(1 − CR)ẋ1,tc , (5a)

ẋ2,ts = 1
2
(1 + CR)ẋ1,tc . (5b)

The coefficient of restitution CR represents how well en-

ergy is conserved in the collision. CR = 1 for a conventional

two-sphere Newton’s cradle with linear lossless compression

during contact, which represents a perfectly elastic collision.

The “1” in Eqs. (5) arises owing to the conservation of mo-

mentum: addition of Eqs. (5a) and (5b) to eliminate CR leads

to the momentum conservation equation ẋ1,tc = ẋ1,ts + ẋ2,ts for

identical spheres. Using this understanding, we can write a

more general form of Eqs. (5) as follows:

ẋ1,ts = 1
2
(CMe − CRe)ẋ1,tc , (6a)

ẋ2,ts = 1
2
(CMe + CRe)ẋ1,tc . (6b)
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Here we define an effective coefficient of restitution in the

same manner as in the conventional sense:

CRe =
ẋ2,ts − ẋ1,ts

ẋ1,tc

, (7a)

CMe =
ẋ1,ts + ẋ2,ts

ẋ1,tc

. (7b)

We also define an effective “coefficient of motion” term in

Eqs. (7b) as the ratio of the momentum after to that before

the collision of two identical spheres. When momentum is

conserved, CMe = 1. We can now use this more general defi-

nition to represent the collision of mass-in-mass spheres, and

understand how the internal resonators influence the resulting

postcollision motion. We refer to these variables as “effective”

coefficients, since we will show that they serve to characterize

the dynamics of the two colliding locally resonant spheres,

and are a function of the internal resonator parameters. This

“effective systems approach” is analogous to that previously

used to describe wave propagation in mass-in-mass contin-

uum metamaterials.

To determine the effective coefficients of motion and resti-

tution for the collision of such mass-in-mass entities, one

needs to consider the velocities of both the spherical shells

and the inner masses at the moment of separation. By taking

into account the initial conditions at the moment of collision

and making use of Eqs. (1) in the Laplace domain, one can

eliminate xr1
and xr2

to obtain equations for ẋ2,ts − ẋ1,ts and

ẋ2,ts + ẋ1,ts for purposes of substitution into Eqs. (7a) and

(7b), respectively, under the additional assumption of stiff

shells, i.e., ωg << ωc (see the Supplemental Material [19] and

estimates in the main text below):

CRe = −L
−1

(

m̂e,ss

m̂es2 + ω2
c

(

xr1,tc

ẋ1,tc

s +
ẋr1,tc

ẋ1,tc

)

+
s

m̂es2 + ω2
c

)
∣

∣

∣

∣

t=ts

, (8a)

CMe = L
−1

(

m̂e,s

m̂es

(

s
xr1,tc

ẋ1,tc

+
ẋr1,tc

ẋ1,tc

)

+
1

m̂es

)
∣

∣

∣

∣

t=ts

, (8b)

where

m̂e = 1 +
mr

m

ω2
r

s2 + ω2
r

= 1 + m̂e,s. (9)

These equations describe the effective coefficients of restitu-

tion and motion, respectively, where L−1 denotes the inverse

Laplace transform. For ease of analysis, the time domain

has been shifted such that tc = 0. In this paper, we focus

on the case in which the local resonant frequency is com-

mensurate with the compression frequency, i.e., ωr ∼ ωc, as

this condition represents the one most practically accessible

and where the effect of the internal resonators becomes most

pronounced.

The result is that the effective coefficient of restitution is

a function of two angular frequencies resulting from (1) the

interaction during contact of the spherical shells, character-

ized by ωc =
√

2kc/m, and (2) the local-resonance dynamics,

charcterized by ωr =
√

kr/mr , whereas the effective coef-

ficient of motion is a function of ωr only. Both effective

coefficients are a function of the resonator conditions at the

moment of collision.

It is pertinent at this point to justify the above assump-

tions for a practical situation by giving order of magnitude

estimates of a possible configuration for experimental real-

ization of a two-sphere mass-in-mass Newton’s cradle. This

also helps to visualize an actual future experimental con-

figuration. Reasonable values for a possible implementation

are as follows: steel shells of outer radius R = 10 mm and

wall thickness 1 mm, and inner tungsten spheres of radius

5 mm, leading to masses m = 8.9 g, mr = 10.1 g, grav-

itational spring constant kg = 0.87 N/m, contact stiffness

k ≈ 9.5 × 106 N/m, making use of the Young’s modulus of

steel E = 190 GPa, density of steel 7850 kg m−3, density of

tungsten 19 250 kg m−3 and wire length L = 100 mm; one

can, for example, choose the inner-spring constant value of

kr = 2 × 106 N/m, in line with commercially available stiff

coil springs of length 5 mm. The resulting resonant frequen-

cies correspond to compression frequency ωc/2π = 7340 Hz,

local-resonator frequency ωr/2π = 2240 Hz and pendulum-

resonance frequency ωg/2π = 1.6 Hz. Clearly, this justifies

the stiff shell approximation, ωg ≪ ωc, and the assumption

that ωr ∼ ωc, both of which will be applied in the subsequent

analysis. The equivalent conditions for the spring stiffness are√
k ∼

√
mkr/2mr . and

√

kg ≪
√

2k. This ensures that the lo-

cal resonator frequency is significantly lower than the resonant

frequency of acoustic waves within the sphere, maintaining

the validity of the lumped element approximation. Further-

more, we neglect the effect of acoustic waves generated in the

wire by the high-frequency internal oscillator.
By increasing the shell radius R while maintaining its

thickness at 0.1R, the compression frequency is reduced—
enabling a more practical physical implementation using
resonator springs with lower stiffness and greater length. The
compression frequency can also be decreased by selecting
a softer shell material (e.g., acrylic). We assume that the
characteristic angular frequencies ωg, ωc, and ωr are all well
removed from any natural resonant frequencies of the individ-
ual shells (such as that of the n = 2 flexural mode).

We carried out simulations with softer shells (resulting in
longer contact times) and material losses (nonelastic colli-
sions) to confirm that the subsequent analysis remains valid
unless the choice of elastic parameters violates the inequalities
involving the characteristic frequencies.

For practical implementation, the internal stiffness could

be achieved with a commercially available coil spring, as

previously mentioned. Alternatively, leaf springs could pro-

vide sufficient stiffness while providing directional constraint.

Further constraint of the internal mass’s motion along the line

of collision could be implemented using a drilled mass sliding

along a guiding rod attached to the shell’s interior.
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The initial conditions of the internal mass in shell 1 (e.g.,

its potential and kinetic energy) could be set manually by

pulling a rod extending from a hole in the shell opposite to the

collision surface—and/or through more complex electrome-

chanical methods, such as electronically releasing a preloaded

resonator spring just before a collision.

Importantly, the derivations and analysis presented are

valid for collisions occurring normal (i.e., perpendicular) to

the surface of any body, provided the underlying assumptions

hold. For instance, the collision of two trolleys containing

internal resonators on a track curved in the vertical direction

could serve as an alternative experimental validation of the

principles discussed.

The effective coefficients as described above are written as

a function of the same effective mass that has been the focus

of previous work on mass-in-mass continuum metamaterials

[5]. However, the effective coefficients that we are focusing

on here are defined in the time domain, as opposed to the fre-

quency domain usually considered in metamaterials research.

The reason for using the time domain in this case is that the

frequency domain is less intuitive, as the effective parameters

are defined at a single moment in time, i.e., when the shells

separate. These parameters are considered effective because

they encapsulate both the effects of collision dynamics and the

influence of the resonators’ motion on the overall movement

of the spherical shells. Under our approximations, the duration

of the collisions is governed by unforced dynamics, deter-

mined solely by the individual mass-in-mass system parame-

ters and the associated initial conditions. The final state of the

impact occurs when the two entities separate, at which point

the governing dynamics change. Use of the time domain rather

than the frequency domain makes the analysis slightly less

straightforward owing to the dependence of Eqs. (8a) and (8b)

on the moment of separation ts. The moment of separation also

depends on the interaction during contact of the resonances at

ωc and ωr and on the resonator initial conditions, and is de-

fined as the moment corresponding to the first instance when

x2 − x1 = 0 after time tc. As a consequence of this complexity,

a simple analytical solution to the effective coefficients does

not exist, and numerical solutions are required.

C. Derivation of effective parameters for general motion

in the external potential postcollision

The instantaneous velocities of the two spherical shells,

ẋ1,ts and ẋ2,ts , at the moment of separation do not completely

define the motion after separation. This can be seen by solving

Eqs. (2) for ẋ1 and ẋ2 at ts and using initial conditions for

the shell and internal resonator motion at the moment of

separation. Since the compression angular frequency ωc is, in

practice, that appropriate to stiff colliding shells (i.e., ωg <<

ωc), and, owing to the relatively weak pendulum spring stiff-

nesses in a Newton’s cradle setup, ωg << ωr . The velocity of

a sphere after separation can be derived as follows (see the

Supplemental Material [19] for the full derivation):

ẋi = −
mxi,ts + mrxri,ts

m + mr

ωg sin (ωgts+ )

+
mẋi,ts + mr ẋri,ts

m + mr

cos (ωgts+ )

− mr

xi,ts − xri,ts

m + mr

√

m + mr

m
ωr sin

(

√

m + mr

m
ωrts+

)

+ mr

ẋi,ts − ẋri,ts

m + mr

cos

(

√

m + mr

m
ωrts+

)

, (10)

where ts+ is the time after separation, namely ts+ = t − ts. The

postcollision velocity is therefore a sum of oscillatory terms at

two angular frequencies. One of these is the pendulum angular

frequency ωg and the other the much higher mass-weighted

local-resonance angular frequency ωr

√
(m + mr )/m. Assum-

ing that the magnitude of the higher frequency oscillation

is sufficiently small so that the shells do not collide again

shortly after they separate, the general motion in the external

potential is determined by the terms involving ωg in Eqs. (10).

This assumption is usually satisfied when ωg << ωr , since the

displacement amplitude of the mass-weighted local resonator

is proportional to 1/ωr . Under such conditions, the total in-

stantaneous postcollision velocities defined in Eqs. (10) can

be simplfied to the following form by setting ts+ = 0:

ẋi,ts =
mẋi,ts + mr ẋri,ts

m + mr

+ mr

ẋi,ts − ẋri,ts

m + mr

= ẋi,a + ẋi,r . (11)

The first term is the contribution from the motion in the

external potential and the second is a contribution from

the resonator causing the sphere to oscillate with respect to

the motion in the general external potential.

We can therefore define two sets of effective collision

parameters. One set describes the total instantaneous veloc-

ity of the sphere at the moment of separation, as outlined

by Eqs. (7a) and (7b). The other set characterizes the in-

stantaneous effect of the collision on the general motion

in the external potential after the collision, defined by the

initial velocities, ẋi,a, of the oscillatory motion associated

with the resonant frequency of the external potential. The

effective coefficient of restitution for the general motion in

the external potential can be defined in the same manner as

the conventional coefficient of restitution, i.e., CRa = (ẋ2,a −
ẋ1,a)/(ẋ1,tc − ẋ2,tc ). Taking the same initial conditions at the

point of contact, namely ẋ2,tc = 0, and substituting for ẋ1,a and

ẋ2,a from Eqs. (11), we obtain

CRa =
1

m + mr

m
(

ẋ2,ts − ẋ1,ts

)

+ mr

(

ẋr2,ts − ẋr1,ts

)

ẋ1,tc

,

=
1

m + mr

(mCRe + mrCRr ), (12a)

CMa =
1

m + mr

m
(

ẋ2,ts + ẋ1,ts

)

+ mr

(

ẋr2,ts + ẋr1,ts

)

ẋ1,tc

,

=
1

m + mr

(mCMe + mrCMr ). (12b)

The effective coefficient of restitution for the general mo-

tion in the external potential is thus given by a mass-weighted

sum of two effective coefficients of restitution: the instanta-

neous effective coefficient of restitution and a new effective

coefficient of restitution arising from the resonators. An
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effective coefficient of motion CMa for the general motion

can be derived in a comparable manner, leading to Eqs. (12b).

Similarly, for the velocities,

ẋ1,a = 1
2
(CMa − CRa)ẋ1,tc , (13a)

ẋ2,a = 1
2
(CMa + CRa)ẋ1,tc . (13b)

To determine the additional effective collision parameters

CRr and CMr , the velocity of the resonator masses at the

moment of separation needs to be included. The Supplemen-

tal Material contains the derivation of these terms and the

effective coefficients for general velocities [19]. The resulting

effective coefficient of restitution and motion in this case can

be expressed in the form

CRa =
m

m + mr

(

CRe + (m̂e,s(t ) ∗ CRe(t ))|t=ts
− ω2

r

(

d2m̂e,s(t )

dt2

xr1,tc

ẋ1,tc

+
dm̂e,s(t )

dt

ẋr1,tc

ẋ1,tc

)
∣

∣

∣

∣

t=ts

)

, (14a)

CMa =
m

m + mr

(

1 +
mr

m

ẋr,tc

ẋ1,tc

)

. (14b)

These equations are written in the time domain, where "(t )"

denotes the time domain form of the equations for the effec-

tive mass and coefficient of restitution of the instantaneous

velocity prior to their calculation at the moment of separation.

III. RESULTS AND DISCUSSION

A. Parametric studies of the dynamics of a particular system

To aid analysis and without significant loss of generality,

we consider the particular case where the resonator mass is

equal to the spherical-shell mass, i.e., mr = m. We define

� = ωr/ωc, so for a constant ωc, determined by the shell

material, one can consider variations in � for the case of a

constant resonator mass mr as equivalent to variations in the

resonator spring constant kr . In this paper we investigate the

range 0.03 � � � 30. All results for the following parametric

studies are obtained through numerical analysis conducted

using MathWorks MATLAB.

Conditions for a stiff sphere are implemented using a steel

shell with a radius of R = 10 mm and shell thickness 0.1R,

leading to ωc/ωg = 4.7 × 104. The initial conditions of the

internal resonator of the (left-hand) mass-in-mass system 1

at the moment of collision are described in terms of En,

the total energy (including both kinetic and potential energy)

of the resonator relative to the kinetic energy of an equiv-

alent nonresonant sphere of mass m, and φr1,tc , the phase

of the internal resonant mass relative to its undisturbed lo-

cation (plotted on the vertical axis of each panel). Further,

xr1,tc/ẋ1,tc =
√

En/ω2
r sin φr1,tc and ẋr1,tc/ẋ1,tc =

√
En cos φr1,tc .

A phase of 0 or π corresponds to no potential energy stored in

the resonator, and a phase of π/2 or 3π/2 corresponds to no

kinetic energy stored in the resonator.

Figure 2 shows density plots where color represents the ef-

fective coefficients of motion CMa (left panels) and restitution

CRa (right panels). The vertical axes show the phase φr1,tc of

the resonator 1 at the moment of collision, and the horizontal

axes represent the normalized frequency ratio � = ωr/ωc.

The total resonator energy increases from top to bottom in

each column, with its value labeled in each panel. Green rep-

resents zero on the color scale, with positive values indicated

by warmer colors and negative values by cooler colors.

Figure 3 shows a “phase diagram” (color scale) for the

two colliding mass-in-mass systems as a function of resonator

parameters and initial conditions, with the same horizontal

and vertical axes as in Fig. 2. The plots are generated from

the initial velocities of each spherical shell in the external

potential after impact. These are included as density plots

in the Supplemental Material [19]. Each color represents a

different dynamic response, which can be interpreted in terms

of the effective collision parameters, as follows:

Rigid wall:

(−0.1 < ẋ1,a) & (0 � ẋ2,a < 0.1).

Shell 1 rebounds in the opposite direction to its precollision

velocity and shell 2 is stationary.

Coupling:

(0.1 < ẋ1,a) & (0.1 < ẋ2,a) & (1 � |ẋ2,a|/|ẋ1,a| � 1.1).

Shells 1 and 2 have equal velocities in the same direction

as the initial momentum of shell 1.

Same direction:

(ẋ1,a > 0) & (ẋ2,a > 0).

Shells 1 and 2 have velocities in the same direction as the

initial momentum of shell 1.

Recoiling:

(ẋ1,a < −0.1) & (ẋ2,a > 0.1) & (0.9 � |ẋ2,a|/|ẋ1,a| � 1.1).

Shells 1 and 2 have equal and opposite velocities.

Opposite velocities:

(ẋ1,a < 0) & (ẋ2,a > 0).

Shells 1 and 2 have opposite velocities.

Stationary shell 1 (smaller ẋ2,a):

(−0.1 < ẋ1,a < 0.1) & (0 < ẋ2,a < 0.4).

Shell 1 is stationary and shell 2 has a smaller velocity than

the precollision velocity of shell 1.

Stationary shell 1 (larger ẋi,2):

(−0.1 < ẋ1,a < 0.1) & (ẋi,2 > 0.6).

Shell 1 is stationary and shell 2 has a larger velocity than

the precollision velocity of shell 1.

Elastic collision of identical spheres:

(−0.1 < ẋi,1 < 0.1) & (0.4 � ẋ2,a � 0.6).
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FIG. 2. Density plots for the effective coefficients of motion, CMa (left panels), and restitution, CRa (right panels), for the two mass-in-mass

systems. The vertical axes represent the phase φr1,tc of resonator 1 at the moment of collision, and the horizontal axes represent the normalized

frequency ratio �. Each plot represents the results for different initial conditions of the left-hand mass-in-mass system at the moment of

collision. The order from top to bottom in each case corresponds to increasing total energy of the resonator. The labeled data points correspond

to selected parameters, as shown in the panels of Fig. 5.

Shell 1 is stationary and shell 2 has the precollision velocity

of shell 1.

The white regions represent nonphysical solutions. Region

boundaries incorporate tolerances ensuring clear visibility.

For practical characterization, some regions require specific

velocity ratios, whereas others use fixed velocity bounds.

Figure 2 shows that when � < 1, the variations of CRa

and CMa with resonator phase exhibit an offset relative to

each other (i.e., their peak positive and negative values occur

at different resonator phases), whereas when � > 1, their

positive variations are phase-synchronized. Comparison with

Fig. 3 reveals that the offset regime (� < 1) corresponds

to dynamics where both shells acquire nonzero velocities,

whereas the phase-synchronized regime (� > 1) yields cases

where one shell remains stationary postcollision.

CRa in Eqs. (6) is directly equivalent to the conventional

coefficient of restitution in Eqs. (5). In the conventional case,

when there is no attractive force between the entities during

the collision and no process that causes the particles to stick

together, this coefficient represents how well kinetic energy

is conserved during the collision. It ranges from 0 for a

completely inelastic collision to 1 for a completely elastic

collision. A value of 0 indicates that the final momentum is

equally distributed, and the entities couple together, whereas

a value of 1 implies that all of the momentum is transferred to

the second entity, provided they have equal mass.

The effective coefficient of motion CMa in Eqs. (6) is

equivalent to the fixed unity term in Eqs. (5), which in the

conventional case of identical simple spheres results from the

conservation of momentum. This new term therefore arises

from the effective momentum conservation of the spherical

shells.

The top panel in Fig. 2 represents the case in which no

energy is stored in the resonator of the mass-in-mass system 1

at the moment of impact. As expected from Eqs. (14b), CMa

is fixed at 0.5, which is equivalent to the nonresonant case

described earlier with m + mr = 2m. This case also eliminates

the effect of the resonator phase on the effective coefficient

of restitution, CRa. The effective coefficient of restitution

remains a function of the resonator frequency, exhibiting a

resonant-like effect with a dip to zero as the resonator fre-

quency approaches the compression frequency from below.

The asymptotic values correspond to the nonresonant case.

The top panel of Fig. 3 (zero resonator energy) shows the

standard Newton’s cradle response for elastic collisions (dark

blue region) at the asymptotic limits, where both effective

parameters match the nonresonant system. As � decreases be-

low 1 and CRa approaches zero (while CMa remains fixed at
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FIG. 3. Density plots representing a “phase diagram” of the possible responses (see text next to the color scale) characterizing the dynamics

of the two colliding mass-in-mass systems. The vertical axes represent the phase φr1,tc of the resonator 1 at the moment of collision, and the

horizontal axes show the normalized frequency ratio �. The order from top to bottom in each case corresponds to increasing total energy of

the resonator. The labeled data points correspond to selected parameters, as shown in the panels of Fig. 5.

0.5), the collision becomes inelastic (orange region), causing

both shells to move together in the direction of shell 1’s initial

momentum.

By introducing initial conditions with nonzero resonator

energy of the mass-in-mass system 1, a much larger range

and combination of effective coefficients can be achieved. For

both effective parameters, the sign of the resonator’s velocity

at the moment of collision has the strongest effect on the

relative change of their values.

Unlike in the conventional case, CMa can vary since the

outer spherical shells on their own are not a closed system,

i.e., CMa is governed by the total momentum of the spherical

shells postcollision relative to the value of the momentum

precollision. Figure 2 and Eqs. (14b) show that CMa is not

a function of the resonator frequency ωr , but rather is simply

determined by the velocity of the resonant inner mass at the

moment of collision. A positive value is associated with an

effective addition of momentum to the system of spherical

shells. In contrast, a negative value is associated with a re-

duction in the momentum of the system of spherical shells;

when ẋr,tc < −ẋ1,tc , CMa becomes negative, meaning the mo-

mentum of the system of spherical shells is directed opposite

to its initial direction.

The yellow regions in Fig. 3 indicate recoil dynamics

where the shells move with equal but opposite velocities

(zero net momentum), corresponding to CMa = 0 in Fig. 2.

The dark red regions show rigid-wall-like behavior: Shell 1

rebounds opposite to its initial velocity while shell 2 remains

stationary. For identical shells, this requires CMa = −1 and

CRa = 1, as confirmed by the values in Fig. 2.

Figure 2 shows that the effective coefficient of restitution

CRa can exceed 1, indicating that kinetic energy is being

added to the spherical shells. The source of this kinetic energy

is the energy stored in the resonator of mass-in-mass system

1 at the moment of collision. For resonator frequencies below

the compression frequency during contact (i.e., � < 1), CRa

tends to increase when the resonator’s phase is π (negative

resonator velocity) and decrease when the phase is 0 or 2π

035506-8



META-ATOM BASED TWO-SPHERE NEWTON’S CRADLE PHYSICAL REVIEW E 112, 035506 (2025)

FIG. 4. Density plots of the contact duration τn of the two colliding mass-in-mass systems, normalized to the contact duration for an

equivalent shell containing no internal mass. The vertical axes represent the phase φr1,tc of resonator 1 at the moment of collision, and the

horizontal axes show the normalized frequency ratio �. The order from top to bottom in each case corresponds to increasing total energy of

the resonator. The labeled data points correspond to selected parameters, as shown in the panels of Fig. 5.

(positive resonator velocity). This trend reverses for resonator

frequencies above the compression frequency (i.e., � > 1).

For � > 1, the midblue regions in Fig. 3 exhibit dynamics

identical to collisions between nonresonant shells (i.e., shell

1 becomes stationary after collision). However, since both

CRa > 1 and CMa > 1 with CRa ≈ CMa in these regions,

shell 2 moves faster than shell 1’s precollision velocity.

The green regions in the right-hand panels of Fig. 2 cor-

respond to CRa ≈ 0. As expected for a completely inelastic

collision, Fig. 3 confirms that the shells couple together (red

regions) and move with nearly identical velocities after sepa-

ration.

Figure 2 also shows that the coefficient of restitution CRa

can take negative values. However, these regions mostly cor-

relate with the white regions associated with nonphysical

solutions in Fig. 3. Unless the average displacement of mass-

in-mass system 2 in the external potential is equal to or greater

than the (positive) displacement of system 1 after impact, the

entities will collide again shortly after the initial collision.

The exact timing of this subsequent collision depends on the

phase of the resonant oscillatory motion superimposed on

the motion in the general external potential. As indicated by

Eqs. (11) and (13), negative values of CRa will quickly lead

to fragmentation of the general oscillatory behavior in the

external potential.

Figure 4 shows density plots of the normalized contact

duration (color scale) for the two colliding mass-in-mass sys-

tems, determined through numerical simulations of collisions

governed by Eqs. (1). The dominant effect is contact-time

reduction when � > 1 and resonator velocity is negative

[φr1,tc ∈ (π/2, 3π/2)]. In this case, the resonator motion cre-

ates negative relative displacement (xr1
− x1 < 0), generating

a leftward force on shell 1. This effect is most pronounced

near φ = π where the maximum leftward velocity occurs. The

contact duration remains relatively unchanged for � < 0.1, as

the slower internal mass oscillation cannot release or absorb

much energy, and thus has a much smaller effect on the com-

pression time.

The strongest prolonging effect occurs when φr1,tc ≈
0 or 2π , corresponding to positive resonator velocity at
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impact. As the resonator moves rightward, positive relative

displacement develops (xr1
− x1 > 0), generating an increas-

ing rightward force on shell 1 that maintains contact. When

the resonator frequency is just below the compression fre-

quency (� ≈ 0.4 to 1), the relative displacement evolves

slowly, sustaining the rightward force throughout the contact

period and prolonging the collision.

B. Simulated dynamics of a particular system

We selected parameter combinations expected to yield

nonconventional postcollision dynamics. We now present the

resulting real-time behavior, highlighting the most striking

visual effects. To illustrate how different effective coeffi-

cients influence postcollision motion, the left-hand panels,

Figs. 5(a)–5(e), show simulated shell trajectories over six suc-

cessive collisions in an external gravitational potential. Time

is plotted on the vertical axis, increasing downward from zero,

enabling observation of horizontal shell displacements over

time. The right-hand panels, Figs. 5(f)–5(i), depict outer-shell

and internal-mass motion during the first collision, corre-

sponding to the dynamics shown in the respective left-hand

panels. Since actual collision displacements are much smaller

than the dimensions of the masses, displacements in these

panels are scaled by the indicated factors for visualization.

These results demonstrate that even minuscule internal-mass

displacements-typically three orders of magnitude smaller

than shell displacements—can significantly influence post-

collision motion. Displacements are obtained from numerical

simulations (MathWorks Simulink) of the full equations of

motion, incorporating both collision dynamics [Eqs. (1)] and

external-potential oscillations [Eqs. (2)], for representative

parameter combinations. Animations of each scenario are

available in the Supplemental Material [19]. Figure 5(a) rep-

resents the conventional case of two simple spheres, each with

mass m.

Figure 5(b) illustrates the response of the outer spherical

shells for a chosen normalized resonator frequency � = 0.1,

phase φ = π and normalized initial energy En = 1, corre-

sponding to CMa = 0 and CRa = 0.98. The condition CMa =
0 implies zero net momentum for the spherical shells after

collision, causing them to recoil with equal and opposite ve-

locities. The coefficient CRa governs their relative velocity

magnitude, with CRa = 0.98 indicating a nearly elastic col-

lision where each shell’s postimpact speed is approximately

half of shell 1’s precollision velocity.

The peak displacements in the external potential are

roughly equal and opposite due to the symmetric velocity

distribution. In conventional sphere collisions, such opposite

velocities require unequal masses. While these effective pa-

rameters apply specifically to the first collision, subsequent

collisions exhibit similar oscillatory patterns.

Figure 5(f) reveals that at the end of the first collision,

the internal mass of shell 1 moves leftward due to its initial

negative velocity (φ = π ), pulling shell 1 backward against

its initial trajectory. Meanwhile, the internal mass of shell 2

remains nearly stationary, resulting in conventional postcol-

lision motion for shell 2, albeit with reduced velocity due to

energy retention in shell 1.
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FIG. 5. Time-domain displacement plots showing the motion of

the two spherical shells for selected resonator parameters and ini-

tial conditions corresponding to a range of values of the effective

coefficients of motion, CMa, and restitution, CRa. Shell 2 and its

resonator are initially stationary at the equilibrium point (with zero

kinetic and potential energy) at the time of collision (time = 0 s). The

left-hand panels (a)–(e) show the motion of the outer shells over the

first six collisions. Panel (a) shows the time response for conventional

solid spheres (no resonators), whereas panels (b)–(e) show the time

response for different parameters and initial conditions, as indicated

in each panel. The right-hand panels (f)–(i) display the displacement

of both the outer and inner shells (scaled as indicated above each

panel) during the initial collision for each sequence shown in the

corresponding left panel. The black crosses indicate the centers of

each outer sphere at the start and end times.
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Figure 5(c) shows the response for � = 0.32, φ =
1.5π , and En = 0.75, yielding CMa = 0.5 and CRa = 0.11.

Whereas CRa = 0 would indicate perfect inelastic coupling,

the chosen CRa = 0.11 prevents immediate recollision by al-

lowing slight separation. The value CMa = 0.5 indicates the

shells retain half the initial momentum, resulting in reduced

oscillation amplitudes compared to conventional collisions.

Figure 5(g) shows that the initial negative displacement

of shell 1’s internal mass creates immediate leftward force

on its shell. As the resonator moves rightward during spring

decompression, the leftward force weakens but remains nega-

tive throughout contact. Shell 2’s internal mass remains nearly

stationary, resulting in reduced momentum transfer similar to

Figs. 5(b) and 5(f).

Figure 5(d) shows the response for � = 3.2 and En = 1.5

at two phases: φ = 0 (dashed line, CMa = CRa = 1.1) and

φ = 0.5π (solid line, CMa = CRa = 0.5). Both cases show

shell 1 stationary postcollision (conventional elastic behav-

ior), but shell 2’s displacement magnitude increases by 10%

for φ = 0 and decreases by 50% for φ = 0.5π relative to

conventional cases. Such momentum scaling would conven-

tionally require unequal masses and energy gain or loss in the

collision.

Figure 5(h) shows enhanced shell displacements during

collision due to � > 1 and prolonged contact. For φ = 0

(dashed line), the internal mass’s positive momentum partially

transfers to shell 2, amplifying its displacement. For φ = 0.5π

(solid line), the internal mass’s initial rightward displace-

ment and subsequent leftward motion reduce net momentum

transfer.

Figure 5(e) shows the response for � = 10, φ = π , and

En = 2, producing CMa < 0. When CRa ≈ −CMa, the dy-

namics resemble a sphere colliding with a rigid wall: Shell 1

rebounds while shell 2 remains stationary. This occurs when

net momentum transfer to shell 2 is negligible and shell 1’s

internal resonator provides sufficient recoil momentum via

negative velocity at φ = π . Figure 5(i) confirms the reduced

contact time limits momentum transfer to shell 2.

IV. CONCLUSIONS

In conclusion, we have analyzed the collision dynamics of

a meta-atom based two-sphere Newton’s cradle system and

derived theoretical expressions for the effective coefficients

of restitution and motion. The analysis focused on the case

in which the local resonance can be considered strong, that

is, where it has a much higher resonant frequency than the

independent oscillations of the two mass-in-mass systems in

the external gravitational potential.

We show that using a two-sphere mass-in-mass system in

a Newton’s cradle geometry results in more complex behav-

ior than in the conventional case, depending on the initial

conditions of the internal resonator mass at the moment of

collision. Our results demonstrate that the effective coefficient

of motion can be negative, causing the momentum of the outer

spherical shells to be reversed by the resonant behavior of the

inner-mass. The effective coefficient of restitution exhibits a

range of values, providing a much richer spectrum of dynamic

behavior compared to the conventional two-sphere Newton’s

cradle. We also show that, in general, the magnitude ranges of

both effective parameters increase with increasing resonator

energy, whereas the contact duration of the shells decreases

with increasing resonator energy. The sign of the resonator

velocity at the moment of collision is shown to have a signifi-

cant effect on the subsequent dynamics.

Our derived effective parameters suggest the existence of

exotic properties in both extended arrays of colliding mass-

in-mass units and equivalent periodic lattices composed of

mass-in-mass unit cells, which may have practical applica-

tions. Generalizing these results will be the focus of future

work. Periodic lattices could include granular materials with

alternating compressed and uncompressed regions that exhibit

collisions between adjacent units, as well as lattices composed

of units connected by fixed links but spaced closely enough to

allow collisions.

Our findings are particularly relevant to the design of

effective dynamical parameters in metamaterials based on

locally resonant behavior, as they demonstrate how effective

momentum and energy conservation can be tuned via the

initial conditions of local resonators. Further work is needed

to extend these results to scenarios involving larger-amplitude

oscillations and frictional effects. Ultimately, this line of re-

search may enable the construction and exploration of new

classes of “collision” metamaterial structures.
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