UNIVERSITY OF LEEDS

This is a repository copy of Overcoming recycling barriers to transform global phosphorus
management.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232634/

Version: Accepted Version

Article:

Raniro, H.R. orcid.org/0000-0002-5041-8101, Serrano-Gomez, J., Mort, H.L.
orcid.org/0009-0000-7330-7351 et al. (23 more authors) (2025) Overcoming recycling
barriers to transform global phosphorus management. Nature Reviews Earth &
Environment. ISSN: 2662-138X

https://doi.org/10.1038/s43017-025-00717-3

This is an author produced version of an article published in Nature Reviews Earth &
Environment, made available under the terms of the Creative Commons Attribution
License (CC-BY), which permits unrestricted use, distribution and reproduction in any
medium, provided the original work is properly cited.

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://doi.org/10.1038/s43017-025-00717-3
https://eprints.whiterose.ac.uk/id/eprint/232634/
https://eprints.whiterose.ac.uk/

129

130
131
132
133
134
135

136
137

138

139

140

141

142

143

144

145
146

147

148
149
150
151
152
153

154
155

156
157
158
159

Overcoming recycling barriers to transform global phosphorus management

Henrique Rasera Raniro!”, Juan Serrano-Gomez>*', Harrie L. Mort*, Teodor Kalpakchiev*, Josephine
Kooij®, Yudong Zhao®, Rodrigo M. Valenga’, Sinoxolo Magaya®, Ana J. Guerrero-Esquivel, Leon Korving?,
Philipp Wilfert!®, Thomas Prot’, Julia Martin-Ortega*, Dorette S. Miiller-Stover®, Mark van Loosdrecht'®,
Dana Cordell'!, Jakob Santner"!'?, Henrikki Liimatainen®, Ludwig Hermann?, Matthew Scholz'?, Morten L.
Christensen’, Frederik van der Bom'*!>, Nelly S. Raymond'®!">, Sgren Krogh Jensen!’, Fiona Smith!8,
Kasper Reitzel'*f

“These authors contributed equally: Henrique Rasera Raniro and Juan Serrano-Gomez
femail: reitzel @biology.sdu.dk)

nstitute of Agronomy, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
2Proman Management GmbH, Auersthal, Austria

3Department of Civil Engineering, Technische Universitit Wien, Vienna, Austria

4Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, UK
SDepartment of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark

SFiber and Particle Engineering Research Unit, University of Oulu, Oulu, Finland

"Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark

8Department of Environmental Geography, Institute for Environmental Studies, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands

“Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands

"Department Biotechnology, Delft University of Technology, Delft, The Netherlands

HInstitute for Sustainable Futures, University of Technology Sydney, New South Wales, Australia

Institute for Plant Nutrition, Justus Liebig University Giessen, Giessen, Germany

13Global Futures Laboratory, Arizona State University, Tempe, AZ, USA

4Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark

13School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland, Australia

15Department of Geosciences and Natural Resource Management, Geography, People and Processes, University of
Copenhagen, Copenhagen, Denmark

"Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
3UK Trade Policy Observatory and Sussex Law School, University of Sussex, Falmer, Brighton, UK

Department of Biology, University of Southern Denmark, Odense, Denmark


mailto:reitzel@biology.sdu.dk

160

161
162
163
164
165
166
167
168
169
170
171
172
173
174

175

176
177
178
179
180
181
182
183
184
185

Abstract

The global phosphorus challenge arises from the uneven distribution of phosphorus resources,
environmental impacts from phosphorus losses and unsustainable linear management. Despite progress in
advanced phosphorus recycling, less than 1% of secondary phosphorus resources produced globally are
recycled. In this Review, we comprehensively explore global barriers to phosphorus recycling. Manure (15—
20 Mt P yr'!), mining and fertilizer industry waste (6-12 Mt P yr '), wastewater (~3.7 Mt P yr ') and food
waste (~1.2 Mt P yr'!) are the major secondary phosphorus resources worldwide. In addition, accumulated
legacy phosphorus in soil and sediment comprises a combined stock of more than 3,200 Mt P. Phosphorus
mismanagement and losses cost stakeholders US$265 billion yearly, yet substantial barriers to phosphorus
recycling remain. Key challenges to be overcome include low competitiveness of recycled phosphorus
products, complex waste handling, limited legacy phosphorus recovery and fragmented collaboration among
stakeholders. A shift is needed toward an integrated, systems-based approach that simultaneously addresses
technical, economic and societal challenges. Transdisciplinary strategies and research will advance
phosphorus recycling and development of a sustainable, circular phosphorus economy. Incorporating the

perspectives of diverse stakeholders will help drive increasingly sustainable phosphorus management.
Key points

e Mineral phosphorus dependency, uneven global distribution, eutrophication and linear nutrient
management are fundamental and deeply interconnected challenges in managing phosphorus.

e Efficient phosphorus use and recycling are essential to closing the phosphorus cycle, but numerous
barriers stand in the way of achieving this goal.

e Conlflicting objectives among stakeholders is a key barrier to developing and implementing effective
strategies for sustainable phosphorus use.

e Successful strategies for circular management of phosphorus require improved communication,
interdisciplinary research, and transdisciplinary processes that incorporate the needs of all stakeholders.

¢ Inclusive policies are vital to align incentives, foster collaboration and promote sustainable phosphorus-

use practices.
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[H1] Introduction

Phosphorus (P) is crucial for supporting food and industrial production worldwide. Global P demand
currently totals 26.5 Mt P yr!, driven by food production (~80% for fertilizers and 6% for food additives)
and industrial applications (14%)'. Most consumed P originates from phosphate rock®*, a finite resource
with known high-quality reserves that are expected to be depleted within the next few centuries’. In addition,
more than 85% of global P deposits are concentrated in just five countries, limiting equitable access to this
critical resource, particularly during periods of geopolitical uncertainty®’. Furthermore, 80-95% of all
mined P is lost owing to inefficient P management®. Much of this loss occurs on farmers’ fields, where
unconsumed P from past inputs accumulates as legacy P in soil or freshwater sediment. Excess P in aquatic
environments causes severe environmental damage. Globally, P mismanagement costs stakeholders

approximately US$265 billion annually (ref.°).

In response to these sustainability, equity and environmental challenges, efforts to establish a
circular phosphorus economy are gaining momentum'’. For example, China is reducing P waste streams by
using industrial sludge as fertilizer'!. Brazil’s National Fertilizer Program is diminishing P inputs in
agriculture and reliance on imports by establishing governance and monitoring tools, promoting research
and innovation and exploring domestic sedimentary phosphate basins!>!3, The European Union’s Circular
Economy Action Plan'#, adopted in 2015, provides an initial framework for nutrient recycling within its
territory. Globally, the potential for P recycling is huge, with the amount of P trapped annually in recyclable

resources comprising 143% of the current (2024) yearly P demand'.

Cascading innovations are focused on the recovery of P from diverse waste streams. The economic,

societal and environmental benefits of P recovery'®, the potential of secondary sources of P to partially

16,17

substitute mineral P in the production of fertilizers and a role for recycling in closing nutrient loops'®

highlight the importance and advantages of P recycling. Concurrently, technological breakthroughs have

facilitated the transition of large-scale operations to the use of secondary P in manufacturing industrial

16,17 19,20

products Despite notable progress in infrastructure'®?’, policy development??> and recycling

technologies'”!® for circular nutrient management, challenges in P management persist. Contextual
differences, disciplinary fragmentation and limited stakeholder coordination hinder the development of

10,23

well-defined pathways to achieve greater phosphorus circularity worldwide'® >, reflecting its nature as a

wicked problem.

In this Review, we explore the reasons why P recycling from secondary sources remains limited.

We discuss a range of technical, economic and societal barriers to global P recycling®*2¢

and argue that
fostering transdisciplinary collaborations is essential to improving P sustainability worldwide, precisely
because such collaborations are best positioned to align the diverse interests of stakeholders across sectors

and disciplines.
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[H1] The need to improve phosphorus management

The ideal P value chain is circular, but in practice it is predominantly linear. The cycle begins when
P mined from phosphate rock is used to produce fertilizers and other goods. After manufacturing, P is
consumed by humans, crops or animals, but substantial amounts of P are lost to secondary P waste streams
at every stage of the P life cycle. Phosphorus losses to the environment are also pervasive, leading to P

accumulation in soil and sediment, where it can contribute to environmental degradation”%°,

Furthermore, as access to phosphate rock reserves diminishes, both economically and
geographically, the risks to global food production also rise*®3!. These challenges highlight the need to
develop strategies for recovering and recycling P. The EU has some of the most advanced technology, data

availability and legislation relating to P recycling, yet, even in the EU, the P cycle remains essentially linear

(Fig. 1).

[H2] Geopolitical dependence on primary phosphorus imports

Most regions worldwide rely heavily on P imports from a limited number of countries (Morocco
alone contains ~67% of the world’s known reserves>*>¥), creating pronounced geopolitical vulnerabilities
in food security *%. Political, economic and environmental disruptions can lead to global price shocks*.
For example, in 2008, phosphate fertilizer prices spiked by 800%, mostly due to rising energy costs and
geopolitical trade policies®, generating supply constraints and threatening agricultural production and food
security in several parts of the world*’*®. More recent supply chain disruptions include the COVID-19

3441 and

pandemic®’, the Ukraine-Russia conflict*’, reductions in P fertilizer exports by China and Russia
trade wars between key stakeholders (such as China and the USA*?). The negative impacts of these events
disproportionately affected countries in Africa*. Asymmetric risks associated with primary P dependence

underscore the need for diversified P sources and more resilient supply chains.

[H2] Agricultural needs and phosphorus wastage

Approximately 90% of all mined P resources are used in fertilizers**

, and global P use since the
Green Revolution has increased more than six-fold"*¢. However, quantifying global P flows and stocks is
challenging owing to major regional differences in P resource availability, prices and efficiency of use, all
of which are shaped by economic, political and environmental factors'®*. The most comprehensive
accountings of European and global P mass describe conditions in 2005*” and 2009°®, respectively. Both

assessments highlight increasing agricultural demand and pervasive losses throughout the P life cycle.

Where intensive agricultural practices coincide with widespread access to mined P resources, high
P input and legacy P often result*®. China and Brazil use substantial amounts of mineral fertilizer (more than
32 kg Pha! of cultivated land yr ')*® as P input compared with 5-10 kg P ha™! yr ! of manure, and P removal
through crop harvests is also high (24 and 26 kg P ha™! yr'!, respectively). Conversely, the low agricultural

productivity in most African countries is partially attributed to low P input® (Fig. 2).
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Most European countries have moderate or low mineral fertilizer inputs (0—-16 kg P ha™! yr'!) and
moderate or high manure inputs (8-24 kg P ha™! yr'!), except for the Netherlands and Belgium, where
manure application is remarkably high (65 and 35 kg Pha™! yr'!, respectively). In the USA, mineral fertilizer
application is moderate (816 kg P ha™! yr'!), manure input is low (0-8 kg P ha™! yr'!) and crop removal is
moderate (8-16 kg P ha™! yr 1)®. Importantly, P losses are extensive almost everywhere. For example, the
terrestrial P surplus (that is, P that was applied to fields but not exported by crop harvest) in the USA in
2012 is estimated at 1.85 Mt P, with many agricultural areas exhibiting high surpluses, particularly in the

upper Midwest™.

[H2] Environmental impact of phosphorus mismanagement

Phosphorus mismanagement results in massive environmental degradation. Some mismanaged P

ends up in water bodies and causes eutrophication®">

, resulting in harmful algal blooms, dead zones and
biodiversity loss. Annually, approximately 1.5 Mt of anthropogenic P are lost to freshwater systems>?. The
EU released a Water Framework Directive more than 25 years ago®*, yet 60% of lakes in the region do not
meet the directive’s ‘good’ standard. Pervasive eutrophication and ineffective water restoration highlight

the urgent need to rethink P use practices and develop sustainable P management solutions.

By recovering P from nutrient-rich waste streams, such as wastewater and animal manure, using
methods such as chemical precipitation, advanced composting and biochar production, P recycling from
agricultural systems can be increased'7?!. Furthermore, recovering recalcitrant P stocks in soil and

sediment can be crucial to ensuring global P circularity.

These geopolitical, wastage and environmental aspects reveal a global P landscape marked by stark
regional contrasts, ranging from over-application and environmental losses to chronic underuse owing to
limited access to P resources. Addressing these imbalances is essential to improving agricultural

productivity and the sustainability of P use worldwide.

[H1] Recovery of secondary phosphorus

Improving P circularity is indispensable to overcoming the geopolitical, agricultural and
environmental challenges associated with P mismanagement®!?. Achieving this goal requires optimizing the
use of primary P resources (mined phosphate rock), utilizing P stocks accumulated in soil?”?® and sediment®’,
and enhancing P recycling from P-rich secondary sources, including waste from the mining and fertilizer

industries', livestock manure'®, wastewater and sewage sludge®’->® and food waste® (Table 1).

[H2] Mining and fertilizer industry waste

The mining industry produces substantial amounts of secondary P contained in byproducts and
waste from rock mining (1.1-3.0 Mt yr '), and phosphoric tailings generated during rock beneficiation (2.3—
4.6 Mt yr'"), which together represent 12-16% of total P mined globally>®. Although P recovery from
mining waste using pyrolysis, leaching and precipitation have been proposed, these approaches are complex

60,61

and expensive®®!, and large-scale recovery is currently not viable®?. Typically, mining waste is landfilled,
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and usually covered with vegetation to reduce environmental risks such as erosion, dust production and P

runoff.

The fertilizer industry also generates P-rich waste such as P slag (~1.8 Mt P yr'!) and
ferrophosphorus (~0.3 Mt P yr'")!. In addition, ~300 Mt of phosphogypsum (containing 6-9.8 Mt P) is
produced annually by acidifying phosphate rock"%. Although phosphogypsum has agronomic applications,
58% is landfilled® and 28% is discharged into the sea®, comprising a global stockpile of 60—160 Mt of
P36 of which only 14% is further treated*®.

[H2] Livestock manure

Livestock manure is the largest secondary P resource (15-20 Mt P yr )14

, accounting for more
than 50% of the annual secondary P generated worldwide. In the EU, ~2.2 Mt P yr ! comes from manure,
of which ~90% is directly applied to agricultural land'°%’, However, a substantial portion of manure is
difficult to recover because grazing animals deposit it directly onto grasslands®’. Intentional application is
often concentrated near livestock production areas, serving more as a means of waste disposal than as a
targeted agronomic strategy'®. This practice can lead to the accumulation of soil legacy P. Moreover, manure
typically has a low N:P ratio, which can contribute to P overapplication as farmers prioritize addressing crop
nitrogen requirements. In China, ~2.14 Mt P yr ! from manure is applied on agricultural land®, representing

26% of the country’s total P demand, but this is only ~50% of the P that could be harnessed from manure

in China®.

Owing to the low P concentration in manure (<1% of P per fresh weight), concentrating P from this
source can improve P recovery and subsequent recycling, thereby facilitating efficient handling,
transportation and application'®®’. The water content and volume of manure can be reduced using non-
thermal methods, such as flocculation, settling, screw pressing, belt filtration centrifugation, and dissolved

air flotation after anaerobic digestion”®"!, but technical, logistic and financial challenges remain.

Biogas production from manure is common in developed countries, yielding a digestate containing
~2% P, To further concentrate P in fresh manure and its digestate, solid-liquid separation techniques have
proved effective’. About 70~75% of P can be recovered in the solid fraction without flocculation, whereas

flocculation increases the recovery rate to 80-90%.

[H2] Food and biorefining wastes

As much as 1.2 Mt P could be recycled annually from farming, food manufacturing, biorefining,
and consumer wastes and byproducts'. However, resource heterogeneity complicates recycling from food
waste”. Recovery techniques such as composting, anaerobic digestion and fermentation are the most
common strategies for nutrient recovery from food waste. Other methods, such as incineration, are

promising, but come with their own drawbacks such as increased pollution®-*,

Industrial food manufacturing is a major source of food waste, accounting for almost 50% of the

food waste in the entire supply chain in the UK. This waste often takes the form of useful materials such
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as whey and starch residues’. Meat and bone meal (a slaughterhouse byproduct) has high P content (3—5%)
and are already used as a P fertilizer in some countries, but concerns about pathogen risk and public

perception still limit its use in other countries’®.

Biorefinery residuals, such as waste from bioethanol production or breweries, are also rich in P. A
prominent example is distillers’ dried grains with solubles, a byproduct of corn ethanol production, of which
~38 Mt yr ! is produced in the USA alone. With a typical P concentration of ~1% of dry weight’*’S, this
amounts to ~0.38 Mt P yr !, making it one of the largest flows of concentrated organic secondary P in North
America’’. Although commonly used in livestock feed, which aids P recycling to some extent, the spatial
disconnect between production and consumption sites requires complex transport logistics and high costs,

often resulting in ineffective P recovery’’.

Post-consumer food waste, primarily from households and the food service industry, is the largest
global food waste stream, amounting to ~570 Mt annually’®. This waste is typically heterogeneous and often
contaminated with plastics or packaging residues’, posing major logistical and regulatory challenges for
safe reuse®. In Barcelona, compost derived from household food waste is applied to urban agriculture plots,
but contamination and legal hurdles intended to lower the risk of contamination limit broader nutrient
recycling efforts®®, Another example is seen in Thailand, where food waste composting and direct use as
animal feed recovered up to 71% of the P content in food waste from retail and wholesale markets®'. Despite
its potential, P recovery from food waste remains underdeveloped, partially owing to severe logistical,

environmental and behavioural challenges, low economic incentives and weak regulatory enforcement’*®.

[H2] Wastewater

Wastewater refers to water discarded from households, businesses and industries, as well as
stormwater runoff. Globally, ~360 billion m? of wastewater are produced annually, containing 3.7 Mt P3283,
However, in current market conditions, the economic feasibility of P recycling from wastewater remains
limited®, so most wastewater treatment plants prioritize meeting discharge requirements for treated
wastewater rather than actively recovering P?. P is typically removed from wastewater through chemical,

biological® or combined treatment methods®, with ~90% ending up in sewage sludge®®.

Sewage sludge is sometimes applied directly to agricultural fields®”. However, this practice is being
increasingly restricted owing to concerns about contaminants, including heavy metals, pathogens,
microplastics and toxic organic compounds. Although only a small fraction of P from wastewater is
recovered using advanced recovery methods®, the potential of numerous technologies has been

demonstrated at full or pilot scale®®*

, particularly in North America, Europe and Asia. For effective
recovery, P must first be dissolved and then concentrated and recovered through precipitation, crystallization
or adsorption®. Typically, sludge liquor, sludge or sludge ash are used to produce P-recovered products

such as struvite, calcium phosphate or phosphoric acid®.
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Recovering P directly from sludge tends to yield lower-purity struvite (with lower P and higher
impurity concentrations), whereas recovery from the water separated from sludge generally produces a
higher-quality product and higher yield, but combined, these methods only capture 10-40% of influent P'7.
High recovery yields, ranging from 60-70%, can be achieved through vivianite precipitation® or sludge
acidification, followed by solid-liquid separation and precipitation®'. However, these processes are energy-
intensive and thus contribute to global warming, and they require substantial amounts of acid®>. Although
the P recovery efficiency is higher than for struvite-based technologies, these methods have yet to progress

beyond pilot-scale demonstrations®.

High yields of micropollutant-free P, typically 80-90%, can also be recovered from sludge ash®.
Current technologies for P extraction from sludge ash can be categorized as wet-chemical, thermochemical
and electrodialysis methods®’. These methods vary in their effectiveness in heavy metal removal, emissions
production and energy demands®>. P extraction from sludge ash can recover high volumes of P, making
centralized facilities feasible. Other methods, such as pyrolysis or hydrothermal carbonization, produce char
that can be used directly on agricultural fields, if inorganic and organic pollutants are below local legal
thresholds®®. Despite the high potential for P recovery from wastewater and its byproducts, only 61 facilities
worldwide currently pursue advanced P recovery that goes beyond conventional sludge recycling or land
application of biosolids, collectively recovering ~4.2x107> Mt P yr! from secondary sources®® ([H1] 3).

High capital expenditure requirements hinder investment in these promising technologies'”%’.

[H1] Legacy phosphorus

In agriculture, P input through the application of mineral and organic P fertilizers often exceeds the
amount absorbed by crops, resulting in a gradual accumulation of legacy P in the soil*’*. Most legacy P is
strongly bound to the soil matrix, primarily to inorganic soil constituents, or is lost to aquatic environments

48.35 eventually accumulating legacy P in sediment®®>>%*, where it often

through erosion, runoff or leaching
contributes to environmental issues, such as eutrophication. Although legacy P is often not immediately
available to plants, physical, chemical and biological pathways exist that can mobilize this P, allowing a

portion of legacy P to be taken up by crops in the future®.

[H2] Legacy phosphorus in soil

Globally, excessive fertilizer use between 1965 and 2007 resulted in the accumulation of over 815
Mt of legacy P in the so0il®. The high reliance on P fertilizers is particularly evident in Western Europe,
Brazil, North America and Asia, where anthropogenic P accounted for nearly 60% of the available soil P in
2017°". By contrast, Africa relies on these P inputs for only approximately 30% of the total available P in
the soil®®. Although P fertilization is projected to rise from 20 Mt P in 2023 to 22 Mt P in 20252 only ~30%
of the P supplied to crops is absorbed in the year of application, and ~45% becomes legacy P? (the remaining

25% is lost through erosion, runoff, and leaching). For example, soil legacy P was ~9 Mt in 2023* . In the
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EU, excessive fertilizer use has led to an accumulation of ~222 Mt of legacy P in topsoil®®, and legacy P

accumulated in agricultural soil could reach ~107 Mt by 2050 in Brazil®.

Efforts have been made to utilise or ‘mine’ soil legacy P. One promising approach is cover cropping

with species that are capable of accessing less-available forms of P through adaptations such as altered

100 101

root structures and architectures'”, high rhizosphere acidification capacity'®" and increased root exudation
of compounds such as phosphatases and carboxylates that enhance P mobilization and availability'®. The
biomass of cover crops is then incorporated into the soil, where it releases bioavailable P that can be used
by subsequent crops®. Bioengineering and breeding crop varieties with higher P mobilization potential are

dl()3,1()4

also being investigate . However, these approaches are complex and heavily influenced by specific

environmental conditions and soil P status'®, which can limit their reliability. Furthermore, newly dissolved

P resulting from the effects of freeze—thaw cycles on cover crop biomass can reach nearby waterways'%.

Biostimulants are another promising strategy for mobilizing legacy P!?7. These substances alter the
soil microbiota or promote P scavenging by roots to enhance crop P uptake!®. Biostimulants work by
mobilizing relatively stable forms of P into plant-available forms, which can considerably increase the

efficiency of P use in agricultural systems, particularly in soil with high legacy P levels.

[H2] Legacy phosphorus in sediment

Historical P loading from wastewater, runoff and erosion from agricultural soil has led to the
accumulation of ~2,686 Mt of legacy P in aquatic sediment, with an estimated current accumulation rate of
1.5 Mt P yr! 3. Waterbody management practices focus on maintaining or restoring water quality by
immobilizing P in the sediment, which is typically achieved by adding P-binding agents or aerating lake
water to promote the binding of P to iron in sediment!®. Although these practices reduce P reactivity and
mitigate potential environmental damage, they do not facilitate P recycling. By contrast, reusing lake

t94

sediment™ or filtering and recycling P-rich lake water would help to achieve P circularity.

Despite the substantial P stock in sediment, exploiting this resource by recycling P faces notable
challenges that hinder its feasibility. The P recovery process involves complex and costly steps, including
dredging, flocculation and dewatering of sediment''®. Then, the treated sediment must be transported and
applied to agricultural soil, which adds new layers of complexity, expense and risk if the sediment contains
contaminants. Although using P in sediment holds promise and could contribute to P supply, more research

and technological development are needed to overcome these hurdles.

[H1] Barriers to phosphorus recycling

In Europe, China, Japan and North America, financial capacity is adequate for developing and

deploying efficient P recycling technologies!'®-!1:23:31

. However, numerous interconnected barriers pose
considerable challenges to implementing efficient P recycling (Fig. 3). These obstacles also increase reliance
on imported mineral phosphates, exacerbating geopolitical and environmental vulnerabilities.

Acknowledging the interconnectedness of these barriers underscores the need for transdisciplinary
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approaches, where diverse sectors (including academia, industry, consumers, farmers and others)

collaborate to develop comprehensive and sustainable solutions for P management and recycling.

[H2] Technological barriers

Developing P-recycling capabilities is the most apparent technological challenge. The heterogeneity
of secondary P resources complicates technology transfer between waste streams. For example, P-recovery
technologies designed for wastewater are not easily adaptable to recovering P from manure or lake sediment,
owing to different requirements regarding removal of pollutants, pathogens and contaminants'!!.
Furthermore, some recycling methods can separate contaminants from waste but often result in poor P
recovery or reduced P availability. The best available techniques for recovering P, such as incineration,
pyrolysis, thermochemical processing and electrodialysis, are typically chemically intensive, operationally

112,113

complex and costly , and all yield products that have downsides, notably low P bioavailability without

further chemical processing!’, and the continued presence of some heavy metals and other pollutants.

Nonetheless, various P recovery technologies are available and are increasingly being implemented
at full scale®. The challenge lies in balancing treatment costs with performance. Ensuring high P recovery
rates from secondary resources while producing clean, safe and highly efficient fertilizers remain difficult

to optimize simultaneously.

A less obvious technological barrier relates to the production of knowledge. Standardized analytical
methods for assessing P availability do not effectively characterize highly complex, heterogenous
products''*!'> 'Worse yet, no standardized method for P speciation (the chemical forms in which P exists)
in recovered products currently exists, although X-ray diffraction is often used. Although effective for
identifying mineral P forms, this method is unsuitable for detecting organic P, is inherently qualitative, and

fails to provide accurate results when mineral phases are poorly crystalline or amorphous.

These data are crucial for generating, evaluating and comparing the efficiency of recovered P
sources, relative to conventional fertilizers''>!'6, Furthermore, the heterogeneity and complex chemical
composition of secondary P resources hinder their evaluation as fertilizer alternatives. For example, in the
Netherlands, increasing amounts of macerated food waste are being diverted to sewage systems,
contributing to mixed flows being treated in wastewater treatment plants'!”. This practice blurs the line

between household and municipal waste streams, complicating the traceability and purity of recovered P.

[H2] Knowledge barriers

These technical barriers result in knowledge barriers: gaps in understanding of the dynamics of
recycled materials in the environment and their efficiency as fertilizers. For example, lack of knowledge of
P availability and speciation hinders developers of models for improved P management and regulators, who
need these data to proceed sensibly. Recycled products often have lower water solubility and slower P
dissolution dynamics than conventional mineral P fertilizers, but can release similar amounts of P over

118

longer periods''® and achieve similar agronomic efficiency''*1?°. However, the long-term effects of
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continuous use of recycled fertilizers are still mostly unknown. The characteristics, production process,
application method and environmental risks of the various recycled P sources are not sufficiently understood
to anticipate how they will affect fertilizer performance and the environment over time'®!'?!, Therefore,
understanding the dissolution kinetics and overall behaviour of recycled fertilizers in different environments

is essential for modelling their transport in fields and watersheds.

In addition, the complex interplay between soil partcicles (such as Fe and Al oxyhydroxides and
clay minerals) and the P in fertilizers is not sufficiently understood. Phosphorus phytoavailability and legacy
P accumulation rates vary considerably. Although slower fertilizer solubilization can be advantageous in
acidic soil, improving crop uptake and reducing leaching and runoff, P release from biochar and struvite,
for example, is considerably delayed or reduced in alkaline soil, and therefore is potentially too slow for
optimal plant growth!?*!23, Furthemore, soils with high P sorption capacity, such as those rich in iron and
aluminium oxides, can tightly bind P, increasing soil legacy P, whereas sandy or organic-rich soils often

retain less fertilizer-derived P, promoting higher bioavailability.

Current understanding of mineral-bound P species is uneven. Whereas iron phosphates have
received increasing attention over the past decade, particularly those precipitated from sewage sludge,
research on aluminium-P forms, which is also highly utilized for P precipitation in wastewater treatment
plants, remains underexplored. This gap limits the development of P-recovery processes from aluminium-
rich waste streams and further complicates efforts to assess the potential and limitations of different recycled

P sources in a comparative, system-wide manner.

These knowledge gaps complicate the accurate measurement of P circularity. For this reason, the
true economic, environmental and climate-related impacts of failing to recycle P are still not fully
understood. These uncertainties impede wider adoption of recycled P alternatives, even by early adopters®®.
Without sufficient production, potential users cannot fully test P sources in real production scenarios, which
raises concerns about their effectiveness in agricultural systems. This uncertainty lowers farmer demand,

which lowers profit expectations for producers, thereby further hindering effective P recycling?!?,

[H2] Logistics-related barriers

Logistical barriers refer to obstacles that impede the collection, handling, processing and
redistribution of waste streams and recycled P. A notable logistical challenge is the distance between the
sources of recycled P and arable land where it is needed. For example, densely populated areas generate
substantial amounts of P-rich wastewater, but these regions are frequently far from agricultural lands that
require P inputs®. For example, in the Netherlands, sewage sludge application on farmland has been banned
since the 1990s owing to concerns about contaminants. Following an incineration capacity shortfall in 2020,
the Netherlands exported 27.5 kt of sewage sludge to the UK, one of the few nearby countries that still
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permit land application of treated sludge *°. Besides being logistically difficult, this trade was economically

impractical, resulting in a financial loss.
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Regional generation and distribution imbalances are an issue with the use of manure'®®"126, The
high volume and moisture content (85-95%) of manure create logistical challenges for its handling, storage
and long-distance transport!'>’~'?°. The water content of manure can be reduced, thereby increasing P
concentration, but logistical shortcomings continue to limit the accessability of manure for P recycling!3%13!,
Existing techniques such as thermal drying can reduce moisture content to 10—15% but are expensive and
energy-intensive!*2. The use of more accessible, non-thermal techniques results in a product with 65-75%
water content, which is still too high for efficient, cost-effective application and transportation. In Sweden,

if fertilizer prices remain stable and recycling processes are unchanged, transportation costs would need to

be reduced by 73% for manure recycling to be cost-effective!®.

Last, recycled P fertilizers are cumbersome, complicating their application!?>!**, Recycled P
fertilizers are often bulky or dusty, which makes them difficult to handle and requires specialized and/or
multiple machines to manage large volumes. For example, although food-waste-based compost and
digestate can improve soil structure and organic carbon content, their P content is low (~0.4% P on a dry
matter basis?>’®). As more concentrated P fertilizer options exist, farmers resist extra investments that would
facilitate the use of more bulky, recycled options. In addition to P, recycled fertilizers can contain variable
nitrogen, potassium and micronutrient content, and this variability, coupled with differing nutrient-release

dynamics and logistical costs, tends to dissuade farmers from using recycled products'®.

[H2] Economic and financial barriers

The economic feasibility of safely recovering and using P from secondary sources is another barrier
to P recycling'®. High initial investments, elevated production costs and uncertain returns deter the
implementation of P-recovery technologies®. The financial magnitude of full-scale P recycling from sewage
sludge ash into technical-grade phosphoric acid (75% H3PO., containing 23% P) has been demonstrated in
Switzerland. As of 2023, the projected capital expenditure for a facility producing 40 kt of technical-grade
phosphoric acid annually is ~US$190 million, with operational costs of ~US$29.5 million yr™' to produce
12 kt of phosphoric acid annually (2,760 t P yr !). Thus, operational costs are ~US$2,460 t ! of phosphoric
acid and annualized capital expenditure is ~US$9.3 million (~US$775 t!' of phosphoric acid) *7. At the
time, the market price of phosphoric acid was below US$1,100 t!, about three times less than the production

cost of recycled phosphoric acid!*"-13%,

The higher cost of recycled P fertilizers is related to the physicochemical characteristics of the
secondary materials, the smaller operation size (economy of scale) and the increased complexity of most
recovery processes'?’. For example, advanced P recovery from manure yields a final product that is too
expensive for most farmers, compared with raw manure'®. Similarly, fertilizers produced with struvite
precipitation technologies can be 2—14-fold more costly than those derived from phosphate rock!”!3%140,
Most attempts at struvite precipitation (related to clogged pipes from uncontrolled struvite crystallization)

have been motivated by an interest in reducing maintenance costs, not in producing fertilizers'*!'4>, The
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higher cost of recycled fertilizers compared with those from conventional sources and their uncertain

benefits in terms of crop yield can considerably discourage farmers from using recycled materials !4,

Phosphorus recycling is also markedly influenced by global economic disparities. For farmers, who
often even struggle with the cost of conventional fertilizers, investing in recycled P sources is risky, with an
uncertain and potentially delayed return on investment!#*!#*, This scenario leads to reluctance in committing

resources to adopt recycled alternatives, hindering P recycling implementation in developing regions'®!%.

[H2] Societal barriers

Societal barriers encompass poor food planning, misinterpretation of ‘best-before’ dates for
perishable foods, and over-purchasing, all of which are core contributors to household waste”",
Furthermore, perceptions of recycled fertilizers, including their safety, can lead to acceptance-hindering
stigmas, including concerns about contaminants and pathogens, as well as ‘yuck factors’ such as odour!#¢-147,
These perceptions can discourage farmers from embracing recycled fertilizers and deter consumers from
buying produce grown with them'**!*¥, In addition, farmers often resist shifting from established practices
that they know are effective!*. They know that recycled fertilizers release nutrients more slowly but are
uncertain about the implications of this difference. Their hesitance is exacerbated by a lack of expert advice
and guidance that is tailored to their specific situations, leaving many farmers unsure about the most

effective use of these products'*.

[H2] Regulatory barriers

Regulatory and legal barriers to P recycling are related to policies and legislation that fail to
effectively support P recycling at various scales. Issues range from poorly focused regulations and
guidelines for P use, management and recycling, the absence of quality assurance procedures, inadequate
governmental incentives and lack of collaborative goal-setting'*°, to the unexpected and adverse impacts on
domestic P recycling of regulation designed to address ‘unfair’ agricultural trade policies at the international
level'!. All of these issues hinder the development of strategies and clear frameworks for P recycling
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globally

Market access to recycled fertilizers is often impeded by existing subsidies for mineral P fertilizers,
but incentives to adopt recycled products are also insufficient, perpetuating their low competitiveness'.
These policies discourage the use of recycled products and limit their global trade potential, further stalling
efforts to create a circular economy for P recycling. One notable regulatory barrier is the lack of
authorization for using recycled fertilizers in agriculture. For example, countries such as China, Japan and
the USA have made technological advances in P recovery from wastewater, but lack policies that actively
support or require P recovery from the wastewater sector’®. A major reason is quality concerns regarding
products that are feared to contain heavy metals, pathogens, microplastics and toxic organic compounds,
such as per- and polyfluoroalkyl substances (PFAS). These fears lead to regulatory and market barriers®.
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Only a few countries worldwide (that is, Germany'**, Austria'® and Switzerland'*®) have implemented
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regulatory mandates for P recovery from sewage sludge>’. This regulatory lag limits the widespread

adoption of P-recovery technologies in many regions.

Similarly, up until the 2020s, legal approval for struvite to be used as a fertilizer was not
forthcoming, but this use is gradually being accepted globally. In the EU, legislation is following this trend:
an amendment of the Fertilising Products Regulation (EC2019/1009)'5® now enables the use of struvite as a
fertilizer. However, other major P-rich secondary sources still lack approval. An example is Category 1
animal byproducts (animal parts suspected or confirmed to be infected by biological hazards), which can
have high P concentrations, but are not currently authorized under the EU’s Fertilising Products Regulation
owing to health concerns. For example, there is a potential risk of contamination with prions that cause
bovine spongiform encephalopathy, and despite certain thermal treatments and downstream acidulation

159 other studies are less conclusive'® and the techniques

showing certain efficiency in eliminating such risks
lack validation at scale. More complex certification processes for these products place an additional burden

on producers, who must ensure compliance to gain market access, and ultimately discourage P recycling'®!.

There is a lack of harmony between the regulations and guidelines for different P-related sectors.
Numerous sector-specific regulations exists for P management but there is no overarching governance
framework'®2. For example, in the EU, the Fertilising Products Regulation (EC2019/1009) now includes
recovered P fertilizers, but frameworks that regulate secondary P resources, such as the Urban Wastewater
Treatment Directive 91/271/EEC'®, offer no guidelines about recovered P. Using manure or sewage sludge,
farmers often apply the maximum nitrogen dose allowed by the EU Nitrates Directive (91/676/EC)'64165,
potentially resulting in P overapplication®. Although many EU Member States provide P application
guidelines, relatively few have legislation focused on the use of P fertilizers'®. This sectoral approach
perpetuates technocratic objectives focused on narrow goals®, relying heavily on command-and-control
instruments that are weakly enforced. These hindrances result in a fragmented policy landscape that impedes

the systemic adoption of P recycling practices?!.

The fragmentation in legislation is further exacerbated by stakeholders operating in disciplinary
silos with a narrow focus on their specific concerns rather than collaborating to establish a holistic

framework for P management'®’

. For example, stakeholders concerned with contaminants in waste-derived
fertilizers, such as environmental advocacy groups, or the general public concerned with the ‘yuck factor’
of these fertilisers, tend to advocate for strict regulations regarding P recycling without fully considering the
economic challenges faced by farmers and wastewater companies'*. These concerns highlight the broader
challenge of determining when such materials can be considered safe to use, which complicates regulation
and policymaking, a key issue in the ongoing ‘End-of-Waste’ debate. This dilemma points to the need for

shared knowledge, open dialogue and a community-driven willingness to compromise in pursuit of more

balanced and workable policies.

[H1] Strategies for moving forward

[H2] Improving phosphorus flows
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Addressing the global P challenge requires a multifaceted, holistic approach that harnesses the
expertise of individual disciplines””. The first pathway to better P management is to reduce the volume of
secondary P. In agriculture, this approach includes developing precision farming techniques that increase
application efficiency and reduce runoff to water bodies’*”. In addition, better manure recycling, and the
integration of livestock and crop production, are needed to use manure more efficiently as a P fertilizer. In
urban contexts, this approach includes decreasing food waste and broadening the collection and treatment
of wastewater to recover P and reintroduce it into the cycle. P recovery through waste treatment should be
expanded globally, with investments in infrastructure that support P recycling from agricultural, industrial

and urban waste’”’.

Increasing the recovery from secondary P resources must be complemented by reducing demand
for P resources. Transformative changes in human diets and consumption patterns are essential to mitigate
the impacts of P-intensive food production. Over the past 50 years, per capita P footprints have surged owing
to dietary shifts, primarily rising consumption of meat, which now comprises 72% of the global P footprint.
This shift has driven a 38% increase in global P demand between 1961 and 2007, with substantial variations
across countries’”’. Reducing meat consumption, especially in countries with high P footprints, could
substantially decrease P demand’”’. This change would both help conserve finite P resources and reduce the
risk of eutrophication, thus aligning with broader environmental and health sustainability goals. In addition
to dietary changes, improving P use efficiency and enhancing recycling at each stage of food production are

crucial complementary strategies’”’.

In addition to improved production, the challenges posed by the damage done by P that is lost to
the environment remain. Technologies are needed to reduce P runoff into waterbodies. Lower P losses can
be achieved by effective exploitation of legacy P in soil through intensive farming, cover cropping,
biostimulant use and efficient P management (for example, fertilizer choice, application timing and doses).
Waterbody restoration techniques should focus on recycling legacy P in sediment for use in agriculture. For
example, restoring lakes through sediment dredging could provide P while substantially reducing methane
emissions’”’. Therefore, tapping into P stocks in soil and sediment could help address both the P and climate
challenges. Advanced P recycling can also play a major part in reducing both legacy P accumulation and
losses to water bodies. Widespread P recycling would increase the market availability of less water-soluble
fertilizers (such as struvite, (bio)chars and sludge ashes), decreasing reliance on water-soluble fertilizers
that are prone to runoff’’’. In some cropping systems, this shift could better align P release with plant

demand, reducing P fixation in soil and losses to water bodies’”.

Improving P use efficiency in animal feed can substantially reduce P losses across the agricultural
system. One well-established approach is the addition of enzymes such as phytase, which increase P
availability to animals, thereby lowering P additive to feed and therefore total P intake by livestock and
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reducing P concentrations in manure'®. Another strategy is to remove excess P from feed ingredients. For

example, in the USA, P is removed from dry distillers’ grains used as feed to reduce its P content before
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consumption’’. However, the need for more efficient use of manure remains. Once manure is produced,
recovering P from digestate can further improve overall nutrient recycling!”. Advanced P recovery from
manure often involves solubilizing and precipitating P compounds such as calcium phosphate and
struvite!’®!”’ Emerging methods such as vivianite separation, vacuum evaporation, membrane filtration and

ion exchange are promising!’> but not yet fully developed or widely implemented.

[H2] Policy and pricing instruments

Prescriptive regulations to reduce harmful practices, mandate P recovery’’* and enforce the use of
recovered products are widely advocated’”’*’® but not often implemented. This hesitance has spurred calls
for broader approaches, including price-based policy instruments such as auction or tender systems that
allocate public funds to support environmental services, and quantity-based mechanisms, including offset
programmes’”’. The major challenge for any price-based incentive scheme designed to change P use at the
country level is preparing for and responding to unexpected impacts from World Trade Organization (WTO)

rulings regarding food production for export.

Under the rules of the WTO Agreement on Agriculture, pricing policies interpreted as ‘market-
distorting’ are prohibited. Government policies that manipulate the price of P fertilizers might fit this
description. Fortunately, exemptions are possible for price-based incentive schemes that do not exceed
specific limits, or have “no or at most minimal trade-distorting effects on production” and do “not have the
effect of providing price support to farmers™®. And, to the extent that any price incentive scheme for
recycling P could be part of a “clearly defined” governmental environmental programme, the amount paid
to farmers must be “limited to the extra costs or loss of income involved in complying with the government

Ly

programme”’®’. However, the risk of an adverse WTO ruling remains.

Cap-and-trade systems for P contained in manure (as for CO, emissions) have also been suggested

% However, this

for improving P management”’ and have even been implemented in the Netherlands’
approach can be problematic because watersheds and waterbodies are affected by local pollution. Therefore,
unlike CO, emissions, choosing where to cap and trade becomes crucial, especially in light of the need for
improved manure management and transportation logistics. Regulations should support safe, new
technologies and recovered P products in agriculture and industry, despite inter-sectoral legal difficulties.
For example, the EU’s Carbon Border Adjustment Mechanism (CBAM) attempts to address regulatory
issues regarding CO, emissions on imported goods, but questions remain about the feasibility of CBAM’s
implementation and compatibility with WTO trade rules. Alternatively, subsidy reforms, such as reducing

83

mineral fertilizer subsidies (as in China’®) or transforming agricultural subsidies (as in the EU and USA)

can encourage the use of recovered fertilizers and sustainable practices, shifting subsidies toward improved
P management, provided that challenges around subsidy design to ensure compatibility with WTO trade

rules can be overcome’”*’¥,
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Large, centralized facilities could take advantage of economies of scale to make P recycling
economically viable in areas that are highly urbanized or have dense livestock production'®>. Such facilities
optimize labour, energy and raw material use, reducing operational costs and maximizing output efficiency.
However, centralization comes with its own set of financial and operational risks, such as supply chain
interruptions and regulatory compliance issues, as well as limited ability to adapt to local market
conditions'®*. By contrast, decentralized, small-scale solutions such as on-farm urine sterilization or manure
processing can be more suitable in rural or low-income settings where nutrient demand and supply are more
locally balanced, and transport distances are shorter. This contrasting suitability is due to the high capital
investment required for constructing and maintaining large-scale facilities, which can be a notable financial

burden that affects the decision-making of implementing P recycling.

[H2] Transdisciplinarity in phosphorus recycling

Interdisciplinary frameworks and decision support tools are vital for developing comprehensive P
sustainability strategies. The EU-centred SR phosphorus stewardship framework offers a broad model that
includes realigning P inputs, reducing losses, recycling secondary resources, recovering P from waste, and
redefining food systems through demand shifts’*’. Technologies and practices must achieve both technical
and societal acceptance, addressing both community impacts and agronomic needs’®’. Similarly, the ‘net-
zero phsophorus cities’ framework emphasizes the role of urban areas in creating circular P economies by
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capturing wastewater P’*’. These frameworks could be improved with better empirical data and holistic

integration of disciplinary perspectives.

We call for a transdisciplinary approach that incorporates non-academic stakeholders to ensure full
co-production of strategies (Box 1). Collaboration must transcend individual interests and focus on shared
goals, such as reducing runoff, improving nutrient-use efficiency and promoting recycling’”.
Transdisciplinarity enables a holistic understanding of the P cycle by integrating insights from agriculture,
waste, environment, economics and policy sectors. Although transdisciplinarity faces challenges such as
securing long-term funding, time-consuming coordination and communication among diverse
stakeholders’”’*, it fosters innovative solutions for P recycling and pollution reduction, ensuring that
strategies are practical and sustainable. Transdisciplinary efforts must inform policies that address P

management complexities from local to global levels” .

Phosphorus-focused organizations, such as the Global Phosphorus Research Initiative, the European
Sustainable Phosphorus Platform, the US Sustainable Phosphorus Alliance, the Australian Sustainable
Phosphorus Futures and the Phosphorus Industry Development Organisation of Japan), have a key role in
coordinating efforts by connecting stakeholders and facilitating P-recovery strategies’””. These agencies
should serve as ‘mediators’ in stakeholder relationships. In regions where they do not exist, efforts should
focus on engaging stakeholders beyond sectoral boundaries, thus paving the way for technological scaling,
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supportive policies and regulatory frameworks’** while ensuring a transition to circular P economies™.
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Transdisciplinary research must promote broad and inclusive participation, ensuring that diverse
perspectives are represented in decision-making. This approach supports fair processes and fosters more
widely acceptable solutions. The potential of the transdisciplinary approach is exemplified by the UK

Phosphorus Transformation Strategy’®”

that involves extensive stakeholder engagement and has already
produced a credible roadmap for multi-sectoral action across the P value chain, which can be broadened to
other regions (Fig. 4). Future efforts should foster knowledge exchange to identify stakeholder interests and
challenges, create local pathways, assign responsibilities and develop realistic timelines for P recycling

targets’ ",

[H1] Summary and future perspectives

Recycling is an important step towards P circularity, but global adoption remains limited owing to
economic, technical, societal, regulatory and political barriers. The technical complexity of P recycling
technologies®, small scale of operations and high production costs make recycled fertilizers considerably
more expensive than conventional, rock-derived fertilizers, as shown in Switzerland"?’. Recycled P products
are also more chemically and physically complex, complicating attempts to understand their agricultural
efficiency, impacts on human health and long-term environmental safety!'?. Limited production, logistical
hurdles in transport and utilization, and uncertain financial returns further discourage adoption, as

133

demonstrated in Sweden'~°. Meanwhile, narrow, disciplinary stakeholder focus and diverse socioeconomic

and environmental realities across regions hinder collaboration and stifle global progress in P recycling!“®,.

Despite growing awareness of the importance of P recycling, challenges in accurately determining
global P flows and uncertainties around the agronomic efficiency, safety, and environmental impacts of
recycled P fertilizers continue to hamper progress. In addition, diverse agricultural systems and regulatory
frameworks further complicate the development of coherent global strategies. This fragmentation extends
across the whole P system: researchers, farmers, policymakers, environmental agencies and consumers each
prioritise different goals, creating misalignments that undermine coordinated action. Bridging these gaps
requires improved communication, transdisciplinary collaboration, and context-specific solutions that

balance technical, societal and environmental needs.

Transforming P management requires a holistic approach in which stakeholders prioritize the
shared objective of tackling the wicked problem of P circularity. Key goals include minimising waste
generation, reducing P runoff, enhancing nutrient-use efficiency and promoting P recycling efforts.
Breaking down barriers across sectors is essential: improved communication, transdisciplinary research
and diverse perspectives can lay the foundation for an integrated approach to P circularity. Inclusive
policies that address the needs of all stakeholders can drive collective action. Strategic research

developments and actionable priorities will support progress over the next decade (Table 2).
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Supporting these efforts requires a concerted push, through targeted incentives for sustainable P use,
coherent regulation at local, regional and international scales, investments in innovation and research and
the creation of inclusive platforms that facilitate transparent dialogue across sectors. Ultimately, the
transition to circular P systems will depend on the ability of stakeholders to break down disciplinary,
institutional and geographic silos, fostering collaboration that bridges science, policy and practice. Only
then can resilient, sustainable P management strategies be built that are capable of reshaping the current

linear supply chains into circular systems for the future.
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Table 1. Major secondary phosphorus resources and recycling techniques and challenges

Secondary P Global Current fate Potential advanced Challenges
waste stream or | amount recycling techniques for
legacy P stock generated secondary P or drawdown
strategies for legacy P
Secondary phosphorus resources
Mining and 6-12 Mt P yr! |Disposal in landfills or Pyrolysis, leaching and High complexity and cost
fertilizer industry | 1:28:69 coastal waters, or stacked | precipitation
on land
Livestock manure | 15-20 Mt P Direct application (~90%) | Flocculation, settling, screw | Large volumes produced
yr 1M pressing, belt filtration, only in a few regions
centrifugation and Geographic disconnect
anaerobic digestion (and between generation and
subsequent dissolved air use locations
flotation) Dewatering is energy-
intensive and
transportation is
logistically complex
Food waste ~1.2MtPyr! |Landfill (~60%) Composting, anaerobic Low phosphorus
(1,59 Animal feed (5-10%) digestion and incineration concentration
High heterogeneity of
materials
Wastewater ~3.7MtPyr! |Discharge into surface Biological removal and Requires infrastructure
(82.83) waters, irrigation and chemical precipitation Processes might
agricultural reuse® substantially differ
depending on waste
characteristics and
regions
Sewage sludge? ~3 Mt P yr 1 89 | Landfill, direct Incineration, pyrolysis and | Yuck factor
application® composting Low phosphorus
availability in sludge-
derived products
Chemically intensive
Sewage sludge 0.13-0.22 Mt P | Landfill, direct Chemical and Energy- and chemically
ash? yr 1199 application® thermochemical intensive
treatments High costs
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Legacy phosphorus stocks

In soil ~815 Mt P ®® | Accumulation, erosion Phosphorus-mining crops, | Low bioavailability
and runoff biostimulants, Geographical dispersion
bioengineering, plant
breeding and biofertilizers
In sediment >2600 Mt P 3 | Accumulation Direct application Dredging lakes is costly and
complex
Contamination is possible

*The phosphorus reported in sewage sludge and sludge ash originates from the total phosphorus in wastewater. These
values are not additive; instead, the phosphorus content in sludge and ash is contained within the original wastewater
phosphorus flow. ®Subject to local legislation. P, phosphorus.

Table 2. Strategic priorities for advancing phosphorus recycling and sustainability

Research priorities

Methods and techniques

sludge

Goal Key developments
needed
Minimize waste | Improve food waste
management
practices

Redouble efforts to
keep sewage clean to
enable safe reuse of

Reduce industrial
phosphorus losses
during food
processing

Investigate success factors in
household food waste
separation and reduction
Study societal, economic and
infrastructural barriers to
source-separated sanitation
Develop comprehensive
national and regional
phosphorus balances to
quantify and locate key
phosphorus losses

Behavioural analysis: surveys, interviews,
smart bin sensor data analysis

Spatial mapping: GIS mapping of waste and
sanitation access patterns

Economic evaluation: cost-effectiveness
analysis, pilot incentive schemes
Infrastructure and policy integration:
collaboration with utilities, regulatory
framework co-design

Material flow analysis: mass balance studies,
integration of corporate and national
phosphorus data

Modeling and prediction: nutrient dynamic
models (APSIM or DNDC), machine learning
for waste prediction

Increase farmer
awareness of efficient
phosphorus use
Design more efficient
and sustainable
phosphorus fertilizers
Improve phosphorus
management on-farm

nutrient caps, certification
schemes

Identify best practices and
barriers in farmer education
and extension programs
Explore digital tools and
decision-support systems for
optimising farm-level
nutrient use

Reduce Adopt more efficient | Advance precision Fertilizer efficiency improvement: precision
phosphorus fertilizer use fertilization and controlled- fertilization trials, slow-release fertilizer testing,
runoff practices release technologies meta-analysis under various conditions
Develop slow-release | Improve understanding of Sensor and technology integration: sensor-
and enhanced- phosphorus mobility under based fertilization systems, variable-rate
efficiency fertilizers different soil and climate application with drones or satellites
Exploit legacy conditions Phosphorus movement tracking: lysimeter and
phosphorus in soil Quantify the effectiveness of | field leaching studies
and sediment cover crops in legacy Nutrient dynamics modelling: simulation using
phosphorus mobilization APSIM or DNDC models
Assess the agronomic Legacy phosphorus mobilization: cover crop
potential of phosphorus experiments, microbial and enzymatic pathway
recovery from lake sediment | studies
Sediment phosphorus recovery: collection and
laboratory testing of sediment cores from
eutrophic lakes
Enhance Introduce nutrient Evaluate policy instruments Farm-scale nutrient planning: nutrient
nutrient use budgeting tools at the | that promote balanced budgeting tools, whole-farm simulation
efficiency farm scale phosphorus inputs, such as (NuGIS, FarmDESIGN)

Policy and governance evaluation: policy
assessment (nutrient caps, certification), agent-
based modelling of policy impacts

Farmer education and outreach: surveys and/or
interviews on extension strategies,
identification of best practices and peer learning
champions

Digital tool development: decision-support
systems, mobile apps, Al-powered nutrient
management platforms
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Precision agriculture integration: incorporation
of weather and soil data into recommendations,
collaboration with ag-tech startups, integrate
weather and soil data layers for precision
recommendations

Digital tool development: decision-support
systems, mobile apps, Al-powered nutrient
management platforms, co-designed farmer-
friendly interfaces

German Nutrient
Platforms and UK
Phosphorus
Transformation
Strategy)

Identify key success factors
and lessons learned from
regional initiatives

Assess mechanisms for
scaling and replicating
collaborative governance
structures

Promote Reduce land Investigate financial models | Technology development and evaluation:
phosphorus application of sewage | and policy tools to reduce techno-economic analysis of phosphorus
recycling sludge due to investment risk in recovery technologies, digital twin models for
micropollutant phosphorus recovery wastewater tracking
concerns technologies Policy and financial instruments: financial
Adopt targeted Support the harmonization model investigation, targeted subsidies, tax
phosphorus recovery | and implementation of incentives, certification schemes,
(e.g. struvite and ash- | product standards, such as harmonization of product standards
derived products) the EU Fertilising Products Farmer acceptance and agronomic testing:
Regulation farmer field trials with recovered phosphorus
Research farmer perceptions | products, surveys on farmer perceptions
and agronomic performance | Governance and multi-actor collaboration:
of recovered phosphorus stakeholder platforms, comparative governance
products analysis (ESPP, UK and Germany), systems
Develop certification thinking tools (e.g. causal loop diagrams)
schemes to increase market Monitoring and regulatory frameworks:
acceptance municipal monitoring programmes,
micropollutant threshold co-definition with
regulatory agencies
Knowledge sharing and foresight: global case
study repository, foresight workshops on
scaling collaboration platforms
Foster Model new platforms | Evaluate the effectiveness Governance analysis: evaluation of multi-
transdisciplinary | on existing ones (e.g. | and governance models of stakeholder platform models, analysis of
collaboration ESPP, Dutch and multi-stakeholder platforms governance structures, funding and

communication strategies

Scaling and replication studies: assessment of
scaling mechanisms, testing replicability via
policy labs, publishing blueprints with
adaptation guidelines

Stakeholder engagement: interviews with
platform coordinators and stakeholders,
synthesis of lessons learned for guidelines
Participatory methods: use of living
laboratories, participatory foresight, and
scenario-building for adaptive governance
design

International collaboration: organize workshops
for model exchange and best practice sharing
across regions

APSIM, Agricultural Production Systems sIMulator; DNDC, DeNitrification-DeComposition; ESPP,

European Sustainable Phosphorus Platform.

Figure legends
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Fig. 1. Phosphorus cycle flows and challenges in the European Union. Phosphorus flows in the EU in
2005, based on data from*’. The predominantly linear cycle begins with phosphate rock mining (mostly
outside the EU), followed by phosphorus use in fertilizers, human and animal consumption, and eventual
inefficient disposal as waste, leading to widespread losses to the environment as legacy phosphorus
accumulates in soil and sediment. Partial recycling of phosphorus occurs through manure and sludge
application in agriculture, but addressing environmental and health impacts remains technically and
logistically challenging. No major advanced recycling efforts had been established when these data were

collected. Collaboration-hindering stakeholder fragmentation is a major barrier to large-scale

implementation of advanced phosphorus recycling initiatives.
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Fig. 2. Global phosphorus inputs and removals in agriculture. The major inputs of phosphorus in

agriculture are through mineral fertilizer and manure application, whereas crop offtake is the main process

b, yearly P inputs through manure
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of phosphorus removal. a, Global rates of mineral phosphorus fertilizer application. b, Global rates of

manure application. ¢, Crop phosphorus removal. The maps highlight the uneven patterns of phosphorus
consumption around the world, with disproportionally high phosphorus inputs in countries such as Brazil
and China, higher manure application in Europe, China and Mongolia, and higher phosphorus uptakes in

Europe despite low mineral phosphorus inputs, which is attributed mainly to legacy phosphorus drawdown.

Based on data from ref.*3.
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617  Fig. 3. Global distribution and recovery amounts of advanced phosphorus recovery plants. a, Number
618  and distribution of operational advanced phosphorus recovery facilities in each country in 2023. b, Annual

619 total phosphorus output by the 61 advanced P-recycling plants that reported their yields in 2016%.

Knowledge
* P forms and availability

* Agronomic/environmental effects
* Accurate characterisation
* Consumer validation

Societal Regulatory
* Perceived inefficiency » Fragmented legislation
* “Yuck” factor and acceptance » Public and private standards
* Environmental/health concerns  Certification complexity
. * Market access
Barriers to
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620

621  Fig. 4. Overview of key interconnected barriers to phosphorus recycling. Interconnected technological,
622  economic and financial, regulatory, and societal barriers hinder phosphorus recycling. These barriers
623  reinforce one another, sustain reliance on mineral phosphorus imports, contribute to inefficient waste
624  management, and drive environmental phosphorus losses. Addressing them requires coordinated, cross-

625  sector action to establish a more circular and sustainable phosphorus system.
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Fig. 4. Transdisciplinarity as a tool to overcome fragmentation through integration and stakeholder
engagement. The role of a transdisciplinary approach to phosphorus management'**. Fragmentation across
research fields and sectors hinders the development of sustainable phosphorus pathways that are
technologically, environmentally, and socially feasible. Transdisciplinary approaches grounded in
stakeholder engagement can overcome this by integrating disciplines, sectors, and actors. Co-developing

solutions with stakeholders increases buy-in and the chances of successful implementation.

Box 1. Strategies to overcome transdisciplinarity barriers in phosphorus
stewardship

To strengthen transdisciplinary research, several strategies can be implemented. First, enhancing
communication and coordination is crucial. This aim can be achieved by organizing regular workshops and
meetings to connect stakeholders from different disciplines!®®, alongside developing shared digital
platforms to facilitate collaboration and information exchange'*®. Securing funding and resources is equally
important. Advocating for dedicated funding programmes tailored to transdisciplinary research'® and

6

encouraging public—private partnerships to pool resources!®® can help address this need. Integrating
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knowledge can be supported by establishing interdisciplinary training programmes, equipping researchers
with the skills to synthesize diverse expertise'®, and developing collaborative frameworks'®. Institutional

195 and institutional

support also has a key role. Policy reforms that prioritize transdisciplinary efforts
incentives that reward participation'®® can create a more supportive environment. Finally, stakeholder
engagement must be prioritized. Inclusive decision-making processes ensure that all relevant actors,
including local communities, are actively involved!®>, and capacity-building initiatives empower

stakeholders to contribute meaningfully to knowledge production'*®

. Together, these actions can create a
robust foundation for transdisciplinary collaboration, ultimately leading to more innovative and impactful

outcomes.
eToC blurb

Achieving phosphorus circularity is a key challenge to realizing sustainable phosphorus use, and recycling
is a major route to accomplish this goal. This Review explores global barriers to phosphorus recycling and
discusses approaches to overcome the technical, economic and societal challenges in attaining sustainable

phosphorus management.
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