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 A B S T R A C T

This paper evaluates the potential of digitalisation to drive structural transformations towards a sustainable 
economy. We apply an index decomposition analysis (IDA) to understand the factors influencing energy 
demand in a panel of 31 high-income countries (1971–2019). The IDA framework includes four factors 
related to the scale and sectoral composition of the economy and technical improvements, accounting for 
the quality of energy flows and actual work potential through useful exergy measures. We apply the model at 
the sector level across 16 productive industries to explore cross-sector heterogeneity in energy demand, and 
then compare results across digitial intensity categories. We find that value added growth is the primary 
driver of energy use. While digitalisation alone does not fully explain trends in energy demand, it is 
strongly associated with value added growth in high digital intensity sectors and amplifies the use of energy. 
Left ungoverned, digitalisation risks intensifying economic–ecological tensions, but if steered towards socio-
ecological priorities—while addressing the environmental costs of growth—it holds potential to deliver real 
benefits. We discuss these findings in the context of recent policy actions promoting the ‘‘twin" green and 
digital transition.
1. Introduction

Climate change is one of the greatest challenges humanity has ever 
faced, carrying high risks of disruption to all life on Earth (Rockström 
et al., 2009; Steffen et al., 2015; Richardson et al., 2023; Lee et al., 
2023). Public actions in the coming years will decide if we can meet 
the 1.5◦C target of the Paris Agreement and the Sustainable Devel-
opment Goals (SDGs; see Appendix  A for a list of all abbreviations), 
particularly SDG13: Take urgent action to combat climate change and its 
impacts (UN General Assembly, 2015). Can technological change—here, 
the widespread adoption of digital technologies—drive structural shifts 
in energy use and support the transition to more sustainable economic 
models? This is the overarching question we address in this paper.

Since the 1970s, economists have increasingly questioned the sus-
tainability of economic growth in the face of increasing environmental 
degradation and resource depletion. The ‘Georgescu-Roegen/Daly  vs. 

∗ Corresponding author.
E-mail address: jhambye@unistra.fr (J. Hambye-Verbrugghen).

1 As an anonymous referee reminded us, Couix (2019) concludes that ‘‘neither side provided a definitive proof of its own claim because both face important conceptual 
issues’’, thus leaving the discussion open.

Solow/Stiglitz’ controversy highlights two opposing perspectives on 
resource limits (Georgescu-Roegen, 1975; Daly, 1997; Solow, 1997; 
Stiglitz, 1997). On the one hand, Solow and Stiglitz recognise that 
unbounded resource productivity is a prerequsite for unbounded eco-
nomic growth, but they tend to downplay the relevance of resource 
constraints in the short to medium term. On the other hand, Georgescu-
Roegen and Daly argue that thermodynamic constraints impose funda-
mental limits on growth, even in the near term. Despite some potential 
areas of convergence, the debate has endured and evolved into a lasting 
academic divide (see, e.g., Germain, 2019; Couix, 2019; Polewsky et al., 
2024).1

Yet optimistic assumptions regarding productivity gains and the 
compatibility of Gross Domestic Product (GDP) growth with environ-
mental sustainability have shaped the (smart) green growth narrative of 
recent decades. Innovation has been placed at the cornerstone  of  the 
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dominant climate change mitigation strategies in high-income coun-
tries, reflecting an enduring belief in the role of technological change in 
decoupling economic growth from environmental impacts.2 Yet green 
growth requires absolute decoupling, and current evidence shows an 
emerging consensus that the growing observations of such decoupling 
remain insufficient to achieve mitigation targets (Savona and Ciarli, 
2019; Le Quéré et al., 2019; Haberl et al., 2020; Hubacek et al., 2021; 
Lamb et al., 2022; Vogel and Hickel, 2023). Even so, the emphasis 
on innovation and efficiency continues to shape Europe’s discourse on 
the twin transition, which promotes the integration of advanced digital 
technologies (ADTs) into environmental strategies (Perez, 2019; Lesher 
et al., 2019; Bianchini et al., 2023; Damioli et al., 2025).

The assumption that digital and green transitions can progress 
in tandem has faced growing criticism. Although empirical evidence 
remains limited, indications suggest that digitalisation may not au-
tomatically contribute to sustainability goals (Fouquet and Hippe, 
2022). Information technologies (IT) and some ADTs—e.g., Artificial 
Intelligence—are considered by many as General Purpose Technologies
(GPTs), and as such, they can unlock new opportunities and expand the 
range of possibilities (Bresnahan and Trajtenberg, 1995; Brynjolfsson 
and Yang, 1996; David and Wright, 1999; Lee and Lee, 2021). These 
include the development of new products, production processes, and 
services that offer environmental benefits (Montresor and Vezzani, 
2023; Verendel, 2023; Damioli et al., 2025). However, digitalisation 
also incurs substantial direct demand for energy and material related to 
the production, use, and disposal of digital technologies (see Williams, 
2011; Jones, 2018; Strubell et al., 2019; Freitag et al., 2021; OECD, 
2022; Williams et al., 2022), all of which are expected to keep growing 
in the future. In addition, there are potential indirect, or structural, 
effects which are complex and difficult to quantify (Schulte et al., 
2016; Yang and Shi, 2018; Zhang and Wei, 2022; Niebel et al., 2022; 
Ahmadova et al., 2022; Barteková and Börkey, 2022; Kunkel et al., 
2023).

In a seminal article, Lange et al. (2020) propose an analytical frame-
work to capture the interactions between digitalisation and energy 
consumption. They identify four channels through which digitalisation 
may affect the environment: (1) direct effects from the production, use, 
and disposal of ADTs; (2) digitally-induced gains in energy efficiency; 
(3) economic growth driven by productivity gains; and (4) shifts in 
sectoral composition. Channels (1) and (3) are expected to intensify 
energy use, while (2) and (4) should moderate demand through tech-
nical improvements and the expansion of less energy-intensive sectors. 
This framework informs our empirical analysis, which draws on data 
from a panel of 31 high-income countries over 1971–2019 to assess 
whether technological change can drive the structural changes needed 
for a green transition. We propose some extensions by combining 
concepts from ecological and exergy economics with insights from 
evolutionary economics (see Section 2), allowing us to account for 
both structural and technological changes as well as the physical pro-
cesses underlying economic production. Specifically, we conduct an 
energy decomposition analysis across 16 productive sectors, comparing 
outcomes between digital-intensive sectors—as defined by the OECD 
taxonomy (Calvino et al., 2018)—to assess the structural effects of 
digitalisation. We find that digitalisation polarises the dynamics of 
energy demand through its boosting effect on sectoral growth, which 
remains the dominant driver of energy use. Efficiency gains following 
the adoption of ADTs are far lower than expected and, despite improve-
ments in energy productivity, do not translate into reduced energy 
demand.

2 Decoupling refers to the ‘‘uncoupling’’ of resource use or environmental 
impacts from economic growth (Browne et al., 2011; María Regueiro-Ferreira 
and Alonso-Fernández, 2022). Decoupling can be relative, meaning that re-
source use or environmental impacts grow at a slower rate than GDP; or
absolute, in which GDP growth is accompanied by a reduction in resource use 
or environmental impacts (Parrique et al., 2019).
2 
This study contributes to the literature on the environmental im-
pacts of digitalisation in several ways. First, most studies focus on a 
single dimension of digitalisation—such as the number of machines 
or internet usage (Añón Higón et al., 2017; Haseeb et al., 2019; 
Chimbo, 2020; Oteng-Abayie et al., 2023), ICT capital (Bernstein and 
Madlener, 2010; Khayyat et al., 2016; Schulte et al., 2016; Niebel et al., 
2022), ICT sectors (Zhou et al., 2018, 2019; Wang et al., 2022), or 
ICT patents (Yan et al., 2018); and even when multiple dimensions 
are considered (e.g., robots, skills, and digital capital), they are often 
treated as independent variables (Matthess et al., 2023). Here, we rely 
on a taxonomy that captures multiple facets of digital transformation, 
so that sectors vary in their development and adoption of ADTs, the 
human capital needed to integrate them into production, and the 
extent to which digital tools are used in interactions with clients and 
suppliers. Second, many existing studies overlook the (strong) sectoral 
heterogeneity of technological change, focusing instead on country-
level digitalisation (Ahmadova et al., 2022; Zhang and Wei, 2022; 
Benedetti et al., 2023) or highly aggregated sectors (Oteng-Abayie 
et al., 2023). We propose a more granular, sector-level analysis that 
considers both the economic and energy impacts of digitalisation. 
Third, and perhaps most critically, many studies underestimate the 
role of energy and energy efficiency in economic production, due to 
inconsistent definitions, misconceptions, mismeasurements, and limited 
accounting of advances in ecological and exergy economics. In this 
work, we do our best to address these gaps.

The remainder of the paper is organised as follows: Section 2 lays 
out the analytical framework of our research; Section 3 presents the 
decomposition model and data; Section 4 reports the main results 
and discusses their implications; and Section 5 concludes with some 
remarks and implications for policy.

2. Background

In this study, we investigate the indirect effects of digitalisation on 
energy, focusing on the structural drivers of energy demand. Structural 
change is not limited to mere changes in economic composition—
as usually understood in energy analysis (see details in Sections 2.1
and 2.3)—but is a multi-layered process with interconnection among 
its components, that accompanies economic growth through perpetual 
changes in technologies and products (Savona and Ciarli, 2019; Ciarli 
and Savona, 2019). Economic composition is only one dimension, 
together with growth dynamics, technical improvements, institutional 
evolution, and changes in the international division of labour. Ac-
cordingly, our analytical framework and empirical model build on 
recent advances in ecological and exergy economics—which stress the 
role of physical processes in production—as well as concepts from 
evolutionary economics, which highlight the multidimensional, hetero-
geneous, and dynamic nature of technological change. In what follows, 
we elaborate on these theoretical foundations (Sections 2.1 and 2.2), 
introduce the structural drivers of energy demand considered in our 
analysis (Section 2.3.1), and present the taxonomy of sectors based on 
their level of digitalisation used in this work (Section 2.3.2).

2.1. Metrics and modelling tools for energy analysis

Energy quality is central to economic production. Yet, most studies 
on the relationship between digitalisation and energy have overlooked 
the quality of energy flows and their actual work potential, known 
as exergy (see Brockway et al., 2018 for a detailed outline).3 Exergy 

3 As a reminder: energy represents the total (heat) quantity of energy in a 
system, which is conserved (first law of thermodynamics); exergy measures the 
work potential or available energy in a system, reflecting its quality (second 
law of thermodynamics). Exergy accounts for irreversibilities and is essential 
when assessing the efficiency of the system.
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economics brings thermodynamic principles into economic analysis, 
considering energy across the three stages of the energy conversion chain
(ECC): primary, final, and useful—each of which can be measured in 
energy/exergy terms (see Aramendia et al., 2021, Fig. 1 and Section 1.2 
for details). The primary stage refers to raw energy resources extracted 
from nature; the final stage to the energy/exergy purchased by end-
users; and the useful stage to the energy/exergy actually available 
at the point of use in the production of energy services—such as 
heating, cooling, mechanical drive, lighting, electronics, and muscle 
work (see Guevara, 2014, Section 2.1.4; or Brockway et al., 2018, 
Table 8.1 for details).4 The provision of energy services accounts for 
end-use device efficiencies, so assessing energy/exergy at the useful 
stage captures improvements in second-law efficiency from advances 
in energy technologies.

Despite progress in exergy economics, many studies still conflate 
energy intensity with thermodynamics-based (second-law) efficiency, 
neglecting the work potential—or exergy—of energy flows (Guevara, 
2014; Proskuryakova and Kovalev, 2015). In other words, they rely 
on energy intensity as a (poor) proxy for energy efficiency. Energy 
intensity (I) is typically calculated by dividing energy quantities (E) 
by the monetary value of GDP, gross output, or value added (Y ), or by 
physical quantities (Q) for specific goods or services: 
𝐼 = 𝐸∕𝑌 or 𝐼 = 𝐸∕𝑄 (1)

Yet this approach has clear limitations. For instance, energy intensity 
primarily captures changes in first-law (energy) efficiency, which mea-
sures only the quantity of energy input versus output, often with signif-
icant delays (Stern, 2004; Proskuryakova and Kovalev, 2015; Saunders 
et al., 2021). Moreover, as shown in Eq.  (1), energy intensity depends 
on economic metrics that are frequently reported with insufficient de-
tail or imprecise definitions, all of which affect its accuracy (Semieniuk, 
2024).

Here, we explicitly account for the quality and work potential 
of energy flows. Two main empirical findings further underscore the 
importance of an exergy-based analysis. First, qualitative improve-
ments in energy conversion technologies (i.e., second-law efficiency) 
are fundamental in explaining total factor productivity and, conse-
quently, economic growth (Santos et al., 2018; Sakai et al., 2018; 
Santos et al., 2021). Second, energy efficiency appears much less 
substantial—in absolute terms—when the quality of energy flows is 
factored in (Aramendia et al., 2021; Brockway et al., 2024).

With this in mind, our empirical approach relies on Index Decompo-
sition Analysis (IDA), a method particularly suited to studying the evo-
lution of energy use (or emissions).5 Technical details are provided in 
Section 3.1; for now, it is sufficient to note that IDA models decompose 
an aggregate variable—i.e., energy use—into multiple components, 
offering insights into the underlying factors driving its variation. Only 
a few recent studies, however, have integrated useful energy or work 
potential into energy decomposition analyses (see, e.g., Guevara, 2014; 
Brockway et al., 2015; Silverio, 2015; Guevara et al., 2016; Hardt et al., 
2018; Aramendia et al., 2021; Ecclesia and Domingos, 2024).

Different IDA models vary in their methodological basis, but all 
share the core idea of decomposing an aggregate indicator into three 
factors: production (or scale), structure (economic composition),
and technology (Hoekstra and van den Bergh, 2003). For example, in
analysing national energy consumption, changes in consumption can 
be decomposed into: the production effect, which captures the scale of 
overall energy-using activities; the structure effect, which reflects shifts 
in the composition of these activities and thus the sectoral structure of 

4 In the remainder of this paper, exergy and work potential or work are used 
interchangeably, as well as useful exergy and useful work.

5 Since their development in the 1970s for energy balance analysis, decom-
position methods (IDA, SDA, etc.) have been continually refined, with over 
10,000 publications recorded as of 2023 (Wang and Yang, 2023).
3 
energy demand; and the technology effect, which indicates the impact 
of energy-converting technologies. IDA can be flexibly adapted to vari-
ous dimensions (e.g., temporal and spatial) and scales (e.g., economies, 
sectors, firms), and is therefore well suited to our aims.

2.2. Multidimensionality, heterogeneity, and temporality of changes

In studying energy dynamics, it is important to account for the 
multidimensionality, heterogeneity and temporality of technological 
and structural changes. To this end, we highlight three caveats drawn 
from evolutionary economics.

First, most studies on the environmental impact of digitalisation 
focus on a single dimension—for example, the number of machines, 
internet usage, or ICT capital. By contrast, we argue that digitalisation 
digitalisation should be understood and measured as a multidimen-
sional transformation, encompassing ICT as well as other key ADTs.6 
At a minimum, these include artificial intelligence (AI), big data, IT 
infrastructure, and robotics (see Bianchini et al., 2023 for a comprehen-
sive classification). In addition to technological change, shifts in skills, 
markets, and business strategies also evolve and should be included in 
the analysis (Calvino et al., 2018; Benedetti et al., 2023).

Second, there is a tendency to overlook the sectoral heterogeneity 
of technological change by focusing on country-level digitalisation (Ah-
madova et al., 2022; Benedetti et al., 2023) or using highly aggregated 
sectoral data (Oteng-Abayie et al., 2023). Yet evolutionary economics 
reminds us that such heterogeneity matters (see, e.g., Dosi, 2023, 
Ch.3 and 9). A recent review by Zhang and Wei (2022) confirms that 
sector-level studies on the economic and environmental impacts of ICT 
remain scarce. Moreover, a substantial body of literature shows that 
production technologies vary significantly across sector, with distinct 
patterns of diffusion and use (Fierro et al., 2022; McElheran et al., 
2024); and recent attempts to classify sectors by levels of digitalisation 
confirms this strong heterogeneity (Calvino et al., 2018; Matthess et al., 
2023). To account for all this, as discussed further below, we conduct 
a sector-level analysis that captures multiple dimensions of digital 
transformation.

Finally, most studies fail to capture the path-dependent, long-term 
patterns of adoption and use of advanced digital technologies, or to 
consider potential structural breaks in their environmental impacts. The 
limited temporal scope of many analyses—understandable given the 
challenges of accessing reliable long-term data—reflects a general ten-
dency to treat technical change as exogenous. This limitation has also 
been cited as a reason why the productivity effects of information tech-
nology were initially hard to detect; timing, therefore, matters (David 
and Wright, 1999; Brynjolfsson and Hitt, 2000). Cumulative effects 
over time are particularly important: for instance, studies show that 
computer-enabled organisational changes have much larger impacts 
in the long run (Brynjolfsson and Hitt, 2000, p. 33). For this reason, 
as discussed in Section 3.2.1, we apply decomposition analysis to a 
long time series spanning almost 50 years (1971–2019) to capture the 
cumulative effects of technological and structural change.

2.3. The analytical framework

We combine the elements discussed above into a single analytical 
framework. Conceptually, we assume that digitalisation affects various 
energy-related structural components across different sectors, which in 
turn shape and define the dynamics of energy demand. Empirically, 
our approach is structured in reverse. First, we apply a decomposition 
model (briefly introduced in Section 2.1) that disaggregates energy 

6 In this analysis, we do not draw a strict distinction between ADTs and 
ICT. Instead, we consider ICT the historical foundation for the emergence of 
ADTs and, therefore, a subset of them (Lee and Lee, 2021).
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Table 1
List of driving factors for the decomposition model.
 Structural component Decomposition factor Formula 
   
 Composition Scale effect: 𝑆 𝑉 𝐴  
 
Technical

Exergy-to-energy conversion effect: 𝐼𝐶 𝑋𝑓 ∕𝐸𝑓  
 Thermodynamic efficiency effect: 𝐼𝐸 𝑋𝑢∕𝑋𝑓  
 Energy productivity effect: 𝐼𝑃 𝑉 𝐴∕𝑋𝑢  
Note: 𝑉 𝐴 is value added, 𝑋𝑓  is final exergy, 𝐸𝑓  is final energy, 𝑋𝑢 is useful exergy.

demand into structural drivers—technical details in Section 3.1. Sec-
ond, we examine the heterogeneous effects of digitalisation across 
sectors based on the OECD methodology (Calvino et al., 2018), com-
paring results across levels of digital intensity—technical details in 
Section 2.3.2.

Our preference for sector-level decomposition over country-level 
analysis is motivated by three main reasons. First, as discussed in 
previous sections, sectors exhibit distinct patterns of digital penetration 
that cannot be captured at the country level. While firm-level studies 
may be best suited to identify these changes, data limitations and 
the inability to aggregate results for country-wide effects make sector-
level models better suited to our research question. Second, estimating 
decomposition models directly at the sector level allows us to avoid 
the aggregation issues common in country-level analysis (Weber, 2009; 
Mulder and De Groot, 2012; Guevara, 2014). Indeed, as we directly 
estimate separate models for each sector, we sidestep issues that may 
arise from different aggregation strategies. Third, sector-level decom-
position often shows that the scale of production (or activity effect) 
plays a significant role in energy use (Hajko, 2012; Brockway et al., 
2015; Heun and Brockway, 2019). Many studies, however, focus only 
on relative changes in sectoral composition—a narrow view of struc-
tural change (see Henriques and Kander, 2010; Mulder and De Groot, 
2012). When these changes are aggregated at the country level, some 
important sector-specific patterns may be hidden, potentially underes-
timating structural shifts and overestimating the role play by the scale 
of production.7

2.3.1. Structural drivers of energy demand
We distinguish two components of structural change, which ma-

terialise through four driving factors. First, the composition component
captures sectoral growth dynamics as drivers of economic composition, 
and is measured through the scale effect. Second, the technical com-
ponent is divided into three factors: the exergy-to-energy conversion 
ratio (conversion effect), second-law efficiency (efficiency effect), and a 
hybrid physical-monetary measure of energy productivity (productivity
effect).8 Table  1 lists the driving factors used to analyse structural 
changes in energy demand.

Some concrete examples of changes in the decomposition factors 
from Table  1 include the following. The scale effect may be influenced 
by changes in total sales volume, market share, or markups. The
conversion effect can result from shifts between final energy carriers 
(e.g., from heat to electricity) with different exergy-to-energy coeffi-
cients (for more details, see Table 1 in Brockway et al., 2024). The
efficiency effect reflects changes in production processes, such as the 
adoption of more or less efficient machines to convert final into useful 

7 Forin et al. (2018) is one example of decomposition analysis adopting a 
sectoral perspective, but sectors are aggregated across countries to capture 
potential effects of industry offshoring. Although this is an interesting and 
original perspective, it differs from the aim of our study. Mulder and De Groot 
(2012) also consider cross-sector heterogeneity and confirm diverging trends 
across sectors, particularly between manufacturing and services.

8 While energy intensity is computed as 𝐼 = 𝐸∕𝑌 , energy productivity (its 
inverse) is defined as 𝑃 = 𝐼−1 = 𝑌 ∕𝐸.
4 
energy, or shifts across categories and subcategories of useful exergy 
(e.g., from medium-temperature heat, MTH 200◦C, to MTH 300◦C). 
Finally, the productivity effect may stem from changes in the quality of 
products without altering the requirements for useful exergy, or from 
shifts in the product structure of an industry towards less (or more) 
exergy-intensive goods.

Our analysis is primarily descriptive rather than causal, and we do 
not test specific hypotheses with respect to each factor. However, we 
outline some expected patterns. First, we expect value added growth to 
be a strong driver of energy demand, as observed at the economy-wide 
level, with digitalisation potentially amplifying this effect (Hajko, 2012; 
Zhang and Wei, 2022). Second, we expect digitally intensive sectors to 
display stronger technical improvements, particularly in terms of effi-
ciency, as suggested by the smart green growth narrative (Perez, 2019; 
Lesher et al., 2019). This expectation is also the necessary condition 
for digitalisation to contribute to absolute decoupling, where technical 
gains must outweigh value added growth. Third, the overall impact on 
energy demand will depend on the relative magnitude of composition 
and technical effects, which we do expect to vary across sectors de-
pending on their level of digital intensity (Mulder and De Groot, 2012). 
Historically, however, at the economy-wide level, growth has typically 
exceeded efficiency improvements, leading us to anticipate an absolute 
increase in energy demand in high-growth sectors (Brockway et al., 
2021).

2.3.2. Measuring sectoral digitalisation
To account for the heterogeneous diffusion and use of digital tech-

nologies, skills, and business models, we adopt the multidimensional 
framework proposed by the OECD (Calvino et al., 2018). This frame-
work identifies three components that affect the degree of sectoral 
digitalisation: a technological component, a human capital component, 
and a market component.9

The technological component consists of five sub-indicators: (1) in-
tensity of investment in ICT tangibles and (2) intangibles, (3) intensity 
of intermediate expenditure in ICT goods and (4) services, and (5) 
robots density. Investment intensities are computed with total capital 
investment as the denominator, and investment in computer hardware 
and telecommunications equipment (for tangibles) or in software and 
databases (for intangibles) as numerators. Intermediate expenditure 
intensities use input–output data to identify purchases made to ICT 
goods and ICT services sectors, as a share of total output. Expenditure 
of ICT goods are characterised as purchases to the sector Manufacture 
of computer, electronic and optical products (ISIC division 26), which 
mostly concerns microchips and intermediate electronic components. 
Expenditure of ICT services are characterised as purchases to the sector
IT and other information services (ISIC divisions 62–63), which includes 
hardware & software consultancy, computing equipment maintenance, 
and data processing. Finally, robots density is computed by dividing 
the stock of industrial robots in a sector by the number of employees.

The human capital component focuses on skills and is measured as 
the intensity of ICT specialists, computed as the percentage of ICT 
specialists over total employment. Finally, the market component is 
measured as the share of turnover from online sales. Together with 
the five technological indicators, these form seven sub-components, 
which are aggregated into an indicator of sectoral digital intensity. For 
each sub-component, sectors are ranked into quartiles—low, medium-
low, medium-high, and high digital intensity. The global indicator is 
the average quartile position across all sub-components. This implies 
a sector may be classified in the low digital intensity category while 
being ranked at the top of one sub-component. For example, low digital 
intensive sector Food products, beverages, and tobacco (ISIC divisions 

9 Data sources and specific metrics used to compute each indicator can 
be found in the Methodological Appendix of Calvino et al. (2018); here we 
provide only an overview.
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10–12) scores poorly on ICT investments, expenditure, and specialists, 
but relatively high on online sales. Opposing examples for high digital 
intensity sectors are Transport equipment (ISIC divisions 29–30) with 
its high stock of robots per employee, its online sales, and its ICT 
specialists; or Scientific research and development (ISIC division 72) with 
its hardware and communications infrastructures, and its expenditures 
in ICT goods and services, but no online sales.

3. Methods and data

3.1. The sector-level decomposition model

Using the factors introduced in Section 2.3.1 (see Table  1), our 
decomposition model is based on Eq.  (2). Here, 𝐸𝑓  denotes final 
energy, 𝑉 𝐴 value added, 𝑋𝑓  final exergy, and 𝑋𝑢 useful exergy. 𝑆
represents the scale effect, 𝐼𝐶 the conversion effect, 𝐼𝐸 the efficiency
effect, and 𝐼𝑃  the productivity effect. Subscripts 𝑖 and 𝑗 refers to the 𝑖th 
country and 𝑗th sector. 

𝐸𝑓
𝑖𝑗 = 𝑉 𝐴𝑖𝑗 ×
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𝑉 𝐴𝑖𝑗
= 𝑆𝑖𝑗 × 𝐼𝐶𝑖𝑗 × 𝐼𝐸𝑖𝑗 × 𝐼𝑃𝑖𝑗 (2)

The choice between multiplicative and additive models does not 
affect decomposition results, as one form can be converted into the 
other (Ang, 2015, Section 3.2, p. 236–237). We choose the multiplica-
tive version because results are normalised around 1, which allows 
to smoothly visualises the dynamics of change and to make direct 
cross-sector comparisons regardless of differences in aggregation levels.

Following Ecclesia and Domingos (2024), we take the inverse values 
of the formulas in Table  1 for the conversion, efficiency, and productivity
effects to fit the accounting equality of Eq.  (2). Using inverse values for 
these three technical components reflects the fact that improvements 
in these metrics translate into decreasing factors, thus contributing to 
reduced energy demand. Indeed, improvements in the exergy-to-energy
conversion ratio, the final-to-useful exergy efficiency, and the useful 
work productivity will lead to reductions in the conversion, efficiency, 
and productivity effects. Taking the rates of change in Eq.  (2), we get 
the following multiplicative relationship. 

𝐷energy =
𝐸𝑇

𝐸0
= 𝐷S ×𝐷IC ×𝐷IE ×𝐷IP (3)

Our model is based on the multiplicative LMDI model with type-
I weights (details about the mathematical properties for the LMDI-I 
model, and its difference with respect to LMDI-II, can be found in Ang, 
2015). The general country-level estimation procedure for any driving 
factor 𝐷𝑉  in country 𝑖 is reproduced in Eq.  (4). Here, 𝐿(𝑥, 𝑦) = (𝑥 −
𝑦)∕𝑙𝑜𝑔(𝑥∕𝑦) is the logarithmic mean function, 𝑇  refers to the subsequent 
period, and 0 to the previous period. At the country level, results are 
first weighted by 𝜔𝑖𝑗 , the ratio of the logarithmic mean function applied 
to the 𝑗th sector and to the entire country, and then summed across all 
𝑗 sectors in country 𝑖. 
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In our situation, the decomposition model is estimated separately 
for each country-sector (𝑖, 𝑗) pair, so that aggregation across sec-
tors is unnecessary. Eq. (4) is thus transformed to focus directly on 
the changes at the subgroup (sector) level. Our estimation proce-
dure for each factor 𝑉 = {scale, conversion, efficiency, and produc-
tivity} is reported in Eq.  (5). The weight parameter 𝜔𝑖𝑗 cancels out 
from Eq.  (4) to Eq.  (5) due to our focus on country-sector pairs, but 
the model remains structured to reflect the influence of the standard 
5 
LMDI procedure.10
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We obtain chained times series of 𝐷𝑉𝑖𝑗  for each (𝑖, 𝑗) pair by estimat-
ing Equation (5).11 Decomposition results in their multiplicative version 
are strictly positive and asymmetric: values in the interval [0; 1] imply
downward effects for 𝐷𝑉𝑖𝑗 , while values in the interval [1; +∞[ imply
upward effects (see Ang, 2015, Model 2 and 4, Table 3, p. 237 for an 
numerical example; and Heun and Brockway, 2019, Fig. 7, p.9 for a 
graphical illustration of index decomposition results).

Chained series are computed dynamically, comparing each year 𝑡
directly with the preceding year 𝑡 − 1, rather than with a fixed base 
year. Cumulative results are then aggregated either over the entire 
period—by taking the cumulative product of the whole time series—
or by decade, by taking the cumulative product of sub-series grouped 
by decade. This approach allows us to account for the long-term 
dynamics of energy demand by observing the contributions of each 
factor aggregated over time. Given the size of our sample (433 (𝑖, 𝑗) 
pairs) and our focus on sectoral dynamics, analysing individual series 
is impractical. We therefore examine the distribution of the results and 
compare differences across groups: sectors, digital intensity categories, 
and periods.

Our main interest lies in the differences across group-specific dis-
tributions of decomposition results. To assess whether the differences 
are statistically significant, we use three sets of non-parametric tests, 
focusing only on the digital intensity categories, as these are central to 
our analysis.12 Non-parametric tests are appropriate given the presence 
of outliers, strong dispersion, and the absence of normality assump-
tions. First, we apply the Kruskal–Wallis test, a rank-based test that 
assesses whether multiple samples originate from the same distribution. 
A significant result indicates that at least one category differs from 
another. To further explore these differences, we conduct pairwise com-
parisons using two additional tests: (i) the Wilcoxon–Mann–Whitney 
test, which compares ranks between two independent samples, and (ii) 
the Dunn test, a pairwise extension of the Kruskal–Wallis test using the 
same rankings. Since multiple comparisons increase the risk of Type I 
error, we apply Bonferroni and Holm corrections to control the family-
wise error rate. The Bonferroni correction is more conservative, but 
increases the risk of Type II error, while Holm provides a less restrictive 
alternative.

3.2. Data

3.2.1. Energy and economic data
Energy and exergy data at the final and useful stage are derived 

from the International Energy Agency IEA 2023 Extended World Energy 
Balances (International Energy Agency, 2023) and accessed through 
the country-level primary-final-useful (CL-PFU) energy and exergy 
database (Heun et al., 2024; Brockway et al., 2024; Marshall et al., 
2024). These data are available across 158 IEA countries, between 
periods from 1960–2020 (OECD countries) or 1971–2020 (non-OECD), 
and are available for sectors based on IEA classes (see United Nations 

10 Although our adaptation omits the Log Mean component to which it owes 
its name, the simplification to mere rates of change does not compromise the 
effectiveness of our approach or the validity of our conclusions.
11 The results presented in Section 4 exclude outliers where the annual rate 
of change exceeds a tenfold increase. This methodological choice only concerns 
sectors that are newly included in the database and observed for the first time 
in a given year. We conjecture that these extreme yearly changes are due to 
statistical errors in the early years of sectoral accounting. By filtering any case 
where 𝐷𝑉𝑖𝑗

 exceeds a tenfold increase, we only remove 17 observations—less 
than 0.01% of the total sample.
12 We thank an anonymous referee for suggesting this improvement.
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Table 2
List of sectors classified by ISIC division and level of digital intensity.
 Sector Full name ISIC div. rev.4 DI-4  
 AGRI Agriculture, forestry, fishing 01–03 L-DI  
 MINING Mining, quarrying 05–09 L-DI  
 FOOD Food products, beverages, tobacco 10–12 L-DI  
 TEXTIL Textiles, wearing apparel, leather 13–15 ML-DI  
 WOOD Wood, wood products 16 MH-DI  
 PAP Paper, pulp, printing 17–18 MH-DI  
 CHEMPHAR Chemicals, chemical products, pharmaceutical products 20–21 ML-DI  
 MINERAL Non-metallic minerals 23 ML-DI  
 METAL Metals, metal products 24 ML-DI  
 MACHIN* Machinery, electrical and electronic products 25–28 MH-DIa 
 TRANSPEQ Transport equipment 29–30 H-DI  
 OTIND* Other industries 22, 31–32 MH-DIb 
 COKE Coke & refined petroleum products 19 ML-DI  
 ELECGAS Electricity, gas, steam, air conditioning 35 L-DI  
 CONSTR Construction 41–43 L-DI  
 COMSER* Commercial & public services 33, 36–39, 45–96 H-DIc  
Note: L-DI is low digital intensity, ML-DI is medium-low digital intensity, MH-DI is medium-high digital intensity, H-DI is high digital intensity.
* Sectors among the 16 selected for which a perfect matching with the DI classification was not possible (see details in footnotes a, b, and 
c below). See Table 3.2 (p.18) in Horvát and Webb (2020) for the original classification.
a MACHIN: 25% ML-DI (ISIC division 25) and 75% MH-DI (ISIC divisions 26-28).
b OTIND: 33% ML-DI (ISIC division 22) and 66% MH-DI (ISIC divisions 31 and 32).
c COMSER: 19% L-DI (ISIC divisions 36–39, 49–53, 55–56, 68), 8.5% ML-DI (ISIC divisions 85-88), 25.5% MH-DI (ISIC divisions 33, 45–47, 
58–60, 84, 90–93) and 46.8% H-DI (ISIC divisions 61–66, 69–82, 94–96).
Statistical Division, 2018, for information about the IEA classification of 
sectors). Sector-level value added data comes from the STructural ANal-
ysis (STAN) OECD database, spanning 38 countries over the 1971–2019 
period. To merge the energy and economic datasets, we must match 
sectors across the data sources: we aggregate IEA sectors to match ISIC 
(Rev.4) 2-digit divisions of sectors. After matching the data sources, 
we are able to build a large panel of 31 high-income countries (see 
Appendix  B), mostly OECD or EU countries, across 16 sectors that rep-
resent the entire productive economy from 1971 to 2019 (see Appendix 
C for details about the data collection and aggregation mapping).

Final energy is our variable of interest and is directly available in 
the CL-PFU database (as well as final exergy, useful energy and useful 
exergy), and is measured in terajoules (TJ). The data used in the analy-
sis accounts for gross energy, which includes energy producing sectors’ 
own energy use (i.e., energy industry own energy use) but excludes non-
energy uses and muscle work (see Appendix  C for details). The scale
effect is measured with value added data from the STAN database, 
concerning gross value added and expressed in millions of national 
currency, with chained prices (previous year base). The conversion,
efficiency, and productivity effects are computed using final energy and 
value added, to which final exergy and useful exergy data from the CL-
PFU database—also measured in TJ—are added. The use of different 
currencies for monetary and hybrid measures poses no issue for our 
analysis; although this prevents direct comparison of value added and 
energy productivity levels across countries with different currencies, 
decomposition analysis relies on rates of change in factors, and thus 
allows us to compare results across all countries regardless of their 
currency.13

3.2.2. Sectoral digitalisation
The full time series for the OECD digital-intensive sector classifi-

cation (Calvino et al., 2018) is not publicly available; however, we 
rely on the most recent version reported in Horvát and Webb (2020). 
Consistent with the rest of the STAN database, this classification is 

13 Note that it would be appropriate to use the expression exergy productivity,
useful exergy productivity, or useful work productivity instead of energy produc-
tivity. For simplicity of writing and to refer to the common concept of energy 
productivity, we use the term energy as a generic term encompassing all stages 
of the energy conversion chain (ECC), and the qualitative measure of exergy. 
Thus in the remainder of the paper, the term energy productivity may be used, 
but will always refer to our metric of productivity based on useful work.
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based on the ISIC Rev.4 industries and thus requires to be matched with 
IEA sectors (United Nations, 2008). Three productive sectors selected 
for this work cannot be exactly matched, namely: Other industries;
Machinery, electrical & electronic equipment ; and Commercial and public 
services. Take Other industries as an example: it is composed of Man-
ufacture of rubber and plastic products (ISIC division 22, medium-low 
digital intensity), Manufacture of furniture (ISIC division 31, medium-
high), and Other manufacturing (ISIC division 32, medium-high). Since 
no perfect matching strategy exists to assign a single digital intensity 
(DI) category to such aggregated sectors, each ISIC division within our 
16 industries is given equal weight. The sector is then assigned to the 
DI category that predominates among its constituent divisions. In the 
example above, two-thirds of the ISIC divisions fall into medium-high 
digital intensity, so Other industries is classified accordingly.

Table  2 lists the 16 sectors included in our analysis along with 
their digital intensity (DI) classifications. Our main analysis relies on 
four digital intensity categories (DI-4); however, for robustness, we also 
conduct a comparative analysis that consolidates digital intensity into 
just two categories: low and high (see Supplementary Material).

4. Results

This section is organised as follows. We first present general results 
for the entire sample and across sectors; next, we compare the results 
across categories of digital intensity. Table  3 provides the main set of 
results, with summary statistics calculated as unweighted mean and 
median values for each sector and digital intensity category (detailed 
results with summary statistics calculated for each decade are available 
in SM Tables S.1.1–S.1.4).14 Figs.  1 and 2 display the cumulative results 
for a selection of sectors and the distribution of cumulative results 
across digital intensity categories, respectively. Fig.  3 summarises the 
relative contributions of technical and composition components across 
all sectors and DI-4 categories. Additional results are reported in the 

14 The unweighted statistics should not be interpreted as aggregate effects. 
Instead, they represent the effects for the average country-sector pair, or the 
average country when results are grouped by sector, digital intensity category, 
or time. The production of average statistics also prevents aggregation of the 
values in the tables directly from disaggregated values (e.g., multiplying all 
effects to find the effect for energy), which is a common practice in LMDI 
decomposition analysis.
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Table 3
Decomposition results by sector and digital intensity category, 1971–2019.
Sector Energy Scale Efficiency Productivity

Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Tot. 3.82 1.07 30.73 4.24 0.935 0.880 0.560 0.280

L–DI 3.62 1.30 24.20 5.24 0.900 0.872 0.741 0.280

AGRI 2.79 1.36 44.96 3.86 0.859 0.876 0.786 0.327
MINING 5.55 1.40 39.08 4.18 0.892 0.871 0.791 0.221
FOOD 2.83 1.04 12.98 3.56 1.01 1.02 0.437 0.251
ELECGAS 1.48 1.22 8.09 4.22 0.770 0.793 0.447 0.306
CONSTR 5.36 1.85 14.97 9.04 0.965 0.962 1.22 0.165

ML–DI 1.27 0.798 7.61 2.67 1.02 0.920 0.418 0.301

TEXTIL 1.20 0.285 5.37 1.39 0.959 0.936 0.305 0.249
CHEMPHAR 1.08 1.06 12.78 4.71 0.854 0.841 0.295 0.248
MINERAL 1.12 0.885 4.31 2.71 0.960 0.906 0.504 0.432
METAL 1.20 0.822 4.93 1.94 1.31 0.906 0.605 0.466
COKE 1.86 1.16 11.53 6.84 1.00 0.996 0.376 0.202

MH–DI 6.62 1.04 57.06 3.46 0.888 0.865 0.626 0.376

WOOD 2.02 1.70 3.61 2.34 0.874 0.888 1.05 0.541
PAP 1.20 1.02 2.91 1.61 0.831 0.825 0.829 0.842
MACHIN∗ 21.83 1.25 209.1 7.00 0.915 0.890 0.344 0.151
OTIND 0.844 0.513 7.11 4.42 0.939 0.865 0.253 0.156

H–DI 4.95 1.40 51.50 8.23 0.923 0.881 0.284 0.180

TRANSPEQ 6.86 1.15 51.29 7.78 0.821 0.838 0.298 0.187
COMSER 3.27 1.59 51.68 9.26 1.01 1.00 0.272 0.173

Note: Summary statistics for the full sample (Tot.) correspond to the unweighted cross-country and cross-sector 
mean (Avg.) and median (Med.) values of the cumulative decomposition results, where cumulative series are 
aggregated over the total period. Results by digital intensity category (L-, ML-, MH-, H-DI) correspond to the 
unweighted cross-country average and median values of the (total) cumulative decomposition results. For each 
DI-4 category, the summary statistics are derived for the (total) cumulative decomposition results across all the 
sectors composing the DI-4 category. Results by sector correspond to the unweighted cross-country average and 
median values of the (total) cumulative decomposition results. For cross-sector comparison, the two minimum  
and maximum  values for each factor have been highlighted.
* The value of MACHIN for energy and scale is surprisingly high, driven by the substantial value added growth 
of this sector in South Korea, with a 5,347-fold increase between 1971 and 2018. When South Korea is removed 
from the sample, the mean total cumulative change in energy demand drops to 1.2, compared to 21.83. While 
all countries are kept in our results to avoid arbitrary outlier exclusions, it is worth noting that MACHIN is 
no longer among the sectors with the strongest growth in energy demand once South Korea is excluded.
SM Sections S.1–S.3 for readability, including those for the Conver-
sion effect (SM Section S.3), which shows no significant effects worth 
discussing.

4.1. Aggregate and sectoral energy demand

4.1.1. Economic dynamics matter more than physical processes
Across the full sample, we observe a significant mean increase in 

energy demand, with a 3.82-fold rise from 1971 to 2019, while the 
median increase is more modest at 1.07-fold (Table  3). The strongest 
driver of energy demand over this period is growth in value added, 
reflected in the scale effect (30.73; 4.24).15 We find evidence of relative 
decoupling between energy use and sectoral growth, and of absolute 
decoupling in a few cases: while the growth rate of value added 
generally exceeds that of energy demand, we also observe periods with 
reductions in energy demand. Nevertheless, sectoral growth mostly 
offsets technical gains, despite progress towards more efficient (0.935; 
0.880) and more productive (0.560; 0.280) processes. The magnitude 
of value added growth is 16.1 (mean) or 1.04 (median) times stronger 
than the combined downward effects of efficiency and productivity.

The pivotal role of economic dynamics in driving energy demand 
remains observed across sectors and across time: differences in value 
added growth largely explain why some sectors experience strong 
increases in energy use while others show low growth or even declines 
(Fig.  1). Indeed, sectors with high growth in energy use are those 

15 Values in parentheses correspond to (mean; median). This notation applies 
throughout the remainder of this section.
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with the strongest scale effects (e.g., TRANSPEQ, MINING, CONSTR, 
or COMSER). On the contrary, sectors with low or negative growth in 
energy demand are those with scale effects that are below the sample 
mean or median, or that decrease over time (e.g., TEXTIL, OTIND,
CHEMPHAR, or PAP). This suggests that absolute or strong relative 
decoupling is facilitated when growth is low, which is consistent with 
other empirical evidence (Le Quéré et al., 2019). Furthermore, we find 
that strong productivity gains help moderate growth in energy demand 
(e.g., TRANSPEQ), while productivity declines exacerbate the impact of 
sectoral growth (e.g., CONSTR). Overall, productivity plays a stronger 
role than efficiency in offsetting energy demand growth associated 
with low economic growth. Taken together, these results confirm that 
economic factors (scale and productivity effects) are stronger drivers of 
energy demand compared to factors associated with physical processes 
(conversion and efficiency effects).

However, this should not be taken to mean that efficiency gains 
play no role in moderating energy demand. While efficiency gains 
display lower variation, the absence of improvements for this factors 
may results in strong growth in energy demand. Indeed, when scale 
effects are strong and efficiency gains are absent, energy demand 
rises sharply, even when productivity gains are significant. Without 
substantial improvements in efficiency, even the strongest productivity 
gains are insufficient to reduce energy demand (e.g., COMSER). In 
other cases, efficiency gains also compensate for weak productivity 
improvements, which on their own are not enough to significantly 
reduce the growth in energy demand, even under low value added 
growth (e.g., WOOD or PAP). While we have shown that economic 
dynamics, and particularly economic growth, may be more conductive 
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Fig. 1. Bar charts of decomposition results for selected sectors.
Note: The bar chart displays the cumulative decomposition results aggregated over the full period for the Top 3 and Worst 3 sectors. Top 3 sectors—TEXTIL, OTIND, and
CHEMPHAR—display either reductions or low growth in energy demand, while Worst 3 sectors—CONSTR, MINING, and TRANSPEQ—display the strongest increases. The bars in 
the chart represent the mean value, while the blue square represents the median value. The horizontal red line sets the threshold between upward and downward effects. From 
left to right, the factors appear in the following order: Energy, Scale, Efficiency, and Productivity. The scale of the 𝑦-axis is the same for Efficiency and Productivity.
to energy demand, it remains that improving the efficiency of physical 
processes is fundamental to achieving the targeted reductions.

4.1.2. Heterogeneity across sectors is strong
The above results are confirmed in most sectors, but do however 

conceal some differences, confirming the importance of cross-sector 
heterogeneity for the dynamics of energy demand (Table  3, see also 
SM Figures S.1 and S.2). Only 4 sectors display either mean or median 
values below 1, indicating a reduction in energy demand in 2019 
relative to 1971: OTIND, TEXTIL, MINERAL, and METAL. In contrast, 
all other 12 sectors display moderate to high increases in energy use, 
including a 22-fold increase in MACHIN, and 7 other sectors with 2-
fold to 7-fold increases.16 Median values are much lower and indicate, 
as might be expected, that outliers are driving the mean values upward. 
Despite observable improvements in efficiency and productivity across 
most sectors, these gains are insufficient to counter the upward pressure 
of value added growth, apart from the the few exceptions cited above.

Heterogeneity across sectors is stronger for economic dynamics 
(scale and productivity effects) than for thermodynamics-based measures 
of efficiency (conversion and efficiency effects). Mean scale and produc-
tivity values respectively range from 2.91 (PAP) to 51.68 (COMSER, 
if we disregard the extreme mean value of MACHIN) and from 0.253 
(OTIND) to 1.22 (CONSTR). Their median values range from 1.37 
(TEXTIL) to 9.26 (COMSER) and from 0.150 (MACHIN) to 0.842 (PAP). 
In contrast, mean efficiency effects range from 0.770 (ELECGAS) to 
1.31 (METAL), and its median values from 0.793 (ELECGAS) to 1.02 
(FOOD). CONSTR, MACHIN, TRANSPEQ, and COMSER are the sectors 
with the strongest value added growth, while TEXTIL, METAL, WOOD, 

16 MACHIN has a surprisingly strong mean scale effect, 209.1, which leads 
to the strongest growth in energy demand. This is due to the strong economic 
growth observed in this sector in South Korea over the entire period (5347-
fold). If South Korea is excluded from the analysis, the mean growth in 
energy for MACHIN falls to 1.20, but its mean scale effect remains among 
the strongest (11.48).
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and PAP have the lowest. When turning to technical components, 
there is no clear sector outperforming for both factors: ELECGAS, PAP, 
and TRANSPEQ have the strongest efficiency improvements; OTIND,
MACHIN, and COMSER perform best in terms of productivity. Con-
versely, FOOD, METAL, COKE, and COMSER perform poorly in terms of 
efficiency with no improvements or deteriorations; CONSTR and WOOD
underperform in productivity.

4.1.3. The magnitude of effects reduces over time
Over time, we first notice that the periods of economic expansion 

in the 1970s–1980s and early 2000s are characterised by the strongest 
increases in energy demand (SM Tables S.1.1–S.1.4). In these phases, 
the scale effect dominates, confirming the close connection between 
the size of economic activities and energy use. Even during economic 
slowdowns and periods of recession, this relationship holds, as energy 
demand tends to stagnate or fall.

Although energy demand has increased in most decades, its rate 
of increase has been declining over time, occasionally resulting in 
absolute decreases. The weakening of the scale effect is visible in recent 
decades for all sectors but four: AGRI, METAL, COKE and CONSTR. 
A similar decline is found for productivity effects, which converge 
steadily towards 1, with a few exceptions. In sectors where economic 
growth has remained strong (AGRI, METAL), productivity has also been 
stable or improving. The efficiency effect displays more variation across 
time without a clear trend.

This overall weakening of most effects over time—moving closer 
to 1—may explain why energy demand reductions have become more 
common across sectors in recent decades. It also highlights how slower 
economic growth can make it easier to achieve such reductions through 
productivity gains. Even as productivity effects converge towards 1, 
we still find more reductions in energy demand in the last decades 
of the sample. If, however, productivity deteriorates in these later 
periods (i.e., 𝐷IP >1), energy demand may rise sharply despite weaker 
sectoral growth (e.g., CONSTR or MACHIN). Once again, changes in 
economic factors—value added growth and energy productivity—are 
more strongly associated to variations in energy demand that those 
related to physical processes.
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Fig. 2. Cumulative decomposition results by digital intensity category.
Note: The decomposition results in this Figure are cumulative and have been aggregated over the total period (the same box plots with cumulative results aggregated by decade 
are available in SM Figure S.3). The yellow, green, blue and purple correspond respectively to H-DI, MH-DI, ML-DI and L-DI sectors. Central boxplot lines corresponds to the 
median values, and the blue diamonds to the mean values. The vertical red dashed line sets the threshold between upward and downward effects. From top to bottom, the factors 
appear in the following order: Energy, Scale, Efficiency, and Productivity. The box in the upper-right corner contains p-values computed from the Kruskal–Wallis non-parametric 
test, described in Section 3.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
4.2. Energy demand by digital intensity categories

4.2.1. Structural drivers of energy demand vary with levels of digitalisation
The dynamics of energy demand differ across digital intensity cate-

gories (Fig.  2; see also Table S.2 and Figure S.3 in the Supplementary 
Material). Mean and median values are consistently above 1 for L-
DI and H-DI, while ML-DI and MH-DI show overall lower effects. For 
instance, the mean increase in energy demand for ML-DI from 1971 
to 2019 is only 27%, compared to increases ranging from 3.62-fold 
(262%) to 6.62-fold (562%) in the other categories. Over time, the 
growth rates of energy demand generally decline across all categories, 
though with distinct patterns. Energy demand in ML-DI sectors slows 
and begins to fall in the 1990s, whereas similar declines in the other 
categories appear only from the 2000s or 2010s.

Interestingly, the structure of energy demand differs across cat-
egories, particularly for the economic factors (scale and productivity
effects). The distribution of value added growth across digital cate-
gories mirrors the overall patterns observed for energy demand: L-DI 
and, especially, H-DI record higher values than ML-DI and MH-DI. 
Differences in productivity effects across categories are less clear-cut, 
though H-DI consistently shows lower values than other groups (SM 
Table S.2). Finally, variation in the efficiency effect is minor, with 
weak cross-category differences. The Kruskal–Wallis test confirms these 
findings: statistically significant differences are observed across groups 
for energy, the scale effect, and the productivity effect, but not for the 
efficiency effect.

4.2.2. Digitalisation reveals polarised dynamics of energy demand
The differences across categories reveal that digitalisation creates 

some polarisation of energy demand dynamics, where disparities are 
mainly driven by value added growth rather than by efficiency or pro-
ductivity gains (Fig.  2, see also SM Figure S.3). Table  4 reinforces this 
conclusion: sectors with low or high digital intensity (L-DI and H-DI) 
tend to have both high value added growth and high energy demand, 
9 
while sectors with medium digital intensity (ML-DI and MH-DI) have 
lower growth and lower energy demand. One can also note that the 
sectors identified as best and worse in terms of energy demand growth 
rate (Fig.  1) respectively fall in ML-DI/MH-DI and L-DI/H-DI categories. 
Although polarisation is less pronounced for the technical components 
(SM Table S.2), improvements in efficiency and productivity, combined 
with lower scale effects, enable ML-DI and MH-DI sectors to achieve 
lower growth—or even reductions—in energy demand.

Further validation of polarisation comes from the Wilcoxon–Mann–
Whitney and Dunn pairwise tests (for detailed results, see SM Figures 
S.4–S.5). Energy dynamics differ significantly across groups, displaying 
a clear pattern of polarisation: L-DI and H-DI do not significantly differ 
from each other, but both are significantly different from ML-DI and 
MH-DI. While ML-DI and MH-DI are also significantly different, their 
distributions are much closer. The differences in energy dynamics are 
primarily driven by variations in the scale effect: all groups display 
significantly different dynamics, except ML-DI and MH-DI. In this case, 
L-DI and H-DI also display significant differences, but effects remain 
stronger than for the intermediate categories. Differences in productiv-
ity also contribute, but they do so to a lesser extent, with only H-DI 
showing significant differences from all other categories.

In short, our results suggest that digital intensity does not affect en-
ergy demand in a simple, ‘‘linear’’ way. One might expect that moving 
from low to high digital intensity would linearly result in higher growth 
rates for value added and greater technical improvements (Zhang and 
Wei, 2022; Niebel et al., 2022).17 Instead, our findings indicate that 
energy demand dynamics are polarised across levels of digital intensity, 
and that the primary driver is the disparity in value added growth. 

17 By linear increase we do not mean an increase from a factor 𝛼 from one 
DI category to another, but that the direction of variation from one category 
to the next one remains the same such that effects for each DI-4 categories 
were always ordered as follows: L-DI, ML-DI, MH-DI, H-DI.
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Table 4
Average rankings by digital intensity and factor.
 DI-4 Energy Scale Efficiency Productivity

 Avg. Med. Avg. Med. Avg. Med. Avg. Med.  
 L 11 11.4 10.6 9 7.8 8.6 11.6 8.6  
 ML 4.8 4.8 5.8 6.4 10.8 10.2 7.2 10  
 MH 7.5 8.25 6.25 7.25 6.5 6 9 8.5  
 H 13.5 11 14.5 15 8.5 9 3 4.5  
Note: The table provides the average rankings of sectors according to their digital intensity (DI-4) category. The rankings were calculated using 
both the cross-country (unweighted) mean and median values of cumulative decomposition results, where cumulative results were aggregated 
over the entire period. For each factor (Energy, Scale, Efficiency and Productivity), sectors were ranked from 1 to 16, where 1 corresponds to the 
lowest and 16 to the highest. Once the sectors were ranked across the mean and median values for each factor, the rankings were averaged 
across the sectors within each DI-4 category, resulting in an overall average rank for each category. Higher averages indicate stronger effects 
for the underlying factors, while lower average indicate weaker effects.
Fig. 3. Total cumulative changes in composition components vs. technical components, by sector and digital intensity category.
Note: The 𝑦-axis corresponds to changes in the composition component and is equivalent to the scale effect. The 𝑥-axis corresponds to (inverse) changes in the technical components 
and is equivalent to the (inverse) product of the conversion, efficiency, and productivity effects. Moving from the bottom to the top implies growth in value added cumulative over 
the entire period, while moving from the left to the right implies stronger combined gains in technical components. The red vertical and horizontal lines separate between upward 
and downward changes. Beneath the horizontal line value added has decreased, while it has increased above. On the left of the vertical line deterioration of technical components 
is observed, while technical gains are found on the right side of the vertical line. Dashed coloured lines correspond to the linear regression line showing the correlation between 
the composition component and the technical components. Observations resulting in increased energy demand over the entire period fall above the black bisection line, while 
observations resulting in reduced demand fall below. SM Figure S.6 displays the same plot with two outliers removed.
This means that increasing digital intensity from low to intermediate 
levels may reduce growth and energy demand, whereas moving from 
intermediate to high levels may offset technical gains and trigger a 
surge in growth and energy demand.

A few details on the dynamics specific to high digital intensity 
sectors are noteworthy. These sectors form a distinct cluster, with value 
added growth substantially higher than in any other sector or category, 
and coupled with stronger productivity improvements (Fig.  3; see SM 
Figure S.6 for the same figure corrected from two outliers). This finding 
is consistent with the pairwise statistical tests in SM Figures S.4–S.5, 
and highlights the specificity of high digital intensity sectors. In con-
trast, sectors in the other categories display stronger within-category 
dispersion. ML-DI and MH-DI sectors vary both across technical and 
composition components, and their mean values (represented by the 
10 
triangles in Fig.  3) shift in parallel to the bisection line. This suggests 
that for the sectors within these categories, even when value added 
growth is stronger, technical improvements help to somewhat moderate 
the growth in energy demand. L-DI sectors are generally characterised 
by lower variation for technical improvements, but vary widely across 
rates of sectoral growth. This suggests that these disparities cannot be 
related directly to variations in technical components.

4.2.3. Value added growth intensifies energy demand in digital intensive 
sectors

While scale effects remain the strongest driver of energy use in both 
L-DI and H-DI, H-DI sectors experience substantially, and significantly, 
stronger sectoral growth than L-DI, along with greater productivity 
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improvements. In fact, the H-DI category shows a stronger correlation 
between combined technical improvements and growth in value added, 
as illustrated by the dashed yellow line in SM Figure S.6.18

This may point to the occurrence of a digitally-induced energy 
rebound—a largely under-researched empirical question (Coroama and 
Mattern, 2019; Kunkel and Tyfield, 2021; Kunkel et al., 2023)—or 
alternatively, to the possibility that strong technical improvements 
are themselves facilitated by strong economic growth.19 The second 
hypotheses is less plausible, however, since other sectors achieve strong 
technical improvements even without corresponding surges in sectoral 
growth (e.g., PAP). Our analysis thus confirms that high digital in-
tensity is associated with substantially stronger value added growth, 
which is consistent with previous evidence (Zhang and Wei, 2022). 
While it is also associated with stronger productivity gains, these do 
not translate into reductions in energy demand. Strong scale effects 
systematically drive higher energy demand, whether technical improve-
ments are strong (e.g., TRANSPEQ) or low (e.g., CONSTR). The degree 
to which lower scale effects translate into reductions in energy demand 
varies significantly, and depends on the relative magnitude of technical 
improvements.

Finally, it remains true that L-DI sectors—except ELECGAS—struggle
with technical gains, particularly efficiency. In these sectors, efficiency 
remains a critical challenge and future gains might be fostered by digi-
talisation. However, strong value added growth must also be addressed 
to ensure technical improvements translate into actual reductions in 
energy demand, as occasionally observed in ML-DI and MH-DI sectors. 
With respect to H-DI sectors, our findings show that irrespective of 
productivity improvements, the overall scale of economic activity must 
be questioned if targeted reductions are to be achieved.

Digitalisation therefore falls short on the promises embedded in the
twin transition or smart green growth narratives, instead carrying twice 
the burden: at high levels of digital intensity, it not only fails to deliver 
the expected efficiency gains, but also shows little potential to drive the 
economic transformations needed—here, the decline of energy-hungry 
sectors—to reduce energy demand. Strategies to manage energy use 
should thus be tailored to the specific context of each sector, while 
also addressing the risk of digitally-induced rebound, particularly in 
sectors already benefiting from ADTs where efficiency gains are visible. 
For sectors lagging in digital adoption, promoting digital technologies 
and practices may yield environmental benefits without neglecting 
economic advances—but this does not remove the need to confront the 
role of strong value-added growth.

Before concluding, it is important to acknowledge some limitations 
of our analysis as a cautionary note and to suggest directions for 
future research. First, our analysis is descriptive rather than causal. 
Methods such as regression analysis or Granger causality could help 
identify causal relationships, but our data and empirical setting do not 
support such approaches. A complete time series, rather than a fixed 
classification for digital-intensive industries, would be better suited for 
this purpose. Second, the classification of digital intensive industries 
has its own limitations (Calvino et al., 2018) and could be refined 
to better capture the dynamics of digitalisation with other emerging 
technologies such as AI and GenAI—see a recent attempt in Calvino 
et al. (2024)—as well as the cross-country differences in their adoption. 
Third, our focus on advanced economies omits the effects of outsourc-
ing and globalisation, which likely explain part of the reductions in 
energy use that we observe (Hardt et al., 2018; Niebel et al., 2022). 

18 Fig.  3 also plots the correlation between technical improvements and 
changes in composition, but the result for the L-DI category is strongly influ-
enced by an outlier: the AGRI sector in Iceland, which shows an exceptional 
1143-fold increase in value added. This outlier is removed in SM Figure S.6.
19 It should be noted that rigorously assessing the potential digitally-induced 
energy rebound would require further investigation and a formal analysis to 
ensure that energy efficiency precedes boosts in economic growth. This is out 
of the scope of our work.
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Fourth, the high level of aggregation in the Commercial and public 
services sector in energy accounting only allows a limited understanding 
of the changes in sectoral composition occurring within this broad 
category. Improving the disaggregation in data collection would allow 
to better understand which of its constituent sectors are responsible 
for the growth in energy demand. Finally, while large-sample studies 
like ours help reveal general trends, future research could benefit from 
focusing on specific sectors to better understand the mechanisms and 
impacts of ADTs on economic growth and energy demand at a finer 
level of detail.

5. Conclusion

Our model combines economic structure—how industries and sec-
tors evolve, grow, or decline—with physical constraints, recognising 
that production ultimately depends on energy and materials and that 
thermodynamics sets limits to efficiency. Enriched with insights from 
evolutionary economics, this framework helps explain how uneven, 
path-dependent technological change shapes energy demand across 
sectors.

Empirically, our analysis shows clear cross-sector structural dif-
ferences in both the dynamics of energy demand and their driving 
factors. We also observe structural effects of digitalisation, though these 
prove more complex than anticipated. Indeed, we find a polarisation 
between high-growth, high-energy-demand sectors and low-growth, 
low-energy-demand sectors, with both low and high digital intensity 
(L-DI and H-DI) sectors falling into the high-demand group. Statistical 
tests confirm two main points: (i) significant differences exist between 
digital intensity categories in terms of overall energy dynamics and 
their economic drivers (scale and productivity effects); and (ii) this 
polarisation between high- and low-energy-demand groups is robust. 
Digital intensity does not directly determine energy demand; instead, 
it amplifies sector-specific trajectories, mainly through its association 
with stronger value added growth, which drives higher energy demand.

Strong growth in value added thus remains the primary driver of 
final energy demand, and substantial reductions in demand occur only 
when efficiency and energy productivity improvements are combined 
with lower value added growth. Over time, the magnitude of scale 
and productivity effects have declined and converged to lower levels, 
which is consistent with the economic slowdown observed in advanced 
economies in recent decades. At the same time, changes in physical 
processes measured by the conversion and efficiency effects display 
less variation and distinct patterns across sectors. This confirms that 
economic drivers (value added and energy productivity) weigh more 
heavily on energy demand than physico-technical factors (exergy-to-
energy conversion and thermodynamic efficiency). Thermodynamic 
efficiency gains alone are insufficient to trigger energy savings during 
periods of strong economic growth, whereas energy productivity im-
provements play a stronger role in mitigating scale effect in periods 
of modest growth. Energy demand reductions are observed primarily 
during economic slowdowns, confirming earlier findings (Le Quéré 
et al., 2019). Yet caution is needed in interpreting these reductions as 
absolute decoupling, as they often occur during periods of economic 
recessions or result from the relocation of energy-intensive sectors to 
countries outside our sample (Hardt et al., 2018; Bogmans et al., 2020).

The fact that energy demand reductions mainly occur during pe-
riods of low growth or recession highlights the challenge of reducing 
ecological impacts in a growing economy. This is particularly true 
in the context of the twin transition, where high hopes are placed 
on efficiency gains. Our analysis instead points to a double burden of 
intensive digitalisation: in addition to its direct energy requirements, it 
boosts output while failing to deliver sufficient technical improvements 
for energy savings. If digitalisation were kept at moderate levels, with a 
less pronounced stimulus to value added growth, our findings suggest 
it might yield the expected environmental benefits. With the pursuit 
of innovation and efficiency gains dominating the public discourse 
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and policy proposals for sustainability, technological change should be 
considered with respect to its broader economic, social, and ecolog-
ical implications. This calls into question the relevance of sustained 
economic growth in relation to societal and environmental needs. 
Technological change is neither neutral nor purely driven by economic 
rationality; it is strongly connected to rent-seeking and accumulation, 
and thus serves as a primary engine of economic growth in the first 
place (Schmelzer et al., 2022).

Post-growth and degrowth may offer alternative paths for future re-
search and policy strategies that explicitly address these risks (Creutzig 
et al., 2018; Hardt et al., 2021). From this angle, a mix of hard—
e.g., caps on energy use or environmental conditions for public R&D 
funding—and soft—e.g., promotion of digital sufficiency or support for 
technologies that prioritise collective well-being—policy instruments 
could help align digital innovation with sufficiency and sustainability 
goals. Crucially, such measures should avoid ‘‘one-size-fits-all’’ ap-
proaches and instead be tailored to sectors’ technological capabili-
ties (Bianchini et al., 2023). Yet these agendas should not underesti-
mate the transformative potential of technological change, which, as 
we argued earlier, is a dynamic, multidimensional, and heterogeneous 
process.

We therefore conclude by suggesting to exercise caution with re-
spect to policies only targeting technical improvements through dig-
italisation, since the empirical evidence for this connection remains 
weak. Our analysis finds that digitalisation has not yet been able 
to produce absolute and sufficient rates of decoupling, and while 
this may change in the future, refusing to address the role played 
by economic growth seems unwise. The risk lies in promoting digi-
tal technologies without adequate consideration of their environmen-
tal implications—e.g., digitally-induced energy rebound effects—or so-
cial consequences—e.g., labour displacements or risks of monopoly—
thereby locking economies into long-term technological paths with 
uncertain outcomes (Matthess et al., 2023).

Digitalisation itself is no longer an option. But guiding its trajec-
tory is a matter of choice, and must rely on sound evidence. This 
choice is not only about public policy design but also about demo-
cratic governance, where societal involvement is essential to ensure 
that the direction of digitalisation reflects ecological and social pri-
orities. Whether it will trigger sustainable structural transformations 
in the future—be they technical, institutional, behavioural, organi-
sational, compositional, or related to the scale of overall economic 
activities—will likely remain a debated question. It is our hope that 
the considerations presented here will inform economic research.
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Appendix A. List of abbreviations

 Acronym/Term Definition/Description  
 General Terms:
 ADTs Advanced digital technologies  
 DI Digital intensive/intensity  
 L-DI = low  
 ML-DI = medium-low  
 MH-DI = medium-high  
 H-DI = high  
 ECC Energy/exergy conversion chain  
 GDP Gross domestic product  
 GPTs General purpose technologies  
 ICT Information and communication 

technologies
 

 MTH Medium-temperature heat  
 SDGs Sustainable development goals  
 Methods:
 IDA Index decomposition analysis  
 LMDI Logarithmic Mean Divisia Index  
 SDA Structural decomposition analysis  
 Data:
 CL-PFU Country-level primary, final, useful 

(database)
 

 IEA International Energy Agency  
 ISIC International standard industrial 

classification
 

 STAN STructural ANalysis (database)  
 TJ Terajoules  
 Equations:
 𝐼 Energy intensity  
 𝐸 Energy  
 𝐸𝑓 Final energy  
 𝑄 Production in physical quantities  
 𝑉 𝐴 Value added  
 𝑋𝑓 Final exergy  
 𝑋𝑢 Useful exergy  
 𝑌 Production in monetary quantities  
 Driving factors:
 𝐷𝑉 The rate of change of 𝑉  with 

𝑉 = {final energy, S, IC, IE, IP}
 

 S = Scale  
 IC = Inverse conversion  
 IE = Inverse efficiency  
 IP = Inverse productivity  

Appendix B. List of countries and time span with available data

See Table  B.1.
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Table B.1
List of countries and time span with available data.
 Country Time span Country Time span  
 AUS — Australia 1990–2018 ITA — Italy 1971–2019 
 AUT — Austria 1977–2018 JPN — Japan 1971–2019 
 BEL — Belgium 1971–2019 KOR — South Korea 1971–2018 
 CHE — Switzerland 1991–2018 LTU — Lithuania 1996–2018 
 CZE — Czech Republic 1971–2019 LUX — Luxembourg 1986–2018 
 DEU — Germany 1992–2019 LVA — Latvia 1996–2018 
 DNK — Denmark 1971–2018 NLD — Netherlands 1971–2018 
 ESP — Spain 1981–2018 NOR — Norway 1971–2018 
 EST — Estonia 1996–2018 NZL — New Zealand 1978–2018 
 FIN — Finland 1971–2018 POL — Poland 1996–2018 
 FRA — France 1971–2019 PRT — Portugal 1978–2018 
 GBR — Great Britain 1971–2019 SVK — Slovakia 1994–2019 
 GRC — Greece 1971–2019 SVN — Slovenia 1996–2018 
 HUN — Hungary 1992–2018 SWE — Sweden 1981–2019 
 IRL — Ireland 1996–2018 TUR — Turkey 1999–2019 
 ISL — Iceland 1974–2019  
Note: The time span accounts for the first year for which some industry data is available, but these time spans do not account for perfectly 
balanced data. This means for the early periods, only some sectors may appear while data for other sectors only start in the 1990s or early 
2000s. Additional countries were available in both the CL-PFU and the STAN databases but were excluded due to substantial missing values.
Appendix C. Description of data collection and selection from the 
CL-PFU and STAN OECD databases

More information on the CL-PFU database and access to the data 
can be found on the following GitHub repository and link:

https://github.com/EnergyEconomyDecoupling/CLPFUDatabase
https://doi.org/10.5518/1199.
More information about the STAN OECD database can be found 

in Horvát and Webb (2020) or on the following link:
https://www.oecd.org/en/data/datasets/structural-analysis-databa

se.html
The exact version of the CL-PFU database used in this paper is 

not publicly available. It was accessed last on May 2nd, 2024, through 
Dropbox. This unique data version was updated on January 30, 2024, 
and has for unique identifier pin_hash: da7862fab18aa2c7. The 
STAN database was accessed directly through its official website on 
May 2, 2024.

C.1. Merging IEA products with ISIC rev.4 2-digits divisions of sectors

The CL-PFU database includes data across 7 aggregate sectors, 46 
detailed sub-sectors, and 68 final energy products. It also accounts for 
non-energy uses of energy across 16 sub-sectors, which track energy 
resources used for purposes other than generating heat, electricity, or 
power, such as chemical or plastic production. The CL-PFU aggregation 
mapping is available in the Data Availability Statement in Brockway 
et al. (2024). This paper uses the sectoral level data from the CL-
PFU database, covering 34 IEA products. The data include energy 
industry own use (EIOU), which is of interest for capturing potential 
structural transformations within energy industries. There is no double 
accounting: energy industries are treated as final energy consumers, 
similar to other sectors. Non-energy uses of energy are not included. 
This approach helps explore the effects of digitalisation on the use 
of energy resources, focusing only on energy purposes. Our analysis 
excludes muscle work (including feedstock inputs and human or animal 
labour) as it focuses on the structural impact of technological change 
on resource use, not on human or animal labour.

The 34 IEA products correspond to sectors, sub-sectors, or final en-
ergy products and are mapped to their respective ISIC Rev.4 classes or 
divisions, based on Table 5.1 (p. 59) and Table 5.3 (p. 66) from United 
Nations Statistical Division (2018). This mapping links the 34 IEA 
products in the CL-PFU database to 18 ISIC Rev.4 2-digit divisions (or 
groups of divisions, e.g., the Commercial and public services sector is 
composed of multiple ISIC divisions). The 16 productive sectors used 
in this paper’s decomposition model are listed in Table  2, along with 
2 non-productive sectors: Residential and Transport. The final mapping 
file and R code are available upon request.
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C.1.1. The nuclear industry
The CL-PFU database relies on the International Energy Agency (IEA) 

Extended World Energy Balances (EWEB) data, which presents aggre-
gation challenges in some cases, notably the nuclear industry. It is 
the only IEA energy industry that cannot be perfectly mapped with 
specific ISIC divisions. The IEA nuclear energy industry covers both 
the extraction and processing of nuclear fuels in combination, making it 
impossible to separate between these processes. Extraction corresponds 
to ISIC class 0721 (Mining of uranium and thorium ores), while processing 
aligns with ISIC class 2011 (Manufacture of basic chemicals), placing the 
nuclear industry between ISIC divisions 05–09 (Mining & quarrying) 
and 20–21 (Manufacture of chemicals and chemical products). To the 
best of our knowledge, there is no empirical basis for preferring one 
ISIC division over the other for aggregating the nuclear industry’s own 
use of energy. In this analysis, we arbitrarily include its energy use in 
the Mining & quarrying sector. Upon review, we find this choice has a 
negligible effect on the aggregate results. However, in specific countries 
where the nuclear industry is important, such as France, Slovakia, or 
Belgium, decomposition results may vary considerably between the two 
sectors involved in nuclear energy production.

C.2. Exclusion of non-productive sectors

The two non-productive sectors from the CL-PFU data, Residential
and Transport, account for a large share of total energy use (Brockway 
et al., 2024, Figure 6, p.13). While decomposition analyses have been 
adapted to account for non-productive sectors (see Ecclesia and Domin-
gos, 2024), conducting such analyses on a large panel is challenging 
for two main reasons. First, alternative measures of energy intensity or 
productivity are required due to the absence of monetary metrics (value 
added, gross output) for these sectors. One option is to approximate 
energy intensity by the ratio of energy use to total value added or gross 
output. Another approach is to use physical measures, such as energy 
intensity per floor area or per kilometers travelled, which requires 
additional data.

The second issue concerns how the IEA accounts for transport 
energy use. The Transport sector can be divided into six sub-categories 
(road, rail, domestic aviation, domestic navigation, pipeline transport, 
and not elsewhere specified), but commercial and private transport data 
are combined and cannot be differentiated. As a result, it is impossible 
to separate productive (commercial) from non-productive (private) 
uses of energy for transport. The method in Ecclesia and Domingos 
(2024) to split productive and non-productive transport energy use 
is not applicable to the large sample in our analysis. Therefore, both 
non-productive sectors are excluded.

https://github.com/EnergyEconomyDecoupling/CLPFUDatabase
https://doi.org/10.5518/1199
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Appendix D. Supplementary material

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.ecolecon.2025.108747.

Data availability

The IEA EWEB data are not publicly available; the user needs to 
access IEA data through a valid license.
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