
This is a repository copy of A deep multi-agent reinforcement learning framework for
autonomous aerial navigation to grasping points on loads.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232609/

Version: Published Version

Article:

Chen, J. orcid.org/0000-0001-7083-0948, Ma, R. orcid.org/0000-0002-8035-5746 and
Oyekan, J. orcid.org/0000-0001-6578-9928 (2023) A deep multi-agent reinforcement
learning framework for autonomous aerial navigation to grasping points on loads. Robotics
and Autonomous Systems, 167. 104489. ISSN: 0921-8890

https://doi.org/10.1016/j.robot.2023.104489

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.robot.2023.104489
https://eprints.whiterose.ac.uk/id/eprint/232609/
https://eprints.whiterose.ac.uk/

Robotics and Autonomous Systems 167 (2023) 104489

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

A deepmulti-agent reinforcement learning framework for
autonomous aerial navigation to grasping points on loads

Jingyu Chen a,∗, Ruidong Ma a, John Oyekan b

a Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, United Kingdom
b Department of Computer Science, University of York, York, United Kingdom

a r t i c l e i n f o

Article history:

Received 22 June 2022

Received in revised form 28 April 2023

Accepted 23 June 2023

Available online 10 July 2023

Keywords:

Cooperative navigation

Multi-agent reinforcement learning

Learning from demonstration

Curriculum learning

a b s t r a c t

Deep reinforcement learning, by taking advantage of neural networks, has made great strides in the

continuous control of robots. However, in scenarios where multiple robots are required to collaborate

with each other to accomplish a task, it is still challenging to build an efficient and scalable multi-agent

control system due to increasing complexity. In this paper, we regard each unmanned aerial vehicle

(UAV) with its manipulator as one agent, and leverage the power of multi-agent deep deterministic

policy gradient (MADDPG) for the cooperative navigation and manipulation of a load. We propose

solutions for addressing navigation to grasping point problem in targeted and flexible scenarios, and

mainly focus on how to develop model-free policies for the UAVs without relying on a trajectory

planner. To overcome the challenges of learning in scenarios with an increasing number of grasping

points, we incorporate the demonstrations from an Optimal Reciprocal Collision Avoidance (ORCA)

algorithm into our framework to guide the policy training and adapt two novel techniques into

the architecture of MADDPG. Furthermore, curriculum learning with the attention mechanism is

utilized by reusing knowledge from fewer grasping points to facilitate the training of a load with

more points. Our experiments were validated by a load with three, four and six grasping points

respectively in Coppeliasim simulator and then transferred into the real world with Crazyflie quadrotors.

Our results show that the average tracking deviations from the desirable grasping point to the final

position of the UAV can be less than 10 cm in some real-world experiments. Compared with state-

of-the-art model-free reinforcement learning and swarm optimization algorithms, results show that

our proposed methods outperform other baselines with a reasonable success rate especially in the

scenarios with more grasping points. Furthermore, the learned optimal policies enable UAVs to reach

and hover over all the grasping points before manipulation without any collision. We conducted

a comprehensive analysis of both targeted and flexible navigation, highlighting their respective

advantages and disadvantages.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The growing demand for aerial delivery of loads by UAVs has

motivated engineers to search for autonomous solutions that are

efficient, safe, and flexible for deployment in various industries.

Recent research has extensively studied the challenging coopera-

tive transport tasks for aerial delivery. Most of these studies have

focused on applying analytical equations to the modelling of a

dynamic slung-load model while taking into account the cou-

pling effects of an arbitrary number of drones [1,2]. Additionally,

learning-based methods in both model-based [3] and model-

free [4] fashions have been explored to improve load tracking

∗ Corresponding author.

E-mail addresses: jchen118@sheffield.ac.uk (J. Chen),

rma17@sheffield.ac.uk (R. Ma), john.oyekan@york.ac.uk (J. Oyekan).

performance. Before the transportation of a load, navigation to
the grasping points is also a significant procedure that often
requires complex coordination, especially for a large number of
drones. For example, in Fig. 1, we consider a practical scenario
where UAVs are required to grasp the component of a rocket. in
order to approach all grasping locations, the controller needs to
consider how to generate collision-free trajectories for multiple
robots while guaranteeing time and computation efficiency. The
path planning problem can be solved by simultaneous localization
and mapping (SLAM) and a navigation stack which gives us prior
knowledge of the environment.

In contrast to these aforementioned methods, our work fo-
cuses on a learning-based cooperative navigation that interacts
with the environment and does not rely on any predefined map.
In [5], the authors developed an end-to-end decentralized al-
gorithm based on proximal policy optimization (PPO) to realize
collision-free navigation tasks with up to 100 robots using the

https://doi.org/10.1016/j.robot.2023.104489

0921-8890/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.robot.2023.104489
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104489&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jchen118@sheffield.ac.uk
mailto:rma17@sheffield.ac.uk
mailto:john.oyekan@york.ac.uk
https://doi.org/10.1016/j.robot.2023.104489
http://creativecommons.org/licenses/by/4.0/

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Fig. 1. A practical scenario of cooperative aerial navigation to a component of

a rocket in a factory. Red dots represent the corresponding grasping locations.

onboard sensor observation. Moreover, Deep Q-learning (DQN)

was utilized to shepherd a flock of drones to a goal position in

the environment with obstacles [6]. In these cases, the agents are

only required to optimize their independent goals, which means

that the goal positions are already assigned when optimizing the

policy.

On the contrary, when the goal assignments for each agent

are not pre-defined, cooperative navigation can be viewed as a

coverage task in swarm robotics. In this case, the overall cover-

age rate of the environment is more important than individual

goals. In [7], a behavioural controller consisting of several swarm

behaviours is proposed to navigate multiple drones to uniformly

cover the payload by the onboard perception without the goal

position. However, rule-based coordination typically requires a

significant amount of time to observe and adjust to emergent

behaviour, making it inefficient for deployment in the industry.

Additionally, multi-agent Q-learning can be utilized to distribute

a team of UAVs to the locations of forest fires based on local

information, as demonstrated in [8].

In this paper, we consider the aforementioned two approaches

in the context of cooperative navigation to grasping points. Some

cases of cooperative flexible navigation require a quick and

efficient way to distribute UAVs with the same roles to all the

grasping points. In other cases of cooperative targeted naviga-

tion, a UAV with a specific role is required to go to a particular

location. As a result, we contribute to learning-based solutions for

two kinds of aerial navigation (targeted and flexible navigation)

and manipulation where drones are trained to form predefined

grasping formations above a load. As in [9], we designed our

control system with a hierarchical structure to tackle both nav-

igation and manipulation tasks respectively. To realize this, we

develop our algorithm based on multi-agent deep deterministic

policy gradient (MADDPG), a kind of multi-agent reinforcement

learning (MARL) method where the joint states and actions are

considered to maximize the team reward. The learned policies

are deployed to plan safe routes for drones to reach all grasping

points without any collision in a bounded environment.

However, as the number of grasping points and robots in-

creases, the difficulty of navigation tasks also increases signif-

icantly [10]. This can cause the algorithms to fail to converge.

Therefore, since the reciprocal collision avoidance (ORCA) method

has the same action space and observation space as that of

Reinforcement learning (RL), we use an expert policy and expert

trajectories from ORCA to guide the training of MADDPG towards

achieving the same reward level as the expert. In this work, we

do not expect our proposed control system to replace traditional

path planning methods like ORCA. Instead, we contribute by in-

troducing further steps towards learning-based control strategies

for engineering cases. Finally, we apply an attention-based actor–

critic algorithm to enable curriculum learning. This allows the

transfer of previous experience to a new scenario. This is im-

portant because deep reinforcement learning (RL) algorithms are

known to perform well when the task and state distributions re-

main the same. However, when there is a change in the transition

dynamics or state dimensions of the environment, the controller

may need to be re-trained. This is not practical for industrial

applications that require flexibility. To address this issue, we

propose a curriculum learning approach with an attention-based

framework. We start by training the controller on a load with

fewer grasping points and gradually increase the complexity of

the task to include more points. The model is reloaded without

re-training from scratch, allowing for quick adaptation to new

scenarios.

Our contributions are summarized as follows:

• Considering flexible and targeted navigation, we present the

first hierarchical learning-based solution for the aerial cooper-

ative manipulation task by aerial robots equipped with suction

cups.

• To address the challenges of training MADDPG in more com-

plex scenarios, we introduce demonstrations from the ORCA

method using two strategies: pretraining with prioritized sam-

pling and behaviour cloning.

• We constructed a real-world control pipeline for our algo-

rithms, integrating equipment such as Aruco markers and cam-

eras. To confirm the feasibility of our approach, we validated it

using micro UAVs, specifically the Crazyflie.

• A curriculum learning with attention framework is proposed

for targeted navigation to facilitate the adaption to new pay-

loads.

The rest of the paper is organized as follows. In Section 2, we

briefly introduce the background of MARL, learning from demon-

stration and curriculum learning. Section 3 puts forward the

problem definition while Section 4 comprehensively illustrates

our proposed framework based on MADDPG. The experimental

results and discussions are presented in Section 5 followed by the

conclusion in Section 6.

2. Related work

2.1. Multi-agent reinforcement learning

Reinforcement learning (RL) is an algorithm that takes inspi-

ration from animal learning in psychology. It is a trial-and-error

(TE) learning process where an agent learns an action policy

to maximize long-term rewards through interactions with an

environment. When more than one agent is involved, the problem

is formulated as a multi-agent reinforcement learning (MARL)

problem. Since the strategies of other agents are always chang-

ing, the environment becomes non-stationary. As a result, an

individual’s optimal policy is influenced by the actions of other

agents. [11] discussed how nonstationarity results in the incom-

patible use of a replay buffer in multi-agent Q-learning. They

proposed adding a low-dimensional fingerprint into the Q func-

tion to condition on the policies of other agents. Based on the

actor–critic framework, [10] designed a centralized critic which

considers the state–action pairs of other agents to solve the non-

stationary problem. Besides, the attention structure can be added

to the centralized critic to better model the policies of other

agents [12]. The multi-task learning could also be achieved by

an actor–critic algorithm with a single set of parameters [13].

2

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Another challenge of deep MARL is the curse of dimensionality.

This means that the dimension of action and observation space

grows exponentially as the number of agents increases. The idea

of gathering all states of a system into the input of a single neural

network is not feasible. As a result, centralized training and de-

centralized execution are adopted as the mainstream architecture

for MARL. In this case, agents use their local perception to make

decisions while only requiring global states for training. However,

the critic neural network still faces the issue of large input dimen-

sions during the training. In [14], the author applied mean feature

embeddings (MFE) to represent states of the adjacent agents in a

local sample-based view. The efficiency of this encoding method

has been proved in the large dimensionality of MARL. Our work

has a similar algorithm in [10], but makes contributions to the

optimization method and neural network (NN) architecture to

allow it to adapt to scenarios with higher dimensions of states.

2.2. Learning from demonstration

Imitation learning (IL) trains an agent to mimic the behaviour

of a human or another agent by demonstration data, without

having to explicitly specify a reward function. Behaviour cloning

is a simple method of imitation learning. It predicts the expert’s

actions, given a certain input state, by the supervised learning of

the state action pairs from the demonstration. One of the early

applications of behaviour cloning was validated in the field of

autonomous navigation by mapping sensor data into the steering

direction of a vehicle [15]. However, behaviour cloning suffers

from the issue of covariate shift, which occurs when the distri-

bution of states or observations in the test environment differs

from the distribution in the training data. This issue can be solved

by using a generative model to generate the actions which are

close to the distribution of the expert actions in an adversarial

fashion [16]. Imitation learning can be used to speed up the

learning process in reinforcement learning by allowing the agent

to learn from a demonstration of an expert’s behaviour. As for

model-free reinforcement learning algorithms, large amounts of

self-generated data from interactions with the environment are

often required. However, this is not realistic when the cost of

collecting this data can be prohibitively expensive, and in some

cases, the trial-and-error process can pose significant risks, partic-

ularly for robotics tasks where mistakes can result in catastrophic

outcomes. Therefore, pretraining an agent with a small amount

of demonstration data can help the agent learn a good policy

faster and more efficiently. The idea is to use the demonstra-

tion data to provide the agent with a good initial policy that it

can refine through further exploration [17]. Several techniques

have been proposed to improve the exploration in reinforcement

learning, such as demonstration buffer, newly designed behaviour

cloning loss, and Q-filter [18]. Moreover, recent progress on of-

fline reinforcement learning showed that it is possible to achieve

good performance on collected data without the need for ex-

ploration [19]. Inverse reinforcement learning (IRL) is another

approach of imitation learning where the reward function is

learned from the demonstration data, and then used for later pol-

icy learning [20]. However, it can be computationally expensive

and may require a large amount of demonstration data to learn

an accurate reward function which can be generalized to new

situations. Imitation learning with RL has been widely applied

in robotics applications. In [21], based on guided policy search

(GPS), the decentralized policy for drone control is supervised

by the sample trajectories collected from the model predictive

control (MPC). [22] proposed a two-stage actor–critic framework

for ground robots where the actor is firstly optimized by the

demonstration trajectories and then transitions to the normal

training of RL.

2.3. Curriculum learning and attention mechanism

Curriculum learning refers to training from the easy task to

the difficult one. As for the multi-agent system (MAS), increasing

the number of agents and designing more sophisticated envi-

ronments are common ways to increase the difficulty of the

learning task. Compared with training from scratch, researchers

found that higher performance of the policy can be obtained

through this curriculum [5]. Three transfer learning strategies,

including the reuse of replay buffer, model reload, and curriculum

distillation, have been proposed to transfer knowledge from the

task with few agents to the large-scale scenario of StarCraft [23].

Besides, the credit assignment problem in multi-goal multi-agent

reinforcement learning can be solved by using a credit func-

tion that is learned through a two-stage curriculum learning

process. However, the objective misalignment issue needs to

be addressed for each agent in the initialization of the new

stage [24]. The evolutionary algorithm can be used to address

the objective misalignment issue and select the best candidates

for the next-stage training [25]. Another challenge in the cur-

riculum learning of multi-agent systems (MAS) is that the neural

network model trained in the previous stage, which has a fixed

input dimension, cannot be directly applied in the new stage, as

the observation space may have changed due to the increasing

number of agents. Thus, a neural network model that can handle

dynamic inputs is required. One of the most popular ways to

address the challenge of dynamic input dimensions is to incorpo-

rate attention mechanisms into the neural network architecture.

Attention mechanisms are inspired by the way humans focus

on important areas of an image in visual tasks and have been

widely used in computer vision and natural language processing

(NLP) [26]. By selectively attending to relevant parts of the in-

put, attention mechanisms can effectively handle variable-sized

inputs and capture the dependencies and interactions between

different agents. A Q-attention method has been proposed, which

uses a hard attention module to extract the most relevant parts

of the RGB and point cloud inputs for controlling robotic manip-

ulation [27]. Moreover, the attention mechanism can either be

used for learning a centralized critic [28] or simplification of the

interactions [29] in a multi-agent system.

3. Problem definition

Our work focuses on navigating multiple aerial vehicles to-

wards specific predetermined locations within an indoor envi-

ronment to perform payload grasping tasks. A static payload

is placed at the centre of the workspace. UAVs with a suction

cup gripper (more details in Appendix C) starting from random

take-off positions within the workspace are required to cover

and hover over all goal positions. No obstacles are considered

during the navigation task. As shown in Fig. 2, this work considers

two different scenarios for the navigation task, namely targeted

navigation and flexible navigation. The flexible navigation (the

first scenario) where UAVs with identical roles is designed to find

the efficient route to reach all the grasping point while avoiding

obstacles. In targeted navigation, each drone with different roles

is programmed to fly directly to a specific location or point in

space where the grasping point is located.

The problem is formulated as Multi-Agent Partial Observation

Markov Decision Process (MAPOMDP) described by the tuple

(S,O,A,P,R) with N agents. The state S corresponds to the

states of all drones and grasping points. O and A represent a

set of observations O1, . . . ,ON and actions A1, . . . ,AN for each

agent respectively. These observations can either be obtained

from onboard and external localization devices or the simulator.

Each UAV i has its local observation oi : S ↦→ Oi, and chooses

3

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Fig. 2. Showing two types of navigation to target. ① Flexible navigation in which

any UAV can approach any grasping point and ② Targeted navigation in which a

UAV is programmed to fly directly to a specific grasping point. Different colour

means different grasping points and assigned UAVs.

an action by a policy ai ∼ πθi (oi; θi) with parameter θi. Then, the

next state is generated by the transition probability P : S×A1×
· · · × AN ↦→ S . As the task is cooperative, each agent i obtains

a shared reward r : S × A ↦→ R considering states and actions

of all agents. We aim to maximize the cumulative shared reward

R =
∑T

t=0 γ t rt where T is the time horizon and γ is the discount

factor. Assume the position of each UAV i with safe distance R

is pi. In flexible navigation, grasping points are not assigned to

individual UAVs. Instead, the policy selects a single goal position

for each UAV, denoted as pg . In targeted navigation, on the other

hand, the goal position pg for each UAV is pre-assigned before

the task. The distance from UAV i to wall n is dw
in. The required

position precision for coverage is ds. Therefore, the shared reward

r is under the following constraints Ci for each agent.

C = {Ci, i = 1, . . . ,N|
∀m ∈ [1,N], i ̸= m : ∥pi − pm∥ > R,

∀n ∈ [1, 4] : ∥dw
in∥ > R

∥pi − pg∥ < ds}

(1)

4. Methodology

In this section, we demonstrate our framework for the naviga-

tion and manipulation task using multiple homogeneous drones

with suction cups. Our framework is based on MADDPG [10].

We first introduce the setup of reinforcement learning. Then, we

illustrate demonstration-based methods for flexible navigation

and curriculum-based methods for targeted navigation. Finally,

we present our hierarchical control pipeline for aerial navigation

and manipulation.

4.1. Reinforcement learning setup

For the low-level control, we adopt the PID velocity con-

troller framework, while RL is used for the decision-making of

linear velocities of drones. To ensure safe exploration, the drones

maintain a constant hovering height and only move in the x–

y Euclidean plane during navigation. Each drone is treated as

an omnidirectional vehicle whose orientation does not change.

The RL policy outputs linear velocities, vx and vy, with respect

to the inertial coordinate in the x–y plane. These velocities are

in the continuous action space and range from −1 to 1 m/s. We

do not include extra control for the suction cup and cable, as

their mass is small enough to be ignored and their impact on

the drone’s motion is incorporated in the learning process during

interactions.

Fig. 3. Observation space of UAV i. The inertial coordinate is set in the centre

of the workspace.

As shown in Fig. 3, the observation of agent i is concluded into
oi = [ois, oit , oig] where ois are the velocity and position of drone i

itself, oit represent relative positions and relative velocities of all
neighbours respectively with respect to the agent i, and oig are
relative positions of all grasping points with respect to the agent
i. All units are calculated under the inertial coordinate. As the
navigation task is cooperative and all drones are homogeneous,
every agent aims to maximize the same team reward r = rg + ro
where rg is the dense reward computed by the negative sum of

the distance dji between each grasping point j and its nearest
agent i (j is iterated by all goals), ro relates to the collision penalty
(see the following (2),(3)).

rg =

{

1 ∗ N, if all agents cover all goals

−
∑N

j=1 min(d
ji

i=1:N), otherwise
(2)

ro =
{

−1 ∗ N, if any collision exists

0, otherwise
(3)

To obtain a collision-avoidance policy, if any collision exists in
the system, every agent is punished with a −1 reward (N is the
total number of agents) and the current episode will be termi-
nated. On the contrary, to improve the success rate of coverage,
each agent is rewarded with 1 when all goals have been covered.
In addition, we set the required position precision between each
goal and the corresponding UAV to be 0.5 m, which is equal to
the size of the drone. The episode will not be terminated after the
successful coverage as drones need to learn how to keep hovering
above the predefined grasping points by accumulating reward rg .
Regarding targeted navigation, some small modifications need to
be made. Towards this, the state space becomes oi = [ois, oit , o1g]
and o1g is the assigned goal position (not a vector). Each UAV is
assigned a unique goal, and the reward function is changed to

−
∑N

j=1 d
ji where i is the corresponding index of the assigned

agent for grasping point j.
We develop the proposed framework based on a multi-agent

actor–critic algorithm called MADDPG. Deep deterministic policy
gradient (DDPG) extends the deterministic policy µθ in the policy
gradient formation by learning a decentralized actor together
with a Q-function from Q-learning. Furthermore, MADDPG adopts
a centralized Q-function (critic) considering the policies of other
agents to solve the problem of the non-stationary environment
in MARL. Thus, the gradient of MADDPG with policy parameter θi
for agent i is written as,

∇θi J(µi) = E
x,a∼D
[∇θiµi(ai|oi)∇aiQ

µ

i (x, a)|ai=µi(oi)
] (4)

where all actions a = (a1, a2, . . . , aN), all observations x =
(o1, o2, . . . , oN) and N is the agent number. Then, the centralized
Q-function is optimized by,

L(θi) = E
x,a,r,x′

[(Qµ

i (x, a)− (ri + γQ
µ
′

i (x′, a′)|a′
j
=µ
′
j
(oj)

))2] (5)

4

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Algorithm 1 MADDPG with demonstration

Input: demonstration trajectories (Ot
d, A

t
d, O

t+1
d , Rt

d)

Insert demonstrations into buffer D

Pre-training actors and critics

for Episode = 1:M do

Reset environment

Obtain initial observations Ot

for Episode length t = 1:tmax do

For each drone, select action ati = µi(oi) using ϵ greedy

with noise

Use PID velocity controller to execute all actions At =
(at1, ..., a

t
N)

Obtain new observations Ot+1 and rewards Rt

Store (Ot , At , Ot+1, Rt) into replay buffer D

Ot ← Ot+1

Sample a batch (O, A, O′, R) from replay buffer D

for Drone i = 1: N do

Update critics by Eq. (5)

Update actors by Eq. (4)

Update priorities of the sampled transitions

end for

Update target networks

end for

end for

µ
′ refers to the target policies with parameter θ ′i and x′ is the

next observations of all agents. Since the vanilla MADDPG has
limited performance in our task, we proposed two techniques,
namely demonstration learning and curriculum learning, to ac-
celerate the learning process and improve the performance of
MADDPG. These techniques enable MADDPG to better adapt to
the cooperative navigation task.

4.2. Demonstration learning

4.2.1. Learning with demonstration trajectories
We choose the reciprocal collision avoidance (ORCA) method

[30] based on velocity obstacle (VO) to collect the demonstration
trajectories for MADDPG in the flexible navigation. The chosen ex-
pert approach acts in a decentralized way where the agent finds
the collision-free path to the goal position by its own observations
of other agents, which is similar to how our RL method behaves.

The velocity obstacle VOτ
mi|mj

is defined as the set of all relative

velocities of agent mi with respect to agent mj that will cause the
collision between agent mi and agent mj before time τ . We regard
each drone as a disc I(p, r) located in the position p with a radius
r . Thus, the formal definition is given in Eq. (7),(6)

I(p, r) = {q|∥q− p∥ < r} (6)

VOτ
mi|mj
= {v|∃t ∈ [0, τ] :: tv ∈ I(pj − pi, 2r)} (7)

To avoid collision for at least τ time, the collision-avoiding
velocities CAτ

mi|mj
(Vj) for agent mi is defined as,

CAτ
mi|mj

(Vj) = {v|v /∈ VOτ
mi|mj
⊕ Vj} (8)

where Vj is the velocity set of agent mj and ⊕ refers to the
operation of Minkowski sum. Therefore, ORCAτ

mi|mj
and ORCAτ

mj|mi

refer to the reciprocal collision-avoiding velocities which are
maximally close to their current velocities. Following the princi-
ple of equal responsibility, in Eq. (9), the permitted velocity plane
ORCAτ

mi|mj
of agent mi lies in the half plane pointing from vci +

1
2
u

with direction n.

ORCAτ
mi|mj
= {v|(v− (vci +

1

2
u)) · n ≥ 0} (9)

Fig. 4. Normalized 2d histogram of demonstration trajectories in all scenarios.(a)

three grasping points (b) four grasping points (c) six grasping points.

where vci is the current velocity of agent mi, u is the shortest
vector from the relative velocity to the boundary of velocity
obstacle VOτ

mi|mj
and n represent the normal vector. The new

velocity vnewi of agent mi is solved by linear programming on the
convex ORCA planes with respect to each other drone considering

its preferred velocity v
pref

i .

vnewi = {v| argmin ∥v− v
pref

i ∥, v ∈ ORCAτ
mi
} (10)

vnewi is the expert action we need to record. To lead drones
to the grasping points, each drone is assigned a goal pg ran-
domly and this assignment is fixed during one episode. Thus,

the preferred velocity v
pref

i of agent mi for ORCA is calculated by
α(pg − pi) (α is the factor and pi is the position of drone i). As
this goal assignment is only executed in the demonstration setup
(not in the normal training), we do not violate our assumption
of flexible navigation where the goal assignment is inferred by
the policy. In our scenario, the time horizon τ is set to 4.5 and
the maximum velocity of a UAV is 1 m/s. The shape of a UAV is
simplified into a disc with a radius of 0.3 m.

By placing UAVs at random positions in the workspace, we
collect 100 episodes data for each scenario by the expert method
ORCA. For the scenarios with three and four grasping points, we
used a timestep of 25, while for the scenario with six grasping
points, we used a timestep of 35. The normalized 2d histograms
of positions of the demonstration data are shown in Fig. 4. We
stored the demonstration trajectories (Od, Ad, O

′
d, Rd) of ORCA,

which had the same observation and action space as MARL, in
the prioritized replay buffer (PER) forever [31]. A pre-training
of these demonstrations is started before the normal training
of MADDPG (see Algorithm 1). As for PER, the transitions are
sampled according to its priority. In MADDPG, the priority pt of
transition t is related to the TD error L(θi) in Eq. (5) and the actor
loss Q

µ

i (x, a),

pt =
1

N

N
∑

i=1

L(θi)+ ∥Qµ

i (x, a)|ai=µi(oi)
∥2 + δ + δd (11)

where N is the number of agents, δ is a positive constant and
δd is the extra parameter for the demonstration transition. To
assign the high probability to the trajectories with high TD loss
for all critics, we adopt the mean probability of all critics as the
final transition probability. As more transitions generated by the
training policy are stored in the replay buffer, the guidance ratios
with different number of agents are automatically tuned.

4.2.2. Learning with behaviour cloning
We propose another method based on behaviour cloning (bc)

from imitation learning for MADDPG to improve the algorithm
convergence in the scenario with more grasping points and robots.
Different from the previous pretraining strategy, our behaviour
cloning method for MADDPG queries demonstration action Ae in
real-time and uses it to minimize the actor loss in the early stage,
which behaves like supervised learning.

Lossiactor = ∥A
i − Ai

e∥
2 (12)

5

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Algorithm 2 MADDPG with behaviour cloning

for Episode = 1:M do

Reset environment

Obtain initial observations Ot

for Episode length t = 1:tmax do

For each drone, select action ati = µi(oi) using ϵ greedy

with noise

Use PID velocity controller to execute all actions At =
(at1, ..., a

t
N)

Obtain new observations Ot+1 and rewards Rt

if M < Tstage then

Query expert actions At
e by current state Ot

Store (Ot , At , At
e, O

t+1, Rt) into replay buffer D

else

Store (Ot , At , Ot+1, Rt) into replay buffer D

end if

Ot ← Ot+1

if M < Tstage then

Sample a batch (O, A, Ae, O
′, R) from replay buffer D

else

Sample a batch (O, A, O′, R) from replay buffer D

end if

for Drone i = 1: N do

Update critics by Eq. (5)

if M < Tstage then

Lossiactor = ||A
i − Ai

e||2
else

Update actors by Eq. (4)

end if

end for

Update target networks

end for

end for

As shown in Eq. (12), Ai = µi(oi) is the action (velocity) gener-

ated by the actor neural network of agent i. Ai
e is calculated by the

expert controller using the same observation input of agent i. To

avoid the over-fitting problem, we firstly train the actor networks

using behaviour cloning and then switch to the normal MADDPG

training by a threshold stage Tstage. In Algorithm 2, before stage

Tstage, both the action Ae generated by the expert controller and

A generated by the actor are stored in the replay buffer and

then sampled for supervised learning of actors. Furthermore, in

the whole process, critic networks are always trained under the

normal MADDPG.

4.3. Attention-based MADDPG and curriculum learning

In this section, we adapt the attention architecture of [25]

to design the attention-based actors and critics for MADDPG

and curriculum learning. In our method, each agent has its own

actor and critic, and the population-invariance representation of

attention is set before the decision layers in the neural networks.

As shown in Fig. 5, for agent i, the actor and critic nets are

represented by,

µi(oi) = hi(vi
t , v

i
g , f

i
1(o

i
s)) (13)

Qi(o1, . . . , oN , a1, . . . , aN) = gi(qi(oi, ai), ei) (14)

For the actor µi ((1) of Fig. 5), the input observations oi
are classified into self-entity observation ois, other-entities ob-

servation oit = {oit1, oit2, . . . , oitM} and goal observation oig =
{oig1, oig2, . . . , oigN} where ois is related to its own position and

Fig. 5. The attention-based actor–critic framework.

velocity, oit is the set of relative positions and velocities of other

agents, and oig is the set of relative positions of all grasping points.

As the number of grasping points is equal to the number of

agents, thus M = N − 1. These observations are firstly encoded

by two-hidden-layer networks f1, f2 and f3 respectively with ReLU

activation functions. Then, attention embeddings vi
t and vi

g of

other-entities and goals are calculated by the Scaled Dot Product

between self-entity embedding and its corresponding keys,

vi
t = attention(f i1(o

i
s), f

i
2(o

i
t))

vi
g = attention(f i1(o

i
s), f

i
3(o

i
g))

(15)

Then, the attention outputs are followed by operations of

the batch norm. Finally, a four-hidden-layer neural network h

outputs either actions or state action values. Therefore, the linear

velocities of a UAV are limited to (−1,1) m/s using the tangent

function (Tanh). Furthermore, action inputs are combined with

self-entity inputs to generate state action value for inputs of a

critic net.

For the critic Qi ((2) of Fig. 5), (oi, ai) is the state action

pair of agent i and (o
j
t , a

j
t)j=1:M are state action pairs of other

agents. These observation action values are firstly computed by

actor nets. Then, they are processed by a self-attention module

q followed by another attention module between self-attention

embedding of agent i and that of other agents. The attention

embedding ei is calculated by,

ei = attention(q(oi, ai), q(o
j=1:M
t , a

j=1:M
t))

=
∑

j=1:M

ϵijq(o
j
t , a

j
t)

(16)

where the attention weight ϵij = softmax(φij) and φij = q(oi, ai)

q(o
j
t , a

j
t)

T/
√
dk. dk is the first dimension of q(oi, ai). Finally, all

embeddings are merged in a three-hidden-layer g to output a Q-

value for a critic net of agent i. As shown in Eq. (16), the attention

embedding with the fixed dimension is the weighted sum of all

6

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Fig. 6. Overview of the MADDPG algorithm with demonstration learning and curriculum learning.

observation-action embeddings of other agents. Therefore, the

change in the number of agents will not influence the overall

architecture of the neural networks. Furthermore, the attention

mechanism can help the actor to find a better representation

of the observation by analysing the relation between its own

property and other entities, and the efficiency of the critic can be

improved when it learns the centralized Q-function. The complete

details of our establishment of neural networks are shown in Ap-

pendix B.7. The training process of the attention-based MADDPG

is similar to that of the vanilla MADDPG. The main difference is

that attention mechanism is added to the actors and critics to

selectively attend to the relevant information.

Another function of the attention mechanism is to achieve

the dimension-invariant architecture of our model which can be

directly reloaded into the new stage without modification in the

curriculum learning. The empirical experiments help us find that

the performance of attention-based critics is limited. Thus, we

remove the state–action values of other agents in the critics and

only use the attention-based actors to create a shared att-DDPG

method for better knowledge transfer. In curriculum learning, the

training process is divided into several stages, with each stage

gradually increasing the complexity of the task by adding more

grasping points. The strategy is to first train the system on a

simpler task with fewer grasping points, and then use the trained

model as a starting point to train on a more complex task with

more grasping points. The final parameters of the shared actor

and their target networks are stored after each stage, and then

reloaded to train the next stage with more grasping points. The

number of stages is not limited and can be increased as needed

for scenarios with more grasping points.

4.4. System overview

In Fig. 6, we demonstrate our hierarchical system based on the

actor–critic framework and PID controllers. The aerial manipu-

lation task is accomplished by the navigation and manipulation

in a state machine. The navigation is achieved by multi-agent

reinforcement learning and manipulation is achieved by PID po-

sition controllers. For the multi-agent system, each UAV (agent)

has its own actor and critic in the decentralized execution and

centralized training fashion. To improve the sample efficiency,

we launch N parallel environments for collecting trajectories gen-

erated by the same policy networks, and all the trajectories are

stored in the same replay buffer. The task coordinator monitors

the environment states and switches to the manipulation phase

once all grasping points are within the permitted range. During

this phase, the UAVs first stabilize their pose to ensure the suction

cups are in the correct position for manipulation. Next, drop-

down positions are calculated to lift the load into the air by

attaching the suction cup to the load.

5. Experiments and results

The main research problems to be explored in this section

focus on two case studies: flexible navigation task and targeted

navigation task. We will evaluate the performance of the demon-

stration learning in flexible navigation and curriculum learning in

the targeted navigation respectively. The related algorithms and

techniques are discussed and compared with the state-of-the-art

methods to highlight the superior performance of our proposed

framework. In this section, we will firstly give a description of

the task and some implementation details. We briefly explore the

hyper-parameters for better validation of the algorithms. Then,

we will discuss the results of each experiment and compare

the performance of different methods. Furthermore, a real-world

pipeline to validate our algorithms with Crazyflies is shown.

Finally, the related ablation experiments are conducted.

5.1. Task description

As shown in Fig. 7, we consider loads with three, four and six

grasping points (centres of the yellow blocks) respectively. The

loads to be transported are located in the centre of a 10 m ×
10 m bounded environment. UAVs randomly initialized in the

environment can move in three-dimensional space using low-

level PID controllers. Before the training, the number of UAVs and

grasping points are the same and UAVs need to cover all grasping

points within the permitted deviation. When UAVs cover all the

grasping points, they will keep that grasping formation and drop

down to pick up the load using suction cups.

7

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Fig. 7. Three different loads considered in our experiments.

5.2. Implementation specifications

Our simulation is implemented in Coppeliasim simulator with

Pyrep [32]. The algorithm is trained on a PC (Alienware R15)

with Intel-i7 and Nvidia 3070Ti using Pytorch. We set the Adam

optimizer as default. The learning rate of actor and critic are set to

10−4 and 10−3 respectively. The discount factor γ is 0.95 and the

size of a replay buffer is 5 × 105. Furthermore, 1024 transitions

are sampled from the replay buffer for the training each time

(The batch size of MADDPG with behaviour cloning is set to 256).

We train 1500, 2000 and 3500 episodes for loads with three,

four and six grasping points respectively. Besides, the timestep

of each episode is set to 50, 60 and 70. During each episode,

UAVs will take actions every 0.5 s. Before the start of one episode,

UAVs firstly hover for several steps to stabilize the height before

navigation.

5.3. Hyper-parameter exploration

We conducted experiments to explore suitable hyper-para-

metres for our algorithm. Specifically, we investigated the ob-

servation range for each UAV and the threshold stage Tstage of

behaviour cloning. The goal was to identify hyper-parameter

settings that strike a balance between feasibility and efficiency,

while improving the performance of the algorithm.

5.3.1. Observation range

In our cases, the sensing thresholds of a UAV are set to 2

m, 4 m and full range respectively in a 10 m × 10 m field.

The neighbouring objects (including UAVs and grasping points)

which exceed this sensing distance will not be detected by a UAV.

Thus, we make modifications on the full observation space oi =
[ois, oit , oig] given in Section 4.1. Local observation space becomes

o
local
i
= [ois, oit , oitl, oig , oigl]. The newly added oitl and oigl represent

the life of its neighbour UAVs and grasping points respectively.

When one neighbour UAV is not detected, oitl and its related

position and velocity oit are set all zeros. Otherwise, oitl is set to 1.

Furthermore, oigl and oig are set zeros when the grasping point is

absent within its sensing range. We examine the performance of

local and full observation in the scenario with 3 grasping points

and 3 UAVs. To remove the influence of the demonstration, only

vanilla MADDPG and att-MADDPG are tested. For att-MADDPG, oitl
and oigl are incorporated into other-entity observation and goal

observation respectively in the attention framework. As shown

in Fig. 9, learning curves for UAVs with different observation

ranges in MADDPG and att-MADDPG methods are demonstrated.

All curves are calculated by three times evaluation.

Regarding the performance of MADDPG, it was found that

none of the algorithms were successful, except for the method

with the full observation range which showed a higher reward

between episodes 50 and 100. In contrast, for att-MADDPG, the

method with an observation range of 2 m failed to converge,

while the methods with 4 m and full range were able to converge

successfully. Notably, the full range method converged faster

than the one with a 4 m range. In general, the performance of

partial observation is inferior to that of full observation due to

the policy’s inability to receive sufficient information for decision-

making in the multi-agent system. Therefore, the full observation

is chosen for the design of all algorithms when the performance

is evaluated in the later section.

5.3.2. Stage of behaviour cloning

We illustrate the behaviour cloning method for MADDPG in

the previous section. The supervised optimization process will

switch to the normal training of MADDPG when it approaches

the threshold stage Tstage. However, how the choice of Tstage will

influence the performance of our algorithm has not been ex-

plored. Here, we set Tstage to be 100, 200 and 400 timestep for

the scenario with three UAVs and 200, 500 and 700 timestep

for the case with four UAVs, and 1500, 2000 and 3500 steps

for the case with six UAVs respectively. Fig. 8 demonstrates that

increasing Tstage does not result in significant improvement of the

final performance for the scenarios with three and four grasping

points, although it reduces variance and slightly increases the

reward. However, for the scenario with six grasping points, Tstage
with small values like 1500 and 2500 fails to converge. Therefore,

according to learning curves, we choose Tstage to be 400 for three

points, 700 for four points and 3500 for six points respectively.

5.4. Flexible navigation by demonstration

In this section, we evaluate the performance of the demonstra-

tion-based algorithms we proposed in the flexible navigation. Our

guided MADDPG algorithms are classified into various methods

according to different strategies of demonstration. We compare

them under different load scenarios with a behavioural swarm

optimization algorithm and other model-free multi-agent rein-

forcement learning methods. The algorithms to be compared are

defined as follows:

• MADDPG: Each agent has its independent actor and critic with

the architecture of decentralized execution and centralized

training.

• att-MADDPG: This is MADDPG with an attention mechanism.

• bc-MADDPG: MADDPG is firstly trained using behaviour cloning

(bc), and then switched to the normal training.

• demo-MADDPG: Demonstration data are inserted in the prior-

itized replay buffer for pretraining with the attention frame-

work.

• MAPPO: Multi-Agent Proximal Policy Optimization (MAPPO)

is a distributed policy optimization algorithm designed for

multi-agent systems [33].

• Behavioural swarm optimization (BSO): Please see [7] for

more information. In adapting [7] to the work in this paper,

we added an additional shepherding behaviour to repel the

other robots and removed the flocking behaviour to ensure

multi-target tracking.

For MADDPG, the actor uses two hidden layers [64,64] with

the activation function of Tanh, and the critic has the same config-

uration for hidden layers but with the activation function of ReLU.

The att-MADDPG represents the actor and critic with attention

framework shown in Section 4.3. Two demonstration methods

in Section 4.2 generate two algorithms, bc-MADDPG and demo-

MADDPG. However, bc-MADDPG does not utilize an attention

framework. Policies of demo-MADDPG were trained using the

parallel environment and attention structure. More details of the

components of different algorithms used are illustrated in Table 1

where MG: MADDPG, att: att-MADDPG, bc: bc-MADDPG and

demo: demo-MADDPG.

8

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Fig. 8. Performance of different values for Tstage .

Fig. 9. Learning curves for different observation range with 3 UAVs. Left:

MADDPG, Right: att-MADDPG.

Table 1

Components of different algorithms.

Components

Methods
MG att bc demo

Multi-agent ✓ ✓ ✓ ✓

Parallel environment × × × ✓

Attention mechanism × ✓ × ✓

Behaviour cloning × × ✓ ×
Demo buffer × × × ✓

5.4.1. Evaluation of learning curves
In Fig. 10, learning curves of three algorithms (att-MADDPG,

bc-MADDPG and demo-MADDPG) compared with baselines (MAD-
DPG and MAPPO) under different scenarios are demonstrated.
When we train our algorithms, the rewards are evaluated three
times every 5 training episodes. We tested three scenarios as
follows:

(a) A load with three grasping points: In this scenario, all
the demonstration-based and attention-based algorithms suc-
cessfully converged at a positive reward level but MADDPG and
MAPPO failed to converge before 1500 training episodes. We also
found that both bc-MADDPG and demo-MADDPG with demon-
stration learning converged faster than att-MADDPG. Moreover,
bc-MADDPG had the smallest variance and oscillations after con-
vergence compared with att-MADDPG (with the largest variance)
and demo-MADDPG. It is observed that the learning-based meth-
ods were able to approach the reward level of demonstration as
shown by the black dotted line.

(b) A load with four grasping points: In this scenario,
we found that att-MADDPG could not converge and only
demonstration-based methods (bc-MADDPG and demo-MADDPG)
were able to. However, their convergence speed was slow and
more variance was observed as the complexity of the task in-
creased with more grasping points. We found that higher rewards
were gained by the bc-MADDPG methodology when compared
with the demo-MADDPG.

(c) A load with six grasping points: In this scenario, all the
methods failed to finish the task except the bc-MADDPG and
demo-MADDPG. Even for the demo-MADDPG, it only achieved
positive rewards after 1800 episodes. We also found that demo-
MADDPG achieves the best performance under the scenario with
six UAVs and grasping points.

After convergence, we observed large oscillations in the curves,

particularly in scenarios involving four and six grasping points.

These oscillations were due to the drones’ different starting

positions and the fact that the reward function is related to

the distance travelled. However, our focus was on maintaining a

positive reward level, and the mean value of the reward function

met this criterion (although oscillations could be reduced by

increasing the success rate of the proposed methods).

5.4.2. Evaluation of optimal policies

To evaluate the performance of optimal policies of different

algorithms obtained from the previous learning process, we test

them in 20 repeated experiments for each scenario where the

initialized positions of drones are randomly sampled. We record

the following metrics during the cooperative navigation task:

finished time, average speed, position deviation, success rate and

total reward.

• Finished time: The time cost until all UAVs successfully finish

coverage and hover for 10 steps.

• Average speed: The average speed of a UAV team during a

successful coverage task.

• Success rate: Whether all UAVs have covered all grasping

points within the permitted range while staying hovering for

10 steps.

• Deviation: Average position deviation between each drone and

its corresponding grasping point during the last 10 steps.

• Total reward: Cumulative shared reward is measured during

each episode.

The results are shown in Table 2 (The methods with blue

colour are the baselines). The first three metrics are only cal-

culated when the navigation task of UAVs is successfully fin-

ished (failed policies will have void values). For each evaluation

episode, the positions of UAVs are randomly initialized and the

successful condition is that UAVs covered all grasping points

while keeping that formation for 10 steps within the required de-

viation (the evaluation episode is terminated after the successful

condition). The permitted deviation range during the training is

0.5 metres.

(a) For three points, demo-MADDPG has the shortest finished

time while BSO spends the largest time cost due to the random

exploration. We can observe that the deviation is less than 0.3

metres, and the success rate is more than 80% for all algorithms.

MAPPO and bc-MADDPG achieve the best performance with a

large success rate and less deviation.

(b) For four points, the success rates of MADDPG and att-

MADDPG are zero. Among all the algorithms evaluated in this

scenario, bc-MADDPG outperforms the others with the highest

success rate and the smallest position deviation. This indicates

that the behavioural cloning approach has effectively improved

the learning process.

(c) For six points, bc-MADDPG is still the best choice but the

success rate of bc-MADDPG and demo-MADDPG is significantly

9

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Fig. 10. Learning curves used for training different types of loads.

Table 2

Performance of simulation experiments. The blue texts represent the baseline methods.

Method Number Finished time Average speed Deviation Success rate Total reward

MADDPG 3 23.78 ± 2.27 0.51 ± 0.07 0.20 ± 0.03 90% 432.27

MAPPO 3 26.41 ± 3.10 0.26 ± 0.05 0.16 ± 0.04 85% 374.98

att 3 24.50 ± 3.26 0.42 ± 0.08 0.29 ± 0.02 80% 367.83

bc 3 20.44 ± 2.37 0.53 ± 0.07 0.18 ± 0.02 80% 383.60

demo 3 18.94 ± 2.04 0.45 ± 0.05 0.23 ± 0.03 90% 467.84

BSO 3 1189.06 ± 511.44 0.26 ± 0.08 0.26 ± 0.07 80% −11115.56
MADDPG 4 – – – 0% −287.62
MAPPO 4 27.2 ± 4.88 0.28 ± 0.01 0.21 ± 0.03 75% 435.07

att 4 – – – 0% −488.61
bc 4 19.78 ± 2.95 0.47 ± 0.04 0.21 ± 0.04 90% 630.61

demo 4 22.15 ± 2.77 0.46 ± 0.05 0.26 ± 0.02 65% 404.66

BSO 4 1652.18 ± 908.55 0.24 ± 0.04 0.22 ± 0.05 85% −14531.59
MADDPG 6 – – – 0% −231.74
MAPPO 6 – – – 0% −741.65
att 6 – – – 0% −484.46
bc 6 21.75 ± 4.24 0.29 ± 0.03 0.11 ± 0.02 40% 308.34

demo 6 50.42 ± 10.86 0.37 ± 0.03 0.32 ± 0.02 35% 55.99

BSO 6 2360.50 ± 1318.12 0.15 ± 0.03 0.16 ± 0.04 50% −26748.95

decreased to 40% and 35% due to the increasing complexity of
the load. The BSO method shows a reasonably good performance
with the highest success rate, but it has a longer finished time
compared to other methods.

Overall, for all scenarios with different number of points,
MADDPG with demonstration strategies tends to have better per-
formance than algorithms without it. Demonstrations can aid the
learning to converge even in scenarios with more grasping points.
However, it also introduces more computation into the learning.
The aforementioned discussion of learning curves shows that the
attention mechanism can enable MADDPG to converge faster.
Nevertheless, the results of metrics in att-MADDPG have not
shown any further improvement compared with plain MADDPG
under more challenging scenarios. According to Appendices A.2
and A.1, we find BSO takes a longer time to adapt to different sce-
narios but it does not need any training time. Moreover, MAPPO
has good performance in scenarios with three and four grasping
points, but its convergence time is longer.

To better understand the optimal policies, we visualize some
trajectories from the evaluations in Fig. 12. From analysing all
trajectories, it is evident that the optimal policies developed allow
each drone to navigate towards goal positions while effectively
avoiding collisions with other drones. However, since our focus
is on maximizing the reward for maintaining the grasping for-
mation after a successful coverage, not all trajectories necessarily
result in the shortest path for coverage. The paths generated by
bc-MADDPG and demo-MADDPG are close to the shortest path
under different scenarios. Especially for bc-MADDPG, although
the demonstrated trajectories used for behaviour cloning are not
the shortest paths, the subsequent training of policies can still
correct it and lead to relatively good path planning for all UAVs
(highlighting the advantage of flexible navigation). Furthermore,
it is apparent that BSO takes a longer travelling distance to find
the grasping points compared to other methods.

We validate our algorithms using the Crazyflie 2.1 quadrotors
in a bounded 3-metre by 3-metre workspace. The parameters of

10

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Fig. 11. Real world setup. A: A view from the top camera. Grasping locations

are detected by the Aruco makers placed on the load. B: (1) is the positioning

deck. (2) is the optical-flow deck consisting of a VL53L1x ToF sensor and a

PMW3901 optical flow sensor. C: A brief diagram shows the control pipeline

for our algorithm.

Crazyflie are shown in the table of Fig. 11. It weighs 27 g and can
maximally fly for 10 min with a maximum 10 g payload. As for
the small load ability, we only validate the navigation part before
manipulation. As aforementioned, the observation of each UAV
consists of its own positions and velocities. To give the accurate
positions of UAVs, the Lighthouse localization camera and the po-
sitioning board from Bitcrazy company are utilized. The onboard
positioning device is installed on the top of a Crazyflie as shown
in number one of B of Fig. 11. The bottom board with number 2
is the optical flow board which is utilized for extracting velocity
readings in the horizontal plane. To provide for the desirable
positions of grasping points, we use the detection program from
https://github.com/pal-robotics/aruco_ros to localize the Aruco
makers on the load surface. A Intel Realsense camera is mounted
on the top of the workspace to detect the makers and sends the
positions of them to the central control unit. Then, these positions
will be transformed into the inertial coordinate of the Lighthouse
localization system. The communication and coding architecture
is built on the open-source Crazyswarm ROS interface where
the sensor data can be updated at 100 Hz. The optimal policies
from different algorithms are trained in an official simulator from
Crazyswarm to achieve the sim-to-real transfer.

As shown in (b) of Fig. 12, we test the policies in the scenarios
of three and four UAVs (currently we only have four Crazyflies)
and show the real-world trajectories for each Crazyflie in the
last column. The first two rows try to reproduce the simulation
results, and two different take-off points are validated in the
last two rows. Due to the smaller size of the UAVs used in our
experiments, we modified the success condition from a required
precision of 0.5 m to 0.2 m. This implies that the task is complete
when all the Crazyflies approach the areas that are within a
0.2-metre radius of their respective grasping points. As shown
in Table 3, we observed that our proposed demonstration-based
and attention-based methods perform better than the baseline
MADDPG. The demo method achieved a minimal deviation of less
than 0.1 cm. The bc method also achieved a good deviation, but
it took more time to complete the task. We further validated the
behaviour cloning method with four Crazyflies and found that the
achieved deviation was less than 0.14 cm. The results obtained
from our physical experiments not only matched the simulation
results, but also demonstrated the ability of our methods to
generalize to unseen take-off points.

Table 3

Performance of real-world experiments. The first four scenarios are with three

drones and the last scenario is with four drones.

Method Finished time Average speed [m/s] Deviation [m]

MG-3 579 ± 33 0.129 ± 0.001 0.168 ± 0.055

att-3 375 ± 142 0.119 ± 0.006 0.133 ± 0.010

bc-3 411 ± 68 0.118 ± 0.002 0.126 ± 0.041

demo-3 252 ± 16 0.111 ± 0.004 0.099 ± 0.040

bc-4 448 ± 198 0.115 ± 0.004 0.140 ± 0.015

Table 4

Evaluation of the reloaded architectures of the attention framework of the

actor;the feasibility is validated in all scenarios.

Architecture Feature encoders Decision layers Feasibility

1 Shared not Shared No

2 not Shared Shared No

3 not Shared not Shared No

4 Shared Shared Yes

5.5. Targeted navigation by curriculum learning

In this section, we explore and analyse the results of targeted

navigation using curriculum learning in the scenarios of different

number of grasping points. We adopt the same environment as

that of the flexible navigation. In Stage 1, we consider an easy

scenario with three grasping points. In Stage 2, we examine a

more challenging scenario with four grasping points. Finally, in

Stage 3, we test a load with six grasping points. In this case

study, we assessed the effectiveness of attention frameworks in

curriculum learning for targeted navigation (as mentioned in Sec-

tion 4.3). Our empirical experiments revealed that the previous

architecture of MADDPG (see Section 5.4), where each agent has

its own actor and critic, is not valid for curriculum learning as

the reloaded actors and critics do not facilitate the algorithm’s

learning (see (D) of Fig. 15). To address this issue, we validated

our proposed shared att-DDPG and explored various embeddings

of the attention framework of the actor (see (1) of Fig. 5) to

determine which part of the reloaded model contributes the most

to positive transfer. As summarized in Table 4, it indicates that

sharing both the feature encoders (f 1, f 2, and f3) and decision

layers (h and g) among all agents during the curriculum training

led to positive transfer learning.

We then compared the performance of targeted navigation

with flexible navigation in all stages. For the shared att-DDPG,

most parameters were kept the same as att-MADDPG. However,

we slightly decreased the learning rate in stages 2 and 3 to ensure

better stability, as using a large learning rate can destroy the

reloaded model.

5.5.1. Comparison of learning curves

As shown in (a) of Fig. 13, in stage 1, we observed that targeted

navigation converged faster than flexible navigation (almost 30

episodes early). This is likely due to the fact that goals were

assigned for each agent using a lower dimensionality of feature

space, thereby reducing the training complexity and eliminating

the need for extra coordination among all grasping points. In

stage 2, as shown in (b) of Fig. 13, compared to flexible navigation,

which is trained from scratch, targeted navigation with model

reloading was able to maintain a high reward level and further

improve it after moving to a new stage. The flexible navigation

achieved the highest reward until 1200 episodes. In stage3 ((c)

of Fig. 13), the reloaded model for targeted navigation required

approximately 50 episodes to adapt to the new stage, but still

converged faster than flexible navigation, which converged in

2000 episodes. However, in all stages, the variance of targeted

navigation was higher than that of flexible navigation. The reason

11

https://github.com/pal-robotics/aruco_ros

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Fig. 12. Evaluation of trajectories with different methods and scenarios. (a) shows the results from simulation using different methods; For three points, UAVs are

initialized at (0.0,4.5),(3.5,−4.5),(−3.5,−4.5) [m] respectively. For four points, UAVs are initialized at (3.5,4.5),(3.5,−4.5),(−3.5,−4.5),(−3.5,4.5) [m] respectively. For

six points, UAVs are initialized at (4.5,4.5),(4.5,−4.5),(−4.5,4.5),(−4.5,−4.5),(0,4.5),(0,−4.5) [m] respectively. All positions are in the inertial coordinate. (b) shows the

results from the real world using bc-MADDPG (Row 2,4) and demo-MADDPG (Rows 1,3).

Fig. 13. Comparison of learning curves between targeted navigation and flexible navigation.

for this is that targeted navigation depends on the position it

started from, while flexible navigation can better coordinate and

generate new plans, resulting in lower variance.

5.5.2. Performance evaluation

Table 5 presents the performance evaluation of the two navi-

gation tasks with random initialization of take-off positions. The

metrics used are the same as in Section 5.4.2, and the results

are based on 20 repeated experiments. It can be observed that

flexible navigation tends to finish the navigation task faster (al-

most 2 time steps earlier than targeted navigation). However, the

average speed of targeted navigation is faster than that of flexible

navigation. The reason for this is that flexible navigation can

always observe all grasping points and coordinate an optimal plan

12

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Table 5

Performance of simulation experiments between targeted navigation and flexible navigation.

Method Number Finished time Average speed Deviation Success rate Total reward

Targeted navigation 3 20.22 ± 2.44 0.53 ± 0.06 0.17 ± 0.02 90% 208.41

Flexible navigation 3 18.94 ± 2.04 0.45 ± 0.05 0.23 ± 0.03 90% 467.84

Targeted navigation 4 21.07 ± 1.98 0.51 ± 0.05 0.16 ± 0.02 70% 135.64

Flexible navigation 4 19.78 ± 2.95 0.47 ± 0.04 0.21 ± 0.04 90% 630.61

Targeted navigation 6 23.28 ± 2.66 0.56 ± 0.06 0.22 ± 0.06 35% 88.91

Flexible navigation 6 21.75 ± 4.24 0.29 ± 0.03 0.11 ± 0.02 40% 308.34

Fig. 14. Visualization of targeted navigation and flexible navigation. The solid circles represent the id of each UAV;hollow circles represent the sequence of the task

from 1 to 4.

to reduce the time required to finish the task. Yet, the targeted

navigation must follow a fixed assignment. In the scenarios with

three and four points, the deviation of the targeted navigation

is lower than that of the flexible navigation. The success rate of

the two methods are almost the same. In Fig. 14, we visualized

the trajectories of all UAVs using the same take-off points as in

Section 5.4.2. For targeted navigation, we commanded UAV 1,

3, 4, and 6 to cover the outer four grasping points, and UAV 2

and 5 to cover the inner two grasping points. On the other hand,

we can observe that flexible navigation automatically covered all

grasping points with a reasonable assignment.

Overall, we find that the targeted navigation task is easier

to train and its deviation is usually smaller than that of flexible

navigation. However, flexible navigation often takes less time to

complete the task by planning a more efficient route. In addition,

flexible navigation can automatically cover all grasping points

with a reasonable assignment, while targeted navigation requires

a fixed assignment. Therefore, the choice between these two

methods depends on the specific requirements and constraints

of the task.

5.6. Navigation and load manipulation

In this section, we demonstrate how to use the navigation

policy obtained from the previous training to achieve load ma-

nipulation. The scenario with six grasping points is tested by the

policy of demo-MADDPG. The load weighing 532 grams to be ma-

nipulated by all UAVs is placed in the centre of a field. Each UAV

weighing 512 grams with a cable-suspended suction cup can lift

a load up to 80 grams (More details can be found in Appendix C).

As shown in Fig. C.20 included in the appendix, UAVs firstly hover

around the field. Then, they utilize their observations and the

optimal control policies to achieve the coverage of all grasping

points without collision. In this setup, the manipulation task is

triggered by the task coordinator once the position deviation

between each UAV and its corresponding goal position is less

than 0.3 metres. During the task, the distance between a suction

cup and a load is measured using a downward ultrasonic sensor

mounted on each UAV. UAVs utilize the position PID controller
to carefully lower themselves and attach their suction cups to the
surface of the load. Finally, the load is lifted using the cooperative
vertical force imposed by all UAVs simultaneously. The graph
depicts that the pose change of the load is minimal during the
manipulation, indicating that the UAVs are able to work together
to maintain the load’s position and orientation while it is being
lifted.

5.7. Ablation experiments

In this section, we discuss the results of ablation experi-
ments on the demonstration-based algorithm (see Section 5.4)
and curriculum-based algorithm (see Section 5.5).

5.7.1. Demonstration-based algorithm
As shown in Table 1, as we combine several techniques into

demo-MADDPG, we conducted ablation experiments on the pri-
ority buffer and attention framework respectively. The deploy-
ment of a prioritized replay buffer in demo-MADDPG increases
the sampling probability of demonstration data when training the
policy. To assess the benefits of using a priority-based sampling,
we conducted an ablation experiment by replacing the prioritized
replay buffer with a normal one. The results are shown in (A)
of Fig. 15. In the scenario with three drones, the priority sam-
pling enables faster convergence, while the buffer with random
sampling fails to converge. However, in the scenario with four
drones, there is no significant advantage of priority sampling.
The buffer with priority sampling seemed to have higher re-
wards before 600 episodes, but the performance was not superior
overall. As for the attention framework, in (B) of Fig. 15, it can
be observed that the algorithm without attention framework
cannot converge in the scenario with three grasping points. In the
scenario with four grasping points, the attention framework led
to a faster convergence speed (around 60 episodes earlier than
the algorithm without attention). Overall, these results suggest
that the attention framework can improve the training efficiency
and effectiveness of demo-MADDPG, especially in more complex
scenarios.

13

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Fig. 15. Results of the ablation experiments. A: ablation analysis on the priority sampling of demo-MADDPG. B: ablation analysis on the attention framework of

demo-MADDPG. C: ablation analysis on applying model reloads in curriculum learning. D: Performance between att-DDPG and att-MADDPG in stage 2.

5.7.2. Curriculum-based algorithm

(C) of Fig. 15 illustrates a performance comparison between

the reloaded model and the training from scratch in Stage 2 and

3 of att-DDPG. The results show that the model reload has limited

benefit in Stage 2, but in the more challenging Stage 3 with six

grasping points, the model reload is able to successfully converge.

Additionally, we evaluated the performance of att-MADDPG and

att-DDPG when reloading the model from Stage 1 to Stage 2 as

part of our exploration of curriculum learning structure. Our find-

ings indicate that while att-MADDPG cannot converge, att-DDPG

is able to successfully converge at a higher reward level.

6. Conclusion

In this paper, we propose a control system based on multi-

agent reinforcement learning for aerial navigation and manipula-

tion by UAVs targeting at flexible and targeted navigation tasks.

The two demonstration techniques inspired by ORCA method

are proved to be effective for scenarios with high-dimensional

state space. Besides, the obtained optimal policies enable up to

six UAVs to find collision-free paths to achieve the coverage
of the grasping points with a reasonable success rate. In order
to improve the learning efficiency, we incorporate an attention
framework into MADDPG and use curriculum learning to real-
ize the knowledge reuse from a few grasping points into more
points under the aerial navigation task. The preliminary results
show that based on our framework, the previous experience of
a simple load can facilitate the training of a more complicated
load. Though we achieved learning from a simple to complex
case, our results show that in some cases, the success rate for
complex loads is not high enough. Furthermore, we were not
able to achieve a high coverage ability with precision when com-
pared with some traditional methods. Nevertheless, our adaptive
approach does not rely on prior known models, or high-level
path planning and provides the first step for the learning-based
application of aerial navigation and manipulation.

In our work, our experiments were set up in an indoor envi-
ronment with the inertial coordinate created using global infor-
mation. In translating to outdoor use, one approach would be to
use a combination of GPS and other sensors such as accelerom-
eters, gyroscopes and magnetometers to establish an inertial

14

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Table A.6

The number of total parameters for different MARL algorithms.

MADDPG,bc-MADDPG 3 points 4 points 6 points

Total of parameters 43910 50310 67718

att-MADDPG,demo-MADDPG 3 points 4 points 6 points

Total of parameters 26118 26118 26118

MAPPO 3 points 4 points 6 points

Total of parameters 13446 16518 24966

coordinate frame. The GPS would provide the absolute position

and orientation of the drone with respect to the Earth’s coordi-

nate system, while the other sensors would provide additional

information about the drone’s movement and orientation rel-

ative to its local environment. Furthermore, the above can be

augmented by identifying and using a suitable reference point

or landmark in the environment, such as a building or a tree.

Translating the work we have done in this work into unstructured

environments would be the focus of future work.

Data availability

No data was used for the research described in the article.

Acknowledgement

We would like to acknowledge the support of the Engineering

and Physical Sciences Research Council (EPSRC), United Kingdom

funding: NanoMAN (EP/V055089/1), for the work carried out in

this manuscript.

Appendix A. Supplementary materials

A.1. Swarm optimization method

Table B.8 shows the comparison between our proposed method

and a behavioural swarm optimization (BSO) algorithm [7] that

Table B.7

Structure of neural networks with attention mechanism.

Encoders Structure

f1(action) [4,32], ReLU, [32,16], ReLU

f1(value) [6,32], ReLU, [32,16], ReLU

f2 [4,32], ReLU, [32,16], ReLU

f3 [2,32],ReLU,[32,16],ReLU

h2(action) [48,32], LeakyReLu, [32,32], LeakyReLU,[32,2], Tanh

h2(value) [48,32], ReLU, [32,32],ReLU, [32,16]

q [16,16]

g [32,32], LeakyReLU,[32,32],LeakyReLu, [32,1]

we modified by adding an additional shepherding behaviour to

repel other robots and removing the flocking behaviour to ensure

multi-target coverage. We evaluated both methods using the

same environment and tasks as described in this work, using

the same metrics (Finished time calculates the time cost in the

test time and Training episode records the time cost in the

training time), and compared it with the best MARL algorithm

of Section 5.4. The results show that both methods have similar

deviation and success rates. However, the BSO algorithm has

fewer parameters and does not require training time, whereas the

MARL algorithm requires training time but can be deployed more

quickly. We normalized the metrics and plotted them on radar

charts for each scenario in Fig. B.16 . From the all Tables in this

part, it will be seen that the concept of no-free lunch applies. The

MARL methodology takes time to train but is faster at finishing

the task during runtime while the situation is the opposite for the

swarm optimization algorithm. We also recorded the number of

parameters for all MARL models and scenarios to evaluate model

complexity (see Table A.6). It can be observed that the number

of parameters increases with the number of grasping points. For

att-MADDPG, the number of parameters remains constant as the

attention framework can handle varying input dimensions.

A.2. MAPPO

MAPPO extends the original PPO algorithm to the multi-

agent case by incorporating a centralized critic network that can

Fig. B.16. Visualization of metrics between MARL (red colour) and swarm optimization (blue colour) in the radar charts. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Fig. B.17. Learning curves of MAPPO in all scenarios.

15

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Table B.8

Performance comparison between MARL and BSO in all scenarios.

Method Number Finished time Training episodes No of parameters Deviation Success rate

MARL 3 23.78 1500 43910 0.2 90%

BSO 3 1189.06 0 10 0.26 80%

MARL 4 19.78 2000 50310 0.21 90%

BSO 4 1652.18 0 10 0.22 85%

MARL 6 21.75 3500 67718 0.11 40%

BSO 6 2360.50 0 10 0.16 50%

Fig. B.18. Attention scores for demo-MADDPG in the scenario of a load with three grasping points.

Fig. C.19. The simulation model of our proposed UAV.

estimate the state-value function for all agents. We utilized code

from https://github.com/Lizhi-sjtu/MARL-code-pytorch/tree/main/

1.MAPPO_MPE to implement MAPPO in our scenarios. However,

we found that the algorithm did not converge in continuous

action even after 9000 iterations. Therefore, we changed the con-

tinuous action of drones to discrete actions (forward, backwards,

left, right, and stay) with a velocity of 0.5 m/s per action. We set

the total number of training episodes to 9000. Fig. B.17 shows

that MAPPO was able to converge to positive rewards in scenarios

with three and four UAVs, but failed to converge with six UAVs.

Furthermore, we found that MAPPO requires more than four

times the number of training episodes to converge compared to

our proposed methods, making it a slow process.

16

https://github.com/Lizhi-sjtu/MARL-code-pytorch/tree/main/1.MAPPO_MPE
https://github.com/Lizhi-sjtu/MARL-code-pytorch/tree/main/1.MAPPO_MPE
https://github.com/Lizhi-sjtu/MARL-code-pytorch/tree/main/1.MAPPO_MPE

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

Fig. C.20. Overview of our aerial manipulation using reinforcement learning for navigation and PID controller for manipulation. (1) Start (2) UAVs coordinate and

search the grasping points (3) All grasping points have been covered (4) UAVs drop down to attach their suction cups to the load (5) A load is lifting by all UAVs.

Appendix B. Attention analysis

We evaluate the attention scores of demo-MADDPG in the

scenario with three UAVs. The attention score is calculated by

a scaled dot product, which indicates the relationship between

the query and key. In our scenario, it reveals the weight change

between the agent’s own observation and its corresponding keys

like other-entity observations and goal observations. For example,

goal scores of agent i are calculated by the attention between

the self-observation ois of UAV i and its goal observations oig .

Fig. B.18 illustrates how the weights change during a successful

coverage task. The number of each goal is indicated in the bottom

snapshots. The weight number of other–other agent scores relate

to its neighbour UAVs. The results show the scores of different

entities for each agent are not the same during the task. They

keep changing in a small range and stabilize when all grasping

points have been covered. We also find the goal assignment

inferred by the policy does not show much relationship with the

corresponding goal scores (For example, although UAV1 capture

goal 2, the goal score of goal 2 for UAV1 does not show any

specific rules). We deduce that this is because of the centralized

training of MADDPG as agents have to consider the observa-

tions of other agents to make decisions. Thus, the observation

change of all grasping points matters rather than focusing on

individual goals. For the other-agent scores calculated by the self-

observation ois and other-entity observation oit , it is observed that

UAV0 located in the middle of the field has two distinct values

for UAV1 and UAV2. However, for the UAV1 and UAV2 which are

located on the side of the field, their weights for other agents

finally converge to the same value. The reason for this difference

may relate to the position of a UAV. The distance between UAV0

and the other two UAVs is the same, thus, the importance of each

other UAV cannot be ignored. On the contrary, for UA1, UAV2 is

too far from it and its score of UAV2 can be approximately close

to UAV0.

Moreover, the parameters of the neural networks we used in

the attention framework are illustrated in Table B.7.

Table C.9

Properties of UAV.

Base mass (g) 120

Propeller body mass (g/per) 100

Total drone mass mq (g) 520

Size (m) 0.3 × 0.3 × 0.02

Arm length (m) 0.13

force constant k 8.50643e−06
moment constant b 0.016

inertial Ix, Iy, Iz 0.007, 0.007, 0.012

Table C.10

Properties of the rope and loads.

Rope size (m) 0.01 × 0.01 × 0.025

Suction size (cm) 1.8855 × 1.8855 × 3.9118

Rope Mass (g) 36

Suction cup Mass (g) 25

Maximum lift capacity (g/per) about 100

Payload1 Mass (g) 270

Payload1 size (m) 7.5 × 3.0 × 0.2

Payload2 Mass (g) 350

Payload3 size (m) 5.0 × 5.0 × 0.2

Payload3 Mass (g) 525

Payload3 size (m) 6.0 × 6.0 × 0.2

Cable length (m) 0.448

Appendix C. Details of UAVs in the simulator

See Figs. C.19 and C.20, and Tables C.9 and C.10

References

[1] F.A. Goodarzi, T. Lee, Stabilization of a rigid body payload with multiple

cooperative quadrotors, J. Dyn. Syst. Meas. Control 138 (12) (2016).

[2] G. Loianno, V. Kumar, Cooperative transportation using small quadrotors

using monocular vision and inertial sensing, IEEE Robot. Autom. Lett. 3 (2)

(2017) 680–687.

[3] S. Belkhale, R. Li, G. Kahn, R. McAllister, R. Calandra, S. Levine, Model-

based meta-reinforcement learning for flight with suspended payloads,

IEEE Robot. Autom. Lett. 6 (2) (2021) 1471–1478.

17

http://refhub.elsevier.com/S0921-8890(23)00128-8/sb1
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb1
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb1
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb2
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb2
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb2
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb2
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb2
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb3
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb3
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb3
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb3
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb3

J. Chen, R. Ma and J. Oyekan Robotics and Autonomous Systems 167 (2023) 104489

[4] I. Palunko, A. Faust, P. Cruz, L. Tapia, R. Fierro, A reinforcement learn-

ing approach towards autonomous suspended load manipulation using

aerial robots, in: 2013 IEEE International Conference on Robotics and

Automation, IEEE, 2013, pp. 4896–4901.

[5] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, J. Pan, Towards optimally decen-

tralized multi-robot collision avoidance via deep reinforcement learning,

in: 2018 IEEE International Conference on Robotics and Automation, ICRA,

IEEE, 2018, pp. 6252–6259.

[6] J. Zhi, J.-M. Lien, Learning to herd agents amongst obstacles: Training

robust shepherding behaviors using deep reinforcement learning, IEEE

Robot. Autom. Lett. 6 (2) (2021) 4163–4168.

[7] K. Huang, J. Chen, J. Oyekan, Decentralised aerial swarm for adaptive and

energy efficient transport of unknown loads, Swarm Evol. Comput. 67

(2021) 100957.

[8] R.N. Haksar, M. Schwager, Distributed deep reinforcement learning for

fighting forest fires with a network of aerial robots, in: 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS, 2018,

pp. 1067–1074.

[9] R. Polvara, S. Sharma, J. Wan, A. Manning, R. Sutton, Autonomous vehic-

ular landings on the deck of an unmanned surface vehicle using deep

reinforcement learning, Robotica 37 (11) (2019) 1867–1882.

[10] R. Lowe, Y.I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, I. Mordatch, Multi-

agent actor-critic for mixed cooperative-competitive environments, Adv.

Neural Inf. Process. Syst. 30 (2017).

[11] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P.H. Torr, P. Kohli, S.

Whiteson, Stabilising experience replay for deep multi-agent reinforcement

learning, in: International Conference on Machine Learning, PMLR, 2017,

pp. 1146–1155.

[12] H. Mao, Z. Zhang, Z. Xiao, Z. Gong, Modelling the dynamic joint policy of

teammates with attention multi-agent DDPG, in: Proceedings of the 18th

International Conference on Autonomous Agents and MultiAgent Systems,

2019, pp. 1108–1116.

[13] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron,

V. Firoiu, T. Harley, I. Dunning, et al., Impala: Scalable distributed deep-

rl with importance weighted actor-learner architectures, in: International

Conference on Machine Learning, PMLR, 2018, pp. 1407–1416.

[14] M. Hüttenrauch, S. Adrian, G. Neumann, et al., Deep reinforcement learning

for swarm systems, J. Mach. Learn. Res. 20 (54) (2019) 1–31.

[15] D.A. Pomerleau, Alvinn: An autonomous land vehicle in a neural network,

Adv. Neural Inf. Process. Syst. 1 (1988).

[16] J. Ho, S. Ermon, Generative adversarial imitation learning, Adv. Neural Inf.

Process. Syst. 29 (2016).

[17] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan,

J. Quan, A. Sendonaris, I. Osband, et al., Deep q-learning from demonstra-

tions, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.

32, No. 1, 2018.

[18] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, P. Abbeel, Overcoming

exploration in reinforcement learning with demonstrations, in: 2018 IEEE

International Conference on Robotics and Automation, ICRA, IEEE, 2018,

pp. 6292–6299.

[19] S. Levine, A. Kumar, G. Tucker, J. Fu, Offline reinforcement learning:

Tutorial, review, and perspectives on open problems, 2020, arXiv preprint

arXiv:2005.01643.

[20] J. Fu, K. Luo, S. Levine, Learning robust rewards with adverserial in-

verse reinforcement learning, in: International Conference on Learning

Representations.

[21] T. Zhang, G. Kahn, S. Levine, P. Abbeel, Learning deep control policies for

autonomous aerial vehicles with mpc-guided policy search, in: 2016 IEEE

International Conference on Robotics and Automation, ICRA, IEEE, 2016,

pp. 528–535.

[22] D. Wang, T. Fan, T. Han, J. Pan, A two-stage reinforcement learning

approach for multi-UAV collision avoidance under imperfect sensing, IEEE

Robot. Autom. Lett. 5 (2) (2020) 3098–3105.

[23] W. Wang, T. Yang, Y. Liu, J. Hao, X. Hao, Y. Hu, Y. Chen, C. Fan, Y. Gao,

From few to more: Large-scale dynamic multiagent curriculum learning,

in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34,

No. 05, 2020, pp. 7293–7300.

[24] J. Yang, A. Nakhaei, D. Isele, K. Fujimura, H. Zha, CM3: Cooperative multi-

goal multi-stage multi-agent reinforcement learning, in: International

Conference on Learning Representations.

[25] Q. Long, Z. Zhou, A. Gupta, F. Fang, Y. Wu, X. Wang, Evolutionary

population curriculum for scaling multi-agent reinforcement learning, in:

International Conference on Learning Representations.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł.

Kaiser, I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process.

Syst. 30 (2017).

[27] S. James, A.J. Davison, Q-attention: Enabling efficient learning for

vision-based robotic manipulation, IEEE Robot. Autom. Lett. (2022).

[28] S. Iqbal, F. Sha, Actor-attention-critic for multi-agent reinforcement learn-

ing, in: International Conference on Machine Learning, PMLR, 2019, pp.

2961–2970.

[29] Y. Liu, W. Wang, Y. Hu, J. Hao, X. Chen, Y. Gao, Multi-agent game

abstraction via graph attention neural network, in: Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 34, No. 05, 2020, pp. 7211–7218.

[30] J.v.d. Berg, S.J. Guy, M. Lin, D. Manocha, Reciprocal n-body collision

avoidance, in: Robotics Research, Springer, 2011, pp. 3–19.

[31] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Has-

selt, D. Silver, Distributed prioritized experience replay, in: International

Conference on Learning Representations.

[32] S. James, M. Freese, A.J. Davison, Pyrep: Bringing v-rep to deep robot

learning, 2019, arXiv preprint arXiv:1906.11176.

[33] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, Y. Wu, The surprising

effectiveness of ppo in cooperative multi-agent games, Adv. Neural Inf.

Process. Syst. 35 (2022) 24611–24624.

Jingyu Chen received the M.Eng. degree in electri-

cal and electronic engineering from the University of

Leicester and the M.Sc. degree in robotics from The

University of Sheffield, where he is currently pursuing

the Ph.D. degree with the Department of Automatic

Control and Systems Engineering. His research inter-

ests include swarm robotics, swarm intelligence, and

reinforcement learning.

Ruidong Ma received the B.Eng. degree in electrical

and electronics engineering from the University of

Liverpool and the M.Sc. degree in human and bio-

logical robotics from Imperial College London. He is

currently pursuing the Ph.D. degree with the Depart-

ment of Automatic Control and Systems Engineering,

The University of Sheffield. His research interest in-

cludes human– robot-collaboration in complex manual

manufacturing process.

John Oyekan received the M.Sc. degree in robotics and

embedded systems and the Ph.D. degree in computer

science and electronic engineering from the University

of Essex. He is currently a Lecturer in digital manufac-

turing with the Department of Automatic Control and

Systems Engineering, The University of Sheffield. Prior

to The University of Sheffield, he was an Engineer at

the Manufacturing Technology Centre, Coventry, where

he developed software architectures and algorithms for

autonomous systems. He has over 30 publications in

the areas of swarm robotics, manufacturing informatics,

bio-inspired algorithms, and sensing.

18

http://refhub.elsevier.com/S0921-8890(23)00128-8/sb4
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb4
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb4
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb4
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb4
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb4
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb4
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb5
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb5
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb5
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb5
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb5
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb5
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb5
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb6
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb6
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb6
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb6
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb6
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb7
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb7
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb7
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb7
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb7
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb8
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb8
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb8
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb8
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb8
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb8
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb8
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb9
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb9
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb9
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb9
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb9
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb10
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb10
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb10
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb10
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb10
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb11
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb11
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb11
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb11
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb11
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb11
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb11
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb12
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb12
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb12
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb12
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb12
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb12
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb12
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb13
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb13
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb13
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb13
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb13
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb13
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb13
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb14
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb14
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb14
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb15
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb15
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb15
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb16
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb16
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb16
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb17
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb17
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb17
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb17
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb17
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb17
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb17
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb18
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb18
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb18
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb18
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb18
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb18
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb18
http://arxiv.org/abs/2005.01643
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb20
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb20
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb20
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb20
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb20
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb21
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb21
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb21
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb21
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb21
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb21
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb21
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb22
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb22
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb22
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb22
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb22
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb23
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb23
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb23
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb23
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb23
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb23
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb23
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb24
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb24
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb24
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb24
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb24
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb25
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb25
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb25
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb25
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb25
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb26
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb26
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb26
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb26
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb26
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb27
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb27
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb27
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb28
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb28
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb28
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb28
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb28
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb29
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb29
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb29
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb29
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb29
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb30
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb30
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb30
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb31
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb31
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb31
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb31
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb31
http://arxiv.org/abs/1906.11176
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb33
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb33
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb33
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb33
http://refhub.elsevier.com/S0921-8890(23)00128-8/sb33

	A deep multi-agent reinforcement learning framework for autonomous aerial navigation to grasping points on loads
	Introduction
	Related Work
	Multi-Agent Reinforcement Learning
	Learning from demonstration
	Curriculum learning and Attention mechanism

	Problem definition
	Methodology
	Reinforcement learning setup
	Demonstration learning
	Learning with demonstration trajectories
	Learning with Behaviour cloning

	Attention-based MADDPG and curriculum learning
	System overview

	Experiments and Results
	Task description
	Implementation specifications
	Hyper-parameter exploration
	Observation range
	Stage of behaviour cloning

	Flexible navigation by demonstration
	Evaluation of learning curves
	Evaluation of optimal policies

	Targeted navigation by curriculum learning
	Comparison of learning curves
	Performance evaluation

	Navigation and load manipulation
	Ablation experiments
	Demonstration-based algorithm
	Curriculum-based algorithm

	Conclusion
	Data availability
	Acknowledgement
	Appendix A. Supplementary materials
	Swarm optimization method
	MAPPO

	Appendix B. Attention analysis
	Appendix C. Details of UAVs in the simulator
	References

