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Bayesian Emulation of Grey-Box Multi-Model Ensembles Exploiting Known1

Interior Structure∗2

Jonathan Owen† and Ian Vernon‡3

4

Abstract. Computer models are widely used to study complex real world physical systems. However, there are5
major limitations to their direct use including: their complex structure; large numbers of inputs and6
outputs; and long evaluation times. Bayesian emulators are an effective means of addressing these7
challenges providing fast and efficient statistical approximation for computer model outputs. It is8
commonly assumed that computer models behave like a “black-box” function with no knowledge9
of the output prior to its evaluation. This ensures that emulators are generalisable but potentially10
limits their accuracy compared with exploiting such knowledge of constrained or structured output11
behaviour. We assume a “grey-box” computer model and develop a methodological toolkit for its12
analysis. This includes: multi-model ensemble subsampling to identifying a representative model13
subset to reduce computational expense; constructing a targeted Bayesian design for optimisation14
or decision support; a “divide-and-conquer” approach to emulating sums of outputs; structured15
emulators exploiting known constrained and structured behaviour of constituent outputs through16
splitting the parameter space and imposing truncations; emulation of sums of time series outputs;17
and emulation of multi-model ensemble outputs. Combining these methods establishes a hierarchical18
emulation framework which achieves greater physical interpretability and more accurate emulator19
predictions. This research is motivated by and applied to the commercially important TNO OLYM-20
PUS Well Control Optimisation Challenge from the petroleum industry which we re-express as a21
decision support under uncertainty problem. We thus encourage users to examine their “black-box”22
simulators to achieve superior emulator accuracy.23

Key words. Computer models, Bayesian emulation, Bayes linear, Known simulator behaviour, Multi-model24
ensembles, Decision support under uncertainty25

MSC codes. 62J, 62K, 62P26

1. Introduction. Mathematical models of complex real world physical systems in the27

form of numerical codes known as computer models or simulators are prevalent across many28

scientific disciplines, industry, and government. They are used to: study the dynamics of29

physical systems [59]; calibrate or history match to observation data [9, 10]; and to guide30

decision making processes [42, 32]. However, computer models commonly exhibit a complex31

structure; possess large numbers of inputs and outputs, including spatial-temporal fields; and32

crucially have a high computational expense of evaluation. In order to address such challenges,33

a suite of Bayesian uncertainty analysis methodology has been developed for using computer34

models to perform inferences about real world systems. Of principal importance are Bayesian35

emulators, also known as surrogate models, which provide fast statistical approximations to36

(functions of) the computer model outputs for as yet unevaluated parameter settings, along37

with a corresponding statement of the associated uncertainty [9, 37, 57]. They are typically38

many orders of magnitude quicker to evaluate than the computer model. Emulators have39
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2 J. OWEN, AND I. VERNON

been successfully employed across a wide range of applications including: climate science40

[21, 49, 63, 14]; cosmology [57, 56, 27, 31]; epidemiology [3, 4, 60]; and petroleum reservoir41

engineering [10, 11, 12, 9, 38, 13].42

Emulation is frequently based on the assumption that a computer model behaves like a43

“black-box” function: the output at a given parameter setting is unknown prior to model44

evaluation; as well as users’ possessing no insight of the structure or links between individual45

physical processes. Whilst this assumption ensures that emulation methodology is generalis-46

able, it potentially limits the emulator accuracy compared to when a user has an understanding47

of how certain outputs behave with respect to changes in the inputs. In this paper we assume48

a “grey-box” simulator which we define as possessing insight into the model behaviour prior49

to its evaluation, but without any specific knowledge of the underlying physics, model struc-50

ture or equations governing the model. Physics informed approaches encompass: emulators51

for functions with known boundaries [58, 29]; emulators for functions possessing structured52

(partial) discontinuities in their input parameter space [41, 61]; and physics-informed neu-53

ral networks which encode prior information of physical laws in non-linear partial differential54

equations which are used in the loss function when fitting a neural network [45], however these55

are unsuitable for application to “grey-box” computer models of the described form.56

In this paper we address the problem of constructing an accurate and efficient emulator for57

an output of interest obtained from a multi-model ensemble whilst exploiting known behaviour58

of individual ensemble members and components of the output. Combining these methods59

yields a novel hierarchical emulation framework and toolkit to incorporate specific features in60

the analysis of “grey-box” computer models resulting in a physically interpretable emulator61

with accurate predictions. The toolkit includes:62

1. Subsampling from multi-model ensembles technique to identify a representative subset63

of models enabling more efficient use of available computational resources (section 4),64

2. Targeted Bayesian design of computer model simulations geared towards the optimi-65

sation or decision support objective (section 5),66

3. Divide-and-conquer approach to emulation where the output of interest is represented67

by a linear combination of constituent model outputs (section 6),68

4. Structured emulation of “grey-box” computer models exploiting a known form of sim-69

ulator behaviour to divide the parameter space by mode of behaviour and employing70

emulator truncation to enforce known physical effects (section 7),71

5. Emulation of outputs formed as sums of time series outputs (section 8),72

6. Emulation of ensemble mean outputs (section 9).73

All of these methods were required to address the challenges encountered in the motivating74

problem, although for the analysis of other computationally expensive computer models and75

multi-model ensembles it may be appropriate to employ a subset of these techniques.76

This research is motivated by the highly complex and commercially significant TNO77

OLYMPUS Well Control Optimisation Challenge [54, 55] from the petroleum industry. The78

aim is to maximise the expected Net Present Value (NPV) objective function over the field life-79

time with respect to well control decision parameters (target production and injection rates),80

whilst accounting for geological uncertainty represented through a multi-model ensemble of 5081

realisations from an underlying stochastic geology model. We recast this as a decision support82

problem for which emulation and Bayesian uncertainty analysis techniques are essential due to83
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BAYESIAN EMULATION GREY-BOX MULTI-MODEL ENSEMBLES 3

the computational expense of the ensemble and high-dimensionality of the decision parameter84

space. An initial attempt at the TNO OLYMPUS Well Control Optimisation Challenge from85

a Bayesian statistical perspective is presented in [42] which was only moderately successful as86

it failed to exploit a number of challenging features in the multi-model ensemble mean NPV87

output. We therefore propose a series of methodological advances in this paper for which all88

were required in the TNO OLYMPUS Well Control Optimisation Challenge. Implementation89

of the efficient multi-model ensemble subsampling technique to identify a representative sub-90

set of models constitutes a novel application to petroleum reservoir engineering and greatly91

reduces the computational expense of the analysis. For each ensemble member the NPV is92

computed as the sum of discounted time series model outputs. Many of these exhibit known93

constrained or structured behaviour with respect to their corresponding well control parame-94

ters for which we formulate structured emulators. These are combined within our hierarchical95

emulator construction. We demonstrate a notable reduction in the emulator uncertainty com-96

pared with uninformed Bayes linear emulators. Whilst we establish our techniques in the97

context of decision support for well control optimisation under uncertainty, the overarching98

framework is flexible and adaptable to handle other structured forms of simulator outputs.99

In section 2 we describe the motivating TNO OLYMPUS Field Development Optimisation100

Challenge. Section 3 provides an overview of Bayesian emulation methodology and an appli-101

cation of Bayes linear emulators to the TNO OLYMPUS Well Control Optimisation Challenge102

ensemble mean NPV objective function. For sections 4 to 9, as in the above numbered list,103

we detail each methodological developments and its application to the TNO OLYMPUS Well104

Control Optimisation Challenge in turn. In section 9 a comparison is also performed of the105

developed approach to emulation with direct Bayes linear emulation of the ensemble mean106

NPV. A conclusion and future research directions are discussed in section 10.107

2. TNO OLYMPUS Well Control Optimisation Challenge. First we provide an over-108

view of the TNO OLYMPUS Well Control Optimisation Challenge in subsection 2.1 before109

performing an exploratory analysis to highlight several important features of this challenge in110

subsection 2.2 which motivate the subsequent methodological development.111

2.1. Summary. A major and commercially important challenge in the petroleum industry112

is field development under uncertainty for a green oil field1. The Netherlands Organisation113

for Applied Scientific Research (TNO), as part of Integrated Systems Approach for Petroleum114

Production (ISAPP) research programme, devised the TNO OLYMPUS Field Development115

Optimisation Challenge [55] (abbreviated to TNO OLYMPUS Challenge) to encourage re-116

search and technological advancements to address the problem of optimisation under uncer-117

tainty. There is a particular emphasis on the uncertainty induced by the unknown underlying118

geology. The TNO OLYMPUS Challenge has received much attention across academia and119

industry with results of the competition phase presented at the EAGE/TNO Workshop on120

OLYMPUS Field Development Optimization [15].121

The TNO OLYMPUS Challenge is based around the fictitious oil reservoir named OLYM-122

PUS (inspired by a virgin oil field in the North Sea) and specifically designed by TNO for the123

1A green oil field is a new subsurface region believed to contain oil or gas which has yet to be exploited
meaning that no drilling, production or injection has been performed.
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4 J. OWEN, AND I. VERNON

challenge. OLYMPUS is a medium complexity model of size 9km by 3km, with a depth of124

50m split into 16 layers for modelling purposes. The design was conceived to imitate a real125

oil field possessing many of the features encountered in actual oil fields including: boundary126

and minor geological faults; two vertical zones separated by an impermeable shale layer (the127

top layer contains fluvial channel sands embedded in floodplain shale, whilst the bottom layer128

consists of alternating layers of coarse, medium and fine sands); as well as multiple types of129

facies (body of rock of specified characteristics) including channel sands, shale, and multi-130

ple types of sand. Geological uncertainty (unknown porosity, permeability, net-to-gross, and131

initial water saturation) is represented via a multi-model ensemble of N = 50 OLYMPUS132

realisations of a stochastic geology model. These are labelled as OLYMPUS 1 to 50. Full133

details of the model can be found in [54].134

The TNO OLYMPUS Challenge consists of three sub-challenges:135

1. Well control optimisation,136

2. Field development optimisation,137

3. Joint optimisation of well placement and well control.138

In this paper we focus on the first where the aim is to develop an optimal strategy with respect139

to maximising the expected Net Present Value (NPV) objective function over the 20 year field140

lifetime (starting January 1, 2016) with accumulation and discounting at 3 month intervals.141

The NPV for an individual OLYMPUS model is denoted NPVj(d) and is defined in (2.1) as142

a function of a vector of decision parameters, d, consisting of target production and injection143

rates for producer and injector wells respectively.144

NPVj(d) =

Nt∑

i=1

Rj(d, ti)

(1 + d)
ti
τ

(2.1)145

E[NPV](d) ≈ NPV(d) =
1

N

N∑

j=1

NPVj(d)(2.2)146

The index i refers to the time interval ∆ti = ti − ti−1, total number of time intervals Nt,147

fixed discount factor d = 0.08, time interval for discounting τ = 365 days, and Rj(d, ti) as148

the difference of all revenue and expenditure during the interval ∆ti, and j = 1, . . . , N = 50149

indexes the particular OLYMPUS realisation of the stochastic geology model. The expected150

NPV is approximated by the ensemble mean NPV defined in (2.2), as dictated by the TNO151

OLYMPUS Challenge, and hence forms our quantity of interest.152

For the well control optimisation challenge a fixed well configuration is provided by TNO153

based on oil reservoir engineering principles with Rj(d, ti) defined in (2.3), where Qj,op(d, ti),154

Qj,wp(d, ti), and Qj,wi(d, ti) are the Field Oil Production Total (FOPT), Field Water Produc-155

tion Total (FWPT), and Field Water Injection Total (FWIT) volumes in time interval ∆ti156

under controls d respectively.157

Rj(d, ti) = Qj,op(d, ti) · rop −Qj,wp(d, ti) · rwp −Qj,wi(d, ti) · rwi(2.3)158

The analogous quantities for an individual well are labelled as WOPT, WWPT, and WWIT159

respectively. TNO stipulate fixed oil revenue rop = 45 $ per bbl (where bbl are the units for160
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a standard barrel of oil, approximately 159L), water production cost rwp = 6 $ per bbl, and161

water injection cost rwi = 2 $ per bbl.162

For demonstrative purposes we focus on the control of a subset of the wells enclosed163

between two partial fault boundaries and in close proximity consisting of two producer wells:164

2 & 10, and two injector wells 2 & 3, with eight control intervals starting on January 1,165

2016, 2018, 2020, 2022, 2024, 2026, 2028 & 2032; thus a total of D = 32 decision parameters.166

Throughout we represent specific individual decision parameters by djk,ti , where j ∈ {P, I}167

refers to the well type (P producer, I injector), k is the well number, and ti is the control168

interval start date. Note that each control interval consists of multiple 3 month discounting169

periods. Collectively these wells are referred to as the Controlled Wells Group (CWG) which170

provides a sub-problem of interacting wells on which to illustrate the presented methodology.171

All remaining wells within OLYMPUS use the fixed controls specified in the TNO reference172

strategy [55]. The expected NPV objective function is computed from contributions of wells173

in the CWG only.174

We believe that the TNO OLYMPUS Challenge setup does not faithfully represent the175

real world field development under uncertainty problem where ensembles of computer models176

are used to aid decision makers. Instead, there is an emphasis on developing efficient ensemble177

optimisation algorithms to identify a single optimal strategy. A full critique and discussion of178

these limitations is presented in [40, Sec. 3.1] and [42]. We therefore re-formulate well control179

optimisation as a decision support problem. The aim of this paper is to develop accurate180

emulators for the expected NPV objective function by exploiting known simulator behaviour181

in order to efficiently perform decision support.182

2.2. OLYMPUS Exploratory Analysis. We first construct a maximin Latin hypercube183

design and run a wave 0 of n = 20 exploratory simulations using all N = 50 OLYMPUS mod-184

els. An important feature is the adherence of OLYMPUS simulations to target production185

and injection rate decision parameters. For one vector of decision parameter settings Figure 1186

compares the input target control rates (black dashed lines) with the corresponding outputted187

achieved rates over the 50 ensemble members (coloured traces). It is immediately evident in188

all plots that the input targets are not strictly adhered to for the full duration of the control189

intervals; a consequence of the underlying physics programmed into the OLYMPUS model,190

including constraints on BHP, resulting in such deviations between the actual and targeted191

control values. It is this behaviour which motivates our structured emulation approach de-192

scribed and demonstrated in section 7. Another interesting facet with potential ramifications193

for emulation and decision support is the vastly different relative absolute contributions of oil194

and water to the NPV objective function. An assessment is shown in Figure 12, along with195

further discussion in Appendix A.1.196

3. Bayesian Emulation.197

3.1. Methodology. An emulator is a stochastic belief specification for a deterministic198

or stochastic function that provides a fast and efficient statistical approximation, yielding199

predictions for as yet unevaluated parameter settings, along with a corresponding statement200

of the associated uncertainty [9, 57, 11]. They are frequently employed for computationally201

expensive simulators across a range of scientific and industrial applications to perform tasks202
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Figure 1: Comparison of the target and achieved control rate decision parameters for an
OLYMPUS wave 0 exploratory simulation over the full multi-model ensemble. Plots show the
OLYMPUS output actual control rates time series as coloured lines for each ensemble mem-
ber for the Well Oil Production Rates (WOPR, top) or Well Water Injection Rates (WWIR,
bottom) for the four wells within the CWG. The black dashed lines show the corresponding
decision parameters of target production or injection rates respectively. The differences be-
tween the output traces and the inputs highlights the deviations between the target control
and what is achieved due to physical constraints applied in the model.

including: calibration [33, 28]; history matching [10, 11, 57, 14]; uncertainty quantifications203

[38]; sensitivity analyses [36, 32]; and decision support [35, 64].204

For a computer model f(d) the ith univariate output is denoted by the function fi(d),205
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where d ∈ Ω ⊂ RD is a vector of (decision) parameters in space Ω. We employ Bayesian206

emulators of the general form in (3.1) [11, 57, 59]:207

fi(d) = gi(dAi
)Tβi + ui(dAi

) + wi(d)208

=

p∑

j=1

βijgij(dAi
) + ui(dAi

) + wi(d)(3.1)209

The subscript Ai denotes a subset of active inputs which are the parameters deemed to210

be most influential for fi(d), where |Ai| = D′ ≤ D. Within the emulator the first term211

models the global function behaviour of fi(d) where the gij(·) are deterministic functions212

of the active inputs with unknown scalar regression coefficients, βij for j = 1, . . . , p, where213

p ∈ N. Collectively, these are denoted by the vector function gT
i (·) =

(
gi1(·) · · · gip(·)

)
,214

and the vector βT
i =

(
βi1 · · · βip

)
∈ Rp respectively. The second term, ui(·), models the215

local behaviour of fi(d) and is a weakly stationary stochastic process with zero mean and a216

pre-specified covariance structure. A common choice is the squared exponential covariance217

function in (3.2) [57, 47], where σ2
ui

is a variance hyperparameter, and θi = (θi1, . . . , θiD′) is218

a D′-vector of (distinct) correlation lengths.219

Cov[ui(dAi
), ui(d

′
Ai
)] = σ2

ui
exp



−

D′∑

k=1

(
dAi,k − d′Ai,k

θik

)2


(3.2)220

The third term in (3.1), wi(x), is an uncorrelated, zero-mean nugget term with covariance:221

Cov[wi(d), wi(d
′)] = σ2

wi
✶{d=d′}(3.3)222

This is a white noise process which is included to account for the inactive variables [13, 57]223

and ensure numerical stability [33]. Further arguments for the inclusion of a nugget term are224

presented in [2, 24].225

We follow a Bayes linear paradigm following the foundations of De Finetti [16, 17] using226

expectation as a primitive within a second-order belief specification. Moreover, we subscribe to227

subjective Bayesianism to provide a coherent framework to structure and combine expert prior228

beliefs with observed data to achieve posterior inferences [19]. Bayes linear methods have nu-229

merous advantages including: quick and simple elicitation of subjective prior beliefs; computa-230

tional tractability; and robust inferences by removing the specification of full prior probability231

distributions, with Bayes linear emulators having been successfully implemented across nu-232

merous applications [11, 57, 59, 21, 60]. An in-depth discussion of Bayes linear statistics can be233

found in [22], with shorter summaries presented in [18, 20]. Given a designD = {d(1), . . . ,d(n)}234

and computer model evaluations for output i, Fi = {fi(d
(1)), . . . , fi(d

(n))}, the Bayes linear235

adjusted expectation, variance, and covariance are:236

EFi
[fi(d)] = E[fi(d)] + Cov[fi(d),Fi] Var[Fi]

−1(Fi − E[Fi])(3.4)237

VarFi
[fi(d)] = Var[fi(d)]− Cov[fi(d),Fi] Var[Fi]

−1Cov[Fi, fi(d)](3.5)238

CovFi
[fi(d), fi(d

′)] = Cov[fi(d), fi(d
′)]− Cov[fi(d),Fi] Var[Fi]

−1Cov[Fi, fi(d
′)](3.6)239
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8 J. OWEN, AND I. VERNON

Full derivation of the Bayes linear emulator adjustment formulae is presented in [40, Sec. 2.4.5].240

An alternative full Bayesian approach is Gaussian Process (GP) emulators, as discussed in [33].241

Under the Bayes linear formulation we opt for a hyperparameter plug-in approach where they242

are specified a priori, utilising expert elicitation, before validating using emulator diagnostic243

techniques [7], as performed in [10, 57, 59].244

3.2. Bayes Linear Emulation of the Expected NPV. Bayes linear emulation is directly245

applied to the expected NPV to explore the 32-dimensional wave 1 decision parameter space246

utilising the above design and linear model predictions for the ensemble mean NPV for train-247

ing and validation. This serves as a comparison with our proposed hierarchical emulation248

approach in subsection 9.3. Following the methodology summarised in section 3, an emulator249

with a nugget term (see (3.1)) is employed with f(d) = U(d) = E[NPV](d). Investigations250

using linear modelling, stepwise selection with the AIC criterion, and with all parameters251

transformed onto [−1, 1], as in [57], yields a subset of 12 active decision parameters, dABL
252

(this includes all 8 target production rates for producer well 2, and target production rates253

for producer well 10 for the control intervals starting 1st January 2016, 2018, 2020, and 2026),254

and a suggested second-order polynomial mean function form:255

E[NPV](dABL
) = β0 +

∑

di∈ABL

{βi,1di + βi,2d
2
i }+ ε(3.7)256

The residual uncertainty is captured through ε which possesses an estimate residual standard257

error σlm. The unknown regression coefficients are assumed to have prior expectation µβ = 0258

and an infinite prior uncertainty, with emulator updates exploiting limiting results as Var[β] →259

∞ for which formulae are presented in [42, Sec. 2.4.5].260

For the residual process it is assumed that E[u(dABL
)] = 0 and E[w(d)] = 0 with a261

squared exponential covariance structure ((3.2)) using a single common correlation length262

hyperparameter. Following the substitution approach for the hyperparameters:263

σ2
u = (1 − ρ)σ2

lm and σ2
w = ρσ2

lm where ρ = 0.05; whilst the correlation length parameter is264

set to half of the parameter range, hence θ = 1. These choices are validated via emulator265

diagnostics discussed below. Bayes linear emulator adjustment is performed using (3.4)–(3.6).266

Leave-one-out diagnostics suggest that the emulator fits well across the decision space,267

as shown in Figure 2 of the adjusted expectation with an approximate 95% credible interval268

of width 3 adjusted standard deviations (following Pukelsheim’s 3-sigma rule [44]) versus the269

expected NPV. 691 of the 702 (98.4%) credible intervals contain the simulated expected NPV,270

as highlighted by the red dashed line representing equality. Moreover, if we instead employed271

a Gaussian process emulator, then the 95% credible intervals contain 679 of the simulated272

expected NPVs; a 96.7% coverage. It is noted that the few cases where these diagnostics are273

not satisfied tend to yield over-prediction. With a view to decision support this is less of a274

concern as these regions will not be incorrectly ruled out due to low expected NPVs, while275

iterative refinement enables more accurate emulation at later waves.276

4. Subsampling from Multi-Model Ensembles. Multi-model ensembles are frequently277

employed to characterise various forms of uncertainty. For example, multi-model ensembles are278

particularly prevalent in climate science such as in [53, 34, 26] where they are used to represent279

uncertainty pertaining to differing choices of aspects such as model structure, encoding of280
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Figure 2: Bayes linear emulator for the expected NPV leave-one-out diagnostics plot showing
the emulator adjusted expectations with 95% 3 adjusted standard deviation credible interval
error bars versus the simulated expected NPV. The red dashed line denotes equality of the
emulator prediction and the simulator output.

physical laws, discretisation scheme, and numerical solvers, in simulating parts of the earth281

system. In the petroleum industry these are prevalent for representing uncertainty induced282

by the unknown underlying field geology, reflecting the geologist’s beliefs. In scenarios where283

these are sampled stochastically from an underlying geology model it may be appropriate284

to employ emulation methods for stochastic computer models such as stochastic Kriging [5],285

quantile Kriging [46, 43], and heteroscedastic Gaussian Process (hetGP) emulation [8]. For a286

comprehensive review of stochastic model emulation methodology see [6] and the references287

therein. In the TNO OLYMPUS Challenge the multi-model ensemble consists of 50 versions288

of the OLYMPUS model realised from an underlying stochastic geology model. However, this289

model was not released and so no further realisations were possible, hence the setup of our290

motivating application is unsuited to stochastic emulation approaches.291
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10 J. OWEN, AND I. VERNON

Running all 50 models to obtain a representation of geological uncertainty requires a292

greater number of simulations placing a higher strain on computational resources. In many293

analyses the multi-model outputs are amalgamated such as through averaging, termed the294

ensemble mean. This is the case in the TNO OLYMPUS Challenge where the ensemble295

mean NPV is the focus. Whilst such quantities are easier to analyse and use, the averaging296

process reduces the benefits of starting with an ensemble by collapsing the uncertainty onto297

a single value. It is therefore desirable to establish a small collection of models to use as298

a surrogate, whilst acknowledging any reduction in information gained from the simulations299

through an appropriate quantification of the uncertainty, and thus develop a multi-model300

ensemble subsampling technique. Note that a superior choice encompassing uncertainties in301

the ensemble construction process would be to use an expected utility function over all possible302

ensembles. However in the TNO OLYMPUS Challenge it is stipulated that the expected NPV303

objective function is approximated by the ensemble mean NPV, hence for the purpose of this304

analysis we adhere to this choice, noting the critique of this choice in [40, sec. 3.1] and [42].305

4.1. Methodology. The process of identifying a representative subset requires a small306

exploratory design using all models in the ensemble; a wave 0 design, for example, construc-307

ted using a maximin Latin hypercube design [50, 51], in order to assess how well a given308

subset of models represents the ensemble mean for certain key outputs. First we propose309

an initial graphical investigation using plots of ensemble mean outputs versus that obtained310

using individual models. This provides insight into patterns where a strong linear correlation311

indicates that an individual model may be a good representative for the ensemble mean. Note312

that such plots are unable to capture the interaction between multiple models’ outputs, thus313

missing where two or more models are jointly able to characterise the ensemble mean, often314

to a better extent than any one individual model. For large ensembles, this can be a useful315

screening process to identify a preliminary ensemble subset for further analysis.316

Linear models provide a fast and effective tool for predicting the ensemble mean output,317

f̄(·), for example, f̄(d) = NPV(d), from individual model outputs, f (ik)(·), ik ∈ {1, . . . , N}318

distinct, as well as for quantifying the induced uncertainty. For an ensemble of size N the aim319

is to select the best subset of Ñ < N (to be determined) models. Since the ensemble mean320

is a linear combination of the individual models’ output, an affine linear transformation of a321

subset of models is expected to yield good approximations. We propose the linear model in322

(4.1) where αES and βk,ES are unknown regression coefficients to be estimated, and εES(d) is323

an uncorrelated error term. Here ES refers to “Ensemble Subsampling”.324

f̄(d) = αES +

Ñ∑

k=1

βk,ESf
(ik)(d) + εES(d)(4.1)325

Depending on the size ofN , either an exhaustive or stepwise model selection may be performed326

to identify the most suitable choice of Ñ and model subset, for example, using the Akaike327

Information Criterion (AIC) or Bayesian information Criterion (BIC). Note that at later stages328

within an analysis it is always possible to modify this choice if increased accuracy is required;329

a scenario that naturally occurs within iterative procedures such as history matching and330

decision support. In the context of petroleum reservoir field development optimisation we331
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refer to this as Efficient Geological Ensemble Subsampling (EGES) [42]. Using a subset of332

models does result in some information loss compared with simulating from the full ensemble.333

However, the described statistical approach provides a quantification of the additional induced334

uncertainty as a consequence of using fewer models. In setups where the primary focus is the335

ensemble mean output the treatment of ensemble variability has been collapsed to a single336

number and thus neglected. Moreover, running fewer models enables greater exploration of the337

parameter space and hence presents opportunities to address other sources of uncertainty such338

as parametric uncertainty. This technique is related to second-order multi-model ensemble339

exchangeability in [48] where coexchangeability is used to establish a link between: the output340

of individual models; a common “representative simulator”, which we interpret as the ensemble341

mean simulator; the output for the real world system as the true expected NPV with respect342

to all possible geological configurations; as well as any system observations.343

4.2. Subsampling from a Geological Multi-Model Ensemble Results. At the EAGE/344

TNO Workshop on OLYMPUS Field Development Optimization [15] a number of participant345

teams employed ensemble sub-setting techniques on the 50 Olympus models to aid computa-346

tional tractability of their chosen optimisation procedure for obtaining a well control strategy.347

This included: selecting a single representative model in [39], or based on geological modelling348

insight, specifically using the net hydrocarbon thickness map for upper and lower layers of349

the reservoir [25]; a risk averse approach to optimisation using the 4 worst performing ensem-350

ble members according to the Conditional Value at Risk (CVaR) criterion evaluated for the351

TNO defined base strategy [52]; and a stochastic rank-based realisation selection process used352

within a evolutionary strategy optimisation algorithm to produce a different subset at each353

step of the algorithm [1]. The described Efficient Geological Ensemble Subsampling technique354

provides a principled approach to selecting ensemble members which also makes efficient use of355

available computational resources, captures some of the ensemble variability, and not limited356

to potentially non-robust choices made using the base strategy.357

A preliminary graphical investigation is performed using plots of the ensemble mean versus358

individual models for a range of outputs of interest for the n = 20 wave 0 exploratory simu-359

lations described in subsection 2.2. Examples are provided in Figure 13 (see Appendix A.2).360

It is unnecessary to sub-select models exhibiting close individual model output relations with361

the ensemble mean. Instead we screen for cases where the relationship is easy to model, for362

example, with a preference for linear associations with small output variation, identifying363

an initial set of 9 OLYMPUS models for further exploration via linear modelling. Further364

discussion is found in Appendix A.2, and in [40, Sec. 4.2].365

In order to capture the interacting effects of the different OLYMPUS models, the sub-366

sampling technique utilising the linear model in (4.1) is implemented. First it is applied to367

the proposed OLYMPUS subset before extending to all models via both directions stepwise368

selection starting from the full model and using AIC as the model selection criterion. It is369

established that a subset of only Ñ = 3 models is sufficient for a large number of the inves-370

tigated outputs, yielding high Adjusted R2 values shown in Figure 14 in Appendix A.2. The371

optimal collection for the ensemble mean NPV is OLYMPUS 25, 33, & 45. The fitted linear372

model provides an efficient means of prediction and uncertainty quantification by using only373

3 ensemble members yielding substantial computational savings. This is a novel application374
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12 J. OWEN, AND I. VERNON

of such multi-model ensemble subsampling techniques in petroleum reservoir engineering.375

For computational reasons only 20 runs were available for this pilot study. Discussions376

with petroleum reservoir engineers suggested that these 20 runs would be sufficient for the377

purpose of identifying a representative subset since the complexity of this part of the model was378

not expected to be too high. It is therefore possible to reliably select 3 of the 50 OLYMPUS379

models based off this collection of simulations, as well as fit linear models to ensemble mean380

quantities of interest and use these over unexplored regions of the parameter space. If more381

simulations over the full ensemble were available then it is possible to use diagnostics to verify382

the robustness of this subset choice. As highlighted above, other participants in the TNO383

OLYMPUS Well Control Optimisation Challenge employed model sub-selection, but via less384

statistically principled approaches.385

5. Targeted Bayesian Design of Simulations.386

5.1. Methodology. We propose a targeted Bayesian design algorithm to efficiently sample387

from the decision parameter space by incorporating prior knowledge of both the parameter388

range and their time ordered consecutive differences. This is a generalisation of the design389

approach presented in [42] and [40, Sec. 4.3] where it is tailored towards the well control opti-390

misation problem. Without loss of generality let d ∈ RD be a time ordered vector of decision391

parameters, thus they are not mutually independent. A difference constraint stipulates that392

|di − di−1| ≤ ∆i, i = 2, . . . , D. The decision parameter space is no longer a hypercube, thus393

motivating the need for a Bayesian design informed by this prior information.394

Our targeted Bayesian design algorithm involves a re-parameterisation and sampling the395

sum of the parameters and their time consecutive differences. First assume each di ∈ [0, 1].396

Define t =
∑D

i=1 di ∈ [0, D] to be the sum of the parameters and δi = di−di−1√
2

for i =397

2, . . . , D, to be the scaled differences where the scaling by 1√
2
is required due to the rotation398

of the parameter space in this alternative parametrisation. The new parameters are mutually399

orthogonal with t ∈ [0, D] and |δi| ≤ ∆′
i =

∆i√
2
. This re-parametrisation is represented by the400

linear transformation (t, δ)T = Ld in (5.1) where L is the transformation matrix. Sampling in401

the re-parametrised space automatically satisfies the difference constraints with a sample for402

d obtained via d = L−1(t, δ)T. The range constraints, di ∈ [0, 1], must also then be verified.403




t
δ2
δ3
δ4
...
δD




=




1 1 1 1 · · · 1 1
− 1/

√
2 1/

√
2 0 0 · · · 0 0

0 − 1/
√
2 1/

√
2 0 · · · 0 0

0 0 − 1/
√
2 1/

√
2 · · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 · · · − 1/

√
2 1/

√
2







d1
d2
d3
d4
...
dD




(5.1)404

In order to ensure good exploration along the t-direction, which is thought to be important by405

petroleum reservoir engineers for the application, we propose preserving an initial sample of406

the parameter sums, and then uniformly resample δ until both constraint types are satisfied.407

There is freedom to choose the sampling distribution of t with probability density function,408

fT (t), dependent on the analysis. We use a truncated normal distribution with other exam-409

ples being: uniform; mixture of uniforms; and transformed beta distributions. Orthogonal410
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projection of the samples onto the line d1 = d2 = · · · = dD will approximately follow the411

specified distribution.412

The process of generating a sample of size n for an independent subgroup of parameters413

is described in the rejection style Algorithm 5.1 yielding matrix B in which each column414

is a sampled vector of decision parameters. If t is close to 0 or D the rejection step can415

be computationally time consuming with the efficiency improved by sampling the differences416

conditional on t. This algorithm may be applied separately to each independent subgroup417

of decision parameters for improved efficiency before combing to obtain a design over the418

full decision parameter space. Design optimisation may be performed using standard design419

selection criteria, for example, minimax or maximin design [51], both for the designs by420

subgroup and the full design by combining using random permutations. Further discussion of421

the targeted Bayesian design method is presented in [40, Sec. 4.3].422

Algorithm 5.1 Sampling of parameter sums and differences preserving the initial sum of
parameters sample.

Let t be a vector of n samples of t ∼ fT (t)
Let B be an empty matrix of D rows
Define dimension(·) to be a function to obtain the length of a vector
while dimension(t) > 0 do

for all t in t do

Set ϵi = min{t,D − t,∆′
i}

Generate δi | t ∼ U [−ϵi, ϵi], for i = 2, . . . , D
end for

Row bind t, δ2, . . . , δD to form matrix Br,prop

Compute Bprop = L−1Br,prop

for all Column in Bprop do

if Range conditions of parameter vector are satisfied then

Join Column to B
Remove corresponding t from t

else

Discard Column

end if

end for

end while

return Matrix B of columns of sampled parameter vectors

5.2. Targeted Bayesian Design of Simulations Results. We employ the targeted Bayesian423

design methodology from subsection 5.1 to perform decision support through targeted sam-424

pling based on prior beliefs of experienced petroleum reservoir engineers regarding the loca-425

tion of optimal decision parameter settings, as well as imposing practical and physical con-426

straints. Firstly, TNO stipulate operational range constraints on the control parameters to427

be [0, 900]m3/day and [0, 1600]m3/day for production and injection rates respectively, leading428

to a 32-dimensional hypercube parameter space. Oil reservoir engineers deem large temporal429
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14 J. OWEN, AND I. VERNON

variation in controls to be unphysical and poor practice, thus suggesting a difference constraint430

between time consecutive controls. Here we use the notation djk,ti for the decision parameters431

where the index i is replaced by the indices tuple (jk, ti), where j ∈ {P, I} refers to the well432

type (P producer, I injector), k is the well number, and ti is the control interval start date.433

The 32 decision inputs naturally split into four independent subgroups by well with difference434

constraints |djk,ti − djk,ti−1| ≤ ∆i, i = 2, . . . , D(jk), where D(jk) = 8 is the number of control435

intervals for well jk. A conservative choice is that the maximum permitted change over a436

two year time interval is ∆i = 1
3 of the operational range for the well type. Consequently437

the decision parameter space is no longer a hypercube with a volume of 3.45% of the initial438

hypercube due to the range constraints only.439

The targeted Bayesian design algorithm is implemented to generate a n = 700 point design.440

First, for each of the four subgroups of eight decision parameters the normalised parameter441

sums are sampled from a truncated normal distribution in order to facilitate the exploration of442

more extreme values of the total sums of the eight normalised parameters than would be the443

case using a standard uniform or Latin hypercube design. This is perceived to be important444

based on reservoir engineering insight. Next, the differences are sampled according to the445

specified value of ∆i before imposing the operational range constraints (after transforming the446

normalised parameters to their physical values). Each parameter subgroup and the overall447

design are approximately optimised with respect to the minimax design selection criterion448

by comparing candidate designs to a large 20, 000 point uniform random sample (over the449

constrained parameter space) [51]. Moreover, the optimised design is augmented to include450

two further decision parameter vectors with all parameters set to either their minimum or451

maximum values since it is of interest to observe the model behaviour at these extremes.452

The final wave 1 design for eight producer well 2 parameters is illustrated in Figure 3. The453

plots next to the diagonal highlights the difference constraints as points are clustered between454

two clearly defined diagonal parallel bounds. Since the final two control intervals are of length455

4 years a greater change of up to 2
3 of the parameter operational range is permitted, hence the456

wider bands. In addition, the difference constraints affect decision parameters at larger time457

separations where there are fewer points away from the diagonal, although is less pronounced458

for greater time gaps. This design is evaluated for the identified subset of 3 OLYMPUS models459

with the linear model used to predict the ensemble mean NPV for which points are coloured460

green, yellow and red for high, moderate and low NPVs respectively in Figure 3. Note that461

the presented emulation methodology also works with more traditional space filling designs.462

Employment of a targeted Bayesian design is to enhance the overall decision support aim,463

and to incorporate expert knowledge regarding the reservoir behaviour and practical decision464

implementation.465

6. Divide-and-Conquer Approach.466

6.1. Methodology. Outputs of interest often consist of linear combinations of computer467

model outputs, as is the case in the TNO OLYMPUS Well Control Optimisation Challenge468

where the focus is the ensemble mean NPV objective function. One approach is to directly469

emulate this output using methodology such as that described in subsection 3.1. However,470

this ignores the potential gains which can be achieved by decomposing these sums into their471

constituent simulation outputs and instead emulating each of these before recombining. We472
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Figure 3: Wave 1 702 point design OLYMPUS producer well 2 decision parameters pairs plots.
Points are coloured by the multi-model ensemble subsampling linear model predicted NPV
where green, yellow and red correspond to high, moderate and low NPVs respectively.

term this the “divide-and-conquer” approach. In full generality assume an output f(d) can473

be expressed as:474

f(d) =

q∑

i=1

aifi(d)(6.1)475
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16 J. OWEN, AND I. VERNON

where each fi(d), i = 1, . . . , q, is a constituent simulation output. The emulator update476

equations for the expectation and variance are:477

EF[f(d)] =

q∑

i=1

ai EFi
[fi(d)](6.2)478

VarF[f(d)] =

q∑

i=1

a2i VarFi
[fi(d)](6.3)479

where Fi = {fi(d
(1)), . . . , fi(d

(n))}, and F = {Fi}
q
i=1. Note that (6.3) it is assumed that480

independent emulators are fitted for each fi(d), although this naturally extends to where481

multivariate emulators are employed by introducing the relevant covariance terms.482

6.2. Results. The divide-and-conquer approach is applied in our analysis of the TNO483

OLYMPUS Well Control Optimisation Challenge. First we emulate the NPV for an individual484

OLYMPUS model, denoted here by f(d), and defined in (2.1) and (2.3), and omitting the485

OLYMPUS model index j for clarity of notation. This is a linear combination of the well486

contributions with weights determined by the associated cost parameters and the discount487

factor. A natural decomposition is thus:488

f(d) =
8∑

i=1

ai



rop




∑

k∈{2,10}
fop
Pk,ti

(d)


− rwp



∑

k∈{2,3}
fwp
Ik,ti

(d)


− rwi



∑

k∈{2,3}
fwi
Ik,ti

(d)








(6.4)

489

where fop
Pk,ti

(d), fwp
Ik,ti

(d), and fwi
Ik,ti

(d) are the Well Oil Production Total (WOPT), Well490

Water Production Total (WWPT), and Well Water Injection Total (WWIT) within the 8491

control intervals ending at time ti respectively. The index P and I refer to producer and492

injector wells respectively, and k is the well number over the set of wells used in this analysis.493

The coefficients ai are average discounting factors computed as described in subsection 8.2.494

It is these 48 constituents which are to be emulated.495

In principle we could employ this approach for all ensemble members which comes at the496

cost of requiring simulations from all models. Within this application it is unnecessary due497

to the geological multi-model ensemble subsampling performed in subsection 4.2, hence this498

process is only performed for the NPV for OLYMPUS 25, 33, & 48. The importance of the499

divide-and-conquer approach will become evident in 7.2 where we exploit known behavioural500

structure in the constituent outputs to obtain more accurate emulators for the WOPT and501

WWIT outputs compared with a “black-box” approach.502

7. Structured Emulators Exploiting Known Simulator Behaviour.503

7.1. Methodology. The emulation methodological development presented here is moti-504

vated by the partially known behavioural form of the WOPT and WWIT outputs within505

control intervals with respect to their corresponding decision input parameters, the target506

production or injection rate for the control interval respectively, as shown in Figure 4. Within507

(2.3) for OLYMPUS model j the WOPT and WWIT are the by well constituents of the re-508

spective field totals Qj,op(d, ti) and Qj,wi(d, ti). For small values of the decision parameter509
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Figure 4: OLYMPUS 25 WOPT output for producer well 2 during the first two years (ending
01/01/2018) versus the corresponding decision input parameter, the target production rate
prod 2 2016 01. For small values of prod 2 2016 01 the target is achieved resulting in the
perfect linear behaviour up to a change point beyond which the WOPT plateaus as a maximum
threshold on the production rate is achieved. The vertical blue and red lines denote the
extrapolation cut-off and change point upper bounds respectively.

the output is known as a linear function of this input up to a small tolerance. Beyond a510

certain value of this parameter there is a departure from this linear behaviour before reaching511

a plateau with output fluctuations depending on variation in the other parameter values.512

These distinct function behavioural regimes within different regions of the parameter space513

should be exploited to achieve more accurate emulators than applying the general Gaussian514

Process (GP) or Bayes linear emulators. Another option is to employ partition based em-515

ulation approaches such as treed Gaussian processes [23] which split the parameter space516

parallel and perpendicular to the input axes and fits independent GPs within each region.517

However whilst treed GPs are a flexible model they do not exploit the physical behaviour518
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18 J. OWEN, AND I. VERNON

that is known to exist in the model. In addition, a further limitation to their accuracy is the519

number of design points within each partition region which may constitute a small volume of520

the overall parameter space, particularly important in the often narrow intermediate region521

for the developed methodology. These considerations have implications during subsequent522

(decision) analyses utilising the emulator.523

Here we present novel methodology which is able to capture both the observed output524

structure in Figure 4 and an output upper bound which involves splitting the parameter525

space and output modes of behaviour into three regions: slop, intermediate, and plateau. In526

this section we denote the computer model output by f(d), with decision inputs d, and assume527

without loss of generality that the behaviour manifests with respect to decision parameter d1.528

In subsection 7.2 we link this notation to the TNO OLYMPUS Challenge application.529

7.1.1. Change Points. In the slope region d1 determines the output according to a known530

functional relationship up to a small tolerance δ ≥ 0 whilst also imposing an upper bound on531

f(d). Here we focus on a linear map with respect to d1 with known intercept, α, and gradient,532

β, noting that the methodology also extends to other known relationships. Within the plateau533

region this known behaviour is not the case with uncertainty induced by d\d1. In principle this534

leads to these two regions only separated by a change point denoted c. However, the value of d1535

of the transition from slope to plateau is unknown, depends on all other decision parameters,536

and given only a finite number of simulations is impossible to exactly determine. Consequently,537

in practical application, there are three distinct regions of behaviour: the slope and plateau538

separated by an additional uncertain region believed to contain the unknown change point.539

This is labelled as the intermediate region where there is a mixture of adherence to this known540

(linear) relationship and model output exhibiting uncertainty around the plateau. Given a541

design D and simulator output F = {f(d(1)), . . . , f(d(n))}, one option it to estimate the mean542

change point location.543

A conservative change point upper bound estimate, cu, is defined in (7.1), where fmax =544

maxd∈D f(d), and δu ≥ 0 is a tolerance included for numerical stability and to ensure that an545

upper bound is obtained.546

cu = min
d1

{d1 | α+ d1 · β ≥ fmax + δu}(7.1)547

This is the smallest value of d1 such that if simulator output achieved the upper bound,548

α+ d1 · β, then this exceeds the largest simulated value (plus a tolerance) over D.549

An estimate for the change point lower bound is defined in (7.2), where fdiff(d) = α+ d1 ·550

β − f(d) is the difference between the theoretical maximum and the simulated output, and551

δl ≥ 0 is another numerical stability tolerance.552

cl =
1

2

(
argmin
d1|d∈D

{f(d) < α+ d1 · β − δl}553

+argmax
d1|d∈D

{
d1 < argmin

d1|d∈D
{f(d) < α+ d1 · β − δl}

})
(7.2)554

Figure 5 provides an illustration of the change point lower bound for the output WOPT-555

PROD2 20180101 with respect to the target rate prod 2 2016 01.556
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7.1.2. Extrapolation Cut-Offs. The two distinct modes of behaviour suggests an emulator557

be fitted piecewise using a combination of the more accurate knowledge in the slope region,558

and the less well understood behaviour in the plateau region. Noting the change point location559

uncertainty, for the plateau region we propose fitting an emulator based only on data which560

is almost certainly on the plateau using the change point upper bound estimate. For f(·)561

this is design points with d1 ≥ cu. In order to connect the slope and plateau regions we562

must extrapolate the plateau emulator. It is necessary to introduce an extrapolation cut-off,563

denoted b, beyond which the emulator should not be extrapolated. This is due to limited564

plateau training data issues. For simulator output f(d) this is defined with respect to the565

same decision parameter, d1. The decision space is thus split into three distinct regions:566

1. Slope Region: where d1 < b;567

2. Intermediate Region: where b ≤ d1 < cu, for which there is uncertainty as to568

whether simulator output falls on the slope or in the plateau;569

3. Plateau Region: where d1 ≥ cu.570

There is an estimation trade-off between overly cautious small values which fails to alleviate571

the above issue, and large values risking points being wrongly classified as on the slope. A572

suitable and sufficiently conservative approach is to use the change point lower bound, so573

b = cl (see (7.2)).574

7.1.3. Structured Emulation with Upper Truncation. Prior information for f(d) stipu-575

lates that it cannot exceed a maximum (up to a tolerance) determined by d1 and the coefficients576

α & β. This upper bound is α+ d1 · β. Alongside the above parameter space dichotomy, this577

constraint is imposed through an upper truncation with structured emulators respecting par-578

tially known behaviour of these simulator outputs. First a preliminary Bayes linear emulator579

for f(d) is fitted using a sub-design, D′ = {d | d ∈ D, d1 > cu}, with corresponding simulator580

output F′ = {f(d) | d ∈ D′}. This represents the behaviour in the plateau region. By con-581

struction, all parameter settings in D′ do not adhere to the target rate and hence are in the582

plateau, thus providing reliable information on which to construct this part of the emulator.583

This preliminary emulator is only evaluated for d satisfying d1 ≥ b and is compared with the584

upper bound in a classification step determining the structured emulator form:585

1. Slope Region: If d1 < b or for the preliminary emulator586

EF′ [f(d)]− 3
√
VarF′ [f(d)] > α+ d1 · β, then collapse the emulator such that for the587

structured emulator EF′ [f(d)] = α+ d1 ·β with fixed maximum absolute errors of size588

δ.589

2. Intermediate Region: If the preliminary emulator satisfies590

EF′ [f(d)] − 3
√
VarF′ [f(d)] ≤ α + d1 · β < EF′ [f(d)] + 3

√
VarF′ [f(d)], a truncated591

Gaussian process (truncated GP) emulator is used with mean and variance determined592

by (7.3) and (7.4) respectively [30].593

3. Plateau Region: In all other cases where EF′ [f(d)] + 3
√
VarF′ [f(d)] ≤ α + d1 · β,594

the preliminary emulator output is used.595

Alternative width credible intervals may be used depending on the level of conservativeness596

desired within an analysis with justification based on the Vysochanskij-Petunin inequality597

[62].598
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7.1.4. Structured Emulation with Two-Sided Truncation. An alternative variant of599

structured emulation uses a two-sided truncation where a lower truncation is also imposed.600

This may be either a constant γ, such as to enforce that an output is non-negative via γ = 0,601

or a function of the parameters γ(d). For clarity of notation we denote this by γ. Both602

upper and lower constraints are utilised alongside the preliminary Bayes linear emulator in a603

modified classification step:604

1. Slope Region: If d1 < b or for the preliminary emulator605

EF′ [f(d)]− 3
√

VarF′ [f(d)] > α+ d1 · β, then collapse the emulator such that for the606

structured emulator EF′ [f(d)] = α+ d1 ·β with fixed maximum absolute errors of size607

δ.608

2. Intermediate Region: As for the upper truncation version, if the preliminary emu-609

lator satisfies EF′ [f(d)] − 3
√
VarF′ [f(d)] ≤ α + d1 · β < EF′ [f(d)] + 3

√
VarF′ [f(d)],610

or if the additional criterion of EF′ [f(d)] − 3
√
VarF′ [f(d)] < γ whilst EF′ [f(d)] +611

3
√
VarF′ [f(d)] ≤ α + d1 · β, a truncated GP emulator is evaluated. The mean and612

variance are determined by (7.3) and (7.4) respectively.613

3. Plateau Region: In all other cases where EF′ [f(d)] − 3
√

VarF′ [f(d)] ≥ γ and614

EF′ [f(d)] + 3
√

VarF′ [f(d)] ≤ α+ d1 · β, use the preliminary emulator.615

The structured emulation methodology utilises a truncated Gaussian process (truncated616

GP) emulator for which the mean and variance are determined by (7.3) and (7.4) respec-617

tively [30], where ϕ(·) and Φ(·) represent the probability density and cumulative distribution618

functions respectively of a standard normal distribution. These are computed assuming a619

preliminary Gaussian process emulator with posterior mean and variance, abbreviated to µ620

and σ2 respectively, equal to the computed adjusted expectation and variance, and truncation621

bounds p = γ and q = α+ d1 · β, with ν = p−µ
σ

, and ω = q−µ
σ

. This form of emulation is used622

in the intermediate uncertain region around the change point’s true location.623

EF′ [f(d) | p < f(d) < q] = µ+ σ
ϕ(ν)− ϕ(ω)

Φ(ω)− Φ(ν)
(7.3)624

VarF′ [f(d) | p < f(d) < q] = σ2

[
1 +

νϕ(ν)− ωϕ(ω)

Φ(ω)− Φ(ν)
−

(
ϕ(ν)− ϕ(ω)

Φ(ω)− Φ(ν)

)2
]

(7.4)625

Compared to using standard GP, Bayes linear, or treed GP emulators, the structured626

approach yields improved accuracy by encapsulating the known output structure and con-627

straints, along with an increase in speed and efficiency; a consequence of using fewer design628

points in the fitting. Moreover, both the change point upper bound and extrapolation cut-629

off estimation processes are computationally very cheap, whilst the use of a truncated GP630

helps reduce the reliance on accurate estimation of the extrapolation cut-off. Another benefit631

to this approach is that in principle few points are required within the intermediate region632

between the slope and plateau since the emulator is only trained on those which exceed the633

change point upper bound, although they do form a useful emulator diagnostic check. Further634

commentary on the accuracy and speed of structured versus Bayes linear emulators can be635

found in the application to NPV constituents exhibiting such constrained behaviour in subsec-636

tion 7.2, as well as in the comparison of employing Bayes linear emulators versus structured637

emulators within the combined hierarchical emulation framework for the ensemble mean NPV638
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in subsection 9.3.639

7.2. Results. For each OLYMPUS model the NPV is determined by the oil production,640

water injection, and water production. Following subsection 6.2 we decompose the NPV641

calculation into WOPT, WWIT, and WWPT, by both model and control interval, as in (6.4).642

The WOPT and WWIT over a control interval are observed to follow the structured behaviour643

where the quantity is equal to the corresponding target rate decision parameter multiplied644

by the length of the time interval up to an unknown change point beyond which there is a645

plateau in the behaviour. In addition, the value of this decision parameter also imposes a646

maximum achievable output over this time interval. This is illustrated for the OLYMPUS 25647

WOPT for producer well 2 over the first two year control interval (01/01/2016 to 01/01/2018)648

in Figure 4 which is used as a running example.649

The structured emulation with upper truncation methodology is employed separately for650

each of the WOPT and WWIT within control interval constituents for wells in the CWG. For651

outputs fop
Pk,ti

(d) and fwi
Ik,ti

(d) the corresponding decision parameter is the target production652

or injection rate for this interval and is denoted djk,ti , where j ∈ {P, I}, k is the well number,653

and ti is the control interval end year, which equates to d1 in subsection 7.1. These target654

control rates should be adhered to for the entire duration of the interval, ∆ti. However,655

this is not always possible due to Bottom Hole Pressure (BHP) constraints which results in a656

departure from the target and the observed different modes of behaviour across the parameter657

space. The upper truncation is therefore obtained by specifying α = 0 and β = ∆ti throughout658

subsection 7.2.659

Conservative change points upper bounds, cujk,ti , and extrapolation cut-offs, bjk,ti , are660

estimated using (7.1) and (7.2) respectively over the wave 1 simulations, with tolerances δu =661

δl = 10 chosen to ensure numerical stability. These are shown for WOPTPROD2 20180101662

versus the target rate prod 2 2016 01 at bP2,2016 = clP2,2016 and cuP2,2016 in Figure 4 by the663

vertical blue and red lines respectively. In addition, the estimation process of the change point664

lower bound (or extrapolation cut-off) for this output is depicted in Figure 5 where the red665

line represents the slope and upper bound if the target is adhered to for the entire control666

interval. The vertical blue line denotes clP2,2016 as the midpoint between the first simulation667

decision parameter setting not on the slope; hence with fdiff(d) > δl (green point; first term668

in (7.2)), and the decision parameter setting with the largest value of dP2,201601 which is less669

than this first departure point previously obtained (magenta point; second term in (7.2)).670

Further results are displayed in Figure 15 (in Appendix A.3) showing the regions in which the671

“true” change points are believed to be situated for all WOPT and WWIT for each of the672

three wave 1 OLYMPUS models.673

For each NPV constituent the next stage is to fit a preliminary Bayes linear emulator674

where the deterministic functions of the active decision parameters are of the form:675

m(dAjk,ti
) = g(dAjk,ti

)Tβ = β0 +
∑

di∈Ajk,ti

{βi,1di + βi,2d
2
i }(7.5)676

It is assumed that the active decision parameters comprise all decisions which take place in677

the past of the output for reasons of temporal consistency. For our running example this is678

Ajk,ti = {prod 2 2016 01, prod 10 2016 01, inj 2 2016 01, inj 3 2016 01}. This is a logical679
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Figure 5: OLYMPUS 25 WOPT for producer well 2 during the first two years (ending
01/01/2018) versus the corresponding target production rate, prod 2 2016 01. The focus
is the change point lower bound, clP2,2016, computed using (7.2), employed as the extrapo-
lation cut-off, and denoted by the vertical blue line. The red line depicts the slope upper
bound computed as prod 2 2016 01 · ∆t201801 and attained when the target production rate
is adhered to for the full control interval. It is shown that clP2,2016 is the midpoint of the first
point not on the slope coloured green, and preceding point to the left of the vertical blue line
which is on the slope coloured magenta.

choice since future decisions are physically unable to impact on an output up to the current680

time, however any past decisions may potentially have an effect. The remainder of each681

emulator’s prior specification is analogous to subsection 3.2, but with the distinction that only682

those simulation points in D′ = {d | d ∈ D, djk,ti > cujk,ti} with output F′ = {f(d) | d ∈ D′}683

are used in the fitting.684

For our example of the OLYMPUS 25 WOPT for producer well 2 in the first control685

interval (ending 01/01/2018) the preliminary emulator predictive 3-sigma credible intervals686
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are illustrated in Figure 6a versus the corresponding decision parameter, prod 2 2016 01. This687

is compared to the theoretical maximum output depicted by the black dotted line determined688

by the effective target rate for the control interval. The vertical blue and red lines are situated689

at bP2,2016 and cuP2,2016 respectively. The structured emulation methodology using an upper690

truncation yields the results shown in Figure 6b. Within the slope region, shown in purple,691

the preliminary emulator credible intervals exceed the constraint and are thus collapsed onto692

the slope yielding very narrow intervals representing strong beliefs that these decisions will693

be adhered to for the full control interval. Included are all decision parameter vectors with694

dP2,2016 < bP2,2016, as well as cases where dP2,2016 ≥ bP2,2016 in which the preliminary emulator695

credible interval lower bound exceeds the slope. The uncertain intermediate region, shown in696

orange, is handled by a truncated GP reflecting the uncertainty in whether the model output697

is on the slope or relatively close when a target rate is achieved for the majority of a control698

interval. All of these points lie close to the black dotted slope line with much narrower credible699

intervals than the preliminary Bayes linear emulator. For the plateau region, shown in green,700

the preliminary emulator credible interval is well below this slope. It is therefore unnecessary701

to impose a truncation due to the very small probability that an emulator realisation actually702

exceeds this physical constraint, hence these intervals are unchanged between the two plots.703

Leave-one-out structured emulator diagnostics demonstrate satisfactory results with ex-704

amples shown in Figure 7 for OLYMPUS 25 NPV constituents WOPT and WWIT in the705

control intervals ending 01/01/2018 and 01/01/2022 respectively. The first is our running706

example. Figures 7a and 7c show the emulator adjusted expectation with 95% (3 adjusted707

standard deviations) credible intervals versus the simulated output. In each case the emula-708

tor is exceptionally accurate for smaller NPV constituent values corresponding to where the709

target rate is adhered to for the entire control interval. For larger simulated outputs believed710

to be on plateau, the credible interval is wider, whilst the use of a truncated GP emulator711

for intermediate values demonstrates a reduction in the uncertainty in these locations. The712

classification step emulator type is best observed in Figures 7b and 7d of the credible intervals713

versus each NPV constituents’ corresponding decision parameter. The structured emulation714

approach is applied to each of the 3 OLYMPUS models identified in subsection 4.2 for all of715

the NPV constituents. It is found that the majority of the 95% credible intervals contain the716

simulated value with the maximum percentage of failures over each output type reported in717

Table 1. Moreover, no issues are detected in other leave-one-out diagnostic analyses. This718

demonstrates how incorporating known structures within the emulator enables very accurate719

emulators for the WOPT and WWIT NPV constituents based on a relatively small number720

of simulations whilst also capturing the change in behaviour.721

A comparison with Bayes linear emulation of the WOPT or WWIT NPV constituents,722

in each case fitted using all simulations, unlike the preliminary Bayes linear emulator in723

the structured emulation approach which is fitted using the green points in Figure 6 only,724

highlights the superior performance. Leave-one-out diagnostics are shown for the Bayes linear725

emulator of OLYMPUS 25WOPTPROD2 2018 01, our running example, in Figure 8 depicting726

the emulator adjusted expectation with 95% (3 adjusted standard deviations) credible intervals727

versus the simulated output. The corresponding leave-one-out diagnostics plot using the728

structured emulation approach exploiting known simulator behaviour is shown in Figure 7a.729

Over the plateau region (green in 6b) the accuracy and credible interval width for the two730
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(a) Preliminary Bayes linear emulator predictive CI versus prod 2 2016 01.
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(b) Structured emulator with upper truncation predictive CI versus prod 2 2016 01.

Figure 6: OLYMPUS 25 wave 1 WOPT for producer well 2 during the first two years (ending
01/01/2018) versus the corresponding target production rate, prod 2 2016 01. The top plot
shows the wave 1 preliminary Bayes linear emulator predictive 3-sigma credible interval (CI)
fitted using only the simulations with dP2,2016 ≥ cuP2,2016. This is used within the structured
emulation algorithm imposing the upper truncation due to the slope (black dotted line) with
the CI shown in the bottom plot. The vertical blue and red lines are situated at bP2,2016

and cuP2,2016 respectively. The purple, orange and green CI correspond to points in the slope,
uncertain, and plateau regions respectively.
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prod 2 2016 01.
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(d) WWITINJ2 2022 01 emulator CI versus
inj 2 2020 01.

Figure 7: Structured emulation leave-one-out diagnostic plots for OLYMPUS 25 WOPT-
PROD2 2018 01 (top) and WWITINJ2 2022 01 (bottom). Left: Adjusted expectation with
95% credible intervals (CI) of width 3 adjusted standard deviations versus the simulated value.
The red dashed line denotes equality of the emulator and simulator. Right: Credible inter-
val versus the output’s corresponding target production and injection rate respectively. Red
points denote the simulated output.

emulators is comparable. However, within the slope (purple) and intermediate (orange) regions731

the Bayes linear emulator credible interval width is much wider. In the slope region there is at732

least a two orders of magnitude difference, a consequence of not imposing the known physical733

constructs. Moreover, within these two regions of parameter space the emulator adjusted734

This manuscript is for review purposes only.



26 J. OWEN, AND I. VERNON

WOPT WWIT

OLYMPUS 25 ≤ 4.0% ≤ 3.4%

OLYMPUS 33 ≤ 2.0%1 ≤ 2.7%

OLYMPUS 45 ≤ 1.2%2 ≤ 3.0%3

Table 1: Summary of the maximum percentage of structured emulator with upper truncation
95% credible intervals which do not contain the simulated values in leave-one-out diagnostics
for the WOPT and WWIT over the 8 control intervals for each of the 3 OLYMPUS models.
The exceptions are: (1) for OLYMPUS 33 WOPT emulation of the output in one control
interval yields a failure rate of 7.5%; (2) for OLYMPUS 45 WOPT emulation in two control
intervals yields a failure rate of 6.1% & 5.3%; and (3) for OLYMPUS 45 WWIT emulation in
one control interval yields a failure rate of 6.3%.
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Figure 8: Bayes linear emulation leave-one-out diagnostic plot for OLYMPUS 25 WOPT-
PROD2 2018 01 showing the adjusted expectation with 95% credible intervals of width 3
adjusted standard deviations versus the simulated output. The red dashed line denotes equal-
ity of the emulator and simulator. For comparison, the structured emulation exploiting known
simulator behaviour leave-one-out diagnostics plot for the same output is shown in Figure 7a.

expectation often exceeds the maximum upper bound imposed by the target rate decision735

parameter governing this period, whilst the majority of the credible interval upper bounds736

also exceed this limit. This implies that unphysical emulator predictions are permitted which737

may go unchecked. The structured emulation approach protects against this facet.738
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Structured behaviour is not observed for WWPT within a control interval since there is739

no corresponding target rate; its behaviour is a consequence of attempting to achieve a given740

target production rate subject to BHP constraints with water present within the oil field. We741

separately employ Bayes linear emulators for each of the WWPT constituents following the742

same approach as above, but fitted using all simulations in D. For each OLYMPUS model743

the collection of 48 emulators for the WOPT, WWPT, and WWIT for each of the 8 control744

intervals and for wells in the CWG are combined following the “divide-and-conquer” approach745

in subsection 6.2.746

8. Emulating Sums of Time Series Outputs.747

8.1. Methodology. The “divide-and-conquer” approach in section 6 permits the exploita-748

tion of known behaviour such as illustrated in section 7. We develop accurate and efficient749

emulation methodology where the quantity of interest is the sum of time series outputs ad-750

dressing the challenges arising from the discretisation of continuous time outputs. In subsec-751

tion 8.1.1 we first emulate an approximation to the sum of time series outputs computed over752

longer time periods, thus reducing the number of emulators required, focusing on the merger753

of discounting intervals, before linking to the exact quantity of interest in subsection 8.1.2.754

8.1.1. Emulation of an Average Discounting Approximation to the Sum of Time Series755

Outputs. Let f(d) be the sum of time series outputs:756

f(d) =

Nt∑

i=1

1

(1 + d)
ti
τ

fi(d)(8.1)757

where i indexes the time point with ti < ti+1, Nt is the total number of discounting intervals,758

d is the discount factor, and τ the discounting period. This is analogous to in (6.1) following759

the “divide-and-conquer” approach with q ≡ Nt and ai = (1 + d)−
ti
τ .760

In situations where Nt is very large it may be impractical to accurately emulate and val-761

idate for all fi(d). An average discounting approximation to the exact quantity of interest,762

f(d), is denoted by f̃(d) which is computed as a sum of outputs formed by amalgamating763

multiple time consecutive discounting intervals labelled by f̃i(d). A formula for f̃(d) is given764

in (8.2), where Ñt < Nt is the numbered of combined time intervals, and λi is a weighted765

average discounting factor for the ith interval defined in (8.3) for which k indexes the dis-766

counting intervals contained within the longer control interval, Nti is the total number of such767

discounting intervals, and ti,0 = ti−1.768

f̃(d) =

Ñt∑

i=1

λif̃i(d)(8.2)769

λi =
1

ti − ti−1

Nti∑

k=1

ti,k − ti,k−1

(1 + d)
ti,k

τ

(8.3)770

Note that using an averaged discount factor yields a more accurate approximation compared771

with applying the discounting at the end of each time interval. Assuming the f̃i(d) are772

uncorrelated and using a collection of univariate emulators the adjusted expectation and773

variance formulae for f̃(d) are obtained following (6.2) and (6.3) respectively.774
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8.1.2. Linking the Exact and Approximate Sums of Time Series Outputs. The next775

step is to link f̃(d) with f(d). Due to the similar form of (8.1) and (8.2) there exists a strong776

linear relationship between the approximate and exact f(d) for which a simple linear regres-777

sion in (8.4) provides a meaningful statistical link whilst capturing the additional induced778

uncertainties.779

f(d) = β
0,f̃

+ β
1,f̃

f̃(d) + ε
f̃

(8.4)780

The adjusted expectation and variance are then computed using (8.5) and (8.6) respectively.781

EF[f(d)] = β̂
0,f̃

+ β̂
1,f̃

EF

[
f̃(d)

]
(8.5)782

VarF[f(d)] = Var
[
β̂
0,f̃

]
+ 2Cov

[
β̂
0,f̃

, β̂
1,f̃

]
EF

[
f̃(d)

]
783

+
{
β̂2
1,f̃

+Var
[
β̂
1,f̃

]}
VarF

[
f̃(d)

]
784

+Var
[
β̂
1,f̃

] (
EF

[
f̃(d)

])2
+ σ2

f̃
(8.6)785

Estimates of the regression coefficients, β̂
0,f̃

and β̂
1,f̃

, along with their variances and covari-786

ance, are obtained using the wave 0 exploratory simulations data, whilst ε
f̃
is treated as787

independent with residual standard error σ
f̃
. The collection of all simulation data, F, is as788

defined in subsection 6.1.789

8.2. Results. The NPV objective function in the TNO OLYMPUS Well Control Optimi-790

sation Challenge (see (2.1) and (2.2)) is of the form of (8.1). For each OLYMPUS ensemble791

member f(d) = NPVj(d) and fi(d) are the NPV constituents. In this application the 8792

decisions for each well are enacted over periods constructed by amalgamating consecutive 3-793

month discounting intervals. The by model average discounting approximate NPV, ÑPVj(d)794

is obtained from (6.4), noting that each of fop
Pk,ti

(d), fwp
Ik,ti

(d), and fwi
Ik,ti

(d) are calculated over795

periods longer than the discounting intervals, hence f(d) does correspond to the approxima-796

tion f̃(d), and with ai = λi from (8.3).797

Emulation of ÑPVj(d) is performed following the method described in subsection 8.1 sum-798

ming structured emulators for the WOPT and WWIT contributors (details in subsection 7.2799

and Bayes linear emulators for the WWPT constituents. Leave-one-out diagnostics plots for800

the OLYMPUS 25 approximate NPV is shown in Figure 9a. There exists a strong linear re-801

lation between the emulator adjusted expectation and the simulated approximate NPV with802

the majority of points situated close to the red dashed equality line. It is observed that the803

uncertainty generally increases with the value of the approximate NPV. Petroleum reservoir804

engineering provides insight: higher target production and injection rates are generally nec-805

essary to achieve the largest NPVs. For the WOPT and WWIT structured emulators this806

occurs above the extrapolation cut-off and thus each constituent emulator exhibits a larger807

uncertainty. Furthermore, when many of the NPV constituents fall in their slope regions the808

structured emulator returns a small uncertainty determined by the tolerance. These linearly809

combine to produce a small uncertainty for the approximate NPV.810

The exact and average discounting approximate NPV for each OLYMPUS model are linked811

using the simple linear regression framework in (8.4) where the coefficients are estimated812
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(a) Approx NPV CI versus simulated values.
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(b) Exact NPV CI versus simulated values.

Figure 9: Emulator leave-one-out diagnostic plots for OLYMPUS 25 average discounting ap-
proximate NPV (left) and exact NPV (right, obtained via a linear model of the form in (8.4)
on the emulated approximate NPV) showing the adjusted expectation with 3 adjusted stan-
dard deviation Credible Intervals (CI) versus simulated values. The red dashed line denotes
when the emulator and simulator coincide.

Approximate NPV Exact NPV

OLYMPUS 25 6.7% 6.7%

OLYMPUS 33 4.4% 4.3%

OLYMPUS 45 3.7% 3.8%

Table 2: Summary of the percentage of emulator 95% credible intervals which do not contain
the simulated values in leave-one-out diagnostics for the average discounting approximation
to the NPV and the exact NPV for each of the 3 OLYMPUS models.

using the wave 0 simulation data. This accounts for the discrepancy induced by coalescing813

the discounting intervals. Leave-one-out emulator diagnostics for the OLYMPUS 25 NPV are814

shown in Figure 9b. The results are very similar to those for the approximate NPV with815

our commentary and interpretation mirroring the above. The percentage of 95% credible816

intervals containing the simulated value (computed using simulation output in the respective817

average discounting approximate or exact NPV formula) for each of the 3 OLYMPUS models818

is reported in Table 2.819

9. Emulation of a Multi-Model Ensemble Mean.820

9.1. Methodology. The objective is to emulate the ensemble mean output, f̄(d), by com-821

bining emulators for the individual models’ outputs, fj(d). A reasonable assumption is that822

the ensemble members are independent given the complexity of their differing constructions.823
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9.1.1. When Simulations are Available for all Ensemble Members. When simulations824

are relatively quick to evaluate; large amounts of computing resources are available, or there825

is a desire to minimise the uncertainty (such as in the TNO OLYMPUS Challenge due to the826

underlying geology, which is particularly relevant when the ensemble mean NPV is assumed827

equal to the expected NPV), it may be possible to simulate from the entire ensemble. The828

ensemble mean output is computed as either the arithmetic or a weighted mean (with weights829

obtained from a prior probability distribution over the models) of the individual model out-830

puts. This presents a natural method to emulate f̄(d) with the adjusted expectation and831

variance defined in (9.1) and (9.2), where F = {Fj}
N
j=1 denotes all necessary simulation data832

with Fj being the outputs for ensemble member j, and weights ωj , with ωj = 1
N

for the833

arithmetic mean.834

EF

[
f̄(d)

]
=

N∑

j=1

ωj EFj
[fj(d)](9.1)835

VarF
[
f̄(d)

]
=

N∑

j=1

ω2
j VarFj

[fj(d)](9.2)836

The variance formula may be adapted when the output for different ensemble members are837

believed to be correlated by introducing the relevant covariance terms in (9.2).838

9.1.2. Using an Ensemble Subsampling Linear Model. A more realistic and practical839

scenario is that simulations are only performed for a subset of the ensemble, such as, but not840

limited to, those selected using the techniques described in subsection 4.1. A linear model841

of the form shown in (4.1) is used to emulate f̄(d) with the emulated output for each of842

the sub-selected models as inputs. These are {fj1(d), . . . , fjÑ (d)}, for which Ñ < N , with843

j1, . . . , jÑ ∈ {1, . . . , N}, and jk ̸= jl for k ̸= l. The estimated coefficients are denoted by α̂ES844

and β̂k,ES. It is assumed that the individual emulator outputs and the regression coefficients845

are uncorrelated, which is justifiable if two distinct simulation data sets are used to construct846

the linear model and fit the emulators. Under this formulation the adjusted expectation is847

shown in (9.3).848

EF

[
f̄(d)

]
= EF


α̂ES +

Ñ∑

k=1

β̂k,ESfjk(d) + εES(d)


849

= α̂ES +

Ñ∑

k=1

β̂k,ES EFjk
[fjk(d)](9.3)850

Define β̂ES = (α̂ES, β̂1,ES, . . . , β̂Ñ,ES)
T ∈ RÑ+1 with Σβ,ES = Var

[
β̂ES

]
, and851

XES(d) = (1, fj1(d), . . . , fjÑ (d))
T ∈ RÑ+1 with uncorrelated components, so VarF [XES(d)]852

is diagonal. The adjusted variance is presented in (9.4), where σ̂ES is the estimated residual853
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standard error for εES(d).854

VarF
[
f̄(d)

]
= Var [α̂ES]855

+
Ñ∑

k=1

Var
[
β̂k,ES

] (
VarFjk

[fjk(d)] + EFjk
[fjk(d)]

2
)

856

+ 2

Ñ∑

k=1

Cov
[
α̂ES, β̂k,ES

]
EFjk

[fjk(d)]857

+
∑

k ̸=l

k,l=1,...,Ñ

(
Cov

[
β̂k,ES, β̂l,ES

]
EFjk

[fjk(d)]EFjl
[fjl(d)]

)
858

+

Ñ∑

k=1

β̂2
k VarFjk

[fjk(d)] + σ̂2
ES(9.4)859

9.2. Results. The process of building structured emulators for each of the NPV con-860

stituents in subsection 7.2, their combination via the NPV formula to obtain the average861

discounting approximate NPV, and subsequent linking to the exact NPV in subsection 8.2, is862

repeated for each of the three sub-selected OLYMPUS models. For the TNO OLYMPUS Well863

Control Optimisation Challenge and our decision support setup the ensemble mean NPV,864

f̄(d) = NPV(d), is the quantity of interest as the objective and utility function respectively.865

This is emulated using the ensemble subsampling linear model devised in subsection 4.2 to866

combine the emulators for the OLYMPUS 25, 33, & 45 NPVs, following the approach in867

subsection 9.1.868

It is not possible to perform leave-one-out diagnostics for the true ensemble mean NPV869

because simulations have only been performed for the identified subset of OLYMPUS models.870

The wave 0 simulations were run for all 50 OLYMPUS models under a setup using a shorter871

field lifetime due to available computational resources, hence these cannot be used in emula-872

tor diagnostics. Note that the additional uncertainty pertaining to the ensemble subsampling873

linear model is accounted for within the hierarchical emulator construction. Instead we com-874

pare the hierarchical emulator with the predicted ensemble mean NPV in Figure 10 where875

Figure 10a demonstrates accurate predictions. Moreover, the increase in the uncertainty com-876

pared to individually emulating a single OLYMPUS model NPV, such as for OLYMPUS 25877

NPV in Figure 9b, is modest; thus the process of subsampling from the ensemble before recon-878

structing the ensemble mean NPV contributes relatively little additional uncertainty versus879

the structured emulation of the NPV constituents for each model. Figure 10b shows no distin-880

guishable pattern in the pseudo standardised residuals, whilst the majority are of magnitude881

less than three.882

9.3. Emulator Comparison. Two approaches were implemented for emulating the en-883

semble mean NPV: a Bayes linear emulator in subsection 3.2; and a hierarchical emulator884

which exploits known constrained behaviour for certain simulator outputs built up over sub-885

sections 4.2, 6.2, 7.2, 8.2, and 9.2. Firstly, comparing each emulator’s adjusted variances eval-886

uated for the same large collection of decision parameter vectors in Figure 11 demonstrates887
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(a) Hierarchical emulator CI versus subsampling
predicted ensemble mean NPV. The red dashed line
denotes emulator and simulator equality.
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(b) Hierarchical emulator standardised residuals
versus the simulated ensemble mean NPV.

Figure 10: OLYMPUS wave 1 hierarchical emulation diagnostics plots for the predicted en-
semble mean NPV via the ensemble subsampling linear model combining the emulation output
for the exact NPV of the three sub-selected OLYMPUS models.

how the hierarchical emulator achieves a discernible reduction in the uncertainty versus the888

Bayes linear emulator. This feature is also evident when comparing the leave-one-out diag-889

nostics plots in Figures 2 and 10a where there is a prevalent reduction in the credible interval890

widths. A direct comparison of the adjusted variances for each decision parameter vector891

highlights an average reduction in the adjusted variance of more than a half. Note that there892

exist a small number of cases where there is a moderate increase in the uncertainty, although893

this is outweighed by the gains achieved across the majority of sampled locations within the894

decision parameter space.895

A crucial motivation for employing emulators as a surrogate to computer models is their896

speed of evaluation in order to enable further analyses such as decision support. Bayes linear897

emulation is known to be a very fast and efficient means of constructing emulators. In this898

application we achieve a substantial reduction in computation time with over 2000 emulator899

evaluations for new decision parameter settings per second using a single core of a standard900

desktop computer or laptop. This is juxtaposed with approximately 30 minutes per OLYM-901

PUS model simulation, or 25 hours when using the entire ensemble. The combination of902

ensemble subsampling and Bayes linear emulation equates to an efficiency gain of the order903

of 108.904

The full hierarchical emulation process applied to the ensemble mean NPV requires for905

each OLYMPUS model the fitting of 48 separate emulators: 32 of the structured type; and906

16 Bayes linear emulators, a total of 144 emulators over the three sub-selected OLYMPUS907

models. Next, these are combined to obtain emulators for the approximate and exact NPVs908

This manuscript is for review purposes only.



BAYESIAN EMULATION GREY-BOX MULTI-MODEL ENSEMBLES 33

Adjusted Variances

D
e
n
s
it
y

5.0e+11 1.0e+12 1.5e+12 2.0e+12 2.5e+12 3.0e+12 3.5e+12

0
e
+

0
0

2
e
−

1
3

4
e
−

1
3

6
e
−

1
3

8
e
−

1
3

(a) Bayes linear emulator.

Adjusted Variances

D
e
n
s
it
y

1e+12 2e+12 3e+12 4e+12

0
.0

e
+

0
0

5
.0

e
−

1
3

1
.0

e
−

1
2

1
.5

e
−

1
2

2
.0

e
−

1
2

(b) Hierarchical emulator.

Figure 11: Histograms comparing the Bayes linear and hierarchical emulators adjusted vari-
ances for the ensemble mean NPV. Note that the seemingly large variances are inline with
the simulated ensemble mean NPV which is of the order 5.0× 107 $ to 6× 107 $.

for each OLYMPUS model, before emulating the ensemble mean NPV, and then linking909

to the expected NPV. The computational performance is more modest achieving emulator910

evaluations at approximately 4 new decision parameter vectors per second using a single911

core, and is thus slower than Bayes linear emulation. However, in comparison with direct912

simulation from the OLYMPUS ensemble there is a considerable efficiency improvement of913

the order of 104. This is sufficient for comprehensively exploring the decision parameter space.914

Moreover, the additional computational expense of hierarchical emulation can be justified by915

the reduction in emulator uncertainty. This is highly beneficial to performing an iterative916

decision support analysis where reducing emulator uncertainty is imperative for efficiently917

eliminating non-implausible regions of the decision parameter space, thus avoiding extra waves918

of extremely expensive simulations at locations that would have been ruled out by more919

accurate emulators. The additional computational cost is therefore offset versus the need920

for extra simulations. Such arguments are also relevant to analyses using single-stage (or921

one-shot) designs where fewer expensive computer model evaluations are required to achieve922

similar emulator accuracy across the parameter space. Both forms of emulators are easily923

parallelisable, thus permitting further efficiency gains.924

10. Conclusion. We have presented a methodological toolkit for the analysis of multi-925

model ensembles of “grey-box” computer models. This include: an efficient technique for926

obtaining a small representative subset of models by subsampling from a multi-model ensem-927

ble; targeted Bayesian design methodology incorporating relevant prior information to the928

objective of providing decision support under uncertainty; a “divide-and-conquer” approach929

to emulation of sums of outputs where it is preferable to emulate the constituents, for ex-930

ample due to knowledge of their underlying behaviour; structured emulation of outputs to931
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exploit constrained and structured behaviour through the partitioning of the parameter space932

and use of truncated emulators; the efficient combination of multiple emulators for time se-933

ries outputs through an average discounting approximation; and emulation of an ensemble934

mean output. Combining these methods yields a novel hierarchical emulator achieving more935

accurate predictions for quantities of interest, whilst each technique may also be employed936

separately depending on the problem specific features exhibited by the computer model.937

This is motivated by and applied to the TNO OLYMPUS Well Control Optimisation938

Challenge from the petroleum industry where the aim is to maximise the expected NPV, ap-939

proximated by the ensemble mean NPV, as a function of well control decision parameters. We940

reconstrue this as a decision support problem where the utility function consists of a discounted941

sum of oil production, water injection, and water production, both by well and control interval.942

The first two simulator outputs exhibit partially known behaviour, constrained by choices of943

inputs and physical limits with respect to their corresponding target production and injection944

rate decision parameters respectively, with this feature encompassed within our structured945

emulator formulation. The application demonstrates superior accuracy versus Bayes linear946

emulators, whilst the slower speed of evaluation is mitigated by the need for fewer (waves of)947

simulations from the expensive computer model ensemble. Both factors are important for the948

overall aim of providing robust decision support under uncertainty. Moreover, we introduce949

multi-model ensemble subsampling techniques to efficiently identify a representative subset950

of models which collectively best characterises the ensemble mean output of interest, in this951

application, the ensemble mean NPV, whilst also providing a method for their prediction.952

This constitutes a novel application to the petroleum industry where multi-model ensembles953

are commonly used to represent geological uncertainty, greatly reducing the computational954

cost of our decision analysis.955

The next step is to employ the presented hierarchical emulation methodology within iter-956

ative decision support, applied to the TNO OLYMPUS Well Control Optimisation Challenge,957

which incorporates a comprehensive and realistic uncertainty quantification to statistically link958

inferences for the computer model (OLYMPUS) with the corresponding real world physical959

system. See [40, Sec. 4.6 & 4.7] for details. In addition, further methodological development960

should focus on enhancing the overall hierarchical emulation framework. This may be achieved961

by revising the structured emulators change point estimation methods, classification and trun-962

cation, as well as via the refinement of the uncertainty propagation in subsections 8.1 and 9.1.963

Another direction is multivariate structured emulation of the NPV constituents to assess their964

correlation and thus more accurately quantify the approximate NPV by ensemble member em-965

ulator variance in subsections 7.2 and 8.2. Such further methodological developments must966

also be efficient so as not add to the computational burden.967

The methodological toolkit and their combination to form a hierarchical emulator pre-968

sented in this paper, whilst motivated by and tailored to the petroleum well control optimi-969

sation problem, is sufficiently flexible and adaptable to handle other (partially) known forms970

of computer model outputs and functions thereof. Opening “black-box” simulators and ex-971

ploring functions of their output to investigate their behaviours is evidently beneficial, as is972

using domain expert prior knowledge and small carefully designed collections of simulations.973

Another example of emulating “grey-box” models is in known boundary emulation [58, 29].974

The additional prior information can then be used to guide the choice from existing emulation975
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methods or to design novel forms which exploit known behavioural facets in order to achieve976

superior accuracy and enhance the usefulness of emulators for real world applications.977

Appendix A. TNO OLYMPUS Well Control Optimisation Challenge – Extended Re-978

sults.979

In this appendix we extend our discussion of results of the application to the TNO OLYM-980

PUS Well Control Optimisation Challenge (see section 2 for an overview) using the method-981

ology proposed in this paper.982

A.1. OLYMPUS Exploratory Analysis – Additional Plots and Discussion. Our ex-983

ploratory analysis identifies large differences in the absolute contributions of oil and water,984

both production and injection, to the NPV objective function. This feature has potential985

ramifications for emulation and decision support. An assessment of the absolute contributions986

approximated within one year intervals for the OLYMPUS 25 NPV is shown in Figure 12 us-987

ing each of the 20 exploratory analysis decision parameter vectors represented by different988

colours. In (2.3) the oil contribution (solid lines), |Qj,op(d, ti) · rop|, is dominant versus both989

the absolute water production contribution (dot-dashed lines), |Qj,wp(d, ti) · rwp|, and water990

injection contribution (dotted lines), |Qj,wi(d, ti) · rwi|, as well as their sum (dashed lines),991

|Qj,wp(d, ti) · rwp + Qj,wi(d, ti) · rwi|. For earlier time intervals the magnitude of the oil con-992

tribution to the NPV is typically of the order of 100 times the combined water contribution993

which decays towards 10 times larger for later time intervals. Plotting on the logarithmic scale994

in Figure 12b facilitates an easier comparison of the water contributions. It is observed that995

water injection contributes a much larger amount to the NPV, particularly for earlier time996

intervals. This is to be expected since production wells are drilled within regions containing a997

high oil concentration, hence at initial times there should be very little water production. At998

later times the contribution becomes more alike as an increased quantity of water is produced999

in order to maintain oil production, whilst also noting the higher fixed cost per barrel of1000

water produced versus injected. Similar observations are made for other OLYMPUS ensemble1001

members.1002

A.2. Subsampling from Geological Multi-Model Ensembles – Additional Plots. Prelim-1003

inary graphical investigations utilise plots of the ensemble mean versus the individual model1004

over a range of outputs of interest for the wave 0 simulations. Examples of these plots are1005

shown in Figure 13 where the black line denotes equality between the ensemble mean and1006

individual ensemble member model output. The main outputs of interest stem from the NPV1007

objective function and include: the ensemble mean NPV, oil production, water production1008

and injection totals, both for the field and by well, as well as over the entire field lifetime, and1009

for control intervals. Note that this is a preliminary graphical assessment which is limited to1010

identifying one-dimensional relationships. Figures 13a to 13c show strong linear relationships1011

with fairly limited variation providing evidence that even as individual models, OLYMPUS1012

25, 33 & 45 are potentially representative for the ensemble mean. An appropriate (linear)1013

transformation may be applied in the cases seen in Figures 13b and 13c. In contrast OLYM-1014

PUS 50 does not appear to be a good representative model, at least individually, as seen in1015

Figure 13d where the relationship is more challenging to model. This graphical investigation1016

is also useful as a preliminary screening technique yielding a subset of 9 models to investigate1017
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Figure 12: OLYMPUS 25 approximate absolute contribution to the NPV per year for each
of the exploratory simulations shown as coloured lines. The NPV is decomposed into the
oil production (solid line), absolute water production (dot-dashed line) and injection (dotted
line), and the total water contribution (dashed line), with each scaled by the respective fixed
NPV cost parameter. These are |Qj,op(d, ti) · rop|, |Qj,wp(d, ti) · rwp|, |Qj,wi(d, ti) · rwi| and
|Qj,wp(d, ti) · rwp + Qj,wi(d, ti) · rwi| in (2.3) respectively. The top and bottom plots are on
the raw and logarithmic scale respectively.
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(a) OLYMPUS 25 FOPT.
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(b) OLYMPUS 45 WOPTPROD2.
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(c) OLYMPUS 33 FWIT.
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Figure 13: Subsampling from the multi-model OLYMPUS ensemble preliminary graphical
investigations showing the ensemble mean versus individual model outputs. The black line
denotes equality between the ensemble mean and individual model outputs. Note that in
Figure 13d the black line is not shown due to the much smaller values of WOPTPROD10 for
OLYMPUS 50 compared with the ensemble mean.

further: OLYMPUS 2, 6, 11, 23, 25, 33, 35, 37, & 38.1018

The combination of different OLYMPUS models is assessed using the linear model sub-1019

sampling technique in 4.1. This is first applied to the above proposed subset of 9 OLYMPUS1020

models before considering all models in a both directions stepwise selection with AIC. Only1021

Ñ = 3 models are necessary for a large number of the investigated outputs, as demonstrated in1022

Figure 14 showing the linear model adjusted R2 values for various outputs. All are high with1023
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Figure 14: Adjusted R2 values for the OLYMPUS ensemble subsampling linear models of the
form in (4.1) for the ensemble mean of various outputs within control intervals using the same
subset of Ñ = 3 OLYMPUS models as predictors.

most greater than 0.95 implying that the majority of the ensemble variation can be explained1024

by a small subset. These are OLYMPUS 25, 33, & 45. It is noted that OLYMPUS 25 & 331025

were identified as part of the proposed subset of models, where as OLYMPUS 45 was not.1026

This is because for certain outputs it was judged that OLYMPUS 45 did not provide a suffi-1027

ciently good representation of the ensemble mean, however, in combination with OLYMPUS1028

25 & 33 via the linear models, these models collectively provide a good characterisation of the1029

ensemble mean NPV, as well as other outputs.1030

A.3. Hierarchical Emulation of the Expected NPV – Additional Plots. The structured1031

emulation technique incorporating known simulator behaviour in subsection 7.1 is applied1032

separately for each of the OLYMPUS models to the WOPT and WWIT within each con-1033

trol interval for wells in the CWG, with simulator outputs considered as the f(d). Firstly,1034

conservative estimates for the change point upper bounds are calculated from the wave 11035
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simulations using (7.1), each time with δu = 10. This ensures numerical stability and that an1036

upper bound is obtained with all points exceeding this definitely in the plateau region. Next1037

the extrapolation cut-offs are estimated as the change point lower bounds, via (7.2), with1038

δl = 10 to account for numerical precision within the simulations. The change point upper1039

bounds and extrapolation cut-offs are illustrated for all WOPT and WWIT constituents for1040

each wave 1 sub-selected OLYMPUS model in Figure 15 highlighting the region in which the1041

“true” change point is believed to be situated.1042
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