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ABSTRACT 

Finite Element Analysis (FEA) of building structural columns subject to a blast loading are 

time consuming and even a simple single column model can take several hours to build, analyze 

and post process. These types of high-fidelity analyses are typically done during the detailed 

design phase of a new building when there is sufficient time for them to be carried out. 

However, by the detailed design phase the design is well established, and it is harder to 

accommodate design changes. A quick assessment tool that can be used during the concept 

design phase would be invaluable in allowing architects and engineers to work out the required 

column size while the design is still flexible. 

 

To this end we are developing an AI tool that can be used for assessing the blast performance 

of steel columns. The tool uses a neural network surrogate model of the full fidelity FEA 

analysis, and to date, predicts analysis results for steel columns with I-section profiles. Outputs 

that are predicted by the surrogate include likelihood of failure, residual column capacity after 

a blast event, and a basic characterization of damage level from the blast, alongisde confidence 

levels in each of these predictions. 

 

We used the LS-DYNA finite element analysis software to run a 

suite of column blast analyses for a range of column sizes, charge 

masses, standoffs, and column orientations.  

 

The raw results from these models were post-processed to 

categorize the performance of each column (failure, damage, 

remaining load capacity). These were then fed into a machine 

learning algorithm to develop the AI tool. Our surrogate can both 

predict the performance as well as the accompanying uncertainty 

in its prediction, thereby overcoming the black-box nature of AI 

predictions. 

 

The tool is accessed through an API allowing it to be used from a 

simple web interface or linked to from other software such as 

Excel or Rhino 3D.  

 

 

 

  

Figure 1: LS-DYNA 

Column Blast Analysis 
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BACKGROUND 

When designing buildings with blast requirements it is necessary to perform blast 

analysis on the structural columns to ensure they can survive the loading from a 

specified charge mass/stand-off pair and still carry the required structural loads. 

Currently we use the LS-DYNA Finite Element software to perform these dynamic 

blast analyses. Even with the modeling automation tools we have developed these 

column blast analyses can still take a day or so to turn around a specific column.  

This turn-around time is workable during the Detailed Design phase but does not work 

during the Concept Design stage when the initial column layout and sizing is still being 

determined by the structural engineer and architect. Design changes during the detailed 

design phase can be costly due to the amount of rework that is needed (see Figure 2). 

There is clear motivation to develop rapid assessment tools that can be used during the 

Concept Design stage to provide initial insights while the design is still fluid.  

 

 

Figure 2: Design process and cost of change 

 
 

One of the tools we are developing is a quick assessment tool that can be used to assess 

the blast performance of steel columns.   
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METHODOLOGY 

In developing the proof of concept for this tool we have followed the methodology 

outlined below. 

 Research typical building column sizes, potential charge sizes and stand-offs 

 Develop a list of column blast load cases to analyze. 

 Construct the analysis models and perform the analysis 

 Post-process the models and extract the key performance parameters 

 Train the machine learning algorithm on the results from the analysis models 

 Deploy the tool using an API to allow access from various software 

 Develop an initial user interface for the tool.  

 

Load Case Selection 

Following discussion with our Structural Engineering team around typical column 

types and sizes seen in buildings, we chose for this initial tool to assess the performance 

of American wide flange steel beams (W-Beams) as specified by ASTM with sizes 

ranging from W10x60 (10.2in by 10.1in) through to W44x408 (44.8in by 16.1in)  

For the charge we considered sizes from small backpack improvised explosive devices 

(IEDs) up to full-size vehicle IEDs.  Table 1 below shows the range of charge 

parameters considered, with stand-off and angle definitions shown in Figure 3. The 

minimum standoff analyzed for each charge / stand-off pair was limited so that the 

scaled distance (z) of the charge from the nearest element of the column was greater 

than the value given below. 

  𝑧 > 0.178  𝑚𝑘𝑔13 

This ensured that the relevant Kingery & Bulmash blast parameters and positive phase 

durations were within the range of validity for the analyses in question.  

Table 1: Charge parameters 

Charge Size Stand-off Angle to Column 

2.5 kg 0.25 m 0 deg 

5.0 kg 0.50 m 30 deg 

10 kg 1.00 m 45 deg 

25 kg 2.00 m 60 deg 

50 kg 4.00 m 90 deg 

100 kg   

250 kg   

500 kg   
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Figure 3: Charge parameter definition 

 

From this overall design space, a total of 793 load cases were chosen to be analyzed.   

 

Modeling, Analysis and Post-Processing 

For the analysis we used the commercially available Finite Element Analysis (FEA) 

software Ansys LS-DYNA. This software includes an explicit (dynamic) solver which 

is particularly suited for simulating extreme events such as blast and impact load 

cases. 

 

Column Model 

The column is 15ft (4.572m) high. The lower section where the blast impacts the 

column is modeled using solid elements and the upper section is modeled using beam 

elements. Figure 4 below shows an example model for a W44x408 column. 

 

Figure 4: Typical column model 
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The following material properties were used for the steel. 

 Density: 7850 kg/m3 

 Young’s Modulus: 210GPa 

 Poisson’s Ratio: 0.3 

 Yield Stress: 350MPa 

 Failure Strain: 15% 

 Strain Rate Effects: Cowper-Symonds model c=1300, p=5 

The base of the column is fully fixed, and the top of the column is fixed in the lateral 

directions but is allowed to move in the vertical direction. 

 

Column Loading 

A gravity loading is applied to the whole model, and an initial vertical load that is 

20% the vertical elastic buckling capacity of the column is applied to the top of the 

column. 

 

Blast Loading 

The blast loading was applied to the column using the *Load_Blast_Enhanced option 

in LS-DYNA. This is an implementation of the standard Kingery-Bulmash equations 

for calculating blast wave properties. The charge is modeled as a hemispherical 

charge located on the ground at the appropriate stand-off and angle to the column. 

 

Post-Blast Column Loading 

After the blast event, the vertical load on the column is increased to determine the 

remaining vertical capacity of the column after it has been subjected to, and 

potentially damaged by, the blast. The load was increased until the point of column 

failure, which was indicated by excessive deflection under minimal additional load. 

 

Analysis 

Given the required turnaround for the analyses, a high-performance computing (HPC) 

cloud provider was used to analyze the models.  

 

Post-Processing 

The column models were post-processed utilizing the batch processing options within 

the Oasys suite of software. This allowed the models to be automatically post-

processed when each analysis run finishes. The overall performance of each column 

was extracted and output in a csv file format that could be easily ingested by the 

machine learning routines. The following performance parameters were extracted: 
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 Downward vertical displacement of the top of the column 

 Peak vertical force in the column at the base (remaining column capacity) 

 Peak lateral displacement of the column at the top of the detailed section 

 Eroded element energy 

From these values a determination is made as to whether the column is damaged and 

whether the column has failed. 

 If the eroded element energy is greater than zero, then elements have failed 

and been deleted from the model. This is classed as the column being damaged 

 If the top of the column has dropped by more than 0.5% of the original height 

of the column then the column is classed as failed. 

Table 2 below shows a sample of the training data written to the csv file. 

Table 2: Sample training data 

run_name 

W36X135_500kg-2m-30degWKAxis 

 

col_height sec_width sec_depth web_thick flange_thick 

4.572 0.305 0.904 0.0152 0.0201 

 

charge_mass charge_x charge_y charge_z charge_ang 

500 1.885 1.088 0 29.99304 

 

fail damage dz_disp_min col_force lat_disp 

1 1 -1.29118 359978.6 0.808634 

 

The first three rows (eleven entries) specify the analysis name, column dimensions, 

charge size and charge location. The last row (five entries) details the performance of 

the column, i.e. the outputs for which we train the machine learning model. 

 

Machine Learning Model Training 

Machine learning (ML) is a subfield of artificial intelligence where computer systems 

learn from data, identify patterns, and make predictions or decisions without being 

explicitly programmed for every task. 

There are many possible choices for ML models. Since the model is trained on the 

results of a simulation and is intended to learn the behavior of the simulation, our 

model is a ‘surrogate’ of the simulation. 
We note that the results from the FE analysis include:   

 “categorical” outputs such as failure or damaged states. These assume discrete 

values (“labels”) such as ‘failed’ or ‘damaged’.  

 continuous values such as column force or lateral displacement. 
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It is desirable for the surrogate model to not only predict these results but also report a 

level of confidence in the accuracy of the predictions. Therefore, the surrogate model 

we wish to train is an ‘uncertainty-aware’ surrogate, i.e. a probabilistic machine 

learning model that returns both a prediction at an unseen point and the uncertainty in 

the prediction expressed as a probability distribution.  

The starting point for the creation of a ML model is an exploratory data analysis 

(EDA). EDA is a technique that summarizes the data graphically, allowing us to 

identify patterns and relationships between variables, and discover anomalies and 

outliers. As part of the EDA of the training data, we carried out data distribution 

analysis for the dependent quantities, i.e., analysis results. This revealed a large skew 

in the distribution of column displacement results as shown in Figure 5. The 

imbalance stems from the fact that most columns in our training dataset did not 

undergo failure, resulting in most values of displacement being close to 0.0 m.  

As such, we omitted the lateral and vertical displacements from the set of results to 

use for the model training, focusing only on column forces, failed, and damaged 

indicators. Obtaining a well-distributed training dataset that has better representation 

of displacements requires better sampling strategies, an exercise we leave to future 

work. 

 

 Figure 5: EDA of training data for lateral displacement 

Since our surrogate model must predict categorical and continuous values, we require 

it to work as both a classification and a regression model. Furthermore, as this is 

intended to be uncertainty-aware, we choose a Bayesian Neural Network built on a 

multilayer perceptron (MLP) architecture.  
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We use the PyTorch library to train and evaluate our MLP model. The simulation data 

was divided into train, validate, and test groups with a split ratio of 80%, 10%, and 

10% respectively. For training, we use a loss function that is a composition of losses 

from classification and regression. For the regression variable, we use a loss defined 

by Symmetric Mean Absolute Percentage Error, defined as follows 

SMAPE = 
1𝑛 × |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛−𝑡𝑎𝑟𝑔𝑒𝑡|(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛+𝑡𝑎𝑟𝑔𝑒𝑡) 2⁄ , 

where |𝑥| is the absolute value of x. Hyperparameters such as the number of hidden 

layers and the number of neurons per hidden layer are arrived at using hyperparameter 

optimization (HPO), for which we use the SMAPE as a metric for the objective 

function on validation set. Training and HPO are carried out in AWS’s Sagemaker 

environment, which allows multiple ‘compute’ instances to be used in parallel to 

evaluate the metric. This results in an MLP architecture with 10 layers each with 128 

neurons. The network accepts 9 inputs and predicts three outputs, two of which are 

classification outputs and the remainder regression.  

Once trained, testing the tuned model resulted in a MAPE of 19.1% for column force, 

and accuracies of 97.5% for ‘fail’ and 95% for ‘damage’ with f1 scores of 0.975 and 

0.95. An f1 score close to 1 indicates the model has low incidence of false positives 

and false negatives.   

 

Tool Deployment 

The current tool is hosted on an internal server and is accessed through an API. A 

request is sent to the API with the following inputs; 

 Column Dimensions  

o sec_width, sec_depth, web_thick, flange_thick 

 Charge Details 

o charge_mass, charge_x, charge_y, charge_z, charge_ang 

The API replies with the following outputs; 

 Post-blast column vertical capacity 

 Column failure (yes or no) 

 Column damage (yes or no) 

Along with each of these outputs is a confidence index. The confidence index is 

expressed as a credible interval. A 95% credible interval is the range within which the 

true value is expected to lie with 95% probability, given the model and data. The larger 

this range, the lower confidence in the prediction. The interval is therefore a qualitative 

measure that must be combined with engineering judgment to assess the reliability of 

the model’s outputs. We currently use a tolerance of 50% of the prediction to compare 

with the credibility width, i.e., if 𝐶𝐼 𝑊𝑖𝑑𝑡ℎ ≤ (1 ± 0.5) 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, a given 

prediction is considered trustworthy.  
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A sample text-based output from the API is shown below. 

Given an input of:  

  sec_width: 0.29 
  sec_depth: 0.508 

  web_thick: 0.0226 

  flange_thick: 0.0404 

  charge_mass: 50.0 

  charge_x: 0.0 
  charge_y: 1.254 

  charge_z: 0.0 

  charge_ang: 90.0 

Predictions: 

  Continuous: 

         col_force: 12191478     (95% credibility interval: 9633687 to 
15964122) 

  Categorical: 

    fail: 0 (100.0% confidence) 

    damage: 0 (100.0% confidence) 

 

The advantage of using an API is that the tool can then be accessed from a whole range 

of applications allowing different front ends to be used depending on the required task. 

The primary options we are developing are; 

 Linking to the API from MS Excel 

 An interactive web interface 

 A Python script that can be integrated into larger workflows. 

 

Figure 6 below shows the current iterations of the web interface we are developing. 

 

Figure 6: Tool web interface 
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DISCUSSION 

There is a clear need for rapid and accurate blast analysis tools that allow for key 

performance metrics (e.g. failure, displacement, support reactions, etc.) to be estimated 

for common structural forms (e.g. columns) at the Concept Design stage. This paper 

presents the development of one such tool. Overall, we have been successful in 

demonstrating that we can develop an AI-based predictive tool to provide such rapid 

estimates of the performance of a column under a blast loading. However, there is more 

refinement that can be done.  

Currently the load cases we analyzed were fairly evenly spread across column size, 

charge size and stand-off.  However, for training the machine learning algorithms our 

dataset must contain representative spreads of both inputs and outputs. Future work will 

include using better sampling methods to ensure a surrogate with better generalizability. 

A two-step approach to the analysis may provide some benefit, in which a first set of 

load cases are run with a broad spread and then a second set of load cases are run that 

are more focused on where we see column failure from the first set. 

As with any AI tool like this it is important to understand its limitations. For this tool 

the limitations are primarily around the data set used to train the tool. If column sizes 

and loading parameters of the use case are within the bounds of the training design 

space, then there will be reasonable confidence in the results. For use cases outside of 

the initial training space the accuracy of the tool’s predictions will diminish. Note that 

despite this reduction in accuracy, the tool may well still return results with a high 

degree of confidence, so the limits/extents of the training dataset should always be made 

clear in advance. It is important to ensure as tools are deployed out to a wider audience 

that the understanding of these limitations doesn’t get lost. 
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NEXT STEPS 

Some of the next steps we are looking at for this tool include: 

 

Analysis Benchmarking 

Benchmarking our analysis models against known test data to confirm that the fidelity 

of our models is sufficient for the performance metrics we are pulling.   

 

Machine Learning 

Evaluating how we are using the data set for training the AI tool and investigating 

whether there are more appropriate metrics to use. 

 

Validation 

We are currently carrying out validation exercises to confirm that the results from the 

AI tool are in line with the original data set used to train the model. 

 

Additional Steel Column Type 

Currently the model has been trained on American Wide-Flanged Steel I-Beams (W-

Beams). We would like to expand this to include other steel section types typically used 

for building columns (e.g. Hollow Structural Section - HSS, RHS, SHS, CHS).  

A future goal would be to include concrete columns. However, with all the variability 

around column shape, size and rebar layout the design space for these column types is 

orders of magnitude larger.   

 

Front End Development 

Several options we are currently working on are discussed in the Tool Deployment 

section.   

A future goal would be to connect the API into the main structural analysis software 

we use. This would allow the blast performance of the columns to be assessed at the 

same time as the other standard structural load cases.   

 

Refined Loading Model 

*Load_Blast_Enhanced is a simple and well-established fast-running load model based 

on the ConWep/Kingery & Bulmash curves. In its current form, the loading neglects 

any form of one-way coupling (i.e. the form and geometry of the column influencing 

the blast loading through shadowing, stagnation, coalescence at re-entrant corners, etc.) 

or two-way coupling (load-induced structural deformation influencing the loading 

through fluid-structure-interaction). Clearly, using a more sophisticated numerical tool 

to generate higher fidelity training data will, due to enhanced model run-times, generate 

considerably less training data, thereby hampering the AI-based tool’s ability to learn. 
This is a trade-off which is receiving considerable further attention, with one emerging 

solution being to develop a “plug-in” fast-running loading model which incorporates 

the effects discussed above, but at a run-time equivalent to *Load_Blast_Enhanced. 


