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Abstract

Background/Objective: Predicting pharmacological response in cancer remains a key
challenge in precision oncology due to intertumoral heterogeneity and the complexity
of drug–gene interactions. While machine learning models using multi-omics data have
shown promise in predicting pharmacological response, selecting the features with the
highest predictive power critically affects model performance and biological interpretabil-
ity. This study aims to compare computational and biologically informed gene selection
strategies for predicting drug response in cancer cell lines and to propose a feature selection
strategy that optimizes performance. Methods: Using gene expression and drug response
data, we trained models on both data-driven and biologically informed gene sets based on
the drug target pathways to predict IC50 values for seven anticancer drugs. Several feature
selection methods were tested on gene expression profiles of cancer cell lines, including
Recursive Feature Elimination (RFE) with Support Vector Regression (SVR) against gene
sets derived from drug-specific pathways in KEGG and CTD databases. The predictability
was comparatively analyzed using both AUC and IC50 values and further assessed on
proteomics data. Results: RFE with SVR outperformed other computational methods,
while pathway-based gene sets showed lower performance compared to data-driven meth-
ods. The integration of computational and biologically informed gene sets consistently
improved prediction accuracy across several anticancer drugs, while the predictive value
of the corresponding proteomic features was significantly lower compared with the mRNA
profiles. Conclusions: Integrating biological knowledge into feature selection enhances
both the accuracy and interpretability of drug response prediction models. Integrative
approaches offer a more robust and generalizable framework with potential applications in
biomarker discovery, drug repurposing, and personalized treatment strategies.

Keywords: pharmacogenomics; drug response prediction; feature selection; precision
medicine; machine learning; biologically informed modeling; cancer cell lines

1. Introduction
Despite advances in oncology, timely, targeted, and effective treatment is still a major

challenge due to the high heterogeneity among cancer types/stages, but also among
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individual patients. Precision medicine emerges as a promising approach that proposes
solutions for targeted therapeutic strategies tailored to each oncology patient. In cancer
therapeutics, predicting pharmacological responses and adjusting treatment protocols,
dosages and timing for each individual patient remains critical for enhancing therapeutic
efficacy and minimizing severe adverse effects.

Over the years, several strategies have been employed to personalize cancer treatment.
Clinically established methods rely on genetic and biochemical biomarkers [1–7]. More
recent approaches utilize high-throughput molecular data, such as mRNAs, non-coding
RNAs, epigenetic modifications, proteomics, metabolomics, and cfDNA, to identify pre-
dictive markers [1,7–14]. These data-driven approaches require advanced analytical tools,
including cheminformatics for drug repurposing, pharmacokinetic profiling and prediction
of cancer type sensitivity or resistance to drugs [15–20], and differential analysis for identi-
fying molecular features distinguishing responders from non-responders [21–27]. To this
end, AI-based approaches are particularly valuable for leveraging the rapidly expanding
volume of cancer-related data and predicting pharmacological response.

Machine learning (ML) has emerged as a key tool in pharmacogenomics, offering
applications in drug response prediction, cancer diagnosis, prognosis, and staging as-
sessment [28–30]. Numerous studies have applied ML for predicting drug response in
cancer [31]. Zhu and Dupuy (2022) identified pathways linked to drug response and
resistance to BRAFV600 inhibitors in melanoma [32], while Kim et al. (2018) focused on
resistance development to taxanes [33]. Sotudian and Paschalidis (2022) used gene ex-
pression data from 173 cancer cell lines to predict responses to 100 drugs [34], and Ma
et al. (2022) incorporated both gene expression and chemical structure features for IC50

prediction [35]. Finally, Kardamiliotis et al. utilized gene alteration patterns (mutations,
expression, and copy number variations—CNVs) from drug-sensitive and drug-resistant
cancer cell lines and by computing an interaction score, identified biomarkers capable of
predicting whether a cancer cell line is likely to respond to a given anticancer drug [36].

Although ML applications in pharmacogenomics are rapidly growing [31,37–43], most
efforts employ classification models distinguishing responders from non-responders, on
a wide variety of feature selection strategies. For example, a regression-based approach
was used by Muhammad et al. (2024) to predict IC50 values from gene expression data,
applying Select K Best for feature selection [44]. Li et al. (2021) followed a similar path,
predicting IC50 values for 320 drugs using the GA/KNN algorithm [45], while Scarborough
et al. (2023) identified significant genes by performing differential expression analysis
between cisplatin-sensitive and -resistant cell lines using limma, SAM, and multtest, fol-
lowed by co-expression filtering, and employed these genes to predict IC50 values via ML
approaches [46].

Several other feature selection methodologies have been used, including filter methods
such as F-score, ANOVA, and mutual information [47–59], wrapper methods such as SVM-
RFE [50–52] and embedded methods like LASSO and Random Forest based on feature
importance scores [52,53]. In addition, several other feature selection algorithms have
been used in precision medicine applications, including bABER, Auto-HMM-LMF, GFFS,
ReliefF, and mRMR [47,54–56]. However, only a few studies have explored the predictive
value of biologically informed features. Parca et al. (2019) selected genes based on the
expression variability between drug-sensitive and drug-resistant cells and on drug target
interaction networks [57]. Similarly, Koras et al. compared ML-based automated feature
selection with biologically guided methods using known drug targets [54], while Shin et al.
selected 2369 genes involved in a total of 34 cancer-related pathways for training predictive
models [58].
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Despite the growing research interest in ML and its expanding application in pre-
dicting pharmacological responses in cancer—both in clinical and in in vitro settings—
there is still no consensus on the optimal feature selection methodology. Moreover, the
exploration of biologically informed feature selection strategies remains limited, while
integrative approaches combining biological knowledge with computational methods are
notably underrepresented.

This study aims to compare data-driven feature selection approaches with features
derived from domain knowledge, to explore potential overlapping and predictability, and
ultimately to develop optimized ML models capable of predicting the pharmacological
response of cancer cell lines to a range of drugs. Additionally, the study aims to evaluate
the transferability of predictive models across different omics data levels, specifically from
transcriptomic to proteomic data.

2. Materials and Methods
Seven anticancer drugs were selected based on the following criteria: All drugs

are targeted therapies with defined molecular targets and signaling pathways, allowing
correlation between gene expression and drug response, extensive response data across
diverse cancer cell lines are available, and are either FDA-approved or in advanced clinical
trials, ensuring clinical relevance. The selection also covers key signaling pathways to
support biologically interpretable feature selection. The drugs that met the inclusion criteria
are shown in Table 1.

To determine the most appropriate pharmacological response metric for model train-
ing, both IC50 and AUC values were evaluated. IC50 values were retrieved from the GDSC
database [59]. The Genomics of Drug Sensitivity in Cancer (GDSC) is a publicly available
pharmacogenomic resource that integrates large-scale drug screening data with genomic
profiles of human cancer cell lines. GDSC provides dose–response curves, IC50 and AUC
values for hundreds of anticancer agents tested across more than 1000 cell lines, along with
corresponding genomic and transcriptomic data. In this study, we used the curated IC50

values of the GDSC1 and GDSC2 releases to systematically link molecular features with
pharmacological response across a wide range of cancer types. The GDSC dose–response
curves are generated by fitting a sigmoidal curve to cell viability measurements across
a range of drug concentrations. The IC50 corresponds to the concentration that reduces
viability by 50% and is transformed by taking the natural logarithm of the raw micromolar
concentrations. No further modifications were applied to obtain the original data that were
used to train the models. AUC values were also retrieved from the GDSC, where AUC
represents the normalized area under the entire dose–response curve (scaled between 0
and 1), reflecting the overall drug efficacy across tested concentrations. Retrieving IC50

and AUC data directly from the GDSC database ensures systematic assessment using
standardized experimental protocols. No additional IC50 or AUC data from other sources
were used.

Gene expression data were retrieved using the PharmacoGX R package GDSC_2020
(v2-8.2) [60]. All microarray-based gene expression profiles were log-transformed using the
Robust Multi-array Average (RMA) method that includes background correction, quantile
normalization, and summarization [60–65]. Gene expression data were obtained from
1084 cancer cell lines and 17,611 genes. Data from PharmacoGX were selected over other
sources due to the higher number of genes included, the greater overlap with cell lines for
which IC50 data were available for the selected drugs, and the common preprocessing and
curation steps that had already been applied to the dataset. The final number of matched
cell lines is shown in Table 1.
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Table 1. Drugs included in the study and number of cancer cell lines for which data were retrieved
for each drug. Drug: Name of the drug included in the study, Pharmacological target: The primary
molecular target(s) of the drug, Indications: Cancer types or conditions for which the drug is
clinically indicated, Known biomarkers: Genetic or molecular markers associated with drug response
for each drug, Drug-related references: Literature references providing information on the drugs’
pharmacological targets/indications/biomarkers, GDSC version: Version of the Genomics of Drug
Sensitivity in Cancer (GDSC) database from which IC50 and related data were obtained, Number of
cell lines with assigned IC50 values: Number of cell lines for which IC50 values were available from
GDSC for the corresponding drug.

Drug Pharmacological
Target Indications Known

Biomarkers
Drug-Related

References
GDSC

Version

Number of
Cell Lines with
Assigned IC50

Values

Afatinib EGFR, ERBB2 NSCLC EGFR mutations [66–68] GDSC2 866

Capivasertib
AKT

(PI3K/MTOR
signaling)

Breast Cancer HER2, PIK3CA,
AKT1, PTEN [66,69–72] GDSC1 838

Dabrafenib BRAF

LGG,
Melanoma,
Metastatic
anaplastic

thyroid cancer,
NSCLC

BRAF (BRAF
V600 mutation) [66,73–76] GDSC2 856

Gefitinib EGFR NSCLC
EGFR, ABCB1,

CYP2D6, IKBKB,
KIAA1429, FGL1

[66,77–80] GDSC2 858

Nutlin-3a MDM2 - p53, KRAS,
MDM4, p73 [66,81–83] GDSC2 868

Osimertinib EGFR NSCLC EGFR [66,84–87] GDSC2 857

Palbociclib CDK4/6 Breast Cancer

ERBB2, ESR1,
ESR2, PGR,

CCND1
amplification,
CDKN2A loss

[61,66,80,88,89] GDSC2 868

A variety of machine learning algorithms were explored to identify the most suitable
for training predictive models, including: Support Vector Regression (SVR), Categorical
Boosting Regressor (CatBoostRegressor), Decision Tree Regressor, Gradient Boosted Deci-
sion Trees Regressor (GradientBoostingRegressor), Histogram-Based Gradient Boosting
Regressor (HistGradientBoostingRegressor), k-Nearest Neighbors Regressor (KNN), Least
Absolute Shrinkage and Selection Operator Regression (Lasso), Light Gradient Boosting
Machine Regressor (LGBMRegressor), Linear Regression (LR), Random Forest Regressor
and Extreme Gradient Boosting Regressor (XGBoost). Overall, based on the comparative
analysis (Supplementary Materials), Linear Regression was selected as the most appropriate
algorithm for training the final predictive models.

To train and evaluate the predictive models, two validation strategies were considered:
an 80/20 train-test split and 5-fold cross-validation. Both approaches were tested for model
training and evaluation. The train-test split approach was ultimately selected, as it yielded
better overall performance and required lower computational resources [65].

To identify the most suitable feature selection approach, two computational methods
were compared: Recursive Feature Elimination (RFE) with a Linear Regression estimator
and SelectKBest with Mutual Information Regression. Based on the predictive performance
of the resulting models, RFE consistently outperformed SelectKBest and was therefore
selected for subsequent analyses (Supplementary Materials).
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To assess the effect of the underlying model on feature selection performance, Re-
cursive Feature Elimination (RFE) was applied using two different estimators: Linear
Regression and Support Vector Regression (SVR). RFE with the SVR estimator consis-
tently produced models with superior predictive performance across all drugs and was
therefore selected for subsequent analyses (Supplementary Materials). A linear kernel was
selected to ensure compatibility with RFE, which requires models with accessible coefficient
weights. The SVR was run with the default hyperparameters: C = 1.0, epsilon = 0.1, and
gamma = scale. These settings were consistently applied across all drugs.

To train the most efficient models, first an exploratory feature selection step was
applied on the complete set of input features (17,611 genes), and this was progressively
reduced to the top 1000 genes. Subsequently, an iterative selection step was conducted
starting with the top 1000 genes, removing one feature at each step and training the
corresponding model at each iteration.

For the biologically derived feature selection, we used the biological pathways that rep-
resent the pharmacological targets of each drug, as defined by the KEGG database [90]. To
incorporate all relevant domain knowledge, the genes involved in each biological pathway
were retrieved from KEGG and The Comparative Toxicogenomics Database (CTD).

Finally, an integrative approach called BEACON (Biological EnhAncement of COmpu-
tation methods for feature selectioN) was developed, which combines data-driven feature
selection methods with biological evidence derived from drug-target pathways (Figure 1).

Figure 1. BEACON methodology.

BEACON applies data-driven feature selection techniques to identify the subset of
genes that yields the most efficient predictive model and incorporates the genes involved
in the drug’s target biological pathway. Finally, a second round of computational feature
selection is applied on the expanded gene set.

To evaluate the transferability of the predictive models across different omics data
levels, we used proteomic data originating from the study “Proteomic profiling across breast
cancer cell lines and models” [91], which includes protein quantifications for 60 breast
cancer cell lines. Quantification was performed using Tandem Mass Tag (TMT) labeling
combined with LC-MS/MS, while batch normalization was implemented through the
use of bridge samples. Initially, 12,485 proteins were identified, including isoforms and
protein fragments. After the removal of isoforms and fragments, data corresponding to
10,454 unique genes/proteins were obtained. Among these, 6139 genes overlapped with
the gene expression dataset. For each drug, the common genes between gene expression
data and proteomic data were identified. A predictive model of pharmacological response
was trained exclusively using gene expression data, which was subsequently tested on the
matched proteomic data, using the raw and Z-standardized values.

The evaluation of the trained predictive models was conducted R2 (Coefficient of
Determination) [92,93] and RMSE (Root Mean Squared Error) [92,94].
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The R2 score is computed in scikit-learn using the following formula:

R2 = 1 − (SSRES/SSTOT), (1)

where SSRES is Residual Sum of Squares and SSTOTT is the Total Sum of Squares.
Data preprocessing, data visualization, retrieval of gene expression data, and extrac-

tion of pathway-related genes were implemented in R (v 4.3.3). Feature selection, model
training, and model evaluation were built in the scikit-learn Python library (v 1.6.1) [92].
Venn Diagrams were built using the jvenn tool (v.1) [95].

3. Results
3.1. Comparative Predictive Value of IC50 and AUC

To determine the most suitable response variable for modeling the pharmacological
response of cancer cell lines to individual drugs, we conducted a comparative analysis
of the IC50 and AUC values. Feature selection was performed using Recursive Feature
Elimination (RFE) with a Linear Regression estimator, followed by a Linear Regressor
(Figure 2).

Figure 2. R2-values for models trained using AUC and IC50 values.

Models trained using IC50 response variables consistently outperformed those based
on AUC, except for Afatinib, for which the AUC-based model demonstrated slightly supe-
rior performance, and Osimertinib, where IC50 and AUC models exhibited comparable pre-
dictive power. IC50 was therefore selected as the target variable for all subsequent analyses.

3.2. Comparison of Feature Selection Strategies

Each drug was assigned to KEGG and CTD biological pathways based on its mecha-
nism of action (Table 2). The ErbB, MAPK, and PI3K-Akt signaling pathways are central
regulators of cell proliferation, survival, and differentiation, and their dysregulation is com-
monly implicated in various cancers. Activation of the ErbB receptor family, particularly
EGFR (ErbB1), triggers downstream cascades including the MAPK and PI3K-Akt pathways,
promoting oncogenic signaling. Aberrant activation of these pathways contributes to EGFR
tyrosine kinase inhibitor (TKI) resistance, a major clinical challenge in targeted cancer ther-
apies. Additionally, the p53 pathway, a critical tumor suppressor network, often becomes
inactivated in cancer through mutations or dysregulation by the ubiquitin-proteasome
system, impairing DNA damage response and apoptosis.
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Table 2. Number of genes in each biological pathway and drugs whose action is related to
each pathway.

KEGG CTD

Biological Pathway Number of
genes

Number of genes
with gene

expression data
Number of genes

Number of genes
with gene

expression data
Drugs

ErbB 86 80 86 81 Afatinib, Dabrafenib,
Gefitinib, Osimertinib

MAPK 300 287 255 245 Afatinib, Dabrafenib,
Gefitinib, Osimertinib

PI3K-Akt 362 337 341 319 Capivasertib,
Palbociclib

Cancer 533 507 395 383

Capivasertib,
Dabrafenib, Gefitinib,

Osimertinib,
Palbociclib

NSCLC 73 70 58 57 Gefitinib, Osimertinib
p53 75 72 69 66 Nutlin-3a

Ubiquitin 142 135 137 137 Nutlin-3a
Cell Cycle 158 151 124 119 Palbociclib

Breast Cancer 148 143 144 139 Palbociclib
EGFR tyrosine
kinase inhibitor

resistance
- - 79 77 Gefitinib, Osimertinib

For all pathways, there was an overlap of at least 90% of the genes included in the
KEGG and CTD. Furthermore, the number of genes associated with most biological path-
ways shows no substantial deviation, except for the Cancer pathway, where KEGG includes
a markedly higher number of genes. Finally, although KEGG lists the “EGFR tyrosine
kinase inhibitor resistance” pathway as relevant to the mechanisms of action of Gefitinib
and Osimertinib, it does not provide corresponding gene-level data for this pathway.

3.2.1. Data-Driven Feature Selection Methods vs. KEGG Biologically Derived Features

Figure 3 presents the R2 values of predictive models developed using two distinct
gene selection strategies: biologically informed pathways related to each drug’s mechanism
of action (retrieved from KEGG) and data-driven selection via RFE. For each drug, models
were trained using the same number of genes in both approaches to ensure a fair comparison
(number of genes associated with each pathway is presented in Table 3). Pathway-based
models were trained using SVR, except for the Nutlin-3a model based on the Ubiquitin
pathway, which was trained using Linear Regression.

Across all drugs, models developed using data-driven feature selection consistently
outperformed those based solely on biological pathways, regardless of the specific pathway
or the number of genes it contained. Biologically derived models for Afatinib exhibited
poor performance with R2 values around 0.2, whereas the corresponding data-driven
models showed significantly enhanced performance, with R2 values exceeding 0.6 and
reaching up to 0.86. Similar performance levels (R2: ~0.2) were observed for the biologically
informed models of Capivasertib, Gefitinib, Osimertinib, and Dabrafenib. Capivasertib
demonstrated the largest performance gap between biologically derived and data-driven
models for the Cancer pathway, with R2 values of 0.15 and 0.96, respectively. In contrast,
Nutlin-3a showed the smallest performance difference for the p53 pathway, with R2 values
of 0.52 for biologically derived features and 0.69 for data-driven features. Finally, Palbociclib
achieved the highest performance among biologically derived models compared to the
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other drugs, with R2 values ranging from 0.47 to 0.55. Nevertheless, data-driven models
still outperformed them, yielding R2 values between 0.82 and 0.95.

 

Figure 3. Comparison of the data-driven feature methods vs. pathway-guided features from KEGG.

Table 3. Biological Pathways and Feature Selection Algorithms Applied for Each Drug in BEACON.

Drug Biological Pathway Feature Selection Algorithm after
Combination

Afatinib MAPK (KEGG) RFE-SVR estimator
Capivasertib PI3K-Akt (KEGG) RFE-SVR estimator
Dabrafenib ErbB (KEGG) RFE-Linear Regression estimator

Gefitinib Cancer (KEGG) RFE-SVR estimator
Nutlin-3a p53 (KEGG) RFE-Linear Regression estimator

Osimertinib EGFR tyrosine kinase inhibitor resistance (CTD) RFE-Linear Regression estimator
Palbociclib Cell Cycle (KEGG) RFE-Linear Regression estimator

3.2.2. Data-Driven Feature Methods vs. Biologically Derived Features from CTD

Figure 4 presents the R2 values of predictive models trained using genes derived from
biologically relevant pathways associated with each drug, as defined by the Comparative
Toxicogenomics Database (CTD). These are compared directly with models based on genes
selected through data-driven methods. Pathway-based models were trained using SVR,
except for the Nutlin-3a model based on the Ubiquitin pathway, which was trained using
Linear Regression.

As for KEGG pathways, all models exhibited superior predictive performance us-
ing computationally selected genes, highlighting the enhanced ability of data-driven ap-
proaches to capture key determinants of drug response beyond predefined biological
annotations. Afatinib, Capivasertib, Gefitinib, Osimertinib, and Dabrafenib exhibit low
performance (R2: ~0.2) for models trained using biologically derived features. As also
observed for KEGG, Capivasertib shows the largest difference between models trained with
biologically derived features and those using data-driven features for the Cancer pathway,
with R2 values of 0.14 and 0.94, respectively. Again, Nutlin-3a demonstrates the smallest
difference between biologically derived and data-driven models for the p53 pathway, with
R2 values of 0.50 and 0.69, respectively. Palbociclib stood out again among the biologi-
cally derived models, attaining relatively better performance (R2: [0.46–0.54]) compared to
other drugs. Nonetheless, data-driven models provided superior predictive power, with
R2 values ranging from 0.77 to 0.94.
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Figure 4. Data-driven feature methods vs. biologically derived features from CTD.

3.3. Venn Diagram Analysis of Computationally Selected Genes and Pharmacological Target Pathways

Figure 5 shows the Venn diagrams depicting the common genes between the set
selected by data-driven feature selection methods and the KEGG biological pathways
for each drug. Notably, although data-driven approaches and pathway-based methods
frequently yield distinct gene sets, partial overlaps are consistently observed, indicating
that some biologically relevant genes are also prioritized through purely computational
selection. This convergence supports the biological validity of the data-driven selected
genes in certain contexts. However, the limited size of the intersections also underscores
that da-ta-driven and biology-driven methods capture complementary aspects of drug
response, possibly reinforcing the rationale for a hybrid strategy that integrates both
sources of in-formation. In addition, the selective overlap suggests that neither approach
alone is sufficient to fully predict the pharmacological response and that a combined
strategy—based on prior biological domain knowledge and improved through data-driven
learning—can yield more interpretable and robust models.

 

Figure 5. Venn diagrams depicting common genes between computational methods (RFE with SVR
estimator) and the biological target pathways of each drug.
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3.4. Integrative Modeling

To evaluate whether a combinatorial approach that integrates both data-driven and
pathway-based features leads to convergence between predicted and observed IC50 values,
we applied the BEACON methodology. Table 3 presents the biological pathways employed
to train the predictive models for each drug, along with the algorithm used for feature
selection after integration. The selection of the specific pathways and feature selection
methods was based on a comparative evaluation of multiple biologically relevant pathways
and computational strategies for each drug. In each case, the combination that achieved
the highest predictive performance in terms of R2 was selected.

Figure 6 presents a comparative analysis of the R2 and RMSE values between the
best models trained using exclusively computational feature selection methods (RFE with
SVR estimator) and those trained using the BEACON methodology. All models presented
in Figure 6 are trained using Linear Regression algorithm. In all models, the integrative
approach exhibited superior performance compared to data-driven approach, validating
the initial hypothesis that domain knowledge can positively contribute to the predictability
of the underlying ML models.

 
Figure 6. Predictability of the data-driven feature methods vs. the integrative approach (BEACON
methodology). At the base of each bar, the number of features/genes used in each model is indicated,
while the corresponding R2 value is shown at the top of each bar.

The scatterplots in Figure 7 present the pairwise distance between the expected and
actual IC50 values, showing that all residual cell lines fall close on the diagonal line with
minor exceptions of one cell line administered with Nutlin-3a and one with Palbociclib.

Table 4 shows the origin of genes, either data or drug pathway-driven, in the optimized
feature set and the corresponding performance metrics using the BEACON methodology
and the data-driven regression. Positive differences always indicate improvement using the
BEACON compared to RFE for both R2 and RMSE. Table 4 further verifies that BEACON
leads to more efficient models. In the case of Gefitinib, the BEACON methodology reduces
by 12% the RMSE value, while for Capivasertib, Dabrafenib, Nutlin-3a, and Osimertinib,
a reduction of 4.7% to 8.4% is achieved. Of particular interest is Palbociclib, for which
the BEACON methodology trains a model with a 10% reduction in RMSE and a slightly
improved R2, while using 107 fewer genes (a reduction of ~20% in genes). Regarding the
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R2 values, the small increases can be attributed to the fact that, using exclusively computa-
tional methods, very high R2 values had already been achieved. However, the BEACON
methodology achieved more efficient models despite the already high performance and
limited room for improvement.

 

Figure 7. Scatter plots of the predictive models for all drugs, where feature selection was performed
using the integrative approach. The x-axis represents the actual IC50 values of the cancer cell lines,
while the y-axis shows the predicted IC50 values from the models. The dashed red line denotes the
ideal prediction (y = x), where predicted and actual values are equal.

Table 4. Differences in the number of genes and performance measures of models where gene
selection was performed using: Integrative Approach (BEACON methodology) and Data-Driven
feature selection (RFE with SVR estimator). DD: BEACON genes derived from data-driven methods,
BD: BEACON genes derived from biologically driven methods. DD + BD: Common genes in DD
and BD.

Drug
Origin of Genes
in Final Dataset
DD/BD/DD∩BD

R2 Values
Difference

R2 Values
Difference (%)

RMSE Values
Difference

RMSE Values
Difference (%)

Afatinib 416/71/12 0.001 0.14 0.004 1.39
Capivasertib 443/56/12 0.004 0.37 0.018 5.08
Dabrafenib 478/35/2 0.007 0.73 0.031 8.42

Gefitinib 377/117/12 0.014 1.45 0.033 11.72
Nutlin-3a 435/20/7 0.003 0.31 0.014 4.70

Osimertinib 475/34/5 0.005 0.55 0.016 5.83
Palbociclib 389/50/7 0.007 0.77 0.033 10.05

3.5. Cross-Omics Model Transferability

To determine whether protein-level expression data could serve as an effective feature
set for the integrative regression model, we applied the trained predictive framework to
quantitative proteomic profiles. This approach aimed to assess the model’s generalizability
and robustness when utilizing post-transcriptional expression features in place of transcrip-
tomic data. Table 5 presents the number of breast cancer cell lines for which proteomic data
and IC50 values are available for each drug, as well as the number of genes before and after
the removal of missing values.
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Table 5. Number of cell lines and genes with available proteomic data for each drug.

Drug Proteomic BRCA Cell
Lines Common Genes Total Common Genes

(excl. NA)

Afatinib 40 341 180
Capivasertib 38 323 171
Dabrafenib 41 300 167
Gefitinib 41 277 138
Nutlin-3a 42 304 176
Osimertinib 41 326 167
Palbociclib 42 333 177

For each drug, a regression model was built based on gene expression data for which
protein expression levels are available for the same cell lines. The same trained model
(without retraining) was then applied to the proteomic data of the same cell lines, both in
raw and Z-standardized form. Table 6 presents the R2 and RMSE values for the models
trained on gene expression data, as well as for the predictions made when each model was
applied to the corresponding proteomic data.

Table 6. Predictive performance of models trained on gene expression (GEx) data and evaluated on
protein expression data.

GEx Data Proteomics Data
Raw Data

Proteomics Data
Z-Score

Drug R2 RMSE RMSE RMSE

Afatinib 0.395 1.596 11.368 8.401
Capivasertib 0.491 1.332 13.106 6.865
Dabrafenib 0.378 1.406 8.823 6.719

Gefitinib 0.444 0.847 8.756 1.252
Nutlin-3a 0.662 0.983 6.908 3.055

Osimertinib 0.353 0.996 10.080 6.572
Palbociclib 0.616 1.030 10.120 1.617

All drug models applied to proteomics data yielded R2 values below zero, showing a
significant decrease in predictive power. RMSE values increased substantially when the
models were applied to raw proteomic inputs, indicating a marked drop in predictive
accuracy. For example, RMSE rose from 1.596 to 11.368 for Afatinib and from 0.847 to
8.756 for Gefitinib. This pronounced performance degradation suggests a poor transfer-
ability of models across omics layers, likely due to differences in data distribution, scale,
and bio-logical dynamics captured by transcriptomic versus proteomic profiles. Notably,
applying Z-score standardization to the proteomics data resulted in a consistent reduction
in RMSE across all drugs, in some cases quite substantially, e.g., for Palbociclib, RMSE
decreased from 10.120 to 1.617.

4. Discussion
This study provides compelling evidence that data-driven models can effectively pre-

dict pharmacological responses to widely used anticancer agents, outperforming models
based solely on biological pathway information. Furthermore, the main findings from
the multi-drug comparative study demonstrate that integrating in silico feature selec-
tion with biologically informed gene sets enhances both the predictive performance and
interpretability of response models across a diverse panel of cancer therapeutics.
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Despite their predictive strength, purely data-driven approaches are constrained by
several critical limitations. Chief among these is their limited biological interpretability,
which hinders mechanistic insight and translational relevance. Such models are also suscep-
tible to overfitting in high-dimensional, low-sample-size settings common in bio-medical
data, often capturing noise or dataset-specific artifacts rather than generalizable patterns.
Furthermore, they typically operate agnostically to established biological knowledge—such
as signaling hierarchies, pathway topologies, or regulatory interactions—thereby limiting
their capacity to elucidate causal mechanisms or support biomarker discovery. These
limitations underscore the value of hybrid frameworks that integrate data-driven inference
with curated biological priors.

Among data-driven methods, Recursive Feature Elimination (RFE) with Support
Vector Regression (SVR) consistently yielded the most robust predictive models. Models
trained with RFE-based selected genes achieved R2 values exceeding 0.93 for all drugs,
and in some cases even 0.96 for drugs such as Afatinib and Nutlin-3a. These results are
consistent with previous studies by Shahzad et al. [44], Li et al. [45] and Scarborough
et al. [46], which also reported improved IC50 prediction when using RFE over univariate
ranking method.

The performance comparison between models trained using KEGG and CTD biological
pathway genes and those using RFE-selected gene sets revealed that data-driven methods
clearly outperformed biologically informed feature selection for all drugs. The overlap
between genes selected by RFE and those annotated in KEGG target pathways is partial yet
biologically meaningful, suggesting that data-driven selection coupled with the established
biological knowledge could positively affect the potential of data-driven approaches to
inform mechanism-guided biomarker discovery, bridging computational pre-dictions with
underlying molecular mechanisms.

The overlap between genes selected by RFE and those annotated in KEGG target
pathways is partial yet biologically meaningful, suggesting that data-driven selection
coupled with the established biological knowledge could positively affect the potential
of data-driven approaches to inform mechanism-guided biomarker discovery, bridging
computational predictions with underlying molecular mechanisms.

The proposed BEACON methodology, which integrates biological pathway genes
into the RFE pipeline, led to consistently improved or equal performance compared to
computational feature selection alone.

A significant convergence of the predicted and actual IC50 values using BEACON-
selected genes, with most data points. This pattern, observed consistently across all drugs,
indicates that the predictive models achieved high accuracy with minimal large deviations,
suggesting limited occurrence of significant prediction errors.

In terms of model transferability, however, a marked decline in performance was
observed when testing the models built on gene expression to raw proteomics data and
to a lesser extent to Z-transformed protein levels. The results are expected since protein
abundance is influenced by additional layers of regulation, including translation efficiency,
post-translational modifications, protein stability, and degradation rates. These regulatory
processes introduce non-linear and gene-specific relationships between mRNA and protein
levels and coupled with technical factors such as differing data distributions, dynamic
ranges, and measurement noise between RNA-seq and mass spectrometry platforms justify
the reduced model transferability.

While several hybrid strategies have been proposed previously, including network-
based feature selection and pathway-regularized machine learning approaches [55,58],
BEACON introduces a distinct stepwise integration strategy. Instead of constraining the
model a priori through pathway regularization, BEACON first applies a purely data-driven
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feature selection (RFE–SVR), subsequently augments the selected gene set with pharma-
cological pathway genes from KEGG or CTD, and then re-applies feature selection on
the combined set. This iterative design ensures that biologically relevant features are
effectively incorporated while avoiding over-reliance on pre-annotated pathways, thereby
balancing computational efficiency with biological interpretability. Importantly, BEA-
CON is algorithm-agnostic and can be readily applied across diverse drugs and datasets.
Moreover, unlike previous studies that often focus on a single drug or limited scope,
our work systematically benchmarks BEACON across seven clinically relevant anticancer
drugs, providing a broad comparative evaluation that underscores its generalizability and
translational potential.

When compared with relevant tools using gene expression for drug response predic-
tion, BEACON occupies a complementary niche. SpaRx [96] adapts pharmacogenomic
knowledge to spatial single-cell data to highlight intra-tumoral heterogeneity and cell–cell
communication, while BEACON focuses on bulk pharmacogenomic panels with system-
atic multi-drug benchmarking and interpretability. Likewise, DrugFormer [97] employs a
graph-enhanced transformer to analyze single-cell RNA-seq data and identify resistant sub-
populations, whereas BEACON provides a transparent, generalizable framework tailored
to bulk datasets, balancing predictive performance with biological interpretability.

A limitation of the present study is that the predictive models were trained and
evaluated exclusively on in vitro cell line datasets (GDSC transcriptomic data and the breast
cancer proteomic panel). While these resources enable systematic benchmarking across
multiple drugs under standardized conditions, they do not fully capture the complexity
of clinical tumors, including tumor–stroma interactions, immune modulation, and inter-
patient heterogeneity. Future validation of the BEACON framework should therefore
extend beyond cell lines to patient-derived xenografts (PDXs) and organoid models, which
retain greater biological fidelity, and ultimately to clinical cohorts with matched treatment
outcome data. Such efforts will be crucial to determine the translational utility of BEACON
for biomarker discovery, drug repurposing, and personalized therapy optimization in
real-world precision oncology contexts.

Future research should focus on validating the BEACON methodology by applying
it to additional drugs, and clinical data from cancer patients. In addition, the integra-
tion of multi-omic data, including genetic mutations, DNA methylation, proteomics, and
metabolomics, may further enhance model robustness and biological relevance. Further-
more, extending the BEACON framework to model combinatorial drug responses and
systematically benchmarking its performance against deep learning architectures may yield
additional methodological insights. Lastly, evaluating its applicability in drug repurposing
contexts could enhance its translational relevance and broaden its potential impact in
precision oncology.

5. Conclusions
This study demonstrates that hybrid modeling approaches, exemplified by the BEA-

CON framework, can enhance both the predictive performance and interpretability of drug
response models by integrating data-driven feature selection with biologically in-formed
priors. The findings underscore the value of combining computational and path-way-
guided strategies for more robust and clinically meaningful predictions, particularly in
applications such as targeted therapy and drug repurposing. However, limited model trans-
ferability from transcriptomic to proteomic data and reliance on in vitro datasets highlight
the need for omics-specific approaches and validation in more complex biological systems.
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