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Nano-org, a functional resource for single-
molecule localisation microscopy data

S. Shirgill1, D. J. Nieves 1, J. A. Pike 2,3,4, M. A. Ahmed3, H. Abbott3,

M. H. H. Baragilly 1,5, K. Savoye 1,6, J. D. Worboys 7, K. S. Hazime 8,

E. Bruggeman9, A. Garcia3, D. J. Williamson 10, P. Rubin-Delanchy11, R. Peters12,

D. M. Davis 8, R. Henriques 13,14, S. F. Lee 9 & D. M. Owen 1

The nanoscale organisation of proteins plays a key role in diverse cellular

processes, including signalling, adhesion, and structural integrity. Single-

molecule localisation microscopy (SMLM) is a super-resolution imaging

technique that captures the spatial distributions of proteins in cells with

nanometre precision, enabling detailed studies of protein clustering and

architecture. However, comparing such data across experiments remains

challenging due to a lack of curated, functional resources. Here we present a

publicly accessible, curated, and functional resource, termed “nano-org”,

containing SMLM data representing the nanoscale distributions of proteins in

cells. Nano-org is searchable by comparing the statistical similarity of the

datasets it contains. This unique functionality allows the resource to beused to

understand the relationships of nanoscale architectures between proteins, cell

types or conditions, supporting the development of the field of spatial

nano-omics.

The nanoscale organisation and oligomerisation of proteins are

critical processes in fundamental biology. For instance, nanoscale

protein clustering is a key mechanism in regulating signal trans-

duction by orchestrating protein-protein interaction rates1. More-

over, the organisation of cytoskeletal components, such as the

nanoscale architecture of cortical actin, helps define cell mechanical

properties2,3. Aberrant protein nanoscale organisation has been

implicated in diseases, for example, Alzheimer’s disease and type II

diabetes4. Given this importance, there is a need for a resource to

allow researchers to compare protein nanoscale organisations.

High-quality community-driven accessible databases/atlases have

been transformative across biology in the areas of predictive protein

structure, cell phenotyping and large-scale omics, such as NCBI and

PDB5,6. However, these platforms have yet to be utilised for com-

paring protein distributions and assemblies - a field termed spatial

nano-omics. Single-molecule localisation microscopy (SMLM) is a

fluorescence microscopy technique that provides coordinates of

protein distributions in cells with nanometre precision7. While

SMLM databases exist, they lack two features required to enable

spatial nano-omics, curation and functionality8; features that are
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required to turn a repository into a resource. To address this need,

we present nano-org, a publicly accessible and curated database for

SMLM data.

Nano-org is a publicly accessible, curated resource for SMLMdata

that enables the comparison of protein nanoscale organisation across

different experimental conditions. It includes features such as meta-

data curation, real-time updates, and the ability to search datasets by

statistical similarity, supporting the study of spatial nano-omics and

protein distribution in cells.

Results
Data upload, organisation, and metadata curation
Nano-org is freely accessible at nano-org.bham.ac.uk. Uploading and

downloading data requires registration and email verification. When

processing files containing the coordinates of SMLM localisations, it

uses standardised tiled 3 × 3μmregions-of-interest (ROIs), facilitating

the application of the similarity algorithm implemented in the

resource. These are produced automatically from full field-of-view

data with cell bounding polygons. Datasets are organised into folders

representing experimental conditions. They are accompanied by

metadata such as the SMLM modality, protein identity, cell type,

fluorophore tag and other relevant information (e.g. drug treatments),

including aDOI link forpublisheddata. Themetadata includeswhether

the data has undergone drift and multiple-blink correction, and also

calculates the average localisation precision across datasets, providing

users with a quick assessment of data quality. Additionally, upon

upload, users are encouraged to include links to raw data files when

possible, as well as a correspondence email. This ensures that, where

available, raw data can be directly accessed via a link or, alternatively,

requested from the uploader, facilitating both data quality verification

and collaboration between researchers. To ensure the validity of

downstream data analysis, data stored on nano-org is curated and

subject to restriction. It currently accepts datasets in .csv or .hdf5/.h5

format acquired from PALM, dSTORM, PAINT, or other SMLM mod-

alities, such as MINFLUX, as specified by the user upon upload. For

later analysis, nano-org automatically assesses the localisation density

and coverage. Nano-org then allows users to navigate through the

publicly accessible datasets using metadata tags and download perti-

nent data for their own analysis (Fig. 1).

Statistical similarity search and ranking of datasets
A key feature of nano-org is the ability to search its contents by the

statistical similarity of datasets (Fig. 2). This means users can upload a

condition and search for other conditions where proteins exhibit the

most similar nanoscale organisation. This is analogous to searching a

gene sequence database based on sequence homology. Briefly, on

upload, ROIs are subdivided into 30 nm2 bins (a fixed bin size chosen

based on the typical localisation precision observed in SMLM experi-

ments, ensuring consistency across datasets). We then form a fre-

quency histogram for the number of localisations in each bin and

construct the empirical cumulative distribution function (CDF) of the

set of frequencies (histogram heights). Every 5minutes, a check is run

that first identifies all new or modified data in the database. Then, for

every pair of ROIs, we compute the largest discrepancy between their

CDFs, as in the Kolmogorov-Smirnov (K-S) test9,10. The K-S test yields a

dissimilarity value (λ), where an increasing λ denotes greater dissim-

ilarity between the ROIs. For condition-wide comparisons the mean

dissimilarity, �λ, is computed. This procedure results in a list of all other

database contents ranked by their nanoscale organisational similarity

to the condition in question. This list can then be downloaded and

further filtered or searched using metadata. Two different versions of

this ranked list are produced – one as described above and one which

aims to be invariant to differences in the total number of localisations

in the ROI (e.g. if the user has not controlled for expression level,

acquisition time, etc). This is achieved by thinning uploaded datasets

to a standard value (100 localisations/μm2); the minimum density at

which the algorithm could identify meaningful differences between

datasets while also minimising the exclusion of sparse datasets (see

Methods section for detail on how thinning is done). The system scales

efficiently with the number of ROIs in the database, as it compares pre-

computed histograms rather than raw data, enabling many compar-

isons within a reasonable timeframe. The infrastructure supports real-

Fig. 1 | Key functionalities of nano-org. a Users can upload their data, b selecting

from various privacy settings. c Users can upload localisation files (.csv, or .hdf5/.h5)

along with cell-bounding polygons. Metadata requirements ensure comprehen-

sive dataset documentation and enhance search functionality. d Uploaded data is

split into regions of interest (ROIs) for downstream analysis. e The database

enables users to explore public datasets, extract relevant information, and utilise

statistical similarity tools for comparative analysis.
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time updates and comparisons, ensuring timely results even as the

databasegrows. A complete description of the algorithm isprovided in

the Methods section.

Validation of similarity scoring using simulated data
Our similarity scoring method underwent rigorous testing on simu-

lated data. For example, ROIs with 10 clusters were compared to ROIs

with different numbers of clusters while keeping the total number of

localisations the same. Dissimilarity increased with the difference in

the number of clusters (Fig. 2), and statistical testing demonstrated

that the differenceswere statistically significant (See theMethods for a

detailed explanation of the significance testing procedure). Testing

with different cluster sizes and varying numbers of points per cluster is

shown in Supplementary Fig. S1. Additionally, Supplementary Fig. S2

presents dissimilarity scores for alternative structures, including mix-

tures of Gaussian-clustered and fibrous localisations, variations in fibre

density, and different cluster shapes. Finally, simulated fibrous data

with different spatial arrangements is shown in Supplementary Fig. S3.

Impact of dataset heterogeneity on similarity scores
Supplementary Fig. S4 further explores the effect of data hetero-

geneity on similarity scores. When datasets contain a fixed number of

clusters, self-similarity scores (i.e. the similarity between ROIs within

the same dataset) remain tightly distributed. However, as variability

increases (either due to differences in the number of clusters per ROI

or the presence of distinct subpopulations) self-similarity scores

become broader and can exhibit multiple peaks. This highlights the

importance of considering dataset heterogeneity when interpreting

similarity scores, as multiple subpopulations within a condition can

influence overall comparisons.

TIGIT organisation in immune cells
To illustrate the utility of our approach, we investigated the orga-

nisation of one of the datasets stored on the database – T-cell

immunoreceptor with immunoglobulin and ITIM domains (TIGIT);

imaged using dSTORM. TIGIT is an inhibitory receptor on various

immune cells, including T and NK cells. Recent findings show that

upon ligation, TIGIT forms nanoclusters co-localised with the acti-

vating T cell receptor, and this clustering is important for its signal

transduction11. From the ranked similarity list, we found that TIGIT

organisation in NK cells wasmore similar to TIGIT in other cell types,

specifically CD4+ T cells than it is to other proteins, such as KIR2DL1

and NKp30, on the surface of NK cells (Fig. 3). This suggests that the

protein identity, rather than cell type, is most important in defining

the nanoscale organisation in this case. Rankings are preserved after

thinning the data showing the trends are due to genuine differences

in the protein nanoscale distribution and not solely due to differ-

ences in expression levels. It is recommended to use thinned

Fig. 2 | Nano-org’s similarity search approach. aTwoROIs are divided into 30nm2

bins to generate cumulative frequency histograms of localisations. A K-S test

yields a dissimilarity value (λ) between the ROIs, with mean dissimilarity (�λ)

calculated across datasets for comparison. b Example 3 × 3μm simulated data

regions showing increasing dissimilarity as the number of clusters varies from

10 (30 ROIs per condition), while keeping the total localisations per ROI constant.

c Real-time analysis on nano-org enables continuous comparison with public

datasets, filterable by metadata. Ranked similarity lists are updated with new

uploads.
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dissimilarity scores when comparing datasets with significantly dif-

ferent localisation densities. The standard thinning density of 100

localisations/μm² was selected as a balance between sensitivity and

inclusivity. As shown in Fig. S5, the ability of the similarity metric to

distinguish between different clustering patterns diminishes as the

density of localisations decreases. At very low densities (e.g. 10

localisations/μm²), differences between structurally distinct pat-

terns become less pronounced, reflecting a reduced sensitivity of

the algorithm under sparse sampling conditions. Conversely,

applying a very high thinning threshold may exclude datasets with

naturally lower expression levels, limiting the comparability across

experimental conditions. Thus, 100 localisations/μm² was chosen to

retain discriminatory power while ensuring that datasets with

moderate localisation densities remain tractable.

Robustness of similarity scores to technical variability
Additionally, further testing on experimental datasets demonstrated

that while dissimilarity scores can capture subtle differences intro-

duced by image processing methods, most fitting algorithms pro-

duced reconstructions thatwere visually and structurally similar to the

reference (Fig. S6a). While some differences were observed when

comparing datasets acquired on different imaging platforms (e.g. ONI

vs. N-STORM), likely due to technical variations such as laser power or

detector sensitivity, these were relatively minor compared to the dis-

similarity observed when comparing biologically distinct samples

imaged in different labs (Fig. S6b). This highlights that, although

microscope settings can introduce subtle variability, the dissimilarity

scores aremore strongly influencedbyunderlyingbiological structure.

Effect of drug treatment on nanoscale organisation
Furthermore, when comparing cells treated with increasing doses of

nocodazole, a drug that disrupts microtubules, dissimilarity scores

reflected the expected changes in microtubule organisation

(Fig. S6c). Cells treated with 0.5μg/ml nocodazole showedmoderate

differences fromuntreated controls, while those treated with 5 μg/ml

displayed markedly greater dissimilarity, consistent with a loss of

filament structure.

Discussion
In conclusion, nano-org is a publicly accessible and curated database

of SMLM data, designed to facilitate collaborative data sharing,

enhancing accessibility and reproducibility. Its unique framework

allows searches based on statistical similarity, enabling investigations

into the biophysical mechanisms of nanoscale organisation and the

Fig. 3 | Dissimilarity scores between experimental data in nano-org. a Examples

of whole cell coordinates used for analysis, along with example ROIs for each

condition of interest: TIGIT in CD4+ T cells (116 ROIs), and NK cells (158 ROIs);

NKp30 in NK cells (416 ROIs); and KIR2DL1 in NK cells (202 ROIs). 3 × 3μmROIs are

presented either unthinned or thinned to 100 localisations/μm2. b Dissimilarity

between TIGIT in NK cells with itself (red) and with all other conditions.
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effects of mutations or treatments on protein distributions. This

resource contributes to the development of spatial nano-omics – the

systematic study of cellular nanoscale architecture.

Methods
Nano-org: technical description
Nano-org is a Django-based website, with an SQLite database backend,

which is hosted on a BEARCloud virtual machine at the University of

Birmingham. Celery and RabbitMQ are used to schedule background

tasks, including checking the database for new and modified data and

initiating computationally intense analysis tasks via job submission to

BlueBEAR – the University of Birmingham’s supercomputer for high-

performance computing (HPC). Celery tasks are also used to retrieve

analysis results from HPC jobs and incorporate them into the website

and database. Uploaded data and analysis results are stored on the

University of Birmingham’s central Research Data Store and made

available to download through thewebsite. Core analysis functionality,

including cumulative histogram generation and Kolmogorov-Smirnov

(K-S) score calculation, is incorporated into our stand-alone Python

package smlm-analysis. This package is utilised by nano-org but can

also be usedby researcherswhowant todevelop their own customised

analysis pipelines.

Dissimilarity algorithm
To compare the dissimilarity between two ROIs, let FðxÞ and GðxÞ be
their empirical CDFs with sample sizesm and n, respectively. Here, the

sample sizes are the number of 30 × 30nm bins within the ROI that

contain at least one localisation. A two-sampleK-S statistic is employed

using the definition,

Dmn > c αð Þ
ffiffi

J
p

, ð1Þ

where,

Dmn =maxx F xð Þ � G xð Þ
�

�

�

�, ð2Þ

J =
n +m

nm
, ð3Þ

c αð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

2
ln

α

2

� �

r

:

ð4Þ

Here, Dmn is the maximum difference between F xð Þ and G xð Þ,
which are theCDFs of the twoROIs. J adjusts for sample sizes as the K-S

test is sensitive to dataset size. Theparameterα is the confidence level,

where we set α=0:05. We define,

λ=
Dmn

c αð Þ
ffiffi

J
p ð5Þ

Where λ is then the dissimilarity score between the two datasets,

ensuring that comparisons remain consistent regardless of differences

in the number of localisations. More details are provided in12.

A value of λ = 0 indicates that the two ROIs have identical dis-

tributions, while higher λ values indicate increasing dissimilarity. A

score greater than 1 (λ > 1) indicates that two datasets are sig-

nificantly different. However, a score less than 1 (λ < 1) does not

necessarily imply that the datasets are highly similar—it simplymeans

that their differences are not statistically significant. If comparing

similarity scores across multiple datasets to establish a ranking of

similarity, while some scoresmay fall below 1, the relative ordering of

scores remains informative, helping to rank datasets by their degree

of similarity or dissimilarity.

A caveat of the dissimilarity algorithm is that results are

influenced by localisation density, i.e. datasets with lower den-

sities tend to have lower dissimilarity scores. To obtain dissim-

ilarity scores that are independent of localisation density, we

perform thinning before computing dissimilarity scores. The

thinning process involves:
• ROI processing: For each file in a dataset, 3 × 3μm² ROIs are

extracted.
• Random subsampling: Each ROI within the entire dataset is ran-

domly subsampled 100 times to achieve a density of 100 locali-

sations/μm² per ROI.
• Handling sparse datasets: If a ROI has a density fewer than 100

localisations/μm², it is excluded from the analysis to prevent bias.
• Thinned histogram generation: Frequency histograms are gener-

ated for each subsample. The histograms are then averaged

across all 100 repeats to ensure robustness.
• Dissimilarity computation: For each ROI in the reference condi-

tion, the dissimilarity score is computed against ROIs in the

comparison condition, and the mean dissimilarity score along

with its standard deviation is reported. This normalisation allows

for density-independent comparisonswhile preserving the under-

lying protein distribution patterns.

It is recommended to use thinned dissimilarity scores when

comparing datasets with significantly different localisation densities.

Data simulations
To model protein distributions that exhibit clustering behaviour, we

generate Gaussian-distributed clusters within a 3 × 3 μm² ROI. Each

simulation follows these steps:

1. Cluster Generation: A specified number of clusters (n) are ran-

domly positioned within the ROI.

2. Point Distribution: Each cluster contains p localisations, which are

sampled from a Gaussian distribution centred at the cluster

position.

3. Cluster Variability: The spread of each cluster is controlled by the

standard deviation (σ), determining the tightness of clustering.

This approach ensures that clusters of varying sizes and densities

can be systematically compared using the dissimilarity algorithm.

To simulate the nanoscale organisation of cytoskeletal-like

structures, we generate linear fibre distributions within an ROI. The

fibre generation process involves:

1. Defining Fibre Orientation: Fibres can be randomly oriented or

aligned parallel within the ROI.

2. Fibre Placement: The number of fibres is specifiedby the user, and

their positions are randomly or uniformly distributed.

3. Point Distribution Along Fibres: Localisations are assigned along

each fibre’s length following a linear pattern, mimicking fila-

mentous structures such as cytoskeletal networks.

This method captures the spatial arrangement of fibrous

networks, enabling systematic comparisons between ordered and

disordered fibre architectures.

For more details of how simulations are generated, see

https://gitlab.bham.ac.uk/owendz-protein-databank/nano-org-

similarity-scoring.

Experimental methods
All experimental datasets, with the exception of the microtubule data,

were obtained from collaborating laboratories. Microtubule data were

acquired in-house under the conditions described below. All datasets

used in this study are publicly available via nano-org.
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Cell culture
COS-7 cells were maintained in Dulbecco’s Modified Eagle Medium

(DMEM, high glucose; Sigma-Aldrich), supplemented with 10% fetal

bovine serum (FBS; Gibco, Life Technologies), 1% penicillin/strep-

tomycin (Gibco, Life Technologies), and 1% L-glutamine (Gibco, Life

Technologies), at 37 °C in a humidified incubator with 5% CO₂. For

imaging, cells were seeded at a density of 10⁴ cells per well in an

eight-well µ-slide (Ibidi, high precision glass bottom) one day prior

to fixation.

For experiments involving nocodazole treatment, cells were

incubated for 30min at 37 °C in DMEM containing either 0.5 µg/mL or

5 µg/mL nocodazole. Following treatment, cells were washed three

times with phosphate-buffered saline (PBS). Untreated control cells

were washed directly with PBS.

Cells were subsequently subjected to a sequential extraction and

fixation protocol. Briefly, cells were extracted with a pre-warmed

solution of 0.25% Triton X-100 and 0.1% glutaraldehyde in PEM buffer

(80mMPIPES, 5mMEGTA, 2mMMgCl₂, pH 6.8) at 37 °C for 90 s. This

was followed by fixation in a solution of 0.25% Triton X-100 and 0.5%

glutaraldehyde in PEM at 37 °C for 10min. Post-fixation, samples were

quenched with 1mg/mL sodium borohydride (Sigma-Aldrich) for

7min13 and washed three times with PBS.

Immunolabelling
Cells were permeabilised with 0.1% Triton X-100 in PBS for 3min at

room temperature (RT), cells were then washed in PBS followed by

blocking in 5% bovine serum albumin (BSA; Sigma-Aldrich) for 30min.

Immunostaining was performed using a mouse monoclonal β-tubulin

IgG₃primary antibody (200 µg/mL; SantaCruz Biotechnology), diluted

1:50 in 5% BSA and incubated for 30min at RT. After three PBS washes,

cells were incubated in Alexa Fluor™ 647-conjugated goat anti-mouse

IgG secondary antibody (2mg/mL; Life Technologies), diluted 1:1000

in 5% BSA, for 30min in the dark at RT. Samples were then washed five

times with PBS. Prior to dSTORM imaging, PBS was replaced with an

imaging buffer consisting of 18% glucose (w/v), 10mM Tris (pH 8),

50mM NaCl (Sigma-Aldrich), 0.8mg/mL glucose oxidase, 50mM

cysteamine (Sigma-Aldrich), and 40 µg/mL catalase (Sigma-Aldrich).

Optical setup
Microtubule data was collected using an ONI Nanoimager S micro-

scope unless otherwise stated. Where indicated, a Nikon N-STORM

microscope was used for comparison.

Data analysis
Data analysis was conducted using the Super resolution Microscopy

Analysis Platform (SMAP)14, with default settings applied unless stated

otherwise. Single-molecule localisations were fitted using the PSF free

algorithm. To assess the impact of different localisation algorithms on

similarity metrics, localisations were also fitted using the ellipt:PSFx

PSFy or PSF fix algorithm in SMAP, as well as several alternative fitting

methods available in ThunderSTORM15, including Gaussian (Gaus),

integrated Gaussian (integrated Gaus), centroid, and radial fitters.

Localisations were filtered to exclude those with an estimated

precision greater than 30nm. Drift correction and grouping were

performed tomitigate the effects of sample drift andmultiple blinking

of fluorophores.

Summary of statistical testing method
To assess whether dissimilarity scores comparing different conditions

to a reference condition were statistically significant, p-values were

calculated using Monte Carlo simulations and permutation testing.

The analysis began by extracting all dissimilarity values comparing the

reference condition with itself and with each specific comparison con-

dition. For the statistical comparison, we conducted 1000 Monte Carlo

simulations. A distance matrix was computed using these dissimilarity

values. The test statistic, calculated from this distancematrix, quantified

the differences between intra-group and inter-group distances. The

p-value was determined by comparing the observed test statistic with

those obtained from permuted data, representing the proportion of

permuted test statistics greater than or equal to the observed statistic.

To validate this approach, we repeated the p-value calculation 500

times andplotted the empirical cumulative distribution function (ECDF)

of the resulting p-values. This method ensures a robust comparison of

group differences and the reliability of the calculated p-values.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
All experimental data is stored and available for download on https://

nano-org.bham.ac.uk.

Code availability
The implementation of the website and database is available at https://

gitlab.bham.ac.uk/owendz-protein-databank/nano-org-website16. The

core analysis functionality and algorithms used by nano-org are

implemented as a stand-alone python package which is available at

https://gitlab.bham.ac.uk/owendz-protein-databank/smlm-analysis17.

All Python scripts used to produce simulated data and violin plots in

figures and Supplementary Figs. are available at https://gitlab.bham.ac.

uk/owendz-protein-databank/nano-org-similarity-scoring18.
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