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Abstract

Data collected over networks arise in a number of scientific, engineering and industrial
applications, in which the datapoints are noisy observations relating to a process of interest
over the graph structure. In this article we propose a novel multiscale representation of data on
the edges of a network. In contrast to other methods in the literature which employ expensive
node to edge data transformations, our decomposition acts directly on the network edges.
Using our method, we propose an efficient edge denoising algorithm, termed E-LOCAAT,
which displays good performance across a range of data scenarios, particularly when the
number of edges is large. The proposed method is illustrated using extensive simulations and
we demonstrate its applicability on a real-world dataset arising in road traffic modelling.
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1 Introduction

In many scientific applications of interest, the primary focus is to understand the dynamics and

relationships in systems of interacting entities. These systems can often be represented by network

structures, in which edges indicate that interactions exist between the entities, represented by

the network nodes. Being able to efficiently model and analyze data collected on these graph

structures has the potential to provide insight in diverse fields, from neuroscience (Bullmore and

Sporns, 2009), power management (Dörfler et al., 2018), traffic modelling (Kessels, 2019), behaviour

in social networks (Doreian and Conti, 2012), financial network analysis (Boginski et al., 2005), as

well as environmental processes (Knight et al., 2016).

In the statistical literature, one particular analysis task of interest is to estimate functions on

network structures from noisy data. Within this nonparametric regression setting, the majority

of techniques focus on function estimation from vertex data, see for example Jansen et al. (2009);

Kovac and Smith (2011); Shuman et al. (2013). However, in many scientific areas, where data is

observed on the edges of the network structure, e.g. chemometrics of river networks (Hoef et al.,

2006; O’Donnell et al., 2014; Park and Oh, 2022), traffic flow estimation (Lakhina et al., 2004), or

analysis of neural communication data in brain networks (Schwock et al., 2023).

The work in this article is particularly motivated by datasets where noisy observations are

obtained on the edges of a network. Figure 1 shows an example dataset of noisy edge observations

of traffic flow and associated cost on a road network in Chicago. It is of interest in this context to

estimate the underlying function(s) on the graph edges, i.e. denoise the corrupted observations, for

example for infrastructure planning, congestion management and maintenance scheduling. In other

engineering applications such as telecommunications, accurate smoothing of inter-device packet

transmission activity in both Ethernet (Lo Bello et al., 2005) and wireless networks (Buzenkov
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et al., 2024) is crucial in server and router load management, for example to impose server traffic

limits to reduce the chance of ‘packet collisions’, known to increase load and degrade network

efficiency, see e.g. Kweon and Shin (2003).

Figure 1: Data observed on the edges of the Chicago-Sketch transportation network. Left: Total
traffic flow volume. Right: Total traffic generalised cost.

For nonparametric regression for data on network edges, available techniques are very limited.

In the context of river flow modelling, the methods of O’Donnell et al. (2014) and Park and

Oh (2022) use (spline, respectively wavelet lifting) regression techniques on network segments,

incorporating the known network structure to form an estimate of the underlying function over

the network edge space. Other techniques involve estimation in the vertex space, using pre- and

post-processing of noisy edge data to achieve estimation on edges. For example, the recent work

of Cao et al. (2024) employ the line-graph transformation together with wavelet lifting techniques

to denoise edge signals. Whilst the current state-of-the-art, the method is not guaranteed to be

able to represent the data in its original domain at each step, while the line-graph transformation

processing also adds undesirable complexity to the algorithm. The ‘line-graph denoising’ method
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described in Schaub and Segarra (2018) also uses the line-graph to form an estimator, and relies

on potentially computationally-intensive optimisation procedures to estimate the underlying edge

function. All these works are underpinned by the natural assumption that each edge is associated

to one value (as opposed to a continuum), an assumption we also adopt for our development.

In this work, we propose a new multiscale technique for directly representing data on network

edges, based on the ‘lifting one-coefficient-at-a-time’ (LOCAAT) transform of Jansen et al. (2009).

Through this representation, we are able to denoise functions in the network edge space. Our work

builds on the work of Cao et al. (2024), but circumvents the costly line-graph processing step. Our

procedure shows improved denoising performance compared to the techniques of Cao et al. (2024)

and Schaub and Segarra (2018), as well as demonstrating superior computational efficiency.

This article is structured as follows. Section 2 provides necessary notation and reviews the

nonparametric regression problem on graph edges. Section 3 introduces our proposed multiscale

network edge-function representation, and incorporates it into an edge-function denoising algo-

rithm. Section 4.1 highlights through simulation the advantages of our approach over current

methods. We demonstrate the effectiveness of our technique by applying it to the Chicago traffic

volume and cost dataset in Section 4.2.

2 Background

In this section we introduce the pertinent background material that will contribute to our proposed

multiscale representation. Section 2.1 gives the necessary graph-theoretic notation that will allow

us to define and manipulate functions evaluated at the graph edges, before briefly describing in

Section 2.2 the lifting paradigm (its LOCAAT variant appears in Appendix B), a key component

of our denoising algorithm that solves the edge-function regression problem of Section 2.3.
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2.1 Graphs and metrized graphs

Following the development and notation from Bondy and Murty (1976), we represent a graph

G as an ordered pair G = (V , E), where V = {v1, ..., vn} is the set of (n) vertices (nodes) and

E = {e1, ..., em} is the set of (m) edges. The k-th edge indicates the connection between, say, the i-

th and j-th vertices and we write ek = {vi, vj}, where we assume the edge to be undirected. In what

follows, we denote the set of neighbouring vertices of node vi by N V
i = {vj | vj ∈ V ; {vi, vj} ∈ E}.

Weighted graphs provide additional information on the strength of node connection, crucial for

our development. Mathematically, a weighted graph Gω is modelled by an ordered pair (G,ω),

where G is the graph topology containing the vertex set and their connectivity (edge set), and

ω : E −→ R is a function that associates a weight to each edge (Bondy and Murty, 1976). As

typically assumed in the literature across many application fields (see e.g., Bollobás (1998); Baker

and Faber (2006)), we let the weight for each edge ek = {vi, vj} ∈ E be strictly positive and

denote it by ωk or ωij interchangeably. The size of the edge weight is intrinsically connected to

the particular application, and a large weight on an edge may indicate a weak vertex connection

when the weights represent cost, as opposed to a strong connection for e.g., traffic flows. Here, we

assume the strength of connection between two vertices vi and vj to monotonically increase with

the edge weight, namely if vi and vj are close to each other, then the weight ωij tends to be large.

One avenue to facilitate edge function representation is via the metrized graph construct. This

endows weighted graphs with geometric information and allows us, loosely put, to replace pairs of

vertices with line segments. Formally, a metrized graph Γ of a weighted graph Gω arises from a

pair (G, ℓ), where ℓ : E −→ R+ is a function that assigns a length ℓ(e) = 1/ω(e) to each edge e ∈ E

(Baker and Faber, 2006). We associate an interval of length ℓ(e) to each edge e, and identify the

ends of distinct line segments if they correspond to the same vertex v ∈ V . The space Γ(Gω), or
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simply Γ, contains all points across these intervals, and G is known as a model for Γ. The distance

between two points in Γ is defined as the length of the shortest path between them along the line

segments traversed (the path metric, see Appendix A). Endowed with this metric, Γ is a metrized

graph on which a vertex and associated edge set may be (non-uniquely) constructed, as follows.

A vertex set (Vex(Γ)) is a finite, non-empty subset of Γ containing all points (p ∈ Γ) whose

valence is np ̸= 2, where np denotes the number of the directions by which a path can leave the

point p. The finite set Γ\Vex(Γ) is a disjoint union of subspaces {Uk}k isometric to open intervals,

where Uk is a neighbourhood of a point pk ∈ Γ. While the choice of Vex(Γ) is not unique (Baker and

Faber, 2006), each vertex set determines a distinct set of metrized edges {emet
k }k, where emet

k = Uk

(the topological closure of Uk) such that any distinct metrized edges intersect in at most one point.

For the metrized edge emet
k of ek = {vi, vj} we also use the alternative notation [vi, vj]. If Γ is a

metrized graph model for graphs G and G̃ and VexG(Γ) ⊂ VexG̃(Γ), then G̃ is a refinement of G

and we denote G ∼ G̃. In general, for two graphs G and G′, we denote G ∼ G′ if they admit a

common refinement, namely a graph G̃ satisfying VexG(Γ) ⊆ VexG̃(Γ) and VexG′(Γ) ⊆ VexG̃(Γ).

2.2 The Lifting Scheme

The lifting scheme is a technique introduced by Sweldens (1996, 1998), which produces wavelet-like

biorthogonal bases and associated function representations adapted to general data sampling for

which classical wavelets cannot directly work, e.g., functions sampled on complex domains. Since

in Section 3 we will introduce a new lifting scheme construction specifically designed to work on

the graph edges, we next describe the general algorithmic details of a wavelet lifting transform and

note that current literature constructions are limited to functions sampled on graph vertices.

Considering a sequence of integer-indexed observations on a real line, the lifting scheme consists
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of iterating three steps, typically referred to as split, predict and update. Split separates the

observations into two disjoint sets, one containing the odd-indexed positions and the other the

even-indexed ones. Predict (in some way) the odd-indexed values using the information from

the even-indexed ones, then encode the difference between each observation and its corresponding

prediction into the detail, or wavelet, coefficients. Update modifies the even-indexed observations

using the detail coefficients obtained in the prediction step. Iterating these three steps leads to a

set of detail coefficients: in essence, each wavelet coefficient is associated to a wavelet-like basis

function, the properties of which are built through the design of the predict and update steps.

2.3 Nonparametric regression over graph edges

In this work we deal with a set of (independent) noisy observations {fE
k }

m
k=1, where fE

k is collected

from the k-th edge of the graph G = (V , E) and is represented as

fE
k = gE(ek) + ϵk, (1)

where gE : E → R is an underlying (true, unknown) edge-function corrupted by Gaussian noise

ϵk ∼ N(0, σ2) with zero mean and unknown variance σ2. Our main goal is to recover the function gE

from the noise contaminated edge observations {fE
k }

m
k=1. A well-established approach to denoising

in the signal processing literature is wavelet thresholding. A wavelet decomposition of the noisy

observations is taken, and the resulting wavelet coefficients are thresholded to remove the noise

corruption; the wavelet transform is then inverted to recover the true function of interest. For data

on irregular sampling domains, LOCAAT algorithms combined with Bayesian thresholding have

been shown to perform well for functions with a range of features, see e.g. Nunes et al. (2006).

However, the current state-of-the-art algorithms are only suitable for observations on graph
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vertices, and not on edges as in the regression setup (1) we wish to tackle. To adopt a thresholding

approach to the edge denoising problem, we need a multiscale algorithm designed to act on (noisy)

edge data. We next introduce our proposed edge-based LOCAAT algorithm (E-LOCAAT) and

multiscale edge-function representation that facilitate a new network edge denoising technique.

3 Proposed E-LOCAAT constructions

Through the use of the metrized graph concept introduced in Section 2.1, in Section 3.1 we construct

wavelet functions generated by interpolating scaling functions within vertex-based and edge-based

setups. Their associated graph distance measures are discussed in Section 3.2. These constructions,

along with the LOCAAT paradigm (see Appendix B for its brief description), allow us to propose

our E-LOCAAT algorithm in Section 3.3, thus facilitating the transform of the original edge-

recorded data into (edge-)detail lifting coefficients, used for denoising in Sections 3.4 and 3.5.

3.1 Proposed bases construction

3.1.1 Metrized edge representation

Recall that the unknown true function gE is defined on the edge set of a graph G for which the

length, or the weight, of each edge is available. Accordingly, its associated metrized graph Γ can

be obtained and a geometric realisation of the edge-based function can be constructed, where a

function g : Γ → R is defined to be the geometric realisation of gE if it satisfies

g(p) = gE(e), ∀p ∈ emet\{pv,pv′}; e = {v, v′}, (2)

g(p) = 0, if p ∈ {pv,pv′}, (3)
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where the metrized edge emet corresponding to the original edge e ∈ E is isometric to a line segment

[0, ℓ(emet)], with ℓ(emet) the length of this edge. Kuchment (2003) uses this construction to define

the squared integrable function space on the metrized graph Γ, L2(Γ), which consists of functions

that are measurable and integrable on each metrized edge, such that ∥g∥2L2(Γ) =
∑

e∈E∥g∥
2
L2(emet) <

∞. The space L2(Γ) can be considered as the orthogonal direct sum of L2(emet) and as emet is

isometric to a closed interval, the inner product can be defined as in L2(R).

3.1.2 Interpolating-point basis construction and function representation

Denoting the vertex set of the metrized original graph as VexG(Γ) = Vmet, we propose to build

a graph refinement as follows. For the metrized form emet
k = [vi, vj] of an edge ek = {vi, vj}, we

interpolate a point pij ∈ emet
k (interchangeably denote it as pk) and then carry out a subdivision

by considering the set of points {pk}
m
k=1 as a set of interpolating vertices. Thus, we obtain a new

metrized vertex set, V ′met = Vmet∪{pk}
m
k=1 containing (n+m) vertices and for each metrized edge

emet
k , we denote e′met

2k−1 = [pvi ,pk] and e′met
2k = [pk,pvj ] the new edges resulting from its subdivision.

Since Vmet ⊂ V ′met, the associated G′ is a refinement of G and we propose to construct a set

of primal scaling functions {φΓ
k,m}

m
k=1 on Γ(G′) that satisfy the following conditions: (i) they are

interpolating among the set V ′met, namely φΓ
k,m(pk′) = δk,k′ for pk′ ∈ V ′met; (ii) ∪kspan(φΓ

k,m) = Γ.

Akin to Schröder and Sweldens (1995), as each interpolating-point in the refined graph G′

represents an associated edge and an isometry exists between emet
k and the interval [0, ℓk], we

design the scaling function for the k-th edge as a ‘triangular’ function defined on emet
k . Hence the
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k-th point (or vertex)-based initial primal and dual scaling functions are defined as

φΓ,vertex
k,m (p) =



















1 −
distΓpath(p,pk)

ℓk/2
, if p ∈ emet

k ,

0, if p /∈ emet
k ;

(4)

φ̃Γ,vertex
k,m (p) = δ(p− pk), (5)

where δ(· ) is the Dirac delta, and ‘distΓpath(p,pk)’ is the path distance between p and pk on the

metrized graph Γ, as described in Appendix A. The interpolating property of the primal scaling

functions and their biorthogonality with the dual scaling functions can be readily shown, such that

⟨φ̃Γ,vertex
k,m , φΓ,vertex

k′,m ⟩ = δk,k′ , where as above δk,k′ denotes the Kronecker delta.

Function representation. Since we can represent the edge-defined function gE as gΓ by means

of the metrized graph, where gEk := gΓ(pk)(= gΓk ), for k ∈ {1, ...,m} and using ⟨φ̃Γ,vertex
k,m , gΓ⟩ = gΓk ,

we obtain the (initial) function representation

gE(e) = gΓ(p) =
m
∑

k=1

cΓk,mφ
Γ,vertex
k,m (p), (6)

where p ∈ Γ, and the initial scaling coefficients are cΓk,m := ⟨φ̃Γ,vertex
k,m , gΓ⟩ = gΓk .

An alternative proposal for the initial primal and dual scaling functions, that still allows for a

representation akin to (6), follows in the same vein as the ‘lazy wavelet’ construction (Sweldens,

1998), which in this context amounts to taking the biorthogonal pairs

φΓ,Delta
k,m (p) = δpk,p; (7)

φ̃Γ,Delta
k,m (p) = δ(p− pk). (8)
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3.1.3 Edge basis construction and function representation

We now introduce a construction of edge bases, as a variant of the face bases of Schröder and

Sweldens (1995). We first aim to construct a suitable partitioning for the metrized graph domain

Γ, and then ensure the domain of each scaling function lies in one of the partitionings (Jawerth and

Sweldens, 1994). One such natural partitioning is obtained from the metrized edge construction as

the set {Pk}
m
k=1, where for the k-th edge ek = {vi, vj}, we let emet

k = [pvi ,pvj ] be its metrized version

and denote Pk = int(emet
k ) as its interior, namely emet

k \{pvi ,pvj}. The isometry between emet
k and

[0, ℓk] induces an isometry between Pk and the open interval (0, ℓk), leading to the proposal to

construct the initial edge-based primal and dual scaling functions as

φΓ,edge
k,m (p) = χPk

(p) := χ(0,ℓk), (9)

φ̃Γ,edge
k,m (p) =

1

µ(Pk)
χPk

(p) :=
1

ℓk
χ(0,ℓk), (10)

where χ is the characteristic function, and µ(Pk) is the Lebesgue measure of the interval (0, ℓk),

which is simply the length of its closure. The interpolating property of the primal scaling functions

and their biorthogonality with the corresponding duals follow, as shown in Appendix C. Hence the

initial coefficients are cΓk,m := gΓk and the stage-m functional expansion can be written as in (6).

We also investigate a variant of the edge basis framework, which we shall refer to as ‘biorthogonal

Haar’ basis, a term coined by Schröder and Sweldens (1995). Their construction is detailed in

Appendix D and guarantees the self-similarity of the scaling and (associated) wavelet functions,

with the wavelet functions taking the form of Haar-like step functions on the metrized edges.

Remark. The appeal of the proposals in this section over the LG-LOCAAT algorithm of Cao et al.

(2024) is that the scaling functions are defined directly on the metrized form (Γ) of the original
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graph (G) instead of having to resort to its line-graph. We will explore this further in Section 4.1.2.

3.2 Distance measures

When compared with interpolating-point bases, edge bases do not use points as an edge represen-

tation, but treat each edge as a set of points instead. Hence the interpolating-point bases and edge

bases will give rise to different distance measures on the graph. This in turn will play an important

role in the proposed lifting algorithm, and in particular for the construction of prediction weights.

Distance for interpolating-point bases. Denoting by Γr the metrized version for the graph at

stage-r, we define the stage-r distance between two neighbouring edges ekr and es by means of the

path distance between their metrized versions,

distΓr,r
path(pkr ,ps) =

ℓkr,r + ℓs,r
2

. (11)

Distance for edge bases. A suitable metric that gives the distance between two sets of points

is the Hausdorff distance (see O’Searcoid (2006) for its definition) which, along with some of its

variants, is widely used in image analysis, e.g. Huttenlocher et al. (1993); Zhao et al. (2005); Karimi

and Salcudean (2019). Using the path metric in equation (11) and the metric space (Γr, distΓr,r
path)

at stage-r, if es = {vj, vl} is neighbouring ekr = {vi, vj}, their Hausdorff distance follows as

distH(emet
kr , emet

s ) = max

{

sup
p∈emet

kr

{

inf
p′∈emet

s

{

distΓr,r
path(p,p′)

}

}

, sup
p′∈emet

s

{

inf
p∈emet

kr

{

distΓr,r
path(p,p′)

}

}}

= max

{

sup
p∈emet

kr

{

distΓr,r
path(p,pvj)

}

, sup
p′∈emet

s

{

distΓr,r
path(p′,pvj)

}

}

= max {ℓkr,r, ℓs,r} .
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3.3 Proposed E-LOCAAT algorithm

Our proposed algorithm designed to directly work on the network edges will be formalised by the

iterative split-predict-update paradigm (Section 2.2 and Appendix B), as detailed next. While

Section 3.1 described the construction of the initial scaling functions by two different approaches

(interpolating-point/edge bases), there are only a few instances where these choices impact the

proposed algorithm, hence we will specifically point out the differences where these occur.

Split step. The first task for the ‘split’ step is to determine the integral values of the primal

scaling functions at the initial stage, here stage-m. We propose to remove the edge corresponding

to the minimum integral, ensuring we explore the denser sampled regions of the network first.

Should several edges correspond to the same value, we choose at random an edge for removal from

this set. Denote the edge chosen for removal by ekr for a general stage-r with r = m, m− 1, . . . , 3.

The integral derivations for the k-th edge scaling function are detailed in Appendix E and

summarised next: (i) for the interpolating-point bases in (4), we have IΓ,vertexk,m = ℓk,m/2; (ii) for the

Kronecker delta as the initial primal scaling functions in (7), we have IΓ,Delta
k,m = 1; and finally, (iii)

for the edge bases construction in (9), we obtain IΓ,edgek,m = ℓk,m, where we recall that ℓk,m denotes

the initial (stage-m) length of k-th edge. As the scaling function choice will not impact the scaling

and wavelet coefficients, below we skip the superscript (vertex/Delta/edge) for brevity.

Predict step. The interpolating property of the primal scaling functions ensures that each ek ∈ E

is associated to an initial scaling coefficient value cΓk,m := gΓk on the metrized graph domain Γ. To

ensure full generality, we present the stage-r algorithm, where the predicted value for the removal

edge, ekr , is obtained by a linear combination of the neighbouring coefficients {cΓs,r}s:es∈NE

kr,r
, where

the set N E
kr,r

encompasses the edges that have a common vertex with the edge ekr at stage-r.
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Akin to (B.3), the detail (or wavelet) coefficient dkr encapsulates the residual from prediction

dΓkr = cΓkr,r −
∑

s: es∈NE

kr,r

aΓs,rc
Γ
s,r, (12)

where {aΓs,r}s are the prediction weights satisfying
∑

s: es∈NE

kr,r
aΓs,r = 1. For brevity, when the clarity

is not affected, in the remainder of the paper we drop the superscript Γ for all related quantities.

Since the interpolating-point bases and edge bases gave rise to different distance measures

(Section 3.2), the corresponding prediction weights (see also equation (B.4)) are given by

avertexs,r =
1/(ℓkr,r + ℓs,r)

∑

j: ej∈NE

kr,r
1/(ℓkr,r + ℓj,r)

, for s : ej ∈ N E
kr,r, (13)

aedges,r =
1/max {ℓkr,r, ℓs,r}

∑

j: ej∈NE

kr,r
1/max {ℓkr,r, ℓj,r}

, for s : ej ∈ N E
kr,r. (14)

The superscripts ‘vertex’ and ‘edge’ indicate the correspondence to the interpolating-point bases

and edge bases, respectively. Due to the minimal integral (thus, minimal length) condition for edge

removal, the prediction weights for edge bases in (14) can simply be further represented as

aedges,r =
1/ℓs,r

∑

j: ej∈NE

kr,r
1/ℓj,r

, for s : ej ∈ N E
kr,r. (15)

The weight construction above is also employed with a ‘Delta’ choice split step.

Update step. Three quantities are updated at each stage, namely the scaling function integral and

coefficient values (equivalent to (B.5)– (B.6)), and the graph structure is relinked. Our proposed

E-LOCAAT will additionally require the lengths of the neighbouring edges to be updated.
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The integral and coefficient values of the neighbouring edges of ekr are updated at stage-(r− 1)

Is,r−1 = Is,r + as,rIkr,r, for s : es ∈ N E
kr,r,

cs,r−1 = cs,r + bs,rdkr , for s : es ∈ N E
kr,r. (16)

Since the prediction weights are positive quantities, the integral values of the scaling functions will

be non-decreasing as the algorithm progresses. The values of the update coefficients can be obtained

by taking the minimum norm solution of the underdetermined system
∑

s:es∈NE

kr,r
bs,rIs,r−1 = Ikr,r.

For E-LOCAAT, updating (relinking) the graph structure occurs much more naturally than by

using the minimal spanning tree as for the vertex-based LOCAAT. We propose to equate the

removal of an edge ekr = {vir , vjr} with its two vertices fusing (Figure 2), crucially ensuring that

the underlying graph can be obtained at each step of the algorithm. The updated lengths are

ℓs,r−1 = ℓs,r +
1

2
ℓkr,r, for s : es ∈ N E

kr,r, or (17)

ℓs,r−1 = ℓs,r + as,rℓkr,r, for s : es ∈ N E
kr,r, (18)

when we notionally consider the two vertices to fuse at the middle point of the associated metrized

edge, or use the same scheme as for the integral value update (leading to a lower computational

effort). We refer to these as ‘unweighted’ (17) and ‘weighted’ (18) length updates, preserving

average edge length and ensuring that the lengths are non-decreasing from stage-r to stage-(r−1).

Iterate. We reiterate the split-predict-update steps and obtain the detail coefficients, {dkm , ..., dkτ+1
},

where τ ∈ Z is the number of retained edges (or stopping time). The resulting detail coefficients

are defined directly on the edge topology, thus avoiding additional constructions necessary to en-

sure the applicability of existing vertex-based approaches (LG-LOCAAT of Cao et al. (2024)) and,
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Figure 2: Edge removal visualisation: original graph (red) vertices (left) fuse into a new one (right).

importantly, allowing for a practical and interpretable multiscale representation of the network.

Inversion. The inverse E-LOCAAT transform can be carried out by undoing at each stage equa-

tions (12) and (16), as follows

cs,r = cs,r−1 − bs,rdkr , for s such that es ∈ N E
kr,r,

ckr,r = dkr +
∑

s:es∈NE

kr,r

as,rcs,r.

Algorithmic comparison of proposed E-LOCAAT with existing line-graph lifting con-

structions (Cao et al., 2024). For a graph with n nodes and m edges, recall its line-graph has m

vertices and
∑n

i=1

(

ni

2

)

= 1
2

(
∑

i n
2
i )−m edges, where ni denotes the number of neighbours (degree)

of vertex vi (see e.g. Harary (2018, Theorem 8.1)). For a dense graph with a small, but highly

connected, number of vertices (resulting in large m and ni values), working with its corresponding

line-graph has the undesirable result of having to deal with a large number of vertices and edges.

Importantly, the (average) degree of nodes in the line-graph of a network will increase as a

result of the transformation, scaling from 1
n

∑n
i=1 ni in the original graph to 1

m

∑n
i=1 n

2
i − 2 in

the line-graph, which will hold for all graphs, regardless of the generating process (including the
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minimal spanning tree constructions implemented in this article). This mirrors the observation

for common graph structures such as Erdös-Rényi (Wang et al., 2016), exponential and scale-free

models (Nacher et al., 2005; Mańka-Krasoń et al., 2010) that the line-graph produces networks

with higher degrees and more clustered edges, i.e larger cliques.

The predict step (specified by equations (B.3) and (B.4)), as well as the update step (equations

(B.5)–(B.7)) for the LG-LOCAAT approach will thus require additional computations compared

to the corresponding lifting steps of the proposed E-LOCAAT algorithms, see also Section 4.1.2.

3.4 Denoising strategy using the E-LOCAAT representation

We next use our proposed multiscale representations in the context of the network edge nonpara-

metric regression problem described in Section 2.3. Recall we model the edge observations as

fE
k = gE(ek) + ϵk (:= gEk + ϵk), where gE is the true, unknown function defined on the network edge

set E = {ek}
m
k=1, and {ϵk}

m
k=1 is iid noise, assumed to follow a normal distribution N(0, σ2). Using

the linearity of the E-LOCAAT transform and denoting its associated transform matrix by W̃ , we

re-write the regression above as W̃fE = W̃gE + W̃ ϵ, where fE , gE , and ϵ are the vector forms of

the observations, true values, and noise, respectively. As d⋆ := W̃gE is a sparse vector, while W̃ ϵ is

a vector of heteroscedastic Gaussian random noise, a possible solution for obtaining an estimator

of gE is to perform wavelet thresholding of the observed wavelet coefficients d := W̃fE .

Denoting by V
E,(d)
kr

the variance of the detail coefficient and by V E
s,r the variance of the s-th

scaling coefficient at stage-r, we incorporate a normalisation step (Jansen et al., 2009) that uses

V
E,(d)
kr

= V E
kr,r +

∑

s: es∈NE

kr,r

(as,r)
2 V E

s,r,

V E
s,r−1 = (1 − 2as,rbs,r)V

E
s,r + (bs,r)

2 V
E,(d)
kr

.
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We let nml (dkr) = dkr
/

√

V
E,(d)
kr

be the normalised kr-th detail coefficient, for all r ∈ {m, ..., 3},

satisfying Var (nml (dkr)) ≈ σ2, with the inaccuracy stemming from ignoring the induced covariance

structure, shown to only cause a small loss of precision (Nunes et al., 2006). Empirical Bayes

thresholding is carried out, where the non-zero part of the prior density is modelled as the ‘quasi-

Cauchy’ distribution from Johnstone and Silverman (2004), also employed in other LOCAAT-based

approaches (Jansen et al., 2009; Cao et al., 2024). Following thresholding, we obtain the estimated

wavelet coefficients d̂
⋆
, and then the inverse E-LOCAAT transform will yield the estimates, {ĝEk}

m
k=1.

3.5 Nondecimated E-LOCAAT variants

For an equitable comparison to the results shown in Park and Oh (2022) and Cao et al. (2024),

we bring the nondecimation concept into the denoising E-LOCAAT algorithms introduced in this

paper. Knight and Nason (2009) proposed a nondecimated lifting transform (NLT) which saw appli-

cations in denoising (Nunes et al., 2006), spectral estimation (Knight et al., 2012) and long-memory

estimation (Knight et al., 2017; Knight and Nunes, 2019). Instead of defining shift operators as in

other wavelet transforms (Nason and Silverman, 1995), different ‘trajectories’ of removal order are

used for exploring the whole space. In the context here, nondecimation works as different trajec-

tories give rise to different estimates of gE . An overall estimate can then be formed by averaging

(mean/ median) the estimates from P (randomly sampled) trajectories, akin to ensemble learning.

We will also test a completely random biorthogonal Haar NLT algorithm (see Appendix F), in

which both the removal edge and the neighbour used for prediction are chosen randomly. For all

other E-LOCAAT algorithms, their nondecimated variant is obtained using random trajectories.

In the reported results, these algorithms are indicated by the acronym ‘nlt’.

Further potential research avenues are to investigate whether the proposed method can be
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extended to higher order prediction steps, and therefore adapted to local smoothness conditions.

4 Data Analysis

4.1 Simulation study

In this section we report the headline findings of our investigations into the behaviour of our

proposed E-LOCAAT in the network edge estimation problem of Section 3.4. A summary of the

acronyms corresponding to different E-LOCAAT variants appears in Table 1. The full details and

results are provided in Appendix G.

Acronyms

E-Lid-wu L: lengths as initial integral values (equation (E.15)); id:
inverse distance prediction (equation (13)); wu: weighted
update for edge lengths (equation (18))

E-Lid-nwu L: lengths as initial integral values (equation (E.15)); id:
inverse distance prediction (equation (13)); nwu: equally-
weighted update for edge lengths (equation (17))

E-Lil-wu L: lengths as initial integral values (equation (E.15)); il: in-
verse length prediction (equation (15)); wu: weighted up-
date for edge lengths (equation (18))

E-Lil-nwu L: lengths as initial integral values (equation (E.15)); il:
inverse length prediction (equation (15)); nwu: equally-
weighted update for edge lengths (equation (17))

E-Did-wu D: sequence of ones as initial integral values; id: inverse
distance prediction (equation (13)); wu: weighted update
for edge lengths (equation (18))

E-Did-nwu D: sequence of ones as initial integral values; id: inverse
distance prediction (equation (13)); nwu: equally-weighted
update for edge lengths (equation (17))

E-Dil-wu D: sequence of ones as initial integral values; il: inverse
length prediction (equation (15)); wu: weighted update for
edge lengths (equation (18))

E-Dil-nwu D: sequence of ones as initial integral values; il: inverse
length prediction (equation (15)); nwu: equally-weighted
update for edge lengths (equation (17))

Bio-Haar (BH) Biorthogonal Haar E-LOCAAT (Appendix D)

Table 1: Acronyms and algorithm descriptions for different parameter choices of E-LOCAAT.
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Simulation setup, competitor methods and performance metrics. We simulate noisy

datasets in a range of scenarios, and test our algorithms’ ability to recover the true uncorrupted

edge signals. The simulation study assesses the denoising performance of our proposed E-LOCAAT

algorithms against state-of-the-art edge denoising methods in the literature. Specifically, our simu-

lation study compares E-LOCAAT to the recent LG-LOCAAT proposal of Cao et al. (2024) which

tackles estimation via a LOCAAT application on the line graph transform of the data. We also

include the ‘line-graph denoising’ method of Schaub and Segarra (2018), which we denote as ‘SS’.

This technique estimates the underlying edge function via g̃E = (I + αLLG)−1fE , where I is the

(m × m) identity matrix, LLG denotes the line-graph Laplacian, and α is a tuning parameter,

which in practice is determined via grid search (we use a grid of 50 equally-spaced values for α

in (0, 50]). To ensure benchmark comparisons, we sample the pointwise and edge averaging con-

structed functions investigated in Cao et al. (2024) over q = 1, ..., Q different graph structures,

G(q). For each graph we simulate t = 1, ..., T different noise sequences, each corresponding to a

particular signal-to-noise ratio (SNR). Following the estimation procedure detailed in Section 3.4,

we obtain the estimate ĝEk,q,t of the true k-th edge function value (gEk,q) on the graph G(q) when

the true function is corrupted by the t-th noise sequence and report the AMSE and squared bias

associated with our methods (see Appendices G and H for definitions and comprehensive results).

4.1.1 Denoising results

Tree structures. For both pointwise and edge averaging function constructions, results in Ta-

bles G.3 and G.8 for tree structures with m = 99 edges show that the algorithm performance is

consistent across different SNR levels. Similar to the results obtained by the LG-LOCAAT algo-

rithm in Cao et al. (2024), the denoising performance is highly related to the type of underlying

function. For smooth functions, E-LOCAAT is competitive compared with LG-LOCAAT (and
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compares even more favourably for edge averaging functions), but less competitive for functions

with discontinuities (‘Blocks’, g1, and mfc), except for the biorthogonal Haar E-LOCAAT which

significantly surpasses every other method for g1 and the Blocks function. As for LG-LOCAAT,

E-LOCAAT also does not perform well for high frequency functions, such as Heavisine. We note

that the SS method performs particularly well for the Heavisine function, where the lifting-based

methods perform worst. Investigating the effect of scaling the number of edges to denoise for larger

tree structures (with m = 299, 499 edges) reveals broadly similar conclusions for both pointwise

and edge averaging functions (Tables G.4, G.9 and Tables G.5, G.10 respectively), but with the

lifting-based methods performing better apart from the Heavisine function. Overall, the ‘Did-nwu’

method shows more performance consistency, with improvements over other variants regardless of

the data generating process, while for the line-graph LG-LOCAAT algorithm, the best performing

method switches from ‘Aid-p’ to ‘Did-p’ when moving from pointwise to edge averaging.

Denser graphs. To further (comparatively) investigate the denoising performance on different

(non-tree) graph structures, we also explored simulated test data on denser graph structures. We

constructed a graph with n = 40 nodes with m edges corresponding to the m shortest Euclidean

distances between the nodes. This will naturally form clusters of edges or ‘cliques’ in the graph

structure. Tables G.6 and G.7 for graphs with two different densities (m = 299, 499 edges) highlight

that all methods worsen in performance compared to the tree graph structures. However, the lifting-

based methods, particularly the biorthogonal Haar construction, are the best in many scenarios.

Inspecting the bias metrics for these graphs in Table H.17 there is a clear bias-variance trade-off,

with a low estimator variance achieved at the expense of a very large bias.
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4.1.2 Comparison of computational cost of denoising methods

Since the network structures encountered in many applications may feature a large number of edges,

it is of practical importance to evaluate the feasibility of the methods via their computational cost.

To this end, we run each denoising method on a set of simulated data on graphs with increasing

number of edges and record its runtime, averaged over Q = 50 graph structures and T = 100 noise

replications. This allows us to compare how the runtime of each method scales with the number

of edges, removing the effect of other factors such as implementation efficiency and programming

language. The results of the runtime analysis appear in Figure 3. As expected, the relative

computational cost of all methods increase with the number of edges in the graphs under analysis.
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Figure 3: Comparison of computational cost of the various denoising methods in terms of how the
computational burden scales with the number of edges in graph structures analysed.

Interestingly, all methods have worse runtime behaviour for tree-like graph structures when

compared to the denser graph construction. However, it is noteworthy that the E-LOCAAT and

biorthogonal Haar (BH) methods proposed in this article scale better with the number of edges in

the graph, when compared to both the LG-LOCAAT and SS competitor methods. Similar scaling
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behaviour as Figure 3 was observed regardless of the test function or signal-to-noise ratio used to

generate the simulated datasets.

This observation and the good denoising performance over the range of data generation scenarios

strongly justify the use of the proposed methods, especially our biorthogonal Haar construction.

4.1.3 Denoising comparisons on the simulated flow-based function

We further compare E-LOCAAT with the methods of O’Donnell et al. (2014); Park and Oh (2022)

on their simulated flow function (Figure 4) over a river network with 81 vertices and 80 edges, its

edge set being separated into 7 different clusters. (See Appendix I for a detailed analysis.)

Figure 4: Left: The ‘true’ simulated river flow data used in Cao et al. (2024), the network structure
is originally introduced in Gallacher et al. (2017), and the test function construction intruduced
by Park and Oh (2022). Right: The flow data corrupted by noise ϵ ∼ N(0, σ2), where σ = 1.5.

Results. We tested ‘E-Did-nwu’ and ‘E-Lil-nwu’ as the former was shown to yield good results

for test functions which display similar characteristics to the function here, and the latter gives

an algorithm with a different focus, treating each edge as a set of points (see Section 3.1.3);

biorthogonal Haar (‘Bio-Haar’, or BH) is also tested since it works well for piecewise constant

functions. Results in Table I.23 show that the one trajectory line-graph ‘LG-Sid-p’ results surpass
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Figure 5: Left: The denoised river flow data by the nondecimated lifting algorithm ‘LG-Aid-p-nlt’
of Cao et al. (2024), using 30 trajectories. Right: The denoised river flow data by the proposed
nondecimated lifting algorithm ‘Bio-Haar-nlt-random’ with 30 trajectories.

all (decimated) results, and BH is an extremely close competitor. However, when introducing

nondecimation, BH becomes the optimal choice and leads to significant improvements for the

performance of our E-LOCAAT algorithms. Compared with the line-graph based methods, our

proposed BH demonstrates superior performance for the detection of discontinuities (see highlighted

rectangles in Figure 5), as well as for recovering the edge function values at the boundary.

Both our proposed E-LOCAAT and competitor LG-LOCAAT methods with only one trajectory

yield better results than the nondecimated method of Park and Oh (2022) using 50 trajectories.

4.2 Real data analysis: road traffic estimation

To show the performance of our algorithm for a more compelling real-life problem, we also analyse

the edge data collected from a larger dense network. The Chicago-Sketch network structure,

introduced by LeBlanc et al. (1975) and illustrated in Figure 1, consists of 933 nodes and 1475

edges, along with the corresponding traffic volume and generalised cost data.

We perform the nondecimated variants of the ‘Bio-Haar’ algorithm (BH) and its competitor
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‘LG-Aid’ (LG), both with 100 trajectories. Note the Chicago-Sketch network structure is highly

irregular in terms of edge lengths, for example, many short edges are adjacent to some relatively

long edges, particularly along the network boundary. Thus, if an edge with a short length is

picked to be predicted, and it has only one neighbouring edge with a relatively large length, then

the update coefficients will be close to one and potentially cause a stability issue, as discussed in

Appendix F. Hence in order to give a robust and well-behaved estimator, we take the median of

the estimates from the P (randomly sampled) trajectories.

Figure 6 comparatively illustrates the denoising performance of the two methods for the traffic

volume data. Compared to BH, the line-graph algorithm is more likely to smooth a larger area,

see for example the edges around the network centre in the top row. The estimated signal-to-noise

ratios of the denoised signal (equation (J.20)) are ŜNR
BH

vol,CS ≈ 3.2439 and ŜNR
LG

vol,CS ≈ 2.5624,

indicating that the proposed BH captures more information from the observed data.

Figure 1 (right) shows that more areas of the cost dataset exhibit high variation, potentially

indicating discontinuities in the underlying true function, and Figure 7 shows the denoised signal.

For denser networks, LG-LOCAAT is less stable than E-LOCAAT (Appendix G.1) and may tend

to oversmooth the underlying function. Indeed, we note that LG completely changes the pattern of

the observations (top row), while BH has the ability to extract features in these regions. The SNR

estimates are ŜNR
BH

cost,CS ≈ 1.9466 and ŜNR
LG

cost,CS ≈ 0.6171, which, corroborated with visualisations

suggest that BH outperforms LG. The Q-Q plots (bottom row of Figure 7) show both sets of

residuals have similar shapes and exhibit some departures from Gaussianity, but BH performs better

in terms of the residual magnitude. Analysis of a smaller road network (Sioux Falls, Appendix J)

shows similar significant noise reduction.

25



Figure 6: Denoising results for the Chicago-Sketch traffic volume data via the nondecimated vari-
ants of proposed ‘Bio-Haar’ algorithm (BH) and its competitor ‘LG-Aid’. Top Left: Denoised
volume by BH (100 trajectories). Top Right: Difference of the performance between BH (100
trajectories) and ‘LG-Aid’ (100 trajectories). Bottom Left: Residual plot (BH). Bottom Right:
Residual plot (‘LG-Aid’).

Data Availability Statement

The network associated to the simulated flow dataset in Section 4 can be obtained using openly

available code in the supplementary material of Park and Oh (2022). The traffic data for the
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Figure 7: Denoising results for the Chicago-Sketch traffic cost data via the nondecimated variants
of proposed ‘Bio-Haar’ algorithm (BH, left) and its competitor ‘LG-Aid’ (right), both with 100
trajectories. Top row: Denoised cost. Bottom row: Residual Q-Q plot.

Chicago-Sketch and Sioux Falls road networks are openly available in GitHub at

https://github.com/bstabler/TransportationNetworks.
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