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ABSTRACT

Background: Impaired insight can be understood clinically as a loss of ability to appropriately recognize one’s own disease

status. Investigating insight in Alzheimer’s disease (AD) and its relation to longitudinal changes in brain structure is important to

understand the disease progression.

Objective: To examine how the character of insight changes with disease stage and assess whether baseline levels of impaired

insight can predict rate of brain atrophy across a period of 30 months in a cohort of subjects consisting of subjective memory

complaint (SMC), mild cognitive impairment (MCI), AD, and cognitively normal (CN) controls.

Methods: Data from 794 eligible participants were extracted from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

dataset. Insight levels were estimated by the Measurement of Everyday Cognition (ECog). Impairment was further categorized

into overestimation or underestimation of ability. Brain atrophy rates were estimated by measuring change in gray matter volume

within 30 months.

Results: Overestimating ability was significantly correlated with increased whole-brain atrophy rates (p < 0.001) independent of

general cognitive decline. Overestimation of ability exhibited significant correlations with increased atrophy in specific regions of

the brain including the medial temporal lobe, fusiform gyrus, and hippocampus.

Discussion: The present results suggest a statistically significant correlation between overestimation of ability and increased rates

of subsequent brain atrophy. This is particularly notable in regions of the brain such as the hippocampus. However, further study

into the phenomenon of insight and its progression over the disease course is required before its potential clinical utility can be

fully assessed.

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ANOVA, analysis of variance; CN, cognitively normal; ECog, Everyday Cognition Scale; EMCI, early
mild cognitive impairment; FDR, false discovery rate; ICV, total intracranial volume; LMCI, late mild cognitive impairment; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination;
MoCA, Montreal Cognitive Assessment; MRI, magnetic resonance imaging; MTL, medial temporal lobe; NoV, number of visits; SMC, subjective memory complaint; YoE, years of education.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI Investigators can be found at:
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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1 Introduction

Dementia is a brain disorder characterized by the presence of

cognitive decline and symptoms that decrease one’s ability to

function independently including memory loss, impaired execu-

tive functioning, language impairment, and apraxia (Duong et al.

2017). A commonly seen, although largely unexplored symptom,

is a lack of insight into diagnosis or symptoms, which appears

to occur in anywhere between 20% and 80% of mild dementia

cases (Wilson et al. 2016). Its prevalence and severity rise with

the progression of the disease (Cacciamani et al. 2021; Starkstein

2014).

Levels of insight can vary prior to a clinical dementia presenta-

tion, with specific subdomains such as memory being affected

2–3 years prior, presenting at a similar time to early signs of

regional brain atrophy (Whitwell 2010; Wilson et al. 2015). It

is also found that impaired self-perception in mild cognitive

impairment (MCI), a prodromal stage of dementia, is predictive

of the likelihood of progression to dementia in a 2-year time

frame (Therriault et al. 2018). Investigating altered insight in

Alzheimer’s disease (AD), which is the most common cause of

dementia, can be particularly relevant considering its prevalence

and clinical significance (about 75% of patients with AD experi-

ence severely impaired insight) (Wedderburn et al. 2008; Koch

and Iliffe 2010; van Vliet et al. 2012).

Interestingly, brain regions affected first in AD such as themedial

temporal lobe (MTL) have been associated with global impaired

insight in neurodegenerative diseases (Chavoix and Insausti 2017)

and specifically in AD (Tondelli et al. 2018). A faster decline of

MTL volume has been shown in patients with AD compared to

controls (Smith 2002) and MTL atrophy has also been shown to

predict progression fromMCI to AD dementia (Visser et al. 2002;

Whitwell et al. 2007). Other studies have found that brain regions,

including the fusiform, hippocampal, and inferior temporal areas,

are the strongest predictors of progression to dementia (Kwak

et al. 2022); however, it is unclear how these areas relate to

impaired insight.

Given the evidence from the literature, we argue that clinical

assessment of altered insight may be useful in identifying those

who are showing early signs of dementia. Likewise, impaired

insight may turn into a novel predictive neuropsychological

marker for the progression of AD. Based on the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) database (https://adni.loni.

usc.edu), this study is primarily aimed at investigating whether

baseline levels of insight predict the longitudinal brain atrophy

rates across the pathological timeline from healthy cognition and

subjective memory complaint (SMC) to MCI and AD over a 30-

month period. We will further explore the associations of specific

subdomains of insight with key regions of the brain associated

with AD pathology. To our best knowledge, this is the first study

that examines variations of insight and brain atrophy rates over

time across the continuum ranging from preserved cognition to

clinical dementia.

2 Methods

2.1 Data Collection

Data used in the preparation of this article were obtained from the

ADNI, which was launched in 2003 as a public-private partner-

ship, led by Principal Investigator Michael W. Weiner, MD. The

primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of MCI

and early AD.

2.2 Subjects

Participants taken from the ADNI1, ADNI2, ADNI3, and

ADNIGO studies were grouped across five diagnostic subsam-

ples: cognitively normal (CN), SMC, early MCI (EMCI), late

MCI (LMCI), and AD. Subgroups were categorized according to

predefined criteria (Aisen et al. 2015).

To be included in this analysis, all participants were required

to have completed both participant’s and informant’s versions

of the Everyday Cognition Scale (ECog) (Tomaszewski Farias

et al. 2011) at their baseline visit so that discrepancy scores (an

index of insight) could be calculated. Participants had to have

undergone MRI brain scan at the baseline visit and at least one

follow-up visit so that longitudinal brain volume change could be

calculated and compared. For participants with only two visits,

only those with visits at least 12 months apart were eligible to

obtain a reliable estimate. The cutoff for follow-up visits included

in this study was month 30, as this was the last month in which

there was data available for any AD participants, ensuring the

total number of data points is comparable between groups. The

ADNI database was filtered subject to these criteria resulting in

a sample population of 817 eligible participants. Global cognitive

efficiency of subgroups was evaluated with theMini-Mental State

Examination (MMSE) and the Montreal Cognitive Assessment

(MoCA) (Folstein et al. 1975; Nasreddine et al. 2005).

2.3 Insight Assessment

To assess baseline levels of insight, participant’s and an infor-

mant’s responses to the ECog were used. The ECog is a 39-

item questionnaire covering six cognitive subdomains: language,

memory, divided attention, visuospatial ability, planning, and

organization (Tomaszewski Farias et al. 2011).

The informant’s responses were used as a disease-independent

reference to compare with the assessment of the participants’

ability, and therefore the discrepancy scores between partici-

pants’ and informants’ answers were used as proxy measures

of insight. To create these measures, the participants’ scores

were subtracted from the informants’ scores. Intact insight will
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FIGURE 1 Brain mapping of regions included in the current study.

have a discrepancy score around zero. A negative discrepancy

score or an underestimation means someone has a lower self-

perception of their own ability. A positive score is referred to as

overestimation. As well as calculating “total insight,” the ECog

questionnaire was broken down into six cognitive subdomains

(memory, language, visuospatial, planning, organizational skills,

and divided attention) so insight into specific domains was also

calculated.

2.4 MRI Acquisition and Analysis

High-resolution 3 Tesla MRI brain scans at baseline and subse-

quent visits were collected following the protocols outlined by

ADNI. Image derived metrics were available for download from

ADNI. T1-weighted MRI data taken from 3 Tesla high-resolution

brain scans were analyzed by ADNI using the FreeSurfer Seg-

mentation tool (http://surfer.nmr.mgh.harvard.edu/, version 5.1

for ADNI1, 2, GO and version 6.0 for ADNI3) with procedures

primarily outlined by Fischl et al. (2002).

Whole-brain and regional gray matter volumes (from hip-

pocampi, fusiform gyri, entorhinal cortices, and MTLs) that can

predict progression to dementia or underpin early AD pathology

based on the literature were included (Kwak et al. 2022; Planche

et al. 2022; Rao et al. 2022). For the brain subdivisions, this is the

total of the left and right regions in each subject. To minimize

variation between individual differences in total intracranial

volume (ICV), the ratio of the participants’ brain volume in

question to the ICV was calculated for each visit. A summary of

the subregions included in the study is seen in Figure 1.

2.5 Annualized Brain Atrophy Rate

For the whole brain and each brain region, the gray matter

volume to ICV ratio was used as the dependent variables and

the months from baseline as the independent variable. Slopes

were calculated employing a least squares regression assuming

a linear relationship between time and brain volume change.

These data were converted to an annualized percentage decrease

as a proportion of the ICV for use in data visualization, which is

referred to as rate of atrophy.

Slopes were also calculated for the participants’ ICV changes over

time. This was done so participants with large changes in ICV

volume over time could be identified and excluded, as it was

assumed that ICVwould not have large deviations between visits.

Participants whose ICV slope was three times the interquartile

rangewere counted as extremeoutliers andwere removed, as they

were likely to heavily skew the data.

2.6 Statistical Procedures

Statistical analysis was performed in Jeffreys’s Amazing Statistics

Program JASP Version 0.17.2. The statistical significance for

all analyses was set at p < 0.05, and where multiple compar-

isons were made, a false discovery rate (FDR) correction was

applied using the Benjamini–Hochberg method (Benjamini and

Hochberg 1995).

A comparison of the distribution of possible confounding vari-

ables in the association between insight and brain volumes

between diagnostic groupswas completed. Examination of poten-

tial differences between groups was performed using standard

statistical testing dependent on the normality of the demographic

variable, assessed via Shapiro–Wilk tests. As gender is a categori-

cal variable, comparisons between groups were completed with a

chi-squared test.

The distribution of insight scores in different diagnostic groups

was compared through visual inspection using histogram plots

to assess the character of insight depending on the diagnosis.
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Complementary, insight scores and atrophy rates were assessed

statistically with Shapiro–Wilk testing to determine whether

parametric or nonparametric statistical correlation methods

should be used. Correlations devoted to evaluating insight’s

predictive value in brain changes across time were controlled for

confounding variables including age, years of education (YoE),

sex, number of visits (NoV), and degree of cognitive efficiency as

discussed in the next section.

2.7 Confounding Variables

The correlation between subdomains of insight and atrophy rates

needed to be corrected for certain confounding variables, given

that brain atrophy occurs with natural aging even in the CN

elderly (Erten-Lyons et al. 2013). Sex-specific differences are also

present within AD pathology (Kadlecova et al. 2023). Concerning

YoE, although it has been reported that this factor does not shape

cognitive decline (Berggren et al. 2018), the positive influence

of literacy on neuropsychological tasks is widely known (Lezak

et al. 2004), and therefore, participants with a greater number of

YoE may exhibit higher levels of insight as a result. In addition,

increased levels of education have been suggested to be protective

against AD-related brain pathology, further highlighting the need

to control this variable (Zhu et al. 2021). Selection criteria used

here allowed for people with differing NoV for MRI scans. To

account for this variability, the NoV was used as a covariate. To

assess insight’s use in prognosis, it needed to be separated from

the potential covariate of baseline burdens and severity of AD

which could be measured using MoCA or MMSE; however, the

MoCA was selected here because this tool has been shown to be

more sensitive for patients with MCI (Nasreddine et al. 2005),

more suitable than the MMSE to detect cognitive decline (Pinto

et al. 2018), and a better measure of global cognition (Jia et al.

2021).

3 Results

3.1 Participant Demographics

After filtering for the required variables in the ADNI database

and checking for extreme outliers in the ICV slope distribution,

23 participants were excluded, leaving a total sample size of 794.

This was distributed across five groups of differing diagnoses at

baseline: CN (n = 176), SMC (n = 150), EMCI (n = 245), LMCI (n

= 148), and AD (n = 75).

For the demographic variables: age, YoE, gender, MoCA, and

NoV, Shapiro–Wilk testing was employed to assess whether

parametric or nonparametric testing was required for differences

between groups. Testing suggested that age followed a normal

distribution, but the other variables did not. Significant differ-

ences were found in all variables: age (p = 0.034), NoV (p <

0.001), YoE (p = 0.048), gender (x2 = 19.915, p < 0.001), and

MoCA (p < 0.001), suggesting that these variables would all

need to be controlled for throughout further statistical analyses.

Demographic information is detailed in Table 1. T
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FIGURE 2 A raincloud plot of the distribution of (over- or underes-

timation of) insight scores by diagnostic group.

3.2 Insight Levels by Diagnostic Group

The type of overall insight loss was characterized by separating

underestimation from overestimation. Statistically significant

differences were seen between groups (p < 0.001), with post hoc

comparisons detailed fully in Table S1. The SMC, CN, and EMCI

groups underestimated their abilities on average, with SMC to the

highest degree (m = −0.281, SD = 0.339), followed by EMCI (m =

−0.175, SD = 0.649) and CN (m = −0.137, SD = 0.288). The LMCI

and AD groups both overestimated their ability on average, but

LMCI (m= 0.099, SD= 0.734) to a lesser extent than theADgroup

(m = 0.752, SD = 0.799). The distribution of insight character in

different groups was visualized in Figure 2.

3.3 Brain Atrophy Rates

For the whole brain and all subregions of interest, a negative

mean annualized percentage change as a proportion of total ICV

was observed in all groups (means displayed in Table 2). The AD

group showed the greatest mean brain atrophy rates in the whole

brain and regional analysis. This was followed by LMCI, EMCI,

CN, and finally the SMC group, which showed the lowest atrophy

rates (Figure 3). These differences were found to be statistically

significant between the groups (p < 0.001), and the full results of

post hoc comparisons can be found in Table S2.

For the AD group, the entorhinal cortex showed the greatest

atrophy rate in comparison to other brain regions, whereas the

hippocampus had the highest rate of atrophy in the other groups

(Table 2).

3.4 The Correlation Between Overall Insight and
Rate of Whole Brain Changes

This analysis was undertaken to assess overall insight’s effect

on whole-brain atrophy rates. Shapiro–Wilk testing of overall

insight and whole-brain atrophy rates showed that both variables

followed a nonparametric distribution; therefore, the Spearman’s

rank was employed to assess the correlation between the vari-

ables. After accounting for the covariates: age, YoE, gender, T
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FIGURE 3 Violin plots showing the distributions of whole-brain and specific region annualized atrophy rates by diagnostic group.

baseline MoCA scores, and NoV, the Spearman’s rank showed a

significant negative correlation between the whole-brain atrophy

rate and overall insight (rs = −0.128, p < 0.001), meaning that

overestimation of overall ability was significantly correlated to

increased whole-brain atrophy rate.

3.5 The Correlation Between Overestimation
and Rate of Regional Brain Changes

This analysis was conducted to evaluate the association between

subdomains of insight and brain regions of interest that were

selected based on the literature for early AD pathology. This was

completed with a partial Spearman’s rank that was controlled

for the covariates: age, YoE, gender, MoCA scores, and NoV.

For all the following statistically significant results, there was a

negative correlation between insight domains and yearly atrophy

rate across specific brain areas. This means that in all signifi-

cant correlations, an overestimation of ability was correlated to

increased rates of regional brain atrophy.

A summary of Spearman’s rho, p values, and FDR corrections can

be found in Table 3 for all partial correlations. Overestimation

of visual-spatial, organizational, and divided attention abilities

was significantly correlated with an increase in rate of atrophy in

all brain regions studied. Overestimation of memory, language,

and planning ability was significantly correlated with an increase

of fusiform, hippocampal, and medial temporal atrophy, but

not entorhinal atrophy. Although some significant findings have

modest effects, the strongest associations were hippocampal

change with overestimation of divided attention ability (rs =

−0.167, FDR p = 0.002) and overestimation of memory ability (rs
= −0.165, FDR p = 0.002). Such relationships were visualized in

the scatter plots in Figure 4.
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TABLE 3 Results of Spearman’s rho correlations between insight (overestimation/underestimation) split into cognitive subdomains and subregions of the brain affected in early Alzheimer’s disease

pathology.

Entorhinal atrophy Fusiform atrophy
Hippocampus

atrophy
Medial temporal

atrophy

Memory insight Spearman’s rho −0.035 −0.148*** −0.165*** −0.124***

p value 0.33 < 0.001 < 0.001 < 0.001

FDR correction 0.33 0.002** 0.002** 0.002**

Language insight Spearman’s rho −0.043 −0.134*** −0.134*** −0.123***

p value 0.231 < 0.001 < 0.001 < 0.001

FDR correction 0.241 0.002** 0.002** 0.002**

Visuospatial insight Spearman’s rho −0.073* −0.124*** −0.103** −0.104**

p value 0.043 < 0.001 0.004 0.004

FDR correction 0.0491* 0.002** 0.0064** 0.0064**

Planning insight Spearman’s rho −0.049 −0.109** −0.118** −0.091*

p value 0.176 0.002 0.001 0.012

FDR correction 0.192 0.00369** 0.002** 0.016*

Organizational insight Spearman’s rho −0.075* −0.122*** −0.148*** −0.1**

p value 0.042 < 0.001 < 0.001 0.007

FDR correction 0.0491* 0.002** 0.002** 0.00988**

Divided attention

insight

Spearman’s rho −0.076* −0.14*** −0.167*** −0.098**

p value 0.036 < 0.001 < 0.001 0.007

FDR correction 0.0455* 0.002** 0.002** 0.00988**

Note: Controlled for the covariates of age, gender, number of visits, years of education, and baseline MoCA score. Benjamini–Hochberg false discovery rate (FDR) correction of p values is applied.

*Significant after FDR correction, p < 0.05; **p < 0.01; and ***p < 0.001.
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FIGURE 4 Scatter plots showing overestimation in memory and divided attention with increased rates of annualized hippocampal atrophy.

4 Discussion

The study has found evidence to support the hypothesis that

insight and its subdomains are significantly correlated to rates

of brain atrophy. It also adds weight to the idea that insight is a

phenomenon that is formed of multiple parts of the brain, and as

such, specific region brain atrophy rates are variably associated

with separate cognitive subdomains of insight. However, the

atrophy rates of brain regions found to be significantly associated

with insight tended to be associated with multiple, if not all,

subdomains. This implies that self-perceptive ability is tied to core

regions of the brain, regardless of ability studied.

The literature regarding insight and its measurement in MCI and

AD is inconsistent in its definition and methodology, making

comparisons between studies difficult. However, in accordance

with the current study, a recent meta-analysis and systematic

review of awareness of cognitive deficits (analogous to insight)

found that MCI patients had significantly poorer awareness than

controls, andmild AD patients had significantly worse awareness

than MCI patients (Cacciamani et al. 2021).

Further categorizing impaired insight into an overestimation

or an underestimation of ability suggested that, on average,

the SMC, CN, and EMCI groups underestimated their ability,

whereas at the later stages of the disease, LMCI and AD

overestimated their ability. There is a growing suggestion that

SMC may be thought of as a potential “pre-MCI” stage and

an important part of the prodromal stage of AD (Warren et al.

2022). A meta-analysis of the progression of SMC to MCI and AD

found that older people with SMC were twice as likely to develop

dementia than those without SMC, with 6.6% of SMC patients

progressing to MCI yearly, strengthening the argument that it is

a possible stage before MCI (Mitchell et al. 2014). Although not

statistically significant, we found a deepened underestimation

of ability in SMC compared with CN. These findings highlight

a further need to explore how the symptom of insight impair-

ment changes longitudinally through the prodromal stages of

AD.

Fusiform andmedial temporal atrophy have been shown to occur

in AD up to 3 years prior to clinical diagnosis, accelerating with

the disease stage from cognitively normal to AD (Whitwell 2010;

de Flores et al. 2022). This is supported by the current study

which showed a significantly increased atrophy for these areas

in the MCI and AD groups when compared to the CN, with

atrophy rates also found to progressively increase with the stage

of disease, with the exception of SMC.More research into SMC as

a possible prodromal dementia stage is needed before concrete

conclusions are made, given that atrophy rates were found to

be slower than CN. One possible suggestion is that SMC may

exhibit compensatory changes before structural abnormalities

develop, whichmay explain the decreased atrophy rates seen here

(Kawagoe et al. 2019). Given the modest brain atrophy in SMC,

investigating neuropsychological changes including insight may

shine some light on early detection of AD at the SMC stage.

Insight as a phenomenon has been previously associated with

certain areas of the brain, such as the MTL, and impairment

of this capability has been linked with an increased progression

from MCI to dementia (Wilson et al. 2015; Therriault et al.

2018). However, the association of insight to rates of brain

atrophy was unexplored in the past. The current study showed

significant associations between baselines impaired insight and

rate of whole-brain change, even after accounting for several

covariates and particularly the baseline MoCA scores, implying

that this association is independent of the disease severity. The

increased rate of atrophy suggests that those who demonstrate

more impaired insight at any stage of AD are likely to be followed

by a more aggressive disease course.

Although the pathogenicity of overestimation instead of “nondi-

rectional awareness” of ability is largely unexplored, one study

suggested that overestimation of functioning was more related

to neuronal circuit dysfunction than that of underestimation in

neurodegenerative diseases (Shany-Ur et al. 2014). Furthermore,

it has been found that overestimation of performance in a mem-

ory task was related to lower cortical thickness in AD-vulnerable

regions and executive decline (Sánchez-Benavides et al. 2022).
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This supports the suggestion that overestimation of ability is a

stronger marker of pathogenicity in AD than underestimation

in terms of character of impaired insight. This is highlighted

further by the significant correlations between overestimation

of all cognitive subdomains and increased rates of atrophy of

the MTL and hippocampus, but interestingly also the fusiform

gyrus. The MTL and hippocampus have been highlighted as

key regions linked with self-perceptive ability and therefore

crucial for maintaining insight into one’s abilities (Hallam et al.

2020). The fusiform’s association with insight has a basis within

the literature, with studies suggesting that the fusiform gyrus,

specifically the left, is important in visuomotor and perceptive

self-awareness (Li et al. 2021; Tacikowski et al. 2017).

Previous literature has suggested that atrophy of the MTL is a

good predictor of progression from MCI to AD (DeCarli 2007);

however, more recent studies have identified the hippocampus

and fusiform region atrophy as stronger predictors of AD pro-

gression (Kwak et al. 2022). Given the significant association

between the rate of atrophy in these areas and overestimation of

ability, itmay be possible to use a noninvasive neuropsychological

assessment of insight as a proxy to estimate atrophy rates, and

therefore the risk of disease progression. Although significant,

the associations between levels of insight and brain atrophy rate

are weak, suggesting a limited use in their predictive ability.

Nevertheless, given AD is a multifactorial disorder, impaired

insight may still have a use as a constituent factor in building a

predictive model of both progression to AD and likely severity of

disease course.

4.1 Limitations and Future Directions

Although the sample size is a strength of this study, this could

only be achieved by including participants from multiple ADNI

studies. While the ADNI database attempts to maintain strong

continuity in harmonized procedures, slight differences are likely

to be present, which may affect the reliability of the results.

In addition, insight was only considered at baseline visit, and

while comparison was available between participants at different

stages of disease progression, longitudinal insight changes of

an individual were not studied. A follow-up study of individual

participants’ insight changes longitudinally will allow for better

characterization of insight over the course of a progression from

CN to dementia.

There is also a possible selection bias for those who have no objec-

tive memory deficits but have self-reported a memory complaint

being more likely to underestimate ability (Chao et al. 2020).

Further study into whether this group represents a prodromal

stage of dementia or is a normal subpopulation of the CN is

required.

Although many regions indicated in early disease were studied,

other areas that have been reported to be important in self-

perceptive ability, such as the inferior frontal gyrus and the

anterior cingulate cortex, were neglected in the study (Hallam

et al. 2020). This may lead to under-appreciating the association

of the rate of brain atrophy with potentially important predictors.

A comprehensive study of insight’s relationship to atrophy rates

in all the brain’s constituent subregions could provide a more

comprehensive view of insight’s neurological basis and highlight

more predictors of brain atrophy.

In addition, more extensive profiling of one’s insight, particularly

with a focus on overestimation in domains more strongly associ-

ated with brain atrophy, may help provide a stronger predictive

picture of disease course.

Recent literature has highlighted the growing role of explainable

artificial intelligence inAD, particularly in the field of neuroimag-

ing (Taiyeb Khosroshahi et al. 2025; Viswan et al. 2023). Using

models to further subcategorize brain regions associated with

insight may highlight stronger markers to use in AD prognostics.

In addition, research into whether artificial intelligence models

could be trained on a range of noninvasive markers to be used

in the prediction of AD disease course would potentially create

clinical applications of this area of research.

5 Conclusion

AD is a growing issue, and better diagnostic and prognostic

markers are required. Given brain changes have been shown

to occur multiple years before diagnosis, early-stage markers

are likely to help with this challenge (Whitwell 2010). The

current study provides early evidence that insight follows a

dynamic path through the dementia disease course and that the

neuropsychological measure—insight may have a role to play in

predicting disease progression. This study highlights the potential

usefulness of research into the phenomenon of insight and its

relationship to dementia.
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