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Significance

 Here, we adapt the tripartite 
β-lactamase assay (TPBLA) 
performed in the oxidizing 
environment of the Escherichia coli  
periplasm to a high-throughput 
deep mutational scanning 
platform, expanding variant 
assessment to potentially many 
thousands at a time, facilitating 
comprehensive mapping of protein 
mutational landscapes. We apply 
the TPBLA to Aβ42  aggregation and 
show that its readout is the stability 
of the amyloid fibrils formed, 
which we validate by 
complementary in silico, in vitro, 
and machine-learning analyses. As 
the TPBLA generates high-quality, 
large datasets suitable as training 
for predictive modeling, it can 
guide the design of aggregation-
resistant proteins and rationalize 
aggregation phenomena in a wide 
range of protein systems and be 
used in the evaluation of 
genotype–phenotype relationships 
in response to aggregation 
modulators.
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Deep mutational scanning (DMS) assays provide a powerful method to generate 
large-scale datasets essential for advancing AI-driven predictions in biology. The tri-
partite β-lactamase assay (TPBLA), in which a protein of interest is inserted between 
two domains of β-lactamase, has previously been reported as capable of detecting and 
quantitating the aggregation of proteins and biologics in the oxidizing periplasm of 
Escherichia coli and used as a platform for identifying small molecule inhibitors of 
aggregation. Here, we repurpose the TPBLA into a high-throughput DMS platform. 
We validate this format using a single-site saturation library of the intrinsically dis-
ordered peptide Aβ42, linked to Alzheimer’s disease, demonstrating strong agreement 
between observed variant fitness scores and variant behavior using our previously 
reported low-throughput TPBLA. The results of DMS revealed variant fitness scores 
that correlate with known amyloid-promoting regions. An in silico approach using 
FoldX-derived per-residue thermodynamic stability confirmed that the TPBLA reports 
on amyloid fibril stability. In vitro experiments support this finding, showing a strong 
correlation between variant fitness scores and the critical concentration of amyloid 
formation. Machine learning using the DMS dataset identified β‐sheet propensity and 
polarity as primary drivers of variant fitness scores. The derived model is also able to 
predict thermodynamically stabilizing regions in other amyloid systems, underscoring its 
generalizability. Collectively, our results demonstrate the TPBLA as a versatile platform 
for generating robust datasets to advance predictive modeling and to inform the design 
of aggregation‐resistant proteins.

deep mutational scanning | amyloid | Aβ42 | machine learning

 Major advances in biology increasingly depend on the combination of machine learning 
techniques and large, high-quality datasets. DeepMind’s AlphaFold was recognized by the 
Nobel Prize for Chemistry in 2024 for its ability to predict protein structures from 
sequence alone, but its success not only rests on innovative algorithms but also relies on 
decades of experimental work that filled the Protein Data Bank with atomically accurate 
and diverse structures ( 1   – 3 ). Similarly, large language models such as Meta AI’s ESM-3 
derive their predictive power from comprehensive sequence repositories such as UniRef, 
since their capacity to infer protein function, stability, and interactions depends entirely 
on the breadth and quality of the underlying sequence data ( 4 ,  5 ). As AI continues to 
expand into more fields of biological inquiry, acquiring ever more diverse and well-curated 
biological datasets remains essential for success.

 Deep mutational scanning (DMS) provides a scalable route to generate large, 
high-quality functional datasets once the basis of selection is validated. By combining 
diverse mutant libraries with high-throughput screening and deep sequencing, DMS 
quantifies the effect of amino acid substitutions in parallel ( 6   – 8 ). The falling costs of 
next-generation sequencing (NGS) have democratized this approach, while emerging 
third-generation long-read technologies now enable interrogation of extended DNA 
regions at scale, and the parallel drop in DNA synthesis costs has made large-scale custom 
DNA assembly increasingly accessible ( 9 ). Together, these advances enable production of 
rich genotype/phenotype maps that empower machine learning models and pave the way 
for the next wave of biological discoveries ( 10 ).

 In this work, we repurpose the tripartite β-lactamase assay (TPBLA) into a DMS 
platform ( Fig. 1 A  and B  ). The TPBLA operates in vivo in the Escherichia coli  periplasm, 
potentially offering advantages over other established DMS assays that are performed in 
the yeast cytosol ( 11 ). One such advantage of the TPBLA is that the E. coli  periplasm is 
oxidizing, permitting analysis of disulfide-bonded proteins, including therapeutic antibody 
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fragments ( 11 ). In addition, the periplasm of E. coli  is permeable 
to small molecules, opening the door to characterizing the geno-
typic landscape in response to small molecule modulators of pro-
tein behavior ( 12 ). The TPBLA involves expressing a protein of 
interest (POI) inserted between two domains of TEM1 β-lactamase 
via a 28-residue G/S linker, thereby linking features of the POI 
(stability/solubility/aggregation propensity) to antibiotic resistance 
( Fig. 1A  ). Originally developed to evolve protein stability ( 13 ), 
the TPBLA was later adapted for screening small molecule inhib-
itors of amyloid formation ( 12 ), to identify key residues that drive 
aggregation in a model disulfide bond-containing and amyloid- 
forming protein (β2﻿-microglobulin) ( 14 ), and to evolve develop-
able biopharmaceuticals ( 11 ).        

 The first-generation TPBLA was performed in a 48-well plate 
(SI Appendix, Fig. S1 ), providing quantitative data ( 11   – 13 ). 
However, its low-throughput limits its suitability to generate large 
deep mutational datasets. In a second-generation iteration, the 
assay was developed as a directed evolution screen, screening var-
iants on large agar plates and using Sanger sequencing to identify 

beneficial variants of β2﻿-microglobulin and single-chain antibody 
fragments (scFvs) ( 11 ,  14 ) (SI Appendix, Fig. S2 ). However, in 
this format differences between variants cannot be quantified 
without subsequent analysis of individual sequences by the 
first-generation TPBLA format, rendering it unsuitable for 
machine learning. Here, we describe a third-generation of the 
TPBLA as an effective DMS platform, which is both 
high-throughput and quantitative, and show how it can be used 
to generate datasets of mutational landscapes conducive to 
machine learning ( Fig. 1 A  and B  ).

 Previous work using the 48-well plate TPBLA format showed 
that the 42-residue peptide, Aβ42  associated with Alzheimer’s dis-
ease, severely compromises β-lactamase function in the TPBLA, 
and is more deleterious than its less amyloidogenic counterpart, 
Aβ40  ( 12 ). This demonstrates that the TPBLA can be used as a 
readout of the amyloid-forming properties of individual sequences, 
and hence, we here focus on using Aβ42  as the POI in a 
TPBLA-driven deep mutational scan. To this end, a site-saturation 
library of Aβ42  (799 potential variants including wild type) was 

Fig. 1.   The tripartite β-lactamase assay. (A) The POI (in this case Aβ42) is flanked by the N- and C-terminal domains of TEM-1 β-lactamase, separated by a 
28-residue Gly/Ser linker, and is expressed in the periplasm of E. coli. An aggregation-resistant POI permits the folding and function of β-lactamase, allowing 
hydrolysis of the β-lactam ring of β-lactam antibiotics and enabling bacterial growth under ampicillin selection. Conversely, a POI that is unable to fold and/or 
is aggregation-prone depletes functional β-lactamase, leading to bacteria sensitive to antibiotic. (B) The TPBLA in DMS format is depicted, showing an example 
of an aggregation-prone variant (blue), wild type (gray), and an aggregation-resistant variant (red). The read depth of the aggregation-prone variant decreases 
with increasing ampicillin selection as bacteria become antibiotic-sensitive, while aggregation-resistant variants outcompete the wild type. Next-generation 
sequencing and analysis of changes in read depth allows the assignment of variant fitness. (C) Representative enrichment trapezia for three variants of Aβ42  
(n = 3): aggregation-resistant F19P (red), wild type (black), and aggregation-prone D23F (blue). Enrichment is plotted versus ampicillin concentration. The shaded 
trapezoidal area under each curve is integrated to generate a variant-specific aggregation score (AUC), which is then divided by the score for wild type to give 
a variant fitness score relative to wild type (see also SI Appendix, Figs. S1–S3). (D) A significant correlation exists between the TPBLA using the first-generation 
48-well format [log2(AUCVariant)/(AUCWT)] and the results obtained using the assay in the third-generation DMS format (Materials and Methods) using 18 variants 
of Aβ42 which span a broad range of the variant fitness score observed in the deep mutational scan (R = 0.9, P < 0.05).

http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
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introduced as the POI into the TPBLA and subjected to selection 
at increasing concentrations of ampicillin followed by NGS. 
Amyloid deposits upon expression of β-lactamase-Aβ42  (βla-Aβ42 ) 
were confirmed via ProteoStat staining in E. coli . We then used a 
machine learning model to identify the features driving amyloid 
formation and show that these features are generalizable to other 
amyloidogenic intrinsically disordered proteins (IDPs). The results 
demonstrate that the TPBLA can be used to characterize the muta-
tional landscape of proteins in the specific biological environment 
of the E. coli  periplasm for quantifying sequence-related protein 
behavior. 

Results

Translating the TPBLA into a Deep Mutational Scan Format. The 
aim of this study was to develop the TPBLA into an assay able to 
generate high-quality datasets allowing the labeling of hundreds of 
genotypes with quantified, clearly defined, phenotypic effects. To 
achieve this, we exploited the synergy between previous iterations 
of the assay, which at their heart is a screen able to assess a broad 
range of protein quality attributes manifesting in a decrease in 
β-lactamase activity (Fig.  1A). Accordingly, in a method akin 
to directed evolution, large variant libraries were subjected 
to increasing selective pressure by growth on solid medium 
containing increasing concentrations of ampicillin (Fig. 1B). In 
contrast to traditional methods of directed evolution (15), the 
phenotypic effect of advantageous and deleterious substitutions 
can be tracked and quantified by NGS by measuring the change 
in abundance of each variant gene upon growth at increasing 
selective pressure. Plotting relative enrichment of each variant 
versus the ampicillin concentration generates a “survival curve” 
(Fig.  1C) similar to those obtained using the 48-well TPBLA 
format (SI Appendix, Fig. S1B) (11–14). Finally, a single relative 
fitness score is calculated as the (log2) ratio of the area under 
the curves (AUCs) of the variant and wild-type (WT) sequences. 
This approach is thus analogous to that used in DMS, with the 
exception that many (16–18), but not all (6, 19), DMS studies 
to date have been performed in liquid culture in yeast. We, and 
others, have shown that the TPBLA can exhibit phenotype-
genotype uncoupling due to leakage of the normally periplasmic-
sequestered β-lactamase into the growth culture, and hence, the 
selection was performed on solid agar plates (20).

 To verify that the third-generation DMS TPBLA format yields 
results that are comparable with those using growth scores 
obtained with the previously deployed first-generation 48-well 
format ( 11   – 13 ), each method was used to score 18 βla-Aβ42  var-
iants. These variants were selected to be assayed in the 48-well 
format as they spanned the range of variant fitness score observed 
in the TPBLA deep mutational format. The results showed that 
while the two different generations of the assay yield different 
absolute scores, their correlation is excellent (Pearson R = 0.9, P  
< 0.001) ( Fig. 1D  ), validating the third-generation TPBLA for 
use in high-throughput analysis of genotype–phenotype relation-
ships. Using this third-generation format, the TPBLA allows facile 
genetic manipulation and measurement of fitness in a single set 
of experiments that only require overnight incubation of bacterial 
growth on solid medium.  

Deep Mutational Scan of Aβ42. As described above, we have 
previously applied the TPBLA in 48-well plate format to 
different amyloidogenic proteins and peptides and showed that 
amyloidogenic sequences such as human IAPP (hIAPP) and 
Aβ42 exhibit greater sensitivity to ampicillin relative to their 
less aggregation-prone variants (rat IAPP/Aβ40) or constructs 

containing a Gly-Ser linker of similar length as the POI, despite 
no clear difference in their expression levels (12). For example, 
the log2 of the ratio of the area of the 48-well format survival 
curve using a Gly-Ser-linker as the POI relative to Aβ42 is 5 at 
0 to 140 µg/mL ampicillin (12). Given the strong link between 
fitness and amyloid propensity in the TPBLA, we performed a 
deep mutational scan of Aβ42 to determine the effect of all possible 
single-residue amino acid substitutions on fitness (Materials and 
Methods). Accordingly, a commercially sourced E. coli codon-
optimized site-saturation library, comprising single substitutions 
of every canonical amino acid at every residue position was cloned 
into the previously described pBR322-βla plasmid adapted for 
Golden Gate cloning (Materials and Methods) (11). The resulting 
variant library (βla-Aβ42lib) was transformed using electroporation 
into TG1 cells and DNA was extracted (Materials and Methods). 
For the deep mutational scan, commercial E. coli SCS1 cells were 
transformed with βla-Aβ42lib and grown in liquid culture for 2 h 
followed by further incubation with 0.075% (w/v) arabinose to 
induce expression of βla-Aβ42lib. After spreading onto a series of 
LB agar plates in the presence of 0 to 100 µg mL−1 ampicillin and 
0.075% (w/v) arabinose and incubation for 18 h, the plasmid DNA 
from each plate was harvested and sent for Azenta Amplicon-EZ 
NGS. After genotype analysis of the sequencing results, the variant 
fitness scores relative to WT Aβ42-were quantified (Materials and 
Methods and SI Appendix, Fig. S3).

 The heatmap of variant fitness scores derived from βla-Aβ42lib  
is shown in  Fig. 2A  . Of the 798 possible single-point substitutions, 
749 (94%) were present in our library. Importantly, we observed 
no positions where an entire type of amino acid class was missing. 
The average number of reads a variant achieved in the unselected 
libraries was 39, with read depth increasing as a function of ampi-
cillin pressure. This far exceeds the average signal threshold of 3, 
set by the misread rate in the invariant Gly-Ser linker upstream 
to Aβ42  in each NGS reaction (Materials and Methods ). Regions 
in Aβ42  were observed in which most substitutions are beneficial 
(residues L17-F20 and I31-I41), which align with the regions 
known to promote aggregation from other studies ( 21 ,  22 ) and 
are predicted by Camsol ( 23 ), TANGO ( 24 ), Amylogram ( 25 ), 
and AGGRESCAN ( 26 ) ( Fig. 2B  ). The reproducibility of variant 
fitness scores was confirmed by correlation between biological 
repeats (Repeat 1/Repeat 2 Pearson R = 0.74, P  < 0.05; Repeat 1/
Repeat 3 Pearson R = 0.72, P  < 0.05; Repeat 2/Repeat 3 Pearson 
R = 0.75, P  < 0.05) ( Fig. 2 C –E  ). Both increases in fitness (shaded 
red, assumed to reflect decreased aggregation) and decreases in 
fitness score (shaded blue, presumably increased aggregation) were 
observed. Variant fitness scores ranged from −4.44 (F4W) to 4.24 
(F19P). Among the substitutions, 16% increased the fitness score 
by at least 1, 45% decreased the fitness score by 1 or more, and 
39% resulted in a change in fitness score between −1 and 1. The 
distribution of fitness scores are centered on a value of −0.87 
(SI Appendix, Fig. S4A﻿ ). In general, variant fitness scores increased 
positively with introduction of a less hydrophobic residue (intro-
duction of Arg/Lys/Asp/Glu/Asn/Gln/His/Ser), or with substitu-
tion with proline or glycine, consistent with aggregation being the 
driver of fitness in the selections (SI Appendix, Fig. S4B﻿ ).        

 The selection also showed that introduction of amino acids at 
different positions causes distinct phenotypic responses ( Fig. 2A  ). 
Clear patterns are evident, especially when residues are grouped 
by their similarity in response to substitution by each of the canon-
ical amino acids (SI Appendix, Fig. S5 ). There are two “stripes” of 
residues evident in  Fig. 2A   in which substitution with charged or 
polar residues, glycine, or proline increases fitness, comprising 
residues L17-F20 and I31-I41, which correspond to the 
well-known aggregation-prone regions (APRs) of Aβ42  ( 21 ,  22 ). 

http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
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Interestingly, Gly33, Gly37, and Gly38 are notable exceptions, 
with substitution of these residues generally decreasing fitness, 
possibly because of the introduction of an amino acid with a larger 
side chain promoting aggregation. Previous results have shown 
that substitution of Gly33 with Ala or Ile increases higher-order 
oligomer formation, as measured by size-exclusion chromatogra-
phy ( 27 ), which could contribute to the decreased fitness of these 
variants. Substitution of residues in the two APRs of Aβ42  with 
charged residues increases fitness, with introduction of negatively 
charged residues having a more pronounced effect than substitu-
tion with positively charged residues, consistent with the stronger 
“gatekeeper” properties of negatively charged residues ( 28 ). The 
effect of substitutions in residues L17-A21 (mean variant fitness 
score 1.43, SEM = 0.20) is stronger than that for residues in the 

second APR (I32-I41) (mean variant fitness score = 0.76, SEM = 
0.11). Two other notable residue responses are observed: For D23, 
all substitutions decrease variant fitness. For F4 and S26, substi-
tution also generally decreases variant fitness (note also that sub-
stitutions of F4 yield responses distinct from the other two 
phenylalanine resides in the sequence (F19 and F20)). This obser-
vation highlights that the TPBLA captures position-specific inter-
actions dependent on the position of the amino acid. Finally, 
substitution with bulky hydrophobic residues (Trp, Tyr, Phe, Leu, 
Ile, Val, Met, and Cys) generally causes a pronounced fitness 
decline. Interestingly, substitutions with Thr generally decrease 
variant fitness at different positions in the sequence (mean = −0.50, 
SEM = 0.21) compared to substitutions with Ser, Asn, or Gln, 
which broadly increase variant fitness (mean = 0.08, SEM = 0.15), 

Fig. 2.   Deep mutational scan of Aβ42 using the TPBLA. (A) (Upper) Box-and-whisker plots of variant fitness scores at each Aβ42 residue: the central line denotes the 
median, the box spans the interquartile range (IQR), and whiskers extend 1.5 × IQR. (Lower) Heatmap of variant fitness scores for single amino acid substitutions 
obtained using the TPBLA selection. The horizontal axis displays the WT primary amino acid sequence. The vertical axis represents the variant amino acid 
introduced. WT amino acids are highlighted with a black box. Missing variants are colored gray. The Bottom row and rightmost column display the average for 
that row/column. (B) Aggregation propensity profiles for Aβ42 predicted by the algorithms Camsol (23), TANGO (24), AmyloGram (25), and AGGRESCAN (26). The 
Camsol scores have been inverted (× –1) so that, like the others, higher values reflect increased aggregation propensity. Algorithms predict solubility (–Camsol), 
β-aggregation propensity (TANGO), self-assembly probability (AmyloGram), and overall aggregation propensity (AGGRESCAN). (C–E) Correlation between variant 
fitness scores obtained from (C) repeats 1 and 2, (D) repeats 1 and 3, and (E) repeats 2 and 3.
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consistent with the β-branched Thr side-chain enhancing amyloid 
formation ( 29 ). Notably, the 22 known familial mutations in the 
coding region of Aβ42  give variant fitness scores ranging from 
−1.69 (E22Q Dutch mutation) to 1.16 (A21G Flemish mutation) 
(SI Appendix, Table S1 ). This range of responses could reflect the 
variety of biological processes that contribute to Alzheimer’s dis-
ease, including APP processing, aggregation rate, and the ratio of 
Aβ42  to Aβ40  sequences ( 30 ). Together, these observations support 
the notion that the phenotypic trait being quantified by the 
TPBLA screen is related to amyloid formation in the periplasm 
of E. coli  after overexpression of βla-Aβ42 .  

Amyloid Formation in the E. coli Periplasm. To investigate 
whether βla-Aβ42 forms amyloid deposits in the E. coli periplasm, 
bacteria expressing βla-Aβ42 grown overnight on solid medium 
were resuspended in liquid culture and incubated for 30 min with 
Proteostat dye (Materials and Methods). This dye has been shown 
to yield enhanced fluorescence in the presence of preformed Aβ42 
amyloid fibrils in  vitro and in the E. coli cytoplasm following 
overexpression of Aβ42 containing an N-terminal methionine 
(mAβ42) (31). Bacteria expressing WT βla-Aβ42 showed a 2.0-fold 
higher fluorescence signal compared to uninduced cells (P < 0.05) 
and a 2.3-fold higher signal than those expressing a 28-residue 
Gly-Ser linker (βla-G/S) instead of βla-Aβ42 (P < 0.05) (Fig. 3A). 
The fluorescence emission intensity for βla-Aβ42 is also ~1.5-fold 
higher than bacteria expressing mAβ42 which forms intracellular 
inclusion bodies (32) (Fig. 3A). Confocal microscopy also showed 
that bacteria expressing wild‐type βla‐Aβ42 exhibited more 
fluorescence than uninduced cells in the presence of Proteostat dye 
(Fig. 3 B and C). These observations are consistent with amyloid 
formation in E. coli upon the expression of βla-Aβ42.

The TPBLA Screens for Amyloid Stability. Two studies have 
previously reported deep mutational scans on Aβ42 (33, 34) using 
yeast-based reporters as opposed to the TPBLA which takes place 
in the periplasm of E. coli. In the yeast-based assays, Aβ42 variants 
are assayed in the cytosol by fusing Aβ42 to the N terminus of 

dihydrofolate reductase (Aβ42-DHFR) (33) or to the C-terminus 
of Sup35N, the nucleation domain of Sup35 (Sup35N-Aβ42) 
(16, 34). In the DHFR system, Aβ42 aggregation sequesters the 
complex into aggregates, impairing the ability of the enzyme 
to fold and function. Addition of methotrexate (a competitive 
DHFR inhibitor) further amplifies selection pressure so that 
only cells expressing aggregation-resistant Aβ42-DHFR fusions 
can maintain enough DHFR activity to grow, allowing survival 
to serve as a proxy for aggregation propensity (33) (SI Appendix, 
Fig. S6A). In the Sup35N-Aβ42 system, Sup35N-Aβ42 aggregation 
seeds aggregation of endogenous prion domain of Sup35 (Sup35p) 
enabling read-through of premature stop codons and permitting 
growth in an adenine-deficient medium (SI Appendix, Fig. S6B) 
(34). This acts as a positive selection for Aβ42 amyloid formation, 
contrasting with the negative selection in the Aβ42-DHFR assay. 
For Sup35N-Aβ42, the authors reported that fitness scores (referred 
to as “nucleation scores”) correlated with previously published 
nucleation rates of fibril formation of a selection of Aβ42 variants 
monitored by Thioflavin-T (ThioT) assays in  vitro (16). The 
results of the TPBLA DMS dataset strongly correlate with 
those obtained using Aβ42-DHFR (Pearson R = 0.79, P < 0.05, 
SI Appendix, Figs. S6A and S7A). The authors of the Aβ42 -DHFR 
study concluded that the two regions with high solubility (fitness) 
scores were “regions are most likely to form buried β-stands.” 
By contrast, the TPBLA data for βla-Aβ42 only weakly correlate 
with those obtained using Sup35N-Aβ42 (Pearson R = −0.1, P < 
0.05) (SI Appendix, Figs. S6B and S7B). The differences in assay 
readouts emphasize the value of using different screens to assess a 
protein’s properties and highlight that different screens may output 
different results dependent on the trait that is most sensitive under 
the assay conditions used. Despite these differences, the results 
highlight that the TPBLA DMS provides an orthologous screen 
for the sequence dependence of the amyloid propensity of Aβ42 
in a different biological setting.

 To understand the molecular origins of selection by the TPBLA 
screen, we exploited the recent explosion in available 
high-resolution Aβ42  amyloid structures obtained using cryoEM 
( 35 ), and combined this information with calculation of the ener-
getic contributions of each residue in the structured fibril core 
using the algorithm FoldX (Materials and Methods ) ( 36 ,  37 ). 
Previous analyses have shown that the regions that stabilize 
(approximately 30% of residues) or destabilize the amyloid fold 
of different fibril polymorphs (different amyloid structures that 
result from the same sequence) are shared in the different amyloid 
folds ( 37 ,  38 ). This suggests that amyloid polymorphism arises 
from differences in intra- and interprotofilament contacts between 
these stabilizing regions. Residues that destabilize Aβ42  fibrils 
would thus be expected to increase the TPBLA fitness score, with 
those that stabilize amyloid decreasing fitness relative to wild type, 
irrespective of the polymorph formed in the bacterial periplasm. 
To test this hypothesis, we calculated the per-residue thermody-
namic stability for 26 WT Aβ40 /Aβ42  amyloid fibril structures 
currently available in the Amyloid Atlas ( 35 ) over a five-residue 
running average using FoldX, as described previously ( 36 ,  37 ). To 
quantify the importance of specific contacts, and thus the energetic 
contribution made by each residue in our DMS study, we calcu-
lated the average fitness score for all substitutions at each position, 
again averaged over a five-residue running average. Comparison 
of these profiles ( Fig. 4A  ) reveals a strong positive correlation 
(median R = 0.84) ( Fig. 4B  ). The two structures with the poorest 
correlation have distinct origins: Aβ40  fibrils extracted from the 
brain of a patient with Down’s syndrome [8SEK ( 39 )], and Aβ42  
fibrils formed under low‐ pH conditions in the presence of an 
organic cosolvent [5OQV ( 40 )]. Contrary to the pattern observed 

Fig. 3.   Protesostat fluorescence imaging of bacterial cells expressing mAβ42, 
βla-G/S, βla-Aβ42, or βla-Aβ42 (uninduced). (A) Normalized fluorescence intensity: 
βla-Aβ42 exhibited significantly higher fluorescence than uninduced cells 
(lacking 0.075% arabinose induction) or βla-G/S. Statistical significance was 
determined using an unpaired t test between βla-G/S and βla-Aβ42, and a paired 
t test between uninduced βla-Aβ42 and βla-Aβ42, both of which were significant 
(P < 0.05). (B and C) Confocal fluorescence images of (B) bacteria expressing 
βla-Aβ42 and (C) uninduced βla-Aβ42, each visualized with 488 nm excitation and 
a 500 to 600 nm filter for detection (Materials and Methods).

http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
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with the other Aβ40 /Aβ42  fibrils in our dataset, these two structures 
are not calculated to be strongly stabilized by APR1 (L17-A21). 
Rendering an Aβ42  amyloid fibril structure solved by cryo-EM 
which achieved a median agreement between the FoldX-determined 
fibril stability and the TPBLA fitness scores shows that APR 1 
(L17-A21) and APR 2 (I32-A42) form the stabilizing core, ration-
alizing why substitution with charged or polar residues is desta-
bilizing (SI Appendix, Fig. S8 ). Each APR is juxtaposed with 
frustrated residues i.e., residues whose substitution generally 
increases amyloid stability (e.g., residues H14-K16 and E22-D23). 
Such “gatekeeper” residues have been observed previously and 
their mutation to a hydrophobic amino acid could extend the 
APR, increasing fibril stability and decreasing fitness, as was 
observed experimentally in the TPBLA screen ( Fig. 2A  ). Notably, 
substitutions of the gatekeeper residues E22 and D23 have been 
linked to familial Alzheimer’s disease ( 41 ). As expected, based the 
results of the TPBLA, the Aβ42﻿-DHFR DMS dataset also corre-
lates well with the calculated per-residue stability of Aβ42  and Aβ40  
fibrils ( 33 ). In contrast, the Sup35N-Aβ42  dataset does not 
( Fig. 4C  ). Taken together, these results underscore that the readout 
of the TPBLA (and likely also the Aβ42﻿-DHFR screen) reflects the 
local thermodynamic stability of the endpoint amyloid fibril. In 
accordance with this conclusion, we observed a stronger agreement 
of fibril thermodynamic stability with the observed TPBLA dataset 
than that achieved by TANGO, AGGRESCAN, Amylogram, or 

Camsol, despite the inclusion of 8SEK and 5OQV in the dataset 
(SI Appendix, Fig. S9 ).        

 To validate the prediction of fibril stability using FoldX, we 
determined the critical concentration (Ccrit ) of amyloid formation 
in vitro for selected Aβ42  variants in the absence of the β-lactamase 
scaffold. Ccrit  is defined as the monomer concentration at which 
the rates of amyloid fibril dissociation and monomer sequestration 
are equal ( 43 ). Given the high thermodynamic stability of amyloid 
fibrils and thus low monomer concentration at equilibrium, exper-
imental verification of Ccrit  is challenging, but has been reported 
to range from 50 to 100 nM for WT Aβ42 , depending on the 
technique or growth condition used ( 44 ,  45 ). To this end, we 
measured the fluorescence intensity of the amyloid binding dye 
ThioT at the end point of the amyloid growth phase across a range 
of initial Aβ42  monomer concentrations and used this as a proxy 
of fibril yield ( 46 ). Linear extrapolation of this value versus the 
initial Aβ42  concentration was then used to determine the minimal 
initial monomer concentration able to form amyloid (Ccrit ) 
(Materials and Methods ). Nine Aβ42  variants (in the absence of 
βla) with diverse variant fitness scores were selected for this anal-
ysis. Two variants with large negative fitness scores at the gate-
keeper position of D23 (fitness scores of −3.05 and −4.17 for D23I 
and D23F, respectively) could not be purified as a monomer by 
gel filtration consistent with enhanced aggregation propensity 
(Materials and Methods ) and were thus excluded from the analysis. 

Fig. 4.   The readout of the TPBLA is the thermodynamic stability of the amyloid fibril fold: (A) A strong correlation exists between residues important for stability 
calculated by FoldX and residues that, when substituted, lead to a significant change in TPBLA variant fitness score. Shown is an overlay of the per-residue free 
energy contribution for all Aβ40 and Aβ42 (gray) structures and per-position mean TPBLA variant fitness score inverted (× –1) (black bold line and datapoints), 
both analyzed over a five-residue sliding window. Structures which do not agree as well with TPBLA scores are shown as orange lines (PDB:8SEK (dashed), 
PDB:5OQV (continuous). (B) A strong positive correlation exists between variant fitness scores measured in the TPBLA and per-residue stability contribution. 
Shown is TPBLA mean variant fitness score inverted (× –1) correlated with per-residue stability contribution of PDB:8OL3 (42), which has the median Pearson 
value (R = 0.84) for all structures. (C) Distribution of Pearson correlation coefficients between the mean per residue fitness achieved by βla-Aβ42, Aβ42-DHFR, and 
Sup35N-Aβ42 with ΔG0 contribution per position for all Aβ40 and Aβ42 amyloid structures considered over a five-residue sliding window (n = 21). (D) Correlation 
of in vitro-derived critical concentration (Ccrit) with variant fitness scores for a panel of purified Aβ42 variants (D23F, D23I, V24Y, V24F, F19I, wild type, F19S, L17D, 
and F19P) colored by the identity of the introduced amino acid class as used in Fig. 2A. Variants D23F and D23I could not be purified as monomers so are in 
the hatched region of the phase diagram in black. A significant correlation between TPBLA variant fitness score and log2(CCrit Variant/CCrit WT) is observed for this 
panel of variants (ρ = 0.89, P < 0.05).

http://www.pnas.org/lookup/doi/10.1073/pnas.2516165122#supplementary-materials
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The extrapolated Ccrit  values for the remaining seven variants plot-
ted against variant fitness scores are shown in  Fig. 4D   and end-
point ThioT fluorescence intensity versus initial Aβ42  concentration 
is shown in SI Appendix, Fig. S10 . We observed a significant non-
linear positive correlation between the TPBLA variant fitness 
scores and the determined Ccrit  (ρ = 0.89, P  < 0.05), consistent 
with fibril stability being the dominant readout of the selection 
pressure in our screen. This nonlinearity is common in DMS assays 
owing to the observable output saturating at high variant fitness 
scores ( 10 ,  17 ). Finally, we extracted the macroscopic rate con-
stants for primary and secondary events in amyloid formation [λ 
and κ, respectively ( 47 )] by fitting the kinetics of amyloid forma-
tion measured by ThioT fluorescence for the 7 variants at an 8 
µM initial monomer concentration (SI Appendix, Figs. S11 and 
S12 ). No significant correlation was observed between the TPBLA 
variant fitness scores and λ (ρ = 0.61, P  > 0.05) or κ (ρ = 0.71, P  
> 0.05). This lack of significance is consistent with the thermody-
namic stability of amyloid fibrils being primarily responsible for 
the fitness scores obtained in our assay.  

A TPBLA-Trained Random Forest Model Is Empowered by 
Features Known to Be Related to Amyloid Stability. Given the 
correlation between the TPBLA fitness scores and Ccrit, we next 
employed a machine learning strategy to uncover the sequence rules 
underlying the variant fitness scores and, by extension, amyloid 
stability (Materials and Methods) (Fig.  5A). We developed two 
models. The first model was a random forest that was trained using 
embeddings derived from the ESM-2 (650 M) protein language 
model for each Aβ42 variant to predict βla-Aβ42 fitness score (5). 
The embeddings implicitly capture sequence features distinguishing 
variants, including longer-range (i + n) interactions through the 
attention layers in the transformer-based large language model 
(48). The second model, also a random forest, was trained using 
one-hot encoded amino acid identities, dipeptide composition, 
and additional sequence-derived features for each Aβ42 variant 
to predict βla-Aβ42 fitness score (49, 50). To avoid a prohibitive 
feature-to-observed-variable ratio and therefore risk of overfitting, 
we did not explicitly encode higher-order (i + n) pairings. Both 
models performed similarly when assessed using 10-fold cross-
validation and the embeddings‐trained model achieved a mean R2 
of 0.67 (SEM = 0.02), whereas the explicit feature model attained 
a mean R2 of 0.71 (SEM = 0.02) (SI Appendix, Fig. S13). Owing 
to its higher R2 and improved interpretability, we selected the 
explicit feature model for subsequent analyses, which we named 
ThermAL (Thermodynamics of Amyloid Landscapes) (Fig. 5). This 

model outperformed a panel of aggregation predictors, including 
AGGRESCAN (26), TANGO (24), Camsol (23), and Amylogram 
(25) at predicting the observed βla-Aβ42 profile (SI  Appendix, 
Fig. S9). To interpret ThermAL, we employed SHapley Additive 
exPlanations (SHAP) analysis (51–53). This indicated that the 
strength of the model is determined by the polarity, β-sheet 
propensity, and side-chain bulkiness of each sequence (Fig. 5B). 
These features are consistent with those thought to drive amyloid 
stability (37). Analysis of the SHAP values revealed that high β‐
sheet propensity and hydrophobicity are associated with lower 
variant fitness scores, whereas increased polarity correlates with 
higher fitness scores (SI Appendix, Fig. S14).

 To evaluate the generalizability of ThermAL in identifying sta-
bilizing and destabilizing regions of amyloid fibrils beyond Aβ42 , 
we challenged the model to predict stabilizing regions in other 
amyloidogenic IDP sequences to which it had not been previously 
been exposed (α-synuclein, hIAPP, and TDP-43) ( Fig. 5C  ). Using 
our pretrained model, we predicted variant fitness scores (and thus 
the effect of amino acid substitutions at each residue averaged over 
a five-residue window) for all single-point variant sequences to assess 
whether the physiochemical features driving amyloid stability are 
conserved across different intrinsically disordered amyloidogenic 
sequences (Materials and Methods  and  Fig. 5C  ) ( 37 ). We observed 
a good agreement between regions with high predicted changes in 
fitness score upon substitution and those regions that stabilize the 
fibrillar forms of each sequence determined using FoldX, suggesting 
that these features indeed represent the driving forces behind amy-
loid stability for these IDPs (SI Appendix, Figs. S15–S19 ). We posit 
that the poorer correlation for TDP-43 fibrils (SI Appendix, 
Fig. S19 ) may occur because the regions stabilizing its amyloid folds 
are more diverse within the family of TDP-43 fibril structures com-
pared to the intrafamily diversity of Aβ42 , hIAPP, and α-synuclein 
fibrils. Hence, we observe a good agreement between the model 
predictions for regions that stabilize hIAPP and α-synuclein amy-
loid fibrils (SI Appendix, Figs. S17 and S18 , respectively), as well as 
for a class of TDP-43 amyloid structures which include PDBs 
7PY2, 8QX9, and 7Q3U ( 54   – 56 ) (SI Appendix, Fig. S15 ).   

Discussion

 We have previously shown that the TPBLA is a versatile assay able 
to report on a broad range of protein attributes including thermo-
dynamic stability, self-interaction, small molecule binding, and 
amyloid formation ( 11     – 14 ). By embedding this assay as the fitness 
driver in a DMS format performed on solid medium, we show here 

Fig. 5.   Random forest model trained on the βla-Aβ42 dataset (A) The random forest was trained using one-hot encoded amino acid identities, dipeptide composition, 
and additional sequence-derived features to predict βla-Aβ42 variant fitness scores. Performance was evaluated by 10‐fold cross‐validation. Predicted fitness 
scores for tested variants are plotted against observed scores, yielding a median R2 of 0.72 across folds. (B) The top 10 features used in the model are ranked by 
their mean absolute SHAP values. Higher SHAP values indicate a greater impact on the model’s predictions. (C) Violin plots showing the distribution of Pearson 
correlation coefficients comparing the mean predicted per-residue fitness (calculated over a five-residue sliding window) from the βla-Aβ42-trained model with 
the ΔG0 contribution per position (also averaged over a five-residue sliding window) for Aβ40/Aβ42, hIAPP, α-synuclein, and TDP-43.
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that the assay can be used as a versatile and easy-to-perform screen, 
able to generate large-scale and high-quality datasets that capture 
both favorable and unfavorable attributes of variants of a POI. This 
platform not only facilitates detailed mechanistic insights into the 
sequence grammar governing the chosen attribute to be investigated 
but also allows the rapid generation of large, high-quality datasets 
using a well-characterized screen in the E. coli  periplasm.

 Our findings on Aβ42  demonstrate that, despite differences in 
expression systems (E. coli  periplasm versus yeast cytoplasm) and 
construct designs [split β-lactamase versus N-terminal concatena-
tion to DHFR ( 33 )], the assays yield remarkably similar results, 
that highlight the two APRs in the protein sequence as important 
drivers of fitness. Our cross-validation analysis verifies that the 
assays are dominated by a single property, fibril stability, a finding 
that persists notwithstanding potential differences in variant expres-
sion. By contrast, Bolognesi et al., report that the Sup35N-Aβ42  
dataset reports on the kinetics of fibril nucleation rather than ther-
modynamic stability ( 16 ). Hence, by combining the datasets, one 
based on fibril formation kinetics (the energy barrier to nucleation) 
and others based on fibril stability (the TPBLA or Aβ42﻿-DHFR), 
the energy landscape of amyloid formation can be curated [a recent 
manuscript by Lehner et al. reports such an approach ( 57 )]. 
Combined, our datasets reveal that APR1 plays a lesser role in 
nucleation compared to its influence on the thermodynamic sta-
bility of the endpoint fibril. By contrast, APR2 appears to play a 
strong role in both the kinetics of amyloid formation and in fibril 
stability. By identifying the scale to which β-sheet propensity, polar-
ity, and hydrophobicity impact amyloid stability, our approach not 
only explains the early successes of aggregation prediction algo-
rithms such as Camsol ( 23 ), TANGO ( 24 ), Aggrescan ( 26 ), and 
Amylogram ( 25 ), which were developed before high-resolution 
amyloid structures were available, but it also underscores the poten-
tial of the TPBLA for extending similar analyses to other amyloi-
dogenic sequences. The high-throughput and resolution of the 
TPBLA approach also opens the door to more sophisticated for-
mats, including deep indel mutagenesis [including variants such as 
the Osaka mutation E22Δ ( 58 )] to further systematically dissect 
the thermodynamic grammar of amyloid formation or epistatic 
interactions through deeper mutagenesis ( 34 ). The periplasmic 
location of the assay would also permit proteins for which the pres-
ence of a disulfide bond is important for amyloidogencitiy (IAPP), 
or to include POI that are both disulfide bonded and structured in 
their native states [antibody light chains and β2﻿-microglobulin 

( 59     – 62 )] which will further refine our understanding of the 
sequence dependence of amyloid formation and its stability.

 The TPBLA platform leverages the intrinsic quality control mech-
anisms of E. coli , which selectively remove liabilities that compromise 
β‐ lactamase function. Whether the selection pressure targets desta-
bilizing substitutions in amyloid cores, reduces the self-association 
of antibody fragments that form less well-ordered aggregates, or 
probes for protein stability or solubility, we have demonstrated here 
[and hitherto ( 11     – 14 )], the applicability of the TPBLA to capture 
different liabilities, demonstrating its utility in understanding and 
evolving a broad range of protein traits. Its versatility, not only for 
probing the aggregation and stability of amyloid-forming proteins 
but also to screen for chaperones, designed proteins, or small mole-
cules able to bind to a POI [making use of protein coexpression in 
the bacterial periplasm or the permeability of the outer membrane 
to small molecules (<ca. 600 Da ( 63 )] emphasize the value of the 
TPBLA in the protein discovery toolbox.  

Materials and Methods

Detailed explanations regarding deep mutational scan, Proteostat fluorescence, 
confocal microscopy, recombinant protein expression and purification, ThioT assay 
conditions, FoldX calculations, and Machine learning can be found in SI Appendix.

Data, Materials, and Software Availability. The data associated with this 
paper are openly available from the University of Leeds Data Repository (https://
doi.org/10.5518/1653) (64).
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