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SUMMARY

Low-dimensional control is thought to underlie spinal motor neuron activity, with low-frequency oscillations 

in common synaptic inputs serving as the primary determinant of muscle force production. Here, we used 

principal-component analysis and factor analysis to investigate the role of low-dimensional motor unit com

ponents in force production during repetitive isometric tasks with similar force profiles. In both individual and 

synergistic human muscles, the first motor unit component explained most of the variance in smoothed 

discharge rates and showed higher correlations with force oscillations than the second component. Addi

tionally, the first component, but not the second, remained highly consistent across trials. A non-linear 

network-information framework further confirmed these findings, revealing high motor unit network density 

in the first component across all muscles. These results suggest that during isometric contractions, force os

cillations are primarily driven by a single dominant shared synaptic input to spinal motor neuron activity.

INTRODUCTION

The central nervous system (CNS) generates and controls move

ment by transmitting and modulating neural commands to mus

cles, ensuring precise coordination and force production.1,2

Although movement execution often appears effortless, even 

simple and repetitive tasks, such as reaching or walking, involve 

remarkable complexity. These actions require the simultaneous 

activation of multiple muscles, each comprising thousands of 

motor units, to generate torque across multiple joints and pro

duce purposeful motion.3–5 At every level of the motor control hi

erarchy, the CNS must coordinate a vast number of interacting 

elements while managing the hierarchical mismatch between 

their abundance (e.g., much greater number of alpha motor neu

rons than the number of muscles). While this redundancy in the 

neuromuscular system offers flexibility and adaptability, it also 

presents a complex control problem, as the CNS must navigate 

infinite potential solutions to achieve a given motor goal 

(commonly referred to as the ‘‘degrees of freedom problem’’3).

Several theoretical frameworks have addressed the degrees 

of freedom problem.6,7 Among them, a prominent hypothesis 

is that the CNS employs a modular control strategy rather than 

individually controlling each element, reducing the complexity 

and dimensionality of control.4,5,8–14 One key formulation of 

this modular control is the muscle synergy hypothesis, which 

proposes that a repertoire of movements is generated by the co

ordinated activity of muscles, referred to as synergies, in 

weighted combinations.15–17 Empirical evidence supporting the 

existence of muscle synergies has been gathered from both an

imal15,16,18,19 and human20–22 studies, where the observed mus

cle activity or kinematic patterns were modeled as linear combi

nations of a small set of components.23 Despite its valuable 

contributions to understanding neuromuscular control, this 

body of research has primarily analyzed the muscles rather 

than the individual motor units activating them.

Recent advances in technology and analytical methods have 

shifted the scale of analysis from muscles to individual neurons. 

These developments have enabled the recording and analysis of 

the activity of several motor neurons at both cortical24–27 and spi

nal28–32 levels, significantly advancing the understanding of the 

dimensionality of neural control. At the cortical level, compelling 

evidence has shown that movement planning and execution are 

governed by a small set of neural activity patterns spanning a 

low-dimensional space, often referred to as the ‘‘neural mani

fold.’’33 Corroborating earlier research that investigated the col

lective behavior of neurons,34,35 this evidence supports the idea 

that the population, rather than single neuron, is the fundamental 

unit underlying neural dynamics.36–38 A similar framework has 

been proposed at the spinal level, where examining the pool of 

motor units offers deeper insights into muscle force control.39

Simulation and experimental studies have extensively demon

strated that the alpha motor neuron pool acts as a highly selec

tive filter, linearly transmitting the common synaptic inputs while 

attenuating independent inputs.40–44 These findings suggest that 
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common synaptic inputs are the primary determinant of gener

ated muscle force during isometric contractions, supporting 

the hypothesis that low-dimensional neural control extends to 

motor unit activity.40,45–50

A defining feature of low-dimensional neural control is the 

coupling among elements within the system, which results in a 

high degree of correlation among neural outputs.51–54 Conse

quently, dimensionality reduction techniques, such as prin

cipal-component analysis (PCA) and factor analysis (FA), have 

been widely applied to discharge rates of neuronal ensembles 

to identify dominant patterns of covariation, yielding a reduced 

set of explanatory components that capture key control fea

tures.25 For instance, Negro et al. (2009) demonstrated that the 

first principal component, derived using PCA from the smoothed 

discharge rates of active motor units, explains oscillations in iso

metric force more effectively than the discharge rates of individ

ual motor units. In general, there exists a strong justification 

for using PCA to investigate patterns of neuronal correla

tion40,49,55,56 since PCA is mathematically linked to Hebbian the

ory,57–59 one of the most experimentally validated theories of 

synaptic plasticity.35 Specifically, Oja’s learning rule (con

strained Hebbian theory) demonstrated that, over time, the syn

aptic weights between neurons converge to the first principal 

component of the high-dimensional inputs.60 More recent 

studies using alternative rotations of low-dimensional compo

nents, such as oblique rotations (e.g., Promax), or other dimen

sionality reduction techniques (e.g., non-negative matrix factor

ization) have suggested that multiple components may underlie 

motor neuron activity, particularly when synergistic muscles 

are involved.47,50,61,62 Interestingly, some of these recent evi

dence have shown that although multiple low-dimensional com

ponents can be identified in the vasti motor units, individuals 

were not able to volitionally dissociate motor unit activity during 

online control tasks.50,62 These findings suggest that the pres

ence of a multidimensional motor unit manifold from dimension

ality reduction does not necessarily reflect distinct volitional con

trol signals, and, therefore, components beyond the first 

principal component might reflect residual variance or inputs 

from other spinal circuitry (e.g., recurrent inhibition62), which 

are not directly linked to force production. However, it remains 

uncertain whether these additional components contribute 

meaningfully to force production or simply reflect variance unre

lated to volitional output, particularly for synergistic muscles 

such as the vasti. Moreover, to our knowledge, no prior study 

has assessed the consistency of these components across 

repeated tasks with highly similar motor outputs, which is an 

essential consideration if such components are to be interpreted 

as stable neural strategies to force control. Finally, most existing 

approaches rely predominantly on linear dimensionality reduc

tion techniques, which impose assumptions that may not fully 

capture the non-linear dependencies among motor units or the 

inherent non-linearities in force generation.

In this study, we addressed these gaps by investigating the 

functional role and trial-to-trial consistency of low-dimensional 

components underlying motor unit activity during repetitive iso

metric tasks with highly similar force outputs. Specifically, we 

aimed to determine whether components beyond the first 

contribute meaningfully to force control and whether these com

ponents represent stable neural strategies by assessing their 

consistency across repeated trials. To characterize potential 

non-linear interactions among motor unit activity, we employed 

a recently developed non-linear framework combining informa

tion and network theoretic tools to decompose neural signals 

and characterize their network structure.63,64 We investigated 

these questions across different muscles, including both individ

ual (tibialis anterior [TA], first dorsal interosseous [FDI]) and syn

ergistic (vastus medialis [VM], vastus lateralis [VL]) muscles. VM 

and VL were included to examine whether similar results would 

emerge under shared control strategies, compared to individual 

muscles primarily producing force alone on a single joint. This 

synergistic group is particularly relevant, as VM and VL are 

known to receive largely shared synaptic input during isometric 

knee extension.45,50 Participants performed 15 trials of a force- 

matching task, following a target trajectory containing random 

oscillations with frequency content below 1.5 Hz (learning 

task). The first three consecutive trials with the lowest root- 

mean-square error (RMSE) between the force and target signals 

(i.e., post-skill acquisition trials) were selected for analysis, 

ensuring similarity in force oscillations across trials. Motor units 

were decomposed from high-density surface electromyograms 

(HDsEMG), tracked across the selected trials, and their 

smoothed discharge rates were linearly decomposed into low- 

dimensional components using PCA and FA. Our findings re

vealed that the first low-dimensional motor unit component re

mained highly consistent across trials and closely resembled 

force oscillations for all the muscles investigated, suggesting 

that a single dominant shared synaptic input to spinal motor 

neuron activity primarily controls force output.

RESULTS

Similarity in force oscillations across selected trials

Figure 1 shows the experimental setups used to record isometric 

forces produced by index finger abduction (FDI muscle; 

Figure 1A), dorsiflexion (TA muscle; Figure 1B), and knee exten

sion (VM and VL muscles; Figure 1C). During the force-matching 

learning task, participants followed a target trajectory displayed 

on a screen (Figure 1D) across 15 trials. Target force levels were 

set at 5% of the maximal voluntary contraction (MVC) for the in

dex finger abduction task and 10% MVC for the dorsiflexion and 

knee extension tasks. The corresponding MVC torque values 

were as follows: index finger abduction: 1.92 ± 0.79 Nm, dorsi

flexion: 40.83 ± 12.75 Nm, and knee extension: 388.83 ± 98.82 

Nm. From the 15 trials, we selected the first three consecutive tri

als with the lowest force-target RMSE for analysis (i.e., post-skill 

acquisition trials; Figure 1E). On average, the first trial of the 

selected three occurred at trial 12 ± 1 for the index finger abduc

tion, 11 ± 2 for the dorsiflexion, and 11 ± 2 for the knee extension.

Figure 1F provides a representative example of the force oscil

lations observed in the selected trials. Visually, there is a clear 

overlap between the force (colored traces) and target (gray 

traces) signals, along with a high degree of similarity in force os

cillations across trials. Consistent with these observations, no 

significant differences in force-target RMSE were observed 

across trials for any of the tasks investigated (Friedman test; 

p > 0.096 for all cases; Figure 1G). Note that one participant 
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exhibited outlier RMSE values in the index finger abduction task 

(Figure 1G, middle panel; values >12). When this participant was 

excluded from the analysis, results remained consistent, with no 

significant differences in RMSE across trials (p = 0.641). Simi

larly, no significant differences were observed in the coefficient 

of variation of force across trials (Friedman test; p > 0.155 for 

all cases). For the isometric dorsiflexion task (TA muscle), the 

average coefficient of variation of force values were 9.47% ± 

0.42%, 9.74% ± 0.94%, and 9.73% ± 0.73% for post-skill acqui

sition trials 1, 2, and 3, respectively. For the isometric index finger 

Figure 1. Experimental setup and similarity in force oscillations across selected trials 

Experimental setup to record isometric forces produced by index finger abduction (A), dorsiflexion (B), and knee extension (C) tasks. Participants were asked to 

perform 15 trials of a force-matching task, following a target trajectory (gray line) displayed on a computer monitor (D). From these 15 trials, the first three 

consecutive trials with the lowest force-target root-mean-square errors were selected for analysis (E). Comparison between force oscillations (colored lines) and 

the target (gray line) for the three selected trials (F). A high degree of similarity in force fluctuations across trials is evident. Group results of the root-mean-square 

error between the force and target are shown for the dorsiflexion (n = 12; Friedman test; p = 0.097; left panel in G), index finger abduction (n = 10; Friedman test; 

p = 0.741; middle panel in G), and knee extension (n = 7; Friedman test; p = 0.651; right panel in G) tasks. Circles represent individual participants. Data are 

represented as median (horizontal lines), interquartile range (boxes), and distribution range (whiskers). VM, vastus medialis; VL, vastus lateralis.
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abduction task (FDI muscle), they were 9.57% ± 2.28%, 9.80% ± 

2.99%, and 9.30% ± 2.36% for post-skill acquisition trials 1, 2, 

and 3, respectively. For the isometric knee extension task 

(VM-VL muscles), the values were 8.65% ± 0.31%, 8.95% ± 

0.27%, and 9.14% ± 0.61% for post-skill acquisition trials 1, 2, 

and 3, respectively.

Characterization of low-dimensional motor unit control 

using PCA and FA

To evaluate low-dimensional neural control underlying motor unit 

activity during repeated trials with similar force oscillations, we 

decomposed HDsEMG signals into individual motor unit spike 

trains30 and tracked the motor units across trials by reapplying 

the motor unit separation vectors65,66 (Figure 2A). The average 

number of matched motor units per participant was 16 ± 7 for 

the TA, 7 ± 1 for the FDI, 3 ± 1 for the VM, and 12 ± 5 for the 

VL. All subsequent analyses were applied to matched motor 

units from individual muscles (TA, FDI, and VL) as well as syner

gistic muscles (combined VM-VL). We then calculated the 

smoothed discharge rates of matched motor units by convolving 

the binary spike trains with a 400-ms Hanning window 

(Figure 2B). This operation acts as a low-pass filter with a cutoff 

frequency of approximately 1.8 Hz,40 effectively isolating the 

low-frequency oscillations of motor unit activity. Therefore, our 

analysis specifically targeted the frequency band most relevant 

to force generation and control.40,41,67 Subsequently, we as

sessed whether the smoothed discharge rates were suitable 

for factor analysis. The Kaiser-Meyer-Olkin (KMO) average 

values were 0.96 ± 0.03 for the TA, 0.90 ± 0.03 for the FDI, 

0.87 ± 0.09 for the VL, and 0.91 ± 0.06 for the VM-VL, indicating 

that the smoothed discharge rate matrices for all muscles were 

appropriate for factorization.

To determine the number of low-dimensional components to 

retain, we used parallel analysis.68 This method indicated that 

the average number of components to be extracted was 1.1 ± 

0.3 for the TA motor units, 1.0 ± 0.2 for the FDI motor units, 

1.6 ± 0.7 for the VL motor units, and 2.0 ± 0.7 for the combined 

VM-VL motor units. We opted to extract two components for all 

the muscles investigated using PCA and FA (Figure 2C). Since 

the extracted components were derived from low-pass filtered 

motor unit discharge rates, they reflect the low-frequency oscil

lations in the common synaptic inputs to the motor neuron 

pool.40,50 For all muscles, the first motor unit component ex

plained significantly greater variance in the smoothed discharge 

rates compared with the second motor unit component (linear 

mixed-effect models [LMMs]; main effect of motor unit compo

nent; p < 0.001 for all muscles). These differences were indepen

dent from the trial analyzed (LMMs; interaction effect of motor 

unit component * trial; p > 0.412 for all muscles). The first 

motor unit component accounted for an average variance of 

Figure 2. Characterization of low-dimensional motor unit control 

For the three post-skill acquisition trials selected for analysis, high-density surface electromyograms (HDsEMG) were decomposed into motor unit discharge 

times using a convolutive blind source separation algorithm (A). The motor units were tracked across trials, and their discharge times were used to calculate 

binary motor unit spike trains. Low-pass filtered discharge rates of tracked motor units were obtained by convolving the motor unit spike trains with a 400-ms 

Hanning window (B). The standardized and detrended smoothed discharge rates were then used to estimate low-dimensional motor unit components via 

principal-component analysis (PCA) and factor analysis (FA). Two components were extracted for all muscles analyzed (C).
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80.7% ± 6.6% for the TA, 74.5% ± 8.4% for the FDI, 55.9% ± 

9.9% for the VL, and 54.3% ± 9.7% for the VM-VL. The second 

component explained an average variance of 4.8% ± 2.2% for 

the TA, 9.6% ± 3.0% for the FDI, 13.5% ± 4.2% for the VL, 

and 11.7% ± 3.6% for the VM-VL.

Correlation between low-dimensional motor unit 

components and force oscillations

To assess how effectively the neural components underlying 

motor unit activity explained force oscillations, we calculated 

the cross-correlation between these signals. For all muscles, 

the first motor unit component showed significantly greater 

cross-correlation values with force compared to the second mo

tor unit component (LMMs; main effect of motor unit component; 

p < 0.001 for all muscles). These differences were independent of 

the trial analyzed and the linear method used (LMMs; interaction 

effect of motor unit component * trial * linear method; p > 0.201 

for all muscles). Specifically, for the TA, the cross-correlation 

values with force significantly increased from 0.07 (0.02, 0.13) 

for the second motor unit component to 0.52 (0.46, 0.57) for 

the first motor unit component (Figure 3A). For the FDI, the values 

increased from 0.22 (0.17, 0.27) to 0.56 (0.51, 0.61) between the 

second and first motor unit components (Figure 3B). For the VL, 

the increases from the second to the first motor unit component 

were from 0.06 (0.02, 0.11) to 0.50 (0.45, 0.54) (Figure 3C). For 

the VM-VL motor units, the cross-correlation increased from 

0.07 (0.02, 0.13) to 0.52 (0.46, 0.57) between the second and first 

motor unit components (Figure 3D).

Consistency of motor unit components across trials

To assess the consistency of the two motor unit components 

across trials, we computed the cross-correlation between tri

als. Figure 4 shows a representative case of the motor unit 

components extracted for each post-skill acquisition trial using 

PCA. While the first motor unit component (Figure 4A) remained 

highly consistent across trials, this similarity across trials was 

notably reduced for the second motor unit component 

(Figure 4B). This was in line with the cross-correlation values 

calculated between components, indicating an average of 

0.78 ± 0.05 for the first component and 0.36 ± 0.11 for the sec

ond component.

Consistent with the representative case, the group results re

vealed significantly greater cross-correlation values across trials 

for the first motor unit component compared to the second 

component (LMMs; main effect of motor unit component; 

p < 0.001 for all muscles), regardless of the trial comparison and 

the linear method used (LMMs; interaction effect of motor unit 

component * trial comparison * linear method; p > 0.230 for all 

muscles). For the TA muscle, the cross-correlation values across 

trials significantly increased from 0.14 (0.07, 0.21) for the second 

motor unit component to 0.48 (0.41, 0.55) for the first motor unit 

component (Figure 4C). For the FDI, these values increased from 

0.11 (0.06, 0.16) to 0.52 (0.46, 0.57) between the second and first 

components (Figure 4D). In the VL, cross-correlation across trials 

increased from 0.14 (0.03, 0.24) to 0.55 (0.45, 0.66) between the 

second and first motor unit components (Figure 4E). Similarly, 

for the VM-VL motor units, the cross-correlation increased from 

Figure 3. Correlation between low-dimensional motor unit components and force oscillations 

To evaluate how effectively the two low-dimensional motor unit components explained force oscillations, we calculated the cross-correlation between these 

signals. Results are presented separately by method (PCA and FA) and muscle: tibialis anterior (A), first dorsal interosseous (B), vastus lateralis (C), and combined 

vastus lateralis and vastus medialis (D). Data are represented as median (horizontal lines), interquartile range (boxes), and distribution range (whiskers). *p < 0.05 

by linear mixed-effect models (n = 12 for the tibialis anterior; n = 10 for the first dorsal interosseous; n = 7 for VL and VM-VL). VM, vastus medialis; VL, vastus 

lateralis.
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0.18 (0.08, 0.29) to 0.58 (0.48, 0.69) between the second and first 

components (Figure 4F).

Characterization of motor unit networks across trials 

using network-information framework

To assess the statistical dependence between pairs of motor 

unit smoothed discharge rates, we characterized motor unit net

works across consecutive trials using a network-information 

framework. Briefly, the non-linear relationships between 

smoothed discharge rates (Figure 5A) were estimated using pair

wise mutual information,69 resulting in a symmetric adjacency 

matrix representing the network-level functional connectivity be

tween all motor units (Figure 5B). Only the significant associa

tions between motor units were identified using a modified 

Figure 4. Consistency of motor unit components across trials 

Representative example of the first (A) and second (B) motor unit components extracted during the three post-skill acquisition trials. Note the high similarity in 

oscillations of the first motor unit component across trials compared with the second component. Group results of the cross-correlation are shown for the tibialis 

anterior (C), first dorsal interosseous (D), vastus lateralis (E), and combined vastus lateralis and vastus medialis (F). Data are represented as density curves 

comparing the distribution of cross-correlation values for the first (purple) and second (green) motor unit components, with average values indicated. *p < 0.05 by 

linear mixed-effect models (n = 12 for the tibialis anterior; n = 10 for the first dorsal interosseous; n = 7 for VL and VM-VL). VM, vastus medialis; VL, vastus lateralis.
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Figure 5. Characterization of motor unit networks across trials using network-information framework 

Pairwise mutual information, approximated using a Gaussian copula,69 was used to calculate non-linear relationships between smoothed discharge rates (A), 

resulting in a symmetric adjacency matrix (top panel in B). A modified percolation analysis70 identified significant associations between motor units (bottom panel 

in B). Graph theory was then applied to construct the motor unit network, where nodes (circles) represent motor units and edges (gray lines) denote significant 

associations (C). To identify neural components within the motor unit network, a network community detection algorithm was employed,71 and the percentage of 

motor units belonging to the first component (green nodes in C) was quantified. Representative example of non-linear pairwise mutual information analysis and 

the resulting motor unit networks for the three post-skill acquisition trials (D). Note the high similarity between motor unit networks, with most motor units 

belonging to the first component (green circles). The motor unit networks were characterized by high density (numerous connections). Group results are shown 

for network density (E) and the number of motor units belonging to the first component (F), separately by muscle and trial. Data are represented as median 

(horizontal lines), interquartile range (boxes), and distribution range (whiskers). TA, tibialis anterior; FDI, first dorsal interosseous; VM, vastus medialis; VL, vastus 

lateralis.
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percolation analysis70 (Figure 5B), and subsequently, graph the

ory was employed to construct the motor unit network, where 

nodes represent motor units, and edges denote significant asso

ciations between motor units (Figure 5C).

Figure 5D shows the significant pairwise mutual information 

between matched motor units, along with the motor unit net

works identified for the three consecutive trials. The networks 

showed a high degree of similarity across trials, as evidenced 

by consistent connections, such as those involving motor unit 

four (red edges) and motor unit sixteen (blue edges). Additionally, 

the motor unit networks were generally denser (i.e., featuring a 

greater number of connections), with most motor units belonging 

to the first motor unit component (or community), as indicated by 

the green circles representing these motor units. For the group 

results, the average number of identified motor unit components 

in the network was 1.6 ± 1.0 for the TA motor units, 1.0 ± 0.2 for 

the FDI motor units, 1.3 ± 0.7 for the VL motor units, and 1.4 ± 0.6 

for the combined VM-VL motor units. No significant differences 

in network density were observed across trials for any of the 

muscles investigated (Friedman test; p > 0.145 for all cases; 

Figure 5E). Similarly, no significant differences were found 

across trials in the number of motor units belonging to the first 

motor unit component (Friedman test; p > 0.345 for all cases; 

Figure 5F), except for the FDI (Friedman test; p = 0.047). Howev

er, pairwise comparisons with Bonferroni correction did not 

reveal any significant differences between trials for the FDI 

(p > 0.25 for all pairwise comparisons).

DISCUSSION

In this study, we investigated the role of low-dimensional compo

nents underlying motor unit discharge rates in force control dur

ing repetitive isometric tasks with highly similar force outputs. 

First, our results showed that the first motor unit component 

was sufficient to explain most of the variance in smoothed 

discharge rates, and consistent with previous findings, it was 

highly correlated with force oscillations. Notably, this component 

also exhibited strong trial-to-trial consistency across muscles. 

Second, even when the second component captured a signifi

cant portion of the variance in smoothed discharge rates, it 

was significantly less correlated with force and showed much 

lower consistency across trials, thereby questioning its func

tional relevance in force generation. These findings were sup

ported by a non-linear network-information framework, which 

demonstrated high density in motor unit networks across trials 

with most motor units belonging to the first component, further 

narrowing the functional relevancy of other components in force 

production. As discussed below, these results collectively sug

gest that, during isometric contractions, force output is primarily 

controlled by a single low-frequency synaptic input underlying 

motor unit activity.

The concept of low-dimensional neural control has been 

extensively studied at the muscular level, particularly through ki

nematics and surface electromyogram (EMG) recordings, 

consistently demonstrating that many movements can be ex

plained by a small set of weighted combinations of muscle acti

vations.4,5,7,72 Earlier observations of a high degree of similarity 

in the discharge rates of individual motor units support the idea 

that low-dimensional control is not confined to the muscular level 

but extends to the motor unit level.52,53,73 Initial evidence from 

this concept came from pairwise correlation analyses of motor 

unit discharge rates,52,74,75 which revealed that rather than 

acting independently, the resultant discharge times of individual 

motor units exhibit similar behaviors attributed to a common syn

aptic input, termed as common drive.52,67 As discussed by 

Miles,76 this dominant-shared input results from descending 

cortical neurons projecting broadly to the motor neuron pool 

and modulating a common current source injected into most or 

all motor neurons innervating a muscle. These insights laid the 

foundation for the view that common synaptic inputs across mo

tor neuron pools are the primary source of correlated motor unit 

activity and, consequently, the key determinant of alpha motor 

neuron control.52,73–75,77,78 Subsequent simulation and experi

mental studies at the motor unit pool level provided further sup

port, demonstrating that the effective neural drive to muscles is 

largely determined by common synaptic inputs to motor neu

rons.40–43,45,50,79 More recent research using dimensionality 

reduction methods has reinforced this idea, showing that 

one or two neural control signals are sufficient to explain 

the majority of motor unit activity across a range of tasks and 

muscles.40,47,50,61

Our findings align with this body of work, as we observed, us

ing parallel analysis, that one and two components were suffi

cient to capture the underlying structure of motor unit discharge 

rates in individual (TA, FDI, and VL) and synergistic (VM-VL) mus

cles, respectively. Together, these components accounted for 

∼85% of the variance in TA and FDI motor units, ∼70% in VL, 

and ∼65% in VM-VL motor units, which are values on par with 

previous studies.40,47,50 Importantly, the first component alone 

explained most of the variance in all muscles (∼55%–80% 

across trials), while the second component explained a substan

tially smaller portion (∼5%–10%). These results were supported 

by the non-linear framework, which demonstrated highly inter

connected motor unit networks, with most units belonging to 

the first motor unit component (Figure 5). The identification of a 

single dominant component, through both linear and non-linear 

methods, suggests that the CNS employs a simplified strategy 

for motor unit control, where common synaptic inputs or a single 

dominant common drive plays a crucial role in force control. 

Interestingly, while a single component was retained for individ

ual muscles, parallel analysis indicated that an average of two 

components was needed for synergistic control (combined 

VM-VL motor units). This finding aligns with other studies on 

the VM and VL muscles that used different methods to determine 

the number of low-dimensional components to retain.47,50,61

However, our results revealed that the second component ac

counted for only ∼11% of VM-VL motor unit activity, significantly 

less than the variance explained by the first component alone. 

Additionally, as further discussed below, only the first motor 

unit component in VM-VL largely explained oscillations in force 

(Figure 3D) and remained highly consistent across repeated trials 

with similar motor outputs (Figure 4F). Moreover, when applying 

non-linear methods, a single dominant component was identi

fied on average in the motor unit networks, even for the VM-VL 

motor units. These results suggest that the number of extracted 

components for VM-VL motor units, particularly when using 
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linear methods, does not necessarily reflect the true dimension

ality of motor unit control. This finding is consistent with recent 

studies by Rossato et al.50 and Dernoncourt et al.,62 which 

showed that although multiple components were extracted 

from VM-VL motor units, participants were unable to dissociate 

motor unit pair activity during an online control paradigm. It is 

important to note, however, that the reduced significance of 

the second component compared to the first component in force 

control does not preclude a potential functional role. For 

instance, recent work by Borzelli et al.80 reported that more 

than one common synaptic input can provide distinct functional 

roles, such as torque production versus joint stiffness modula

tion, during co-contraction of antagonist muscles (biceps brachii 

and triceps brachii). Moreover, recent spiking network simula

tions suggest that the number of components identified via 

dimensionality reduction may reflect not only descending 

cortical commands but also the influence of spinal circuitry (e. 

g., recurrent inhibition).62 It is also possible that these additional 

components may reflect shared synaptic inputs arising from 

afferent feedback loop oscillations. Notwithstanding these pos

sibilities, even if the second component in the VM-VL condition 

reflects a distinct functional input, our findings support the pres

ence of a dominant common synaptic input as the main contrib

utor to force production in the investigated muscles, which is in 

agreement with previous literature.45,50,62

Mathematically, muscle force can be modeled as the convolu

tion of the neural drive to the muscle (i.e., the cumulative motor 

unit spike train) with the average twitch of active motor units.81,82

Although significant coherence up to 70–80 Hz has been 

observed in motor unit activity,32,83 the twitch contractile proper

ties act as a low-pass filter on the neural drive,84–86 and, as a 

result, only the low-frequency oscillations in the neural drive 

(typically below 10–12 Hz84,85) are effectively transmitted to the 

force. Consequently, force oscillations are primarily determined 

by the low-frequency components of the common synaptic in

puts to spinal motor neurons (for a review, see Farina and 

Negro39). From a motor unit population perspective, these low- 

frequency components of shared inputs can be estimated from 

low-pass filtered motor unit discharge rates (e.g., by convolving 

motor unit binary spike trains with a Hanning window), either via 

dimensionality reduction techniques40,47 or via coherence anal

ysis between motor unit spike trains.66,83,86,87 Given that dimen

sionality reduction methods, as applied in the current study, pro

vide time-varying signals, their fluctuations are expected to 

closely resemble force oscillations if they are indeed determi

nants of force control. Our results corroborate this hypothesis, 

particularly the observation that the first motor unit component 

was correlated with force oscillations by ∼55% across all inves

tigated muscles (Figure 3). This correlation was consistent across 

trials and independent of the linear method used. Notably, only 

the first component closely resembled force oscillations, 

whereas the second component showed an average correlation 

of just ∼12% across muscles. These findings, consistent with 

previous work,40 strongly suggest that a single dominant com

mon input is the primary determinant of force control and modu

lation, at least for the muscles investigated in this study.

An important consideration is that, despite the strong corre

lation between the first component and force oscillations, the 

correlation values did not approach 1 (i.e., perfect correlation). 

Several factors could explain this discrepancy. First, motor unit 

discharge rates are influenced by common noise inputs, which 

introduce variability into the neural drive signal and affect force 

modulation.66,88 Second, the muscle-tendon system intro

duces non-linearities that affect the translation of motor unit ac

tivity into force output.89,90 Third, variability in the shape of mo

tor unit twitches may contribute to differences between 

predicted and actual force oscillations. In this study, smoothed 

discharge rates were obtained by convolving motor unit spike 

trains with the same Hanning window for all motor units. Previ

ous studies have shown that using a window shape more 

closely resembling motor unit twitch force can yield higher cor

relations between the first low-dimensional motor unit compo

nent and force fluctuations.40 Finally, while linear methods 

effectively capture the patterns of shared synaptic inputs,42,87

they may not fully account for the non-linear dynamics inherent 

in force production. Non-linear methods, such as those em

ployed in this study,63,64 can provide complementary insights 

by modeling the complex interactions within motor unit net

works. For instance, the network-information framework re

vealed highly interconnected motor unit networks, emphasizing 

the role of shared inputs in driving force production (Figure 5E). 

Furthermore, most of the units belonged to the first motor 

unit component (∼80% across trials and muscles), and this 

pattern remained consistent across trials (Figure 5F). By 

capturing these higher-order interactions, non-linear methods 

can address limitations of linear approaches, offering a more 

comprehensive understanding of the neural control of force. 

The framework used in this study, along with high-order corre

lation methods,64,91 could be further explored in future research 

to provide better insights into motor unit control.

Another important finding of this study is the high consistency 

of the first component across trials, with average correlation 

values of approximately 0.6 across all investigated muscles 

(Figure 4). This suggests that low-dimensional control is not 

only effective in reducing the complexity of motor unit control 

but also provides a reliable and repeatable mechanism for force 

modulation. The high trial-to-trial consistency of the first compo

nent, but not the second, reinforces the idea that a single domi

nant control input driving force control is a purposeful strategy 

employed by the CNS to simplify coordination, particularly dur

ing repetitive tasks with similar motor outputs. There is an 

ongoing debate about whether low-dimensional control reflects 

a neural control scheme (i.e., hard-wired) or emerges as a conse

quence of task constraints (i.e., soft-assembled).12,92 Develop

mental studies in human neonates and infants suggest that 

low-dimensional patterns emerge early and may reflect innate 

coordination strategies.93,94 Additionally, recent studies in motor 

unit control propose that low dimensionality arises from both 

supraspinal and spinal mechanisms, supporting a hard-wired ar

chitecture.62 While our experimental approach, which focused 

on repetitive isometric tasks with a fixed posture, does not allow 

definitive conclusions regarding this question, our results indi

cate that the production and modulation of force after a new skill 

acquisition task was achieved through a single dominant control 

input that remained consistent across repeated trials of the 

same task.
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An additional point worth discussing is the functional diversity 

of the muscles investigated. Although all four are monoarticular, 

they differ markedly in motor unit properties and discharge 

behavior.95,96 For example, motor units in the FDI exhibit lower 

innervation number95 and higher mean discharge rates at low 

force levels96 compared to those in the TA and vasti muscles. 

These physiological differences align with their functional roles: 

the FDI is primarily involved in fine motor control of the hand,97

whereas the TA and vasti are involved in gross motor functions 

such as posture and locomotion.98 This is also reflected in their 

maximal force capacities, with substantially lower absolute 

maximal forces observed during finger abduction compared to 

dorsiflexion and knee extension (see results). Despite these dis

tinctions, our findings revealed remarkable consistency in low- 

dimensional control strategies across all muscles during the 

force-matching learning task. Participants typically achieved 

stable performance in the final third of the learning phase, with 

the first trial of the selected three occurring around trial 11 ± 1 

for all tasks. This is consistent with recent work from our group, 

which demonstrated the neural mechanisms underlying short- 

term learning in this task are similar across hand and leg mus

cles.66 More notably, a single dominant low-dimensional 

component consistently explained most of the variance in motor 

unit discharge activity and force fluctuations across trials, 

regardless of the muscle’s functional role or whether it acted 

independently or synergistically. These results suggest that the 

low-dimensional neural control strategy observed here reflects 

a generalizable principle of force control during isometric tasks, 

despite differences in muscle function, output demands, and 

motor precision. Whether similar control strategies would apply 

to more complex or dynamic motor learning tasks remains an 

open and promising question for future research.

In this part, we would like to discuss several methodological 

considerations. Based on the number of trials of previous experi

ments involving short-term learning tasks,66,99 our protocol was 

designed to ensure consistent motor outputs across trials, which 

was essential for analyzing the stability of motor unit low-dimen

sional components. Our results indicated that performing 15 trials 

of the proposed task was sufficient to obtain a sequence of three 

post-skill acquisition trials with highly similar motor outputs 

(Figure 1). This was further confirmed by the absence of significant 

changes in force steadiness (i.e., coefficient of variation of force) 

between selected trials. Compared to previous studies that exam

ined low-dimensional control of motor unit activity,40,47,61 our pro

tocol provided a distinct advantage by facilitating the evaluation of 

the consistency of neural control strategies.

Another important methodological point concerns the deter

mination of the number of low-dimensional components to 

retain.100–102 This decision is critical in dimensionality reduction, 

as it must balance parsimony with the ability to adequately cap

ture the structure of the underlying data.103 For instance, using 

an arbitrary fixed threshold of explained variance (e.g., >90%) 

may lead to the retention of too many components, which can 

hinder factor interpretability and replicability.104,105 Furthermore, 

a fixed ‘‘variance accounted for threshold’’ has been recently 

shown to be insufficient to reliably estimate the dimensionality 

of muscle activation modules, especially in the presence of 

noise.93 Various methods have been proposed in the literature, 

including the ‘‘eigenvalue ≥1’’ criterion,106,107 the scree plot 

test,108 the minimum average partials criterion,109 parallel anal

ysis,110 and consistency measures.93 Parallel analysis, which 

compares observed eigenvalues with those generated from 

random data, has been shown to outperform other approaches 

for selecting the number of components.68,104,105 To our knowl

edge, this is the first study to apply parallel analysis for selecting 

low-dimensional motor unit components. Given its consistency 

in determining the number of components across trials and mus

cles, as well as its data-driven nature, we recommend this 

approach for future studies exploring low-dimensional motor 

unit control.

The choice of dimensionality reduction method is another 

critical consideration that can affect the interpretation of re

sults.7,23,25 While PCA and FA are often used interchangeably, 

they differ in theoretical and mathematical assumptions.111

PCA calculates linear combinations of measured variables (i.e., 

components) that maximize explained variance, including both 

common and unique variances. FA, on the other hand, separates 

common variance from unique variance, identifying latent con

structs that explain shared variance among variables. Conceptu

ally, PCA and FA differ in their approach directionality: PCA 

models how measured variables influence components, 

whereas FA assumes that latent factors drive the measured vari

ables. For estimating commonality in motor unit discharge pat

terns, FA is advantageous because it focuses exclusively on 

shared variance across variables. However, PCA is mathemati

cally linked to Hebbian theory,57–59 providing a solid foundation 

for its use in analyzing patterns of covariation within neuronal en

sembles.40,49,55,56 Specifically, Oja’s learning rule demonstrated 

a biologically plausible Hebbian learning model, in which synap

tic weights between two neurons adapt based on the correlation 

between pre- and post-synaptic activity,35 with a normalization 

constraint to prevent unbounded growth of synaptic weights.60

Over time, this learning rule causes the synaptic weight vector 

to converge to the first principal component of the input data. 

Thus, a simple Hebbian neuron implementing Oja’s rule effec

tively performs PCA on its high-dimensional inputs, supporting 

the use of PCA as a model of neural computation.112 In this 

study, the choice of linear method (PCA or FA) did not affect 

the results for any of the investigated muscles, as we focused 

on correlations between motor unit components and force fluc

tuations, as well as consistency across similar trials. Future 

research should select dimensionality reduction methods a pri

ori, based on the specific research question and underlying 

assumptions.

We chose not to apply component rotations in this study, as 

done in recent research,47,61 and would like to briefly address 

this decision. PCA assumes that extracted components are 

orthogonal, whereas FA can incorporate orthogonal (e.g., vari

max) or oblique (e.g., Promax) rotations to the initial factor solu

tion. It is important to note that rotation redistributes variance 

across components, reducing the total variance explained by in

dividual components due to changes in the partitioning of vari

ance.113 Consequently, rotating the components affects the cor

relations between individual motor unit discharge rates and 

components (i.e., loadings). For instance, oblique rotations 

such as Promax may increase the correlation of certain original 

10 iScience 28, 113483, October 17, 2025 

iScience
Article

ll
OPEN ACCESS



variables with one component while reducing it with another, 

thereby facilitating interpretation in specific applications where 

such associations may be expected (e.g., social sciences). In 

this study, we assumed uncorrelated components (i.e., orthog

onal) for simplicity and conceptual clearness of the interpreta

tion. In fact, if components are correlated, they may, in theory, 

be better interpreted as generated by a single synaptic input. 

Since component rotation is applied primarily to facilitate inter

pretation; future studies should investigate the physiological im

plications of perpendicular or oblique components.

Lastly, the non-linear analysis combining information theory 

and network-based approaches has provided novel insights 

into motor unit behavior. This framework has been recently 

applied to surface electromyograms to characterize neuromus

cular networks.64,91 In this study, we extended this approach 

to motor unit discharge rates and demonstrated its potential to 

reveal important features of low-dimensional motor unit control 

during isometric contractions. By capturing complex interac

tions beyond traditional linear methods, this framework offers a 

promising tool for future research investigating motor unit 

network structure and its role in neural control strategies.

In conclusion, and aligned with previous research, our results 

provide strong evidence for low-dimensional neural control at 

the motor unit level, where a single dominant component is suf

ficient to explain the majority of motor unit discharge activity and 

force oscillations. Importantly, the high consistency of this 

component across trials further supports the idea that low- 

dimensional control is a reliable and efficient strategy employed 

by the CNS for repetitive isometric tasks. Furthermore, even 

when the second component captured a significant portion of 

variance in smoothed discharge rates, it showed lower correla

tion with force and poor consistency across trials, questioning 

its functional relevance in force generation. Future studies 

should investigate the generalizability of these findings to other 

muscles and motor tasks with greater degrees of freedom. 

Lastly, we offer methodological recommendations to enhance 

the use and replicability of linear dimensionality reduction 

methods in motor unit research.

Limitations of the study

A limitation of the present study is that we only investigated the 

consistency of low-dimensional motor unit components during 

repetitive isometric tasks with similar force outputs. Future 

research should examine whether the same components are 

consistently engaged when motor units are recruited during 

functionally distinct tasks, such as generating forces in different 

directions or across varying motor goals, to better understand 

the flexibility of low-dimensional control strategies in force 

production.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

Twenty-nine healthy participants performed a series of isometric force-matching tasks involving index finger abduction (FDI muscle), 

dorsiflexion (TA muscle), and knee extension (VM-VL muscles). Specifically, ten volunteers (4 females; age 31 ± 4 years; height 177 ± 

8 cm; mass 72 ± 17 kg) participated in the FDI experiments, twelve volunteers (5 females; mean ± SD: age 31 ± 3 years; height 175 ± 

9 cm; mass 69 ± 18 kg) in the TA experiment, and seven male volunteers (age 33 ± 10 years; height 184 ± 5 cm; mass 85 ± 19 kg) in the 

VM-VL experiment. Seven volunteers participated in both the TA and FDI experiments in separate sessions. All participants had no 

history of upper or lower limb injuries that could impact their ability to perform voluntary contractions. Before beginning the exper

iments, participants provided informed consent following an explanation of the experimental procedures. This study was approved 

by the local ethics committee of the University of Brescia (code NP5665) and conducted in accordance with the latest version of the 

Declaration of Helsinki.

Experimental protocol

For the index finger abduction task, participants were seated with their right wrist neutrally positioned on a custom-built device with 

their elbow flexed at 45o (0o being fully extended). The index finger was secured to an adjustable support attached to a load cell 

(SM-100 N, Interface, Arizona, USA) to record the isometric abduction force produced by the index finger (Figure 1A). To minimize 

the involvement of other muscles, the wrist was secured to the device with Velcro straps, and the other fingers (little, middle and ring) 

were strapped separately from the index finger. The thumb was fixed to an adjustable support, maintaining an approximate angle of 

80◦ to the index finger. For the dorsiflexion task, participants were seated with their right leg positioned on a custom-made ankle 

dynamometer. The knee was fully extended, the hip flexed at 70◦ (0◦ being fully extended), and the ankle joint at 10◦ of plantar flexion 

(0◦ being the foot perpendicular to the shank). The foot was secured with straps to a footplate connected to a load cell (SM-500 N, 

Interface, Arizona, USA) to measure the isometric dorsiflexion force (Figure 1B). To ensure that the force generated was exclusively 

due to the dorsiflexor muscles, additional straps were applied around the thigh and knee. For the knee extension task, participants 

were seated on an isokinetic dynamometer (Humac Norm Extremity System, CSMi Solutions, Massachusetts, USA) with their right 

knee flexed at 90◦ (0◦ being fully extended) and aligned as coaxially as possible with the dynamometer’s axis of rotation (Figure 1C). 

The hip was flexed at 90◦ (0◦ being fully extended), and the ankle joint was secured to the device approximately three centimeters 

above the malleolus, allowing for the measurement of isometric knee extension force. The trunk and waist were also secured to the 

device with Velcro straps.

The experimental procedures were the same for the three muscle groups (FDI, TA, and VM-VL). Initially, participants performed a 

standardized warm up, consisting of three 3-s isometric contractions at 60, 70, and 80% and 90% of their subjective maximal iso

metric contraction, with 2 min of rest in between (adapted from Rossato et al.50). Then, participants performed three isometric 

maximal voluntary contractions (MVCs) for 3 s, with 2 min of rest between each contraction. The highest MVC among the three 

trials was used as a reference for the subsequent submaximal tasks. After a 5-min rest interval, participants were asked to perform 

an isometric force-matching task, following a complex trajectory for fifteen trials (learning task). This number of trials was chosen 

based on previous studies, which have demonstrated that fifteen trials of a similar task are sufficient for short-term learning.66,99

The trajectory specifically involved a linear increase from 0% MVC to the target force level at a rate of 5% MVC/s, a stochastic force 

region at the target force level for 30 s, and a linear decrease from the target force level to 0% MVC at a rate of − 5% MVC/s.66 The 

stochastic force region consisted of a randomly generated signal, low-pass filtered at 1.5 Hz, with oscillations around the target 

force level, set at 5% MVC for the FDI muscle and 10% MVC for the TA and VM-VL muscles. The target force levels of 5% 

MVC (FDI) and 10% MVC (TA and VM-VL) were selected based on piloting data to minimize fatigue across the fifteen-task repe

titions required for the experimental protocol. Additionally, these submaximal force levels have been commonly used in studies of 
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low-dimensionality motor unit control, particularly in hand40 and lower limb muscles,45,47,50 facilitating comparison with previous 

work. Three different trajectories were generated, one for each muscle group, but the same trajectories were used for all trials and 

participants. A rest period of at least 1 min was provided between trials. Throughout the task, participants were encouraged by the 

same researcher to match the trajectory as closely as possible. Visual feedback of both the target and the produced force was 

displayed on a computer monitor (Lenovo ThinkVision E24-29; active area: 52.7 × 29.65 cm; 1920 × 1080 resolution), positioned 

at eye level approximately 1 m in front of the participant (Figure 1D). The entire target trajectory was visible from the beginning of 

each trial.99 The y axis display range was fixed from − 1% to 15% MVC for the lower limb tasks and − 1%–10% MVC for index finger 

abduction, corresponding to an amplitude resolution of approximately 0.54% MVC/cm and 0.37% MVC/cm, respectively. The time 

resolution (x axis) was approximately 0.61 s/cm for index finger abduction and 0.65 s/cm for the lower limb tasks. The resulting 

visual gain for all tasks, estimated as the visual angle subtended by the force trajectory on the screen,114 was approximately 

0.11o. All participants had normal or corrected-to-normal vision and confirmed that they could clearly see both the target and 

the force trajectories on the screen.

Data collection

Monopolar high-density surface electromyograms (HDsEMG) were collected from the TA, FDI, and VM-VL muscles during the sub

maximal isometric tasks using adhesive grids of 64 electrodes arranged into 13 rows by 5 columns, with a missing electrode in the 

upper left corner (OT Bioelettronica, Turin, Italy). For the TA and VM-VL muscles, grids with an 8 mm inter-electrode distance were 

used (GR08MM1305), while for the FDI muscle, grids with a 4 mm inter-electrode distance (GR04MM1305) were employed. The grids 

were positioned longitudinally along the muscle belly, which was identified through palpation by an experienced investigator. In the 

case of the VL muscles, two grids were used: one positioned distally and the other proximally. Before placing the electrodes, the skin 

was shaved and cleaned with abrasive paste (EVERI, Spes Medica, Genova, Italy) and water to enhance signal quality. Conductive 

paste (AC cream, Spes Medica, Genova, Italy) was applied in the foam cavities of the grid to ensure optimal electrode-skin contact. 

The reference electrode was positioned on the right ankle for TA and VM-VL muscles and on the right wrist for the FDI muscle. 

HDsEMG and force signals were sampled synchronously at 2048 Hz using a 16-bit A/D amplifier (10–500 Hz bandwidth; Quattro

cento, OT Bioelettronica, Turin, Italy).

METHOD DETAILS

All analyses were conducted offline using custom-written scripts in MATLAB (version 2022b; The MathWorks Inc., Natick, Massa

chusetts, USA).

Trial selection for analysis

Three consecutive trials were selected out of the fifteen performed, focusing on those after learning the force-matching skill (i.e., 

post-skill acquisition trials). Initially, the force signal was low-pass filtered at 15 Hz using a third-order Butterworth filter. The 

RMSE between the detrended force and target signals was then calculated considering the 30-s middle region of each trial. The first 

three consecutive trials with the lowest RMSE between the force and target signals were selected for further analysis, as the force 

oscillations are expected to be most similar across these trials (Figure 1E). For these selected trials, the coefficient of variation of force 

(i.e., standard deviation divided by mean) was calculated to quantify force steadiness.

HDsEMG decomposition and motor unit tracking

To ensure the inclusion of motor units with stable discharge behaviors during the task, we excluded the first 5 s of the 30-s middle 

region. This step eliminated motor units that were recruited shortly before or near the target force level and may not have tonically 

discharged across the task. Thus, only motor units consistently active across the last 25-s of the middle region were included for 

analysis. Initially, monopolar HDsEMG signals were filtered between 20 and 500 Hz using a third-order bandpass Butterworth filter 

(Figure 2A). All signals were then visually inspected, and those of low quality (e.g., artifacts or skin-electrode problems during acqui

sition) were discarded from further analysis. The remaining HDsEMG signals were decomposed into motor unit discharge times using 

a convolutive blind-source separation algorithm,30 which has been previously validated and widely applied to assess individual motor 

units in the muscles investigated in this study.30,66,115 The identified motor units were visually inspected by an experienced operator, 

and missing or misidentified discharges (inter-spike intervals <20 ms or >250 ms; Negro et al.40) were manually and iteratively edi

ted.115,116 Motor units were then tracked across the three trials by reapplying the motor unit separation vectors, following procedures 

used in previous studies.65,66,117 Briefly, the deconvolution of HDsEMG signals using independent component analysis involves the 

calculation of a separation matrix, whose columns are the separation vectors for each motor unit.30,118 These separation vectors are 

unique for each motor unit and define the spatiotemporal filters that, when applied to the HDsEMG signals, yield the estimated motor 

unit discharge times. To maximize the number of tracked motor units, the estimated separation vectors from one trial were applied in 

the other two trials, considering all possible combinations. However, in a few cases (1 participant for TA, 3 for FDI and 2 for the VM), it 

was not possible to track more than one unit using this method. In such cases, motor units were tracked based on their action po

tential shapes.115 Specifically, the two-dimensional representation of the motor unit action potentials identified in one trial was esti

mated using the spike-triggered averaging technique and then cross-correlated with the spatial representation of the motor units 
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identified in the other two trials. Motor units with high similarity between action potentials (cross-correlation >0.8115) were considered 

to belong to the same motor unit.

Smoothed discharge rate matrices

The discharge times of the motor units tracked across the three post-skill acquisition trials were used to compute binary motor unit 

spike trains, where a value of 1 indicates the presence of a motor unit discharge at a specific time point, and a value of 0 indicates its 

absence (Figure 2A). The low-pass filtered discharge rates of motor units were then calculated by convolving the binary motor unit 

spike trains with a 400-ms Hanning window.40 To remove offsets and trends, these smoothed discharge rates were high-pass filtered 

at 0.75 Hz using a third-order Butterworth filter52 and subsequently standardized to have mean 0 and standard deviation 1 (Joliffe and 

Morgan119; Figure 2B). The resulting standardized and detrended smoothed discharge rates, referred to as smoothed discharge 

rates for simplicity, were then arranged in an r × c matrix, where r is the number of time samples and c is the number of motor units. 

This matrix was used to estimate the neural components underlying the low-frequency oscillations of motor units by applying linear 

dimensionality reduction techniques, specifically PCA and FA. Additionally, a non-linear method (network-information framework) 

was employed to characterize motor unit networks across trials.

Linear dimensionality reduction techniques

Two linear dimensionality reduction techniques, PCA and FA, were used to extract the components underlying the smoothed 

discharge rates of motor units.119,120 An important step when applying PCA or FA is to determine the number of low-dimensional 

components to retain. Various methods have been proposed to determine this number, often based on the eigenvalues of each 

component.106–110 Given previous evidence suggesting that parallel analysis is one of the most accurate methods for identifying 

the ideal number of components, significantly outperforming other approaches,68,104,105 we employed this method to determine 

the number of motor unit components to extract. For a detailed tutorial on performing parallel analysis, refer to Hayton et al.68 Briefly, 

we simulated a matrix of random data by shuffling the time samples of the smoothed discharge rate matrices calculated for each trial 

(see calculation of smoothed discharge rate matrices). This random data matrix was then subjected to PCA, and the estimated ei

genvalues for each component were stored. This procedure was repeated 1,000 times, resulting in a set of random eigenvalues from 

which the average and 95% confidence intervals were calculated. The number of motor unit components to retain was determined by 

identifying the eigenvalues extracted from the real smoothed discharge rate matrices that exceeded the upper bound of the 95% 

confidence interval of the random eigenvalues. This approach was performed separately for each of the three selected trials, and 

the average across trials was calculated and retained for further analysis.

Based on parallel analysis, which indicated extracting an average of one motor unit component for individual muscles and two 

components for the VM-VL muscles (see results), we extracted two components for all analyses (Figure 2C). PCA and FA were 

applied without rotation to motor units decomposed from individual muscles (TA, FDI, and VL) as well as synergistic muscles 

(combined VM-VL). The VM muscle was not analyzed separately due to the low number of motor units matched across trials (see 

results). To investigate the association between force oscillations and the two motor unit components, the cross-correlation between 

the detrended signals was calculated.40 To assess the consistency of the two motor unit components across trials, cross-correlation 

between trials was computed using 5-s non-overlapping windows, with the resulting values averaged. Additionally, the percentage of 

variance in the smoothed discharge rates explained by the two components obtained through PCA was calculated and retained for 

analysis.

Network-information framework

To non-linearly characterize the connectivity between motor unit smoothed discharge rates, we applied a framework combining in

formation and network theories (i.e., the network-information framework). The detailed methodology for this approach has been 

described in previous studies.63,64 First, the non-linear relationships between smoothed discharge rates (Figure 5A) were estimated 

using pairwise mutual information with a Gaussian copula-based approximation,69 resulting in a symmetric adjacency matrix repre

senting the connectivities between all motor units (i.e., network-level functional connectivity; Figure 5B). A modified percolation anal

ysis70 was then applied to determine a threshold (the percolation threshold), identifying only the significant associations between mo

tor units (Figure 5B). Subsequently, graph theory was employed to construct the motor unit network, where nodes (or vertices) 

represent motor units, and edges (or links) denote significant associations between motor units (Figure 5C). We used a circular rep

resentation to visually observe the matched motor units across trials. As in the PCA and FA, this analysis was applied to motor units 

decomposed from individual muscles (TA, FDI, and VL) as well as synergistic muscles (combined VM-VL).

To identify the neural components (or communities) within the motor unit network of each post-skill acquisition trial, we applied a 

network community detection algorithm.71 This algorithm quantifies overlapping components through hierarchical clustering of 

network links and outputs a binary matrix, where the rows represent the identified components, and the columns represent the motor 

units in the network. A motor unit was assigned a value of 1 if it belonged to a specific component and 0 otherwise. This process was 

performed separately for each trial, and the average number of identified components across the three trials was calculated. Two 

metrics were used to characterize the motor unit networks for each post-skill acquisition trial. First, we calculated the network den

sity, which quantifies the number of edges in the network relative to the total possible number of edges. A higher network density 
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indicates stronger interconnections between nodes, reflecting a more cohesive network. Additionally, we quantified the percentage 

of motor units belonging to the first component (represented by green nodes in Figure 5C).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R (version 4.3) within the RStudio environment (version 2023.06.0). Since force-target 

RMSE and coefficient of variation of force data were not normally distributed (Kolmogorov-Smirnov test; p < 0.002 for all), Friedman 

tests with Bonferroni’s correction for post hoc pairwise comparisons were used to assess differences across the three post-skill 

acquisition trials. Note that similar results were obtained when using one-way repeated-measures ANOVA (not reported). We also 

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was applied to assess whether the smoothed discharge rate matrices 

were factorable.121 KMO values greater than 0.70 were considered indicative of matrices appropriate for factorization.111

Linear mixed-effect models (LMMs) were used to compare the total variance explained in the smoothed discharge rates by the first 

and second motor unit components. Random intercept models were applied, with trial (trial 1, trial 2, and trial 3) and motor unit 

component (first and second motor unit components) as categorical fixed effects, and participant as a random effect. To compare 

the cross-correlation values between motor unit components and force, random intercept models were also used, with trial (trial 1, 

trial 2, and trial 3), motor unit component (first and second motor unit components) and linear method (PCA and FA) as categorical 

fixed effects, and participant as a random effect. Similarly, to compare the cross-correlation values of motor unit components across 

trials, random intercept LMMs were used, with trial comparison (trial 1 vs. trial 2, trial 1 vs. trial 3, and trial 2 vs. trial 3), motor unit 

component (first and second motor unit components) and linear method (PCA and FA) as categorical fixed effects, and participant 

as a random effect. For all statistical analyses, both main effects and interactions between fixed factors were tested. LMMs were 

implemented using the package lmerTest122 with the Kenward-Roger method to approximate the degrees of freedom and estimate 

the p-values. The emmeans package was used for multiple comparisons and to calculate estimated marginal means with 95% con

fidence intervals.123

To compare network density and the number of motor units belonging to the first component across trials, Friedman tests were 

performed with Bonferroni’s post hoc correction for pairwise comparisons. All the statistical details are reported in the results and 

figure legends. All individual data of motor unit discharge times recorded for each muscle in the three post-skill acquisition trials 

are available at https://doi.org/10.6084/m9.figshare.28324253.
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