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Abstract

We use both Bayesian and neural models to

dissect a data set of Chinese learners’ pre- and

post-interventional responses to two tests mea-

suring their understanding of English prepo-

sitions. The results mostly replicate previous

findings from frequentist analyses and reveal

new and crucial interactions between student

ability, task type, and stimulus sentence. Given

the sparsity of the data as well as high diversity

among learners, the Bayesian method proves

most useful; but we also see potential in using

language model probabilities as predictors of

grammaticality and learnability.1

1 Introduction

Learning a second or third language is hardÐnot

only for NLP models but also for humans! Which

linguistic properties and external factors make it

so difficult? And how can we improve instruction

and testing to help learners accomplish their goals?

Here we also ask a third question: How can we best

apply different computational models to such be-

havioral experimental data in order to get intuitive

and detailed answers to the first two questions in a

practical and efficient way? For example, we are in-

terested in whether language model (LM) probabil-

ities might give a rough estimate of grammaticality

and learning difficulty (table 1, right columns).

This work is in part a replication study of Wong

(2022), who, in addressing these questions about

native Chinese speakers’ learning of English prepo-

sitions in context (see examples in table 1), mainly

focused on instructional intervention and found

generally positive effects as well as differences

between instruction types, in particular favoring

conceptual over rule-based teaching. We pick up

where Wong (2022) left off and search for more

fine-grained patterns among students’ individual

differences, linguistic items, stimulus sentences,

1Our experimental code is available at https://github.
com/jakpra/L2-Prepositions.

and their grammaticality. Our main hypothesis

is that the full story of the complex interactions

among these factors can only be revealed by mod-

eling them holistically. Such a fine-grained holistic

analysis is well-aligned with Item Response Theory

(IRT; Fischer, 1973; Lord, 1980). IRT allows us to

formulate models in terms of predicting whether

students provide the intended response to each test

item. We consider sparse Bayesian and dense neu-

ral versions of this framework. We can then inspect

how strongly each model input (the linguistic, ex-

perimental, and student-specific factors mentioned

above, which are realized as random and fixed ef-

fects for the Bayesian model and feature vectors for

the neural model) affects the outcome. As a repre-

sentative of yet another modeling strategy, and also

as an additional input to the IRT models, we ob-

tain probability estimates for the target prepositions

in each stimulus sentence from a pretrained trans-

former LM. These probabilities serve as a proxy for

contextual formulaicity, as learned distributionally

from a large corpus.

While the theoretical advantages of Bayesian

over frequentist statistics, as well as the generally

strong performance of neuro-distributional mod-

els, are often cited as justification for choosing

one particular modeling method, both replication

studies and side-by-side comparisons of such dras-

tically different modeling strategies for linguistic

analysis remain rare (with notable exceptions, e.g.,

Michaelov et al., 2023; Tack, 2021).

We contribute to this important development by

• designing (§4.1), fitting, and evaluating (§5.1)

a Bayesian mixed effects model on Wong’s

(2022) data (§3), considering more potential

linguistic and human factors in preposition

learning than previously and finding signifi-

cant effects for several of them;

• training (§4.2) and evaluating an analogous

multilayer perceptron (MLP) model and com-

paring it with the Bayesian model in terms of
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Student
judgment LM

# Usage Stimuli Grammatical? pre post ptgt pctx

1a HIR-Spat The bell hung over the baby’s cradle and made him smile. ✓ 80.65 92.59 4.15 54.66

A
s

ex
p

ec
te

d

1b through ✗ 50.00 46.67 0.03 54.10

2a HIR-Abst The tutors watched over the students during the oral presentation. ✓ 80.00 96.77 96.70 67.19
2b on ✗ 35.00 46.15 0.07 50.64

3a CVR-Abst Tremendous fear fell over the town after the murder. ✓ 71.43 91.67 18.58 65.61
3b through ✗ 41.67 27.27 0.39 63.91

4a CRS-Spat The painter reached over the paint can for a brush. ✓ 41.18 63.33 0.05 49.50

si
g

n
(∆

p
tg

t)
??

?

4b through ✗ 36.11 33.33 0.78 45.42

5a CRS-Abst The lawyer jumped over a few pages of the contract. ✓ 72.73 94.12 6.97 52.39
5b to ✗ 42.11 34.78 20.27 51.66

6a CVR-Abst Happiness diffused over the guests when they see the newly-weds. ✓ 44.44 88.46 2.47 65.27
6b on ✗ 80.00 35.48 3.19 62.82

7a CVR-Spat The canvas stretched over a large hole in the road. ✓ 44.12 70.37 17.99 51.66

si
g

n
(∆

p
ct

x
)

??
?

7b through ✗ 55.56 60.00 15.52 52.79

8a CVR-Abst The tension swept over the school when the alarm rang. ✓ 66.67 100.00 3.93 46.61
8b onto ✗ 37.84 12.50 <0.01 46.63

9a CRS-Abst The politicians skipped over sensitive topics during the debate. ✓ 83.33 94.59 2.88 40.80
9b to ✗ 60.98 35.00 0.17 42.06

Table 1: Examples of stimulus sentences for grammatical (✓) and ungrammatical (✗) preposition use. In the

Student judgment columns we show the percentage of students who judged the example as grammatical at the

pretest (including control group) and posttest (treatment groups only) in Wong’s study. The LM columns show our

probed RoBERTa probabilities ptgt and pctx [in %], which are defined in §4.3 and discussed in §5.3.

both feature ablation and overall prediction ac-

curacy of the outcome, i.e., whether a student

will answer a test prompt correctly (§5.2);

• and probing a pretrained LM (§4.3 and §5) for

contextual probabilities of target prepositions

in order to determine their correlationÐand

thus, practical usefulnessÐwith human lan-

guage learning.

Thus, we aim to both better explain L2 prepo-

sition learning and compare Bayesian, frequentist,

and neural approaches to doing so.

2 Background

2.1 English Preposition Semantics

Prepositions are among the most frequently used

word classes in the English languageÐthey make

up between 6 and 10 % of all word tokens depend-

ing on text type and other factors (cf. Schneider

et al., 2018). This is because English does not

have a full-fledged morphological case system and

instead often expresses semantic roles via word

order and lexical markers like prepositions. At

the same time, the inventory of preposition forms

is relatively smallÐa closed set of largely gram-

maticalized function words covering a wide range

of predictive, configurational, and other relational

meanings. The resulting many-to-many mapping

between word forms and meanings is complex and

warrants nuanced linguistic annotation, analysis,

and computational modeling in context (O’Hara

and Wiebe, 2003; Hovy et al., 2010; Srikumar

and Roth, 2013; Schneider et al., 2018; Kim et al.,

2019b). Further, considerable cross-linguistic vari-

ation in the precise syntax-semantics interactions

of prepositions and case has been shown to affect

not only machine translation (Hashemi and Hwa,

2014; Weller et al., 2014; PopoviÂc, 2017), but also

construal in human translation (Hwang et al., 2020;

Peng et al., 2020; Prange and Schneider, 2021)

andÐcruciallyÐlearner writing (Littlemore and

Low, 2006; Mueller, 2011; Gvarishvili, 2013; Kran-

zlein et al., 2020).

2.2 Cognitive and Concept-based Instruction

Cognitive linguistics (CogLx) maintains that many

aspects of natural language semantics are grounded

in extra-linguistic cognition, even (or especially)

when they do not directly arise from syntactic com-

position, or at the lexical level. For example, Brug-

man (1988), Lakoff (1987), and Tyler and Evans

(2003) argue that spatial prepositions evoke a net-
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work of interrelated senses, ranging from more

prototypical to extended and abstract ones. Incor-

porating such conceptual connectedness into lan-

guage instruction has shown some benefits (Tyler,

2012; Boers and Demecheleer, 1998; Lam, 2009).

2.3 Computational Modeling in SLA

Until recently, most studies in applied linguistics

and second-language acquisition (SLA)Ðinsofar

as they are quantitativeÐhave relied on null-

hypothesis testing with frequentist statistical mea-

surements like analysis of variance (ANOVA)

(Norouzian et al., 2018). This has the advantage

that it is generally unambiguous and interpretable

what is being tested (because concrete and spe-

cific hypotheses need to be formulated ahead of

time) and that conclusions are based directly on

data without any potentially confounding modeling

mechanisms. At the same time, frequentist analy-

ses are relatively rigid, and thus run into efficiency,

sparsity, and reliability issues as interactions of

interest grow more complex. Li and Lan (2022)

propound a more widespread use of computational

modeling and AI in language learning and educa-

tion research. A promising alternative exists in the

form of Bayesian models (e.g., Murakami and Ellis,

2022; Privitera et al., 2022; Guo and Ellis, 2021;

Norouzian et al., 2018, 2019), which circumvent

sparsity by sampling from latent distributions and

offer intuitive measures of uncertainty ªfor freeº in

form of the estimated distributions’ scale parame-

ters. They can also be made very efficient to train

by utilizing stochastic variational inference (SVI).

Bayesian modeling for educational applications

goes hand-in-hand with Item Response Theory

(IRT; Fischer, 1973; Lord, 1980), which posits that

learning outcomes depend on both student aptitude

and test item difficulty. This addresses another

limitation of frequentist analysisÐthe focus on ag-

gregate test scoresÐby modeling each student’s

response to each item individually. We loosely

follow this general paradigm with our model im-

plementations, without committing to any specific

theoretical assumptions.

Within NLP, Bayesian and IRT-based ap-

proaches have been used to evaluate both human

annotators (Rehbein and Ruppenhofer, 2017; Pas-

sonneau and Carpenter, 2014) and models (Kwako

et al., 2022; Sedoc and Ungar, 2020), to conduct

text analysis (Kornilova et al., 2022; Bamman et al.,

2014; Wang et al., 2012), and natural language in-

ference (Gantt et al., 2020).

Murakami and Ellis (2022) show that grammar

learning can be affected by contextual predictabil-

ity (or formulaicity). While they used a simple

n-gram model, we account for this phenomenon

more broadly with a pretrained transformer LM.

3 Original Study and Data

Wong (2022) measured students’ pre- and post-

interventional understanding of the English prepo-

sitions in, at, and over, particularly contrasting

CogLx/schematics-based instruction with different

flavors of rule-based methods. To this end, interme-

diate learners of English (all university students)

with first languages Mandarin or Cantonese took

initial English language tests (‘pretest’) targeting

different usages of prepositions. They were then

taught with one of four methods (incl. one con-

trol group, who received instruction about definite

and indefinite articles instead of prepositions), and

subsequently tested two more times. There were

two different tests: a grammaticality judgment test

(GJT) to measure effects on language processing

and a picture elicitation test (PET) to measure ef-

fects on production.

While all preposition-focused training was found

to enhance learners’ understanding of prepositions

compared to both the pretest and the control group,

schematics-based mediation led to stronger learn-

ing results than any of the other methods, especially

at the PET (fig. 1) and on spatial usages of preposi-

tions (the interaction between instruction method

and spatial usage is not shown in fig. 1 for brevity).

These latter findings in particular support our hy-

pothesis that in addition to external factors like

task type and instruction method, learning difficulty

may also be affected by inherent linguistic prop-

erties of the prepositions and their usages (just as,

e.g., Guo and Ellis (2021) show for distributional

properties of grammatical suffixes). In this work

we take a second look at Wong’s data to directly

address this possibility for preposition learning.

3.1 Data Summary

We conduct all of our computational analyses with

Wong’s data (stimuli and behavioral results) but

expand on the original study by explicitly modeling

as potential factors several additional dimensions,

relating to individual differences and interactions

among stimuli, task types, and students (table 2,

§3.2 and §3.3). 71 students (after outlier filtering)

participated in the study. There are a total of 48
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test items (12 senses × 4 contexts) and 22 fillers

for the GJT as well as 36 test items (12 senses

× 3 contexts) and 15 fillers for the PET. Outlier

students and filler items are removed before any

analysis/model training, resulting in 17,644 data

points overall (GJT: 10,156; PET: 7,488).

3.2 Stimulus Sentences

In the GJT (but not in the PET), students receive a

linguistic stimulus to evaluate for grammaticality

(see examples in table 1). Intended-grammatical

stimuli involve target prepositions used in a sen-

tence context that evokes their intended sense or

function (fxn), either literally/spatially or figura-

tively/abstractly. For each intended-grammatical

stimulus, there is an intended-ungrammatical stim-

ulus, consisting of the same sentence context but

replacing the target preposition with another that is

meant to fit the context less well.

3.3 Categorical Features

Instruction method. The main goal of Wong’s

(2022) study was to compare CogLx-based

schematic mediation (SM) with more tradi-

tional rule-and-exemplar (RM) and bare-bones

correctness-based mediation (CM). SM, RM, and

CM instruction focused on the same preposition

forms and usages students were tested on.

Time of test. Students were tested three times: Two

days before instructional intervention (PREtest,◁

in fig. 1), two days after instruction (POSTtest, ○),

and again 3 weeks later (DeLaYed posttest,▷).

Preposition form, function (fxn), and usage. The

test cues are made up of 6 pairs of preposition

usages across three forms: ‘in’ with the CON-

TAINMENT (CTN) function; ‘at’ with the TARGET

(TGT) and POINT (PNT) functions; and ‘over’ with

the HIGHER (HIR), ACROSS (CRS), and COVER

(CVR) functions. Each usage pair consists of a

spatial (e.g., ‘in the box’) and a non-spatial cue

(e.g., ‘in love’) sharing the same schematization

(in this case, CONTAINMENT). The cues were se-

lected based on the Principled Polysemy Frame-

work (Tyler and Evans, 2003), thereby ruling out

overly fine-grained senses and allowing systematic

presentation for instruction and testing.

Test type. In the GJT, learners had to decide, for

each stimulus sentence containing a preposition,

whether the whole sentence is ªcorrectº or ªincor-

rectº.2 We consider as a potential factor on the out-

come whether a stimulus is intended-grammatical

(GJT-Y) or not (GJT-N). In the PET, learners were

W22 Ours

Random Effects
Feature Values
Instruction SM, RM, CM, CTRL ✓ ✓

Time PRE, POST, DLY ✓ ✓

Test GJT, PET ✓ ✓

Usage Spatial, Abstract ✓ ✓

Answer GJT-Y, GJT-N, PET ✗ ✓

Form-Fxn in-CTN, at-TGT ✗ ✓

at-PNT, over-HIR,
over-CRS, over-CVR

Student s1, ..., s71 ✗ ✓

Fixed Effects
ptgtÐLM probability of target preposition ✗ ✓

pctxÐAvg. LM prob. of non-tgt tokens in sent. ✗ ✓

Table 2: Features under consideration in Wong (2022)

(W22) and our work.

shown an illustration of a concrete scenario instan-

tiating one of the cues and were asked to produce a

descriptive sentence containing a preposition. Re-

sponses were counted as correct if they chose the

target preposition.

Students. By adding local student identities to the

model input (anonymized as, e.g., s1, s23), we allow

fine-grained degrees of freedom w.r.t. individual

differences, as is suggested by IRT.

4 Models

Our main point of reference (or quasi-baseline) is

Wong’s frequentist data analysis, which is summa-

rized in §3. In this work, we newly consider the

following different modeling strategies: We train

a Bayesian logistic model (BLM, §4.1) as well

as a small multilayer perceptron (MLP, §4.2) on

the same data. With the BLM we can define and

interpret the precise structure of how individual

features and their interactions affect the outcome.

In contrast, the MLP utilizes nonlinear activation

functions and multiple iterations/layers of computa-

tion, allowing it to pick up on complex interactions

among input features without prior specification

and thus to potentially achieve higher predictive

accuracy, at the cost of interpretability. Both the

BLM and MLP are implemented in Python and

PyTorch, and are light-weight enough to be trained

and run on a laptop CPU within several minutes for

training and several seconds for inference. We also

query a pretrained neural language model (LM,

namely RoBERTa; Liu et al., 2019b) to obtain con-

textual probabilities for the stimulus sentences used

2The testing prompt did not explicitly highlight or other-
wise draw attention to the preposition in question.
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in the grammaticality judgment test and add those

probabilities to the BLM and MLP’s inputs (§4.3).

4.1 Bayesian Logistic Model

We model the posterior likelihood of a correct re-

sponse (i.e., a given student providing the intended

answer to a given stimulus) as a logistic regression

conditional on the aforementioned categorical vari-

ables. Concretely, responses are sampled from a

Bernoulli distribution with log-odds proportional

to the weighted sum of the random and fixed ef-

fects. As potential factors we consider the features

listed in §3.3 and table 2, as well as their mutual in-

teractions. For the students feature, to keep model

size manageable, we only consider pairwise in-

teractions with usage (spatial/abstract), form-fxn,

and answer. Otherwise all n-wise interactions are

included. The effects’ weight coefficients are sam-

pled from Normal distributions whose means and

standard deviations are fitted to the training data

via SVI with the AdamW optimizer, AutoNormal

guide, and ELBO loss. We use standard-normal

priors for means and flat half-normal priors for

standard deviations, meaning that, by default, pa-

rameter estimates are pulled towards null-effects,

and will only get more extreme if there is strong ev-

idence for it. The model is implemented using the

Pyro-PPL/BRMP libraries (Bingham et al., 2018).

4.2 Multilayer Perceptron

We train and test a multilayer perceptron (MLP)

with depth 3. We mirror the BLM setup by treating

student response correctness as the output and op-

timization objective and the different feature sets

as concatenated embedding vectors. Between hid-

den layers we apply the GELU activation func-

tion, and during training additionally dropout with

p ≙ 0.2 before activation. We also apply dropout

with p ≙ 0.1 to the input layer. We minimize binary

cross-entropy loss using the AdamW optimizer. We

train for up to 25 epochs but stop early if dev set ac-

curacy does not increase for 3 consecutive epochs.

4.3 RoBERTa

We feed the GJT stimulus sentences to RoBERTa-

base (Liu et al., 2019b, accessed via Huggingface-

transformers). RoBERTa a pretrained neural LM

based on the transformer architecture (Vaswani

et al., 2017) and trained on English literary and

Wikipedia texts to optimize the masked-token and

next-sentence prediction objectives. For each sen-

tence, we wish to obtain RoBERTa’s posterior prob-

ability estimates for each observed word token

wi ∈w0∶n−1, given w0∶n−1/{wi}, i.e., all other words

in that sentence. Thus we run RoBERTa n times,

each time i masking out wi in the input. From

these n sets of probabilities, we extract two mea-

surements of formulaicity we expect to be relevant

to our modeling objective of student response cor-

rectness:3 (a) ptgt , the contextual probability of the

target or alternate preposition given all other words

in the sentence and (b) pctx, the average contextual

probability of all words except the preposition.4

Examples are given in table 1. We standardize

these two variables to N (0,1) and add them to the

BLM (as fixed effects, both individually and with

interactions) and MLP (as scalar input features).

5 Evaluation

We first analyze the BLM’s learned latent coef-

ficients (§5.1). Then we compare different ver-

sions of the BLM and MLP w.r.t. their ability to

predict unseen student responses using their esti-

mated weighting of linguistic and external features

as well as LM probabilities (§5.2). Finally, we man-

ually inspect a small set of stimulus sentences with

anomalous LM probabilities w.r.t. their intended

grammaticality and observed judgments (§5.3).

5.1 Determining Relevant Input Features

Setup. We fit BLMs on the entire data set (without

reserving dev or eval splits). We run SVI for 1000

iterations with a sample size of 100 and a fixed

random seed. We compute effect sizes (Cohen’s d),

and p-values based on 95%-confidence intervals

of differences between estimated parameter values

(Altman and Bland, 2011).

Replication. As in Wong (2022), we use the fea-

tures instruction, time, form-fxn, usage, and addi-

tionally let the model learn individual coefficients

for each student. Separate models were trained

for GJT and PET. As shown in fig. 1, we mostly

replicate similar trends (differences between differ-

ences) as found previously, namely:

• Time: DLY ≈ POST > PRE;

• Instruction: treatment > ctrl; SM > CM ≈ RM;

3We also preliminarily experimented with inputting the
entire LM hidden state of the last layer to the models but
did not find it to be helpful. Kauf et al. (2022) found that
alignment with human judgments varies from layer to layer,
which presents an interesting avenue for future work.

4Note that the preposition token still has the potential to af-
fect the other words’ probabilities by occurring in their context
condition.
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• and we generally see larger learning effects in

the PET than in the GJT.

However, many effect sizes are amplifiedÐand

thus p-values more significant-lookingÐin our

model. A potential explanation for this could be

that the BLM models each individual item response

whereas ANOVA only considers overall %-correct.

We are thus comparing effects on all students’ ac-

curacy at multiple test items in aggregate with ef-

fects on each student’s accuracy at each test item

separately. It seems intuitive that the latter ‘micro-

effects’ are much greater on average than the for-

mer ‘macro-effects’, which are themselves effects

on the average performance metric. Another reason

could be that because the Bayesian effect sizes stem

from simulated data points, they are only indirectly

related to the real underlying data via SVI. The es-

timated distribution these samples are drawn from

only approximates the real data and thus the effect

size estimations may be over-confident. See §6.1

for a discussion of advantages and disadvantages.

Although our model estimates spatial usages as

generally more difficult than abstract ones, we do

not replicate Wong’s finding of an interaction be-

tween abstractness and instruction or time. Still,

our Bayesian quasi-IRT approach allows us to find

additional interesting patterns that could not have

been captured by a frequentist analysis5 as they

involve student-level and item-level interactions:

Answer type and individual differences. We

trained a single combined model on both GJT and

PET data. As can be expected, in addition to the

overall trends (fig. 1), we also find a strong effect

for expected answer type (fig. 2): the receptive task

of accepting grammatical items (GJT-Y) is much

easier than the productive task of choosing the right

preposition when describing a picture (PET). Inter-

estingly, ruling out ungrammatical items (GJT-N)

is equally as difficult as the PET. In addition, out-

comes are affected by individual differences be-

tween students, and student aptitude heavily de-

pends on answer type (fig. 3) as well as on prepo-

sition form/function (fig. 5 in appendix A). There

is some (negative) correlation between individual

aptitudes at GJT-N and GJT-Y and some (positive)

correlation between GJT-N and PET. Still, both

correlations are weak (R2
≙ 0.23 and 0.20).

In sum, not only do receptive vs. productive task

5Or only very tediously so.
6Where W22 does not report Cohen’s d, we show their

reported partial-eta-squared η
2
p instead.

0.6 0.4 0.2 0.0 0.2 0.4 0.6

ABSTRACT

SPATIAL

SM

RM

CM

CTRL

DLY

POST

PRE

GJT

0.6 0.4 0.2 0.0 0.2 0.4 0.6

ABSTRACT

SPATIAL

SM

RM

CM

CTRL

DLY

POST

PRE

PET

W22:   d=1.335, p<0.0001***

Ours: d=12.838, p<0.0001***

W22: d=0.172, p=0.357

Ours: d=2.248, p<0.0001***

 DLY

W22 (CTRL v all):  d=0.92, p=0.003***

Ours (CTRL v CM): d=3.11, p<0.001***

 DLY

W22: non-significant

Ours: d=1.751, p<0.0001***

W22: 𝜂𝑃2=0.167, p=0.002***

Ours:   d=0.491, p=0.0006***

W22 (all):        𝜂𝑃2=0.48, p<0.0001***

Ours (PRE v PST): d=15.4, p<0.0001***

Ours (POST v DLY): d=0.228, p=0.109

 DLY

W22 (CTRL v all):   d=1.49, p<0.001***

Ours (CTRL v CM): d=6.92, p<0.001***

⚫ POST

W22:                  p=0.040*

Ours: d=3.851, p<0.0001***

W22: 𝜂𝑃2=0.697, p<0.001***

Ours:   d=0.770, p<0.0001***

Figure 1: Summary of our Bayesian effect estimations

(marginal means and standard deviations over model

parameters) for selected features. Coefficient values

(x-axis) indicate the extent to which the feature value

(y-axis) contributes to a correct (positive) or incorrect

(negative) student response. On the right we compare

effect sizes (Cohen’s d) and statistical significance to

Wong’s (2022) frequentist analysis.6

0.04 0.02 0.00 0.02 0.04 0.06

GJT-Y

PET

GJT-N
d=0.108, p=0.444

d=1.264, p<0.0001***

Figure 2: Estimated effects for different answer types.

1.0 0.5 0.0 0.5 1.0
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1.0 0.0 0.5
PET:

Figure 3: Effect estimation means of individual stu-

dents (points) in interaction with answer type (x=GJT-N,

y=GJT-Y, color=PET). There is a weak negative correla-

tion between being good at GJT-N and GJT-Y answers

(blue line, R2=0.23) and a weak positive correlation

between GJT-N and PET skills (R2=0.20).
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types vary in their overall difficulty (fig. 2), but

the wide spread in individual student differences

(fig. 3) suggests that the skill sets required (let’s

call them ªsensitivityº and ªspecificityº) are some-

what complementary to each other and tend to be

distributed unevenly among students. Each student

has a unique combination of them. We discuss this

further in §6.2.

LM probabilities. The model was trained on

GJT data only. Recall from §3.3 that GJT test-

ing prompts did not explicate the target preposi-

tion or even mention the word ‘preposition’. All

else equal, it is thus conceivable that, despite the

preposition-focused training, students evaluate the

sentences’ grammaticality for reasons unrelated

to the target preposition. However, we can with

high probability rule out this option as our model

estimates strong effects for numerous features di-

rectly related to the preposition, namely: ptgt by

itself (d=4.57; p<0.0001***); interaction ptgt :pctx

(d=14.92; p<0.0001***);7 and spatial vs. abstract

usage of each preposition form and function (fig. 1,

fig. 6 in appendix A). Furthermore, due to the

heavy interaction between LM probabilities and

categorical cue properties,8 the singular random

effect of spatial vs. abstract usage decreases when

the model considers the LM-based fixed effects

(d=0.372; p=0.0093**) compared to when it does

not (d=0.491; p=0.0006***, fig. 1).

5.2 Predicting Student Responses

Setup. We train the BLM and MLP using a

training:evaluation:development data split ratio of

84:15:1, placing less weight on the dev set since

it is only used to determine early-stopping during

MLP training. Experiments are run 10 times with

random data splits and model initializations.

Results. As shown in table 3, both models eas-

ily outperform simple baselines, and the two mod-

els’ overall accuracies are roughly on par (within

each other’s stdevs) with a slight advantage for

the BLM. For predicting GJT outcomes only, the

aforementioned interaction between students and

answer types is most crucial, followed by infor-

mation about the target preposition (BLM) and

instruction (MLP), respectively. The LM-based

features ptgt and pctx are useful for both models,

7While pctx by itself is only very weakly correlated with
either grammaticality or student response, it does become a
useful predictor in interaction with ptgt (cf. fig. 4 left).

8Linguistic categories may to some extent be encoded in
the LM’s distributed representations (Jawahar et al., 2019).

GJT + PET GJT only

BLM MLP BLM MLP

Uniform BL 49.7 ±1.1 49.7 ±1.2

BLM prior BL 49.7 ±2.1 48.2 ±1.4

Majority BL 64.2 ±0.9 68.1 ±0.7

Full model 72.6 ±1.1 71.5 ±0.6 72.5 ±0.8 71.3 ±0.9

− students −2.2 ±0.6 −0.9 ±0.7 −2.6 ±0.9 −2.0 ±0.8

− answer −5.6 ±0.8 −4.6 ±0.6 −2.4 ±0.8 −2.0 ±0.8

− fxn & usage −5.4 ±1.0 −4.6 ±1.0 −1.5 ±0.4 −0.8 ±1.3

− instr & time −2.1 ±0.9 −1.8 ±0.9 −0.4 ±0.7 −1.4 ±0.9

−ptgt & pctx n/a n/a −0.9 ±0.9 −0.4 ±0.9

Table 3: Baselines (BL), BLM and MLP prediction

performance, and feature ablation (student response cor-

rectness prediction accuracy in %). Means and standard

deviations over 10 random seeds, which affect not only

model initialization but also data splitting and shuffling.

Best full model results on each data split are underlined;

highest-impact features in each column are bolded.

but less so than the categorical ones. This is some-

what unexpected based on their strong effect sizes

(§5.1) and the overwhelmingly high performance

of LMs on other tasks. A potential reason is the

contrast between the LM reflecting a gross aver-

age of language useÐwhich indeed correlates with

grammaticality (R2
≙ 0.48, fig. 4)Ðand the unrelia-

bility of student judgments, especially at the pretest

and in the control group (fig. 1 top). The lack of

stimulus sentences (and thus LM probabilities) in

the PET further increases the importance of the

answer, form-function, and usage features in the

GJT+PET condition. We also see a larger ablation

effect of the instruction and time features, which

is consistent with the larger interaction effect esti-

mates for the PET (fig. 1 bottom).

5.3 Qualitative Analysis of Stimuli

We take a closer look at individual stimuli in fig. 4.

From the y-axis distribution in the center and right

panels we can clearly see the learning development

among students undergoing preposition-focused

training. At the pretest (center), aggregate students’

grammaticality judgment is less decisive (mostly

vertically centered around 50%± ≈ 20pp. At the

posttest (right), the spread is much more decisive,

ranging from almost 0% to 100%. At both points

in time, there is a slight bias towards positive judg-

ment, i.e., students are generally more willing to

accept ungrammatical stimuli as grammatical than

to reject grammatical ones. In contrast, LM proba-

bilities (x-axis) tend to err on the conservative side,

i.e., the LM has higher recall on recognizing un-

grammatical items, whereas students have higher
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Figure 4: Correlations of LM probabilities, student grammaticality judgment %, and intended answer (color/shape)

for individual stimuli (points). Left: ptgt (x) and pctx (y); Center: ptgt (x) and pretest judgment (y); Right: ptgt

(x) and posttest judgment of non-control groups only (y). R2(answer, judge@post)=0.72; R2(ptgt , answer)=0.48;

R2(ptgt , judge@post, blue line right)=0.41; R2(ptgt , pctx, blue line left)=0.30; R2(answer, judge@pre)=0.28; R2(ptgt ,

judge@pre, blue line center)=0.22; R2(pctx, answer)=0.15; R2(pctx, judge@post)=0.13; R2(pctx, judge@pre)=0.04.

Data points/sentences listed in table 1 and discussed in §5.3 are labeled.

recall on recognizing grammatical items, each at

the cost of precision.9

We expect that intended-grammatical (✓) usages

generally receive higher LM probabilities (∆p) than

intended-ungrammatical (✗) usages. This is the

case most of the time (for 41/48 stimulus pairs

total), except for 7 cases, 6 of which involve the

preposition ‘over’ as the target. We present these

sentences in table 1, along with 3 examples where

both ∆p’s are as expected.

What makes ex. 4 ± 9 special? A potential ex-

planation is that the verb+preposition+object con-

structions in ex. 1 ± 3 seem to be more clearly

distinguishable as either grammatical or ungram-

matical than the rest. In contrast, the ✗ sentences in

ex. 4 ± 6 are not truly ungrammatical. The scenar-

ios they describe are unlikely but possible, and the

unlikeliness mostly arises through the full-sentence

context rather than the prepositional construction

alone. In fact, each alternative preposition in 4b,

5b, and 6b might in isolation be a more expected

collocation with the verb than ‘over’, which would

explain the ptgt trend. Ex. 7 ± 9 (both ✗ and ✓)

describe much more rare (i.e., unlikely as far as the

distributional LM is concerned) scenes, which may

lead to the overall lower pctx values.10

9Note that LM probabilities are not based on a binary gram-
maticality decision but on a selection decision over the entire
vocabulary, and also that gradient linguistic judgments in gen-
eral cannot be said to only revolve around grammaticality (cf.
Lau et al., 2017). We could address this by looking at the
ratio between the probabilities for each pair, but that would in
turn establish a dependency among stimuli within each pair
which is not present in the human experimentÐeach stimu-
lus is presented in isolation, in randomized order. Thus, for
transparency, we stick with the plain probability and elaborate
qualitatively on the expected behavior below.

10A second tendency may lie in the concreteness and per-
ceived simplicity (both in terms of semantics and register) of

6 Discussion

6.1 Which model type is most appropriate?

For the purpose of our study, the Bayesian logis-

tic model of student responses has clear advan-

tages over both the previous frequentist analysis of

score aggregates (complexity of interactions, intu-

itiveness; §5.1) and the neural response classifier

(higher interpretability with roughly equal predic-

tion accuracy; §5.2). However, while this obser-

vation is in line with both our expectations and re-

cent literature in SLA (e.g., Norouzian et al., 2018,

2019), we still recommend testing model practica-

bility on a case-by-case basis. For example, if much

more training data is available, a neural classifier

is likely to outperform a sparse model at predic-

tion accuracy. Whenever the BLM and ANOVA

agree on a feature’s significance (and they usuallyÐ

but not alwaysÐdo), the BLM’s estimates are rel-

atively amplified (§5.1). This can be useful for

identifying potentially relevant effects and interac-

tions, but should also be taken with a grain of salt

as it sometimes may construe results too optimisti-

cally. Where do these divergences come from?

We hesitate to make any strong statements about

broad philosophical differences between Bayesian

and frequentist statistics in the abstract. Rather,

we suspect that it mostly comes down to practical

considerations like framing model and data around

individual item responses vs. aggregate score, as

well as varying degrees of commitment to latent

sampling and optimization. Item response predic-

tion accuracy and ablation analyses give some in-

the preposition-governing verbs: ‘hang, watch, fall’ are all
fairly concrete, unambiguous, and colloquial, whereas ‘reach,
diffuse, stretch, sweep’ have more specialized meanings and
are somewhat higher register.
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sight into how individual features affect models’

estimates of the outcome variable and is consistent

with statistical analyses (§5.2). This is particularly

useful for discriminative neural models such as our

MLP classifier, and is, of course, common practice

in NLP classification studies. However, it is also

much more costly, less precise, and less reliable

than Bayesian and frequentist approaches.

6.2 Implications for SLA

Our analysis of answer types and student aptitudes

(§5.1 and §5.2) confirms Wong’s (2022) and others’

findings about differences between productive and

receptive knowledge. We support Wong’s argument

that the type of assessment should align with both

instruction type and and intended learning outcome.

We further observe that even within the generally

receptive task of grammaticality judgment, the sub-

task of ruling out ungrammatical items (GJT-N)

requires higher specificity than accepting grammat-

ical ones (GJT-Y) and is thus more closely aligned

with productive tasks (e.g., PET). Interestingly, stu-

dents who are better than average at productive tests

tend to be slightly weaker than average at receptive

ones and vice versa. A potential future use case

of explicitly modeling students’ individual differ-

ences w.r.t. different task types and linguistic items

is that educational applications can be tailored to

their weaknesses, which is expected to increase

learning effectiveness and efficiency.11 Outside

of directly deploying learning technology to end

users, our findings can inform educators and SLA

researchers. For example, unexpected patterns in

LM probabilities (§5.3) may point to suboptimally

designed stimulus pairs. Thus, LM probing could

be a useful tool in cue selection and stimulus design

of similar studies in the future.

6.3 Implications for NLP

In this work, we primarily analyze human learner

behavior using different machine learning models,

while in NLP-at-large it is much more common to

analyze machine learning models w.r.t. a human

ground truth. At the same time, our observations

that different senses and usages even of the same

preposition form heavily affect human learnability

are somewhat analogous to previous results in auto-

matic preposition disambiguation (varying model

performance for extended vs. lexicalized senses;

11In practice, such a process should ideally be decentralized
by training separate models for each student on the client side,
to uphold privacy and other ethical standards.

Schneider et al., 2018; Liu et al., 2019a). Liu et al.

also found that LM pretraining improves disam-

biguation performance, while Kim et al. (2019a)

drew attention to differences among various NLP

tasks as ‘instruction methods’. This is not to say

that current LM training practices are necessarily

plausible models of human language learning and

teaching, but even these high-level similarities in

behavioral patterns invite further investigation.

7 Conclusion

Much quantitative research in many areas of lin-

guistics, including SLA, has been relying on the

frequentist method for a long timeÐand for good

reasons: It enables strong conclusions about clear

hypotheses, closely following the observed data.

Here we compared several alternative ap-

proaches to estimating a multitude of potential ef-

fects more holistically, namely via IRT-inspired

Bayesian sparse models of explicit interactions

among facts, neural classifiers of student responses

and feature ablation, as well as contextual proba-

bilities of the experimental stimuli obtained from a

pretrained language model (§4).

Overall, we were able to replicate previous fre-

quentist findings regarding the difficulty of acquir-

ing the preposition system in English as a sec-

ond language and the benefits of concept-based

instruction (§5.1). Our computational analysis em-

phasized the increased flexibility and occasionally

stronger effect size estimates of IRT and Bayesian

models, as well as their natural interpretability com-

pared to neural models with equal predictive power.

We also found novel interactions among task

and subtask type, student individual differences,

preposition cue and LM contextualization (§5), and

discussed them in the broader contexts of both

NLP and SLA, hoping to build bridges between

the two research communities (§6). As a final take-

away for both fields, the differences between the

LM’s and students’ overall tendencies to accept

or reject stimuli (§5.3 and fig. 4 right) could po-

tentially be exploited in both directions: The ag-

gregate distributional grammatical knowledge of

an LM could be used to teach students the most

accepted usages of prepositions and other function

words across a large population of speakers (i.e.,

improve their specificity), while LMs could learn

to be more creative and to utilize humans’ intuitive

cross-lingual meaning mappings by learning from

second-language learner data.
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Limitations

Our study and findings are limited to the spe-

cific L1±L2 pair of Chinese (Mandarin and

Cantonese)±English. Further, the experimental set-

ting we draw our data from is highly controlled,

with carefully-chosen lexical items and carefully-

designed (length- and distractor-matched) stimulus

sentences. While this enables strong statistical con-

clusions about the data itself, it poses a sparsity

problem for most state-of-the-art NLP models, as

can be seen even in the small and simple multi-

layer perceptron we test.

While it would also be interesting to know

whether students respond differently to the same

instruction type or vice versa, the between-subjects

experimental design underlying our data does not

allow such a measurement.

We inspect several model types representing a

selection of extreme areas of a vast continuum of

computational analysis methodologies. Naturally,

this means that we cannot go into a lot of depth

regarding model engineering and detailed compari-

son among similar implementations of each type.

Ethics Statement

Student identities are completely anonymized in

our analyses and in the data we feed to our models.

By locally distinguishing individual students, we

do not wish to single out, over-interpret, or judge

any individual student’s behavior or aptitude, but

rather to fit the models to our data as best we can

and also to control for spurious patterns that might

have been missed during initial outlier-filtering.
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A Effects of Preposition Cues

In the main text, for brevity, we omitted a detailed

analysis of the effects of specific combinations of

preposition form, function, and usage on student

performance. Here we take a closer look at the six

types of cues: in with the CONTAINMENT function,

at with the TARGET and POINT functions, and over

with the HIGHER,COVER, and CROSS functions.

In fig. 5, we see that there is a wide spread among

students for each of the cue types, especially at the

PET. The fact that these effects are estimated as

interactions in addition to the student-level inter-

cepts suggests, again, that students’ skill sets are

unique, depending on the preposition cue, which is

also illustrated for 5 randomly chosen students.

In fig. 6, we see that the difficulty of these

six cues varies greatly, depending on both spatial/

abstract use and task type. In fact, the difficulty

ranking is largely reversed between GJT and PET.

As a striking example of this, at-TARGET-Abstract

and in-CONTAIN-Abstract are the easiest cues to

judge correctly in the GJT but most difficult to pro-

duce in the PET. There exceptions to this trend, too.

E.g., at-POINT-Abstract is relatively difficult in

both GJT and PET. Another interesting observation

is that, in the PET, both usages of over-HIGHER

are much easier to produce than any other cue.
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Figure 5: Spread among student effect means (x-axis)

in interaction with preposition form/function. 5 ran-

domly chosen students are shown exemplarily (filled

shapes; empty circles are outliers). Note that, while in

our other figures the error bars denote standard devi-

ations over models’ marginal parameter distributions,

here they describe the distribution over students of esti-

mated mean interaction effects.
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