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Abstract. Soft tactile sensors have the ability to infer more physical
properties of an object relative to classical optical motion-capture sys-
tems. Three marker densities in a tactile sensor array (the Motion Cap-
ture Pillow, MCP) were evaluated for tracking two rotary motions using
a weighted mannequin head. The Kanade-Lucas—Tomasi algorithm was
employed to track head movements using three silicone sheets, each em-
bedded with different marker spacings (5, 10, and 15 mm). The averaged
Spearman’s correlation slightly changed from 0.80 (for 10 mm spacing)
to 0.67 (for 5 mm spacing) for pitch motion and from 0.68 (for 10 mm
spacing) to 0.59 (for 5 mm spacing) for roll motion of the mannequin
head with respect to the MCP’s frame. A correlation of +1.0 being the
strongest positive correlation and 0.0 being weak correlation. The MAE
reduced by 12.9% from matrix with 10 mm spacing to 5 mm spacing for
pitch motion, and by 2.9% for roll motion. This established a founda-
tion for further tuning the sensor using a higher density of the sensing
matrix. The relatively sparsely dense sensor matrix with 15 mm spacing
had minimal impact on the tracking performance of the sensor. Sources
of noise were narrowed down to hysteresis, and boundary conditions.
These results demonstrated the influence of marker density on the ob-
ject tracking abilities of an optical soft tactile sensor, and established a
basis for future optimisation.

Keywords: Motion capture - Tactile sensing - Head tracking - Spatial
density

1 Introduction

1.1 Background and aim

Motion Capture via Tactile Sensing Tactile sensing in motion capture en-
ables contact interactions with objects to obtain the physical properties, by mim-
icking features from the human sense of touch. This is widely used in robotics
for tasks such as object manipulation, grasping, and shape recognition [17]. It
does not rely on a field of view (FOV) of the target object, as seen in classical
motion capture systems (e.g. VICON™), which are susceptible to errors from
occlusions for such applications. Consequently, tactile sensing can provide more
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information about the physical properties of an object than a non-contact optical
motion capture system can, making them a valuable tool in the field of robotics
and augmented /virtual reality.

Case Study The Motion Capture Pillow (MCP) [7/5] is an optical tactile sensor
that is being developed to track the head movements of patients during radio-
therapy for brain and head and neck (H&N) cancer treatments using the Gamma
Knife®) by Elekta or Linear Accelerators (LINACs). These technologies often
rely on the use of thermoplastic masks for patient immobilisation which is known
to cause claustrophobia among patients, and negatively affects the accuracy of
the radiotherapy treatment due to patient movement arising from discomfort [6].
The sensor can improve the accuracy of the treatments by providing real-time
tracking of the patient’s head, while improving the potential for patient comfort.

It uses a flexible deformable silicone sheet with an array of markers embedded
underneath. The deformations of these markers indicate the motion of the head
in contact with the MCP via a tracking algorithm. The organisation and ori-
entation of these markers affects the accuracy of the tracking. This paper aims
to investigate the effect of varying the size of the array (i.e spacings between
the markers) and builds on using the MCP with a fibrescope with greyscale
image processing and Kanade-Lucas Tomasi (KLT) tracking algorithm, as was
established in our previous paper [5].

1.2 Related Work

Motion capture can be achieved via contact or non-contact sensing techniques.
Non-contact sensing typically uses cameras, or a marker based tracking with
infrared (IR) cameras for motion tracking. Contact-based sensing methods as
for example in slip detection with robotic grippers, capacitative or optical tactile
sensors are commonly used for object manipulation.

Non-contact optical sensing Marker-based and markerless motion capture
methods are widely used for applications in healthcare, robotics, entertainment,
sports, and industrial safety measures. Although marker-based tracking pro-
vides higher accuracy over markerless systems [L6/TII3], some recent develop-
ments with 3D vision cameras and deep learning algorithms for object tracking
have improved the tracking accuracy of markerless vision systems to enable sub-
millimeter accuracy. These systems overcome the limitations of marker-based
tracking arising from marker occlusions since at least 4 markers are required at
a point to obtain 6 DOF. An example of the markerless vision system includes
markerless respiratory motion tracking for radiotherapy that used 4D deforma-
tion estimation with a mean reconstruction accuracy of 0.23 mm [2]. Markerless
tracking has also been used in the context of MRI and PET scans using an fiber-
optic camera called Tracoline 2.0 which had an average RMS motion of 5.27
mm, with a resolution of +0.5 mm to track respiratory movements [I9]. An-
other commercialised approach, AlignRT"™ by VisionRT [1124] uses a markerless
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approach to track surface deformations using multiple ceiling mounted cameras
and provides submillimeter accuracy in 3D translational movements. Occlusion
still remains an issue requiring further development in these systems, along with
brightness constancy issues with markerless systems [I5/T2JT3128].

Soft tactile sensing Tactile sensing uses contact, which removes the restric-
tions related to occlusions and brightness constancy. These sensors include a
range of sensors which may be capacitative, resistive, piezoelectric, thermoresis-
tive, magnetic, or optical. Furthermore, soft tactile sensing enables non-linear
deformations when interacting with objects that enables it to detect a wider
range of properties such as force, object shape, slip, texture, and so on [9].
E-skins are soft flexible sensors that have been used in a variety of tactile
sensing applications. For example, the eCushion [26] was designed for sitting pos-
ture monitoring. It used piezoelectric polymers to create a fabric with a 16 x 16
sensing grid, and obtained an accuracy of 85.9% using Naive Bayes Network
based on Dynamic Time Warping used for classification. Due to the proximity
of its sensing points and their structure, it suffered from inconsistency in calibra-
tion, lacked scalability due to variance in resistivity, and suffered from crosstalk.
A force-sensing scalable tactile glove [20] overcame the issue of crosstalk using
a custom signal isolation circuit. It was designed for object detection of a range
of everyday use objects. It used conductive threads to create a knitted glove,
embedded with an array of 548 piezoresistive sensors with the ability to de-
tect 30 mN to 0.5 N each. It provided a classification accuracy of 89.4%using a
ResNet-18-based architecture. A biomimetic tactile sensor, BioTAC [23], mimics
the features of the human sense of touch including magnitude and direction of
forces, and localising them. It used an array of electrodes embedded in a de-
formable finger shaped silicone elastomer. The elastomer used was Dragon Skin,
along with a conductive fluid, i.e. NaCl. The electrodes were spaced 2 mm apart
in a 4 x 5 grid. It measured the impedance variation in the conductive fluid
via the embedded electrodes to estimate forces ranging from 0.1 to 30 N upon
complex signal processing. The sensor suffers from hysteresis at high pressures
(> 4 N). At low pressures, the spring like nature of the elastomer and the low
viscosity of the conductive fluid minimised any losses from hysteresis. It also
suffered from the fluid diffusing into the elastomer due to its permeability.
Optics-based soft tactile sensors have the ability to further simplify the hard-
ware and design mechanism, since they are assisted with computer vision tech-
niques. They primarily rely on a camera, rather than complex electronics. This
also reduces their chances of crosstalk, and enables interaction with an object to
infer a range of physical properties that extend beyond force applied. GelSight
[29] is a high resolution tactile sensor that captures the geometry, shape and
contact forces. The elastomer used is soft, clear and deformable with a reflective
coating and printed patterns. RGB LED sources illuminate the cavity, allowing
a camera to capture the elastomers deformations to detect the target objects’
depth and orientation. The photometric stereo algorithm was used to detect
forces, as low as 0.05 N with 6 DOF. HiVTac [I8] also uses a similar elastomer,
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called PDMS, of 500 nm which contains only 4 markers that are tracked by a
camera that mimics a goniometer. It operates at a higher frequency than Gel-
Sight, at 100 Hz, enabling directional slip detection in real-time with a higher
precision. It achieves a maximum error of magnitude +£0.043N(+1.547°). An-
other sensor uses PDMS with an embedded fiber ring resonator to read braille.
It had an accuracy of 98.5%, using an MLP neural network and 100% accuracy
with an LSTM neural network [2I]. The use of a 2D elastomer can be restrict-
ing when sensing depth for larger objects. DenseTact [4] is similar to GelSight
but used a dome-shaped clear elastomer (Silicone Inc. P-565 Platinum Clear
Silicone) with a reflective metallic ink coating (Smooth-on Psycho Paint™). The
dome shape increases its depth sensing range, and enables multidirectional sens-
ing and 3D reconstruction with a higher accuracy than GelSight. The sensor
highlights an average of 0.28 mm depth difference using a neural network. Tac-
Tip [25] is also a dome-shaped sensor, similar to DenseTact. It can sense a range
of object properties such as texture, slip, grip, and shape recognitions. Its dome
shape is maintained by an optically clear gel called GelSight, enclosed by a 3D
printed black silicone sheet (Tango Black Plus). The markers on its silicone skin
are also 3D printed in a hexagonal array of 127 pins. The dimensions of the
sensor are 40 x 40 x 85. It uses monochrome illumination to capture the marker
deformations to detect the object manipulation task using CNNs. Its small size
provides a greater sensitivity to forces. The TacTip has since been developed in
a range of shapes including cylinders, whiskers, and thumb [22]. Another version
of TacTip improved the resolution of the sensor by using 532 pins in a geodesic
pattern (with the same dimensions) [I4]. This increased the object localisation
accuracy of the sensor to 0.1 mm.

1.3 Contribution

The literature highlights that though marker-based systems have a higher ac-
curacy, can be cumbersome due to limitations on the FOV. Markerless systems
can overcome these limitations, however, this is at the expense of the accuracy
of the tracking. Based on the related work, tactile sensors can provide more in-
formation (e.g. shape, texture, rigidity, location) about an object with a higher
precision than markerless approaches. However, their accuracy based on marker
density has not been thoroughly investigated, leaving a gap in the literature. In
radiotherapy treatments, tactile sensors have the potential to improve the accu-
racy of a treatment by providing patient pose to radiographers using real-time
tactile feedback.

The MCP is based on the technology behind the TacTip, where a deformable
black silicone is used as the contact surface with markers embedded underneath
for a camera to track the deformation of the markers. The TacTip relies on
classification algorithms for interacting with a target object, rather than tracking
its motion, while the MCP is being developed to track an objects’ motion. The
original version of the MCP [7] has a rectangular array of 19 x 9 markers, spaced
10 mm apart. This paper investigates the effects of the density of the sensory
marker matrix on the MCP’s head tracking accuracy. A mannequin based on the
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weight and size of a human head was used for tracking. Metrics such as Mean
Absolute Error and Spearman’s correlation are used to evaluate the performance
of head pose tracking.

2 Materials and Methods

2.1 Modifications in MCP design and experimental set-up

Light diffuser '

Fig. 1. The internal anatomy of the MCP. Pipe connects a PID controlled air pump
mechanism to the pillow panel; LED strip illuminated the MCP to enable the camera
to capture the markers on the silicone sheet via the fibrescope lens; Light diffuser
minimised the light reflections captured by the fibrescope lens via the acrylic sheet.

The MCP set-up is based on a fibrescope for streaming images, and a 12V
LED strip (1m long) for illumination. The internal anatomy of the MCP can be
seen in Fig. [I] Three silicone sheets were created with three different spacings
between the markers, 5 mm, 10 mm, and 15 mm (see Fig. [2)). Non-reflective
acrylic screens and a 3D printed light diffuser were used to reduce noise from
the reflection of the LEDs. The diffuser blocked the LEDs directly to reduce and
scatter their intensity on the acrylic sheet, and the acrylic sheets’ non-reflective
coating dispersed the light further to reduce the intensity of the reflections.

3D printed silicone sheets A Stratasys J750 PolyJet 3D printer was used
to manufacture three silicone sheets, which are used in the pillow panels of the
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MCP. Here, Agilus 30 was used for the black silicone, and VeroWhite Plus for
the embedded white markers.

Fig. 2. Three pillow panels with varying spacings in their silicone sheets: A. 5 mm
spacing (38 x 19), B. 10 mm spacing (19 x 9), and C. 15 mm spacing (13 X 6), with
non-reflective acrylic sheets.

Hardware Set-Up A weighted 3D printed mannequin head of 3 kg was used
to test the three sensing matrices of the MCP, since this is the lowest average
human head weight [27], with the Franka Emika Panda robot arm for manip-
ulation. The mannequin head manipulation involved its rotation in the x (roll)
and y (pitch) axes of the MCP’s frame, Fp. Custom attachments for the end-
effector of the robot arm were also 3D printed using tough Polylactide (PLA)
to secure the mannequin head. See Fig. [3] for the experimental set-up used for
data collection. The air pressure in the pillow panels was set at 1.7 kPa using a
PID controller. This maintains the pillow’s concave shape and provides patient-
comfort. A detailed explanation of this mechanism is described in our previous
paper [0], the reader is encouraged to read it for a better understanding of the
hardware set-up. For brevity, this is not repeated here.

2.2 Data Collection

The robot arm performs two motions on the mannequin, pitch and roll, respective
to the MCP’s frame, Fp. The pitch motion rotates the mannequin head by 20°
each side from the home position (which is set to 0°), around the y-axis of
Fp. Here, one cycle consists of four rotations in total since it starts from the
home position, rotates 20°clockwise and anti-clockwise, followed by a further
anti-clockwise and clockwise rotation by the same magnitude. The roll motion
rotates it 7° in an anti-clockwise direction around the x-axis of Fp, followed by
a clockwise rotation back to its home position, consisting of two rotations in
total in one cycle. The end-effector pose data was recorded to provide ground
truth, and the fibrescope in the MCP streamed the images at the same frequency
along with the pressure sensor measuring the values inside the pillow panel. All
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Fig. 3. Experimental set-up of MCP, Franka Emika Panda robot arm, and 3D printed
weighted mannequin head in home position. Fp stands for frame of the pillow (MCP),
and F'r for robots’ base frame.

the data were collected synchronously at a sampling frequency of 10 Hz, and
five recordings were taken for each motion (5 pitch rotation and 12 roll rotation
cycles) using each pillow panel. The set-up used for this was the same as a
previous study [5].

2.3 Data Analysis

KLT tracking algorithm The KLT algorithm based on Shi-Tomasi corner
detector was utilised for data analysis. The maximum corners parameter for this
was modified to 300, 100, and 50, for the marker matrix spacings 5, 10, and
15 mm respectively, to effectively detect all the markers on the three different
sensing arrays. These parameters were determined by trial and error, ensuring
all the markers were being covered. Here, the maximum corners for the panel
with 10 mm spacing was kept the same as in the previous work [5].

Spearman’s correlation This metric calculates the correlation between two
one-dimensional continuous numeric datasets, and is adaptable to non-linear
data [8]. Here, the experimental values from the MCP were compared against
the ground truth values from the robot arm. The correlation factor ranges from
-1 to 1, where correlations close to zero signify poor correlation while corre-
lations closer to 1 or -1 demonstrate a strong positive or negative correlation,
respectively. This measure was used to establish a proof of how related the two
variables are, using eq. .

63 a2

n(n? —1) )

p=1-
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Here p is the Spearman’s correlation coefficient, d; is the difference between two
ranks of each observation, and n is the number of observations.

Mean Absolute Error (MAE) This is a commonly used measure to obtain an
average of the errors in the predicted values, compared to the ground truth. It is
calculated in the same units as the target variable, simplifying its interpretation
[10]. It was calculated using eq. (2). A small error signifies good prediction,
whereas a larger error signifies vice versa.

N
1
MAE = N;“”' — 4] (2)

Here, y; is the prediction from the MCP, and x; is the ground truth from the
robot arm.

Hysteresis This was examined by splitting the motion cycles into loading and
unloading phases for one trial and averaging them to obtain a mean loading and
unloading curve. In the loading phase, the mannequin head moves away from its
home position (at 0°), while in the unloading phase, it moves back to the home
position. The pitch motion was divided into four parts with one loading and
unloading on each of the two sides (left and right sides of the home position),
while the roll motion was divided into two parts (up and down) for loading and
unloading.

3 Results

The results were obtained based on the KLT algorithm, using Spearman’s cor-
relation and MAE, both relative to the ground truth from the robot arm. The
silicone sheet with 5 mm marker spacing has the lowest correlation with the
ground truth for both, pitch and roll motions, along with the lowest yet most
precise MAE score (minimum variation between samples) for roll with a mean
of 1.34° for the five samples. The pitch motion data from the 5 mm sheet shows
consistent noise at the maximum range of the motion, approximately above 9°
in Fig. [0} so it was calculated again by adding a threshold to eliminate any mo-
tion beyond 9°. Upon the removal of this noise, the MAE average for the trials
changed from 12.88° to 4.99°. For the same sheet the roll motion predictions
remain consistent with a relatively higher precision than the other sheets, as is
seen in Fig. [

The silicone sheets with 10 mm and 15 mm spacings show similar results to
each other, signifying that reducing the density of the markers does not neces-
sarily improve or reduce the performance of the MCP, but a higher density with
5 mm spacing can improve the performance.

The predictions from the MCP were in pixels and were scaled to the range
of motion as established via the ground truth during post processing. A sample
of the raw signals can be seen in Fig.



Marker Density of Optical Tactile Sensor for Moving Object Tracking 9

T T T T T T T
e
— —— + =
‘g 0.6 —_— ;] A
c 04 =
©
E 02+t :
3
g °f ]
02 L A
I I I I I I I
5) 15) Q Q o) )
9 6(\\\@\ < o R\ o A
Q
14 F T T T T T T T =
12 L — |
210 | .
° 4
o 8 | !
S
gl — - = |
<
S 4T 7
oL — E—
1 1 1 1 1 1 1
%) 15) Q Q o) o)
< S A A A
Q 6(\‘\8\ Q < Q <
Q

Fig. 4. Spearman’s Correlation for the two rotational motions, pitch (p) and roll (r)
of the mannequin for all three marker spacings - 5 mm, 10 mm and 15 mm, and Mean
Absolute Error (MAE) in degrees for the same. Here, th refers to threshold, which was
set to 9°and the other values were ignored for this calculation.

Spearman’s correlation was also used to compare the results from the three
pillow panels. Since the 10 mm spacing has been used in previous works, the
correlations of the silicone sheets were calculated relative to this, see Fig. [7]
where it shows roll motion from the 15 mm sheet with maximum correlation,
followed by pitch from the 15 mm sheet. This is consistent with the previous
results where the two sheets, 10 mm and 15 mm spacings show an insignificant
difference. Roll from 5 mm shows a relatively lower correlation, and pitch from
5 mm shows the lowest correlation.

The hysteresis plots generated for the three marker densities for each motion
can be seen in Fig. [§ and Fig. [9] These results show a slight lag in the MCP
predictions relative to the ground truth data, with some discrepancy between
the loading and unloading curves.

For pitch motion with 5 mm spaced markers, the maximum MCP predictions
are approximately 10°. This is related to the consistent noise, which was also
reflected in its low spearman correlation and the raw data. This noise is also
seen in the hysteresis plot in Fig. [§
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Fig. 6. A sample of pitch (left) and roll (right) motions from the silicone sheets with
5 mm marker spacing, showing more noise in pitch than roll motion.

4 Discussion

The results obtained from the three silicone sheets were as expected for the
pitch motion, with the 5 mm marker spacing being an exception. This has noise
induced at the extreme ends of the motion which could be due to a significant
amount of markers that were being tracked leaving the FOV of the camera. The
MAE for this was significantly improved when a threshold was set to consider
head rotation angles below 9°. This demonstrates that a higher density of the
marker matrix can provide more accuracy, although further testing is required
upon improving the FOV of the sensor. These results are similar to the TacTip
Superresolution model which had a higher marker density than the first TacTip,
resulting in a higher accuracy [14]. To reach the maximal performance from this
marker array, the sensor’s design requires modifications to increase the distance
between the camera lens and the silicone sheet to ensure a thorough coverage of
all markers.

The spearman’s correlation was strong (> 0.6) for all of the motions and sen-
sor densities, except for the boundaries of the silicone sheet with 5 mm spacing.
This correlation metric cannot be used to establish a direct relationship between
the MCP predictions and the ground truth, further work is required to obtain
this using kalman filtering.
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Fig. 8. Loading (left) and unloading (right) for pitch motion for the three silicone sheets
with varying sensing matrix density, showing an average of the loading and unloading
cycles from one trial.

The hysteresis graphs show the averaged loading and unloading phases for
trials, providing more clarity to the raw data signals. The pitch motion shows
similar trends for 10 mm and 15 mm spacing, but 5 mm spacing shows lower
loading values at the initial resting stage and lower peak resting values. This
solidified that the data from this sensor matrix was more consistent when the
motion was below 9° where the sensor matrix was accurately captured by the
camera. The roll motion had a smaller range, hence showed consistent results for
the three sensing matrices. The MCP predictions show a stronger lag here than
in the pitch motion. This could be due to larger air pressure variations within
the MCP as the centre of mass of the mannequin head shifts along with the
mannequin during the motion. Unloading had a larger lag than loading, which
was due to hysteresis in the silicone used in the MCP. The effects of this could
be reduced with slower loading and unloading with longer wait times between
the two phases. Furthermore, using thinner silicone sheets with relatively lower
pressure as seen in [23], or using chemical grafting such as polypyrrole on a
porous PDMS substrate can reduce the effects of hysteresis further [17].

The noise in the pitch motion was more disruptive than the noise in the roll
motion, which may be due to the range of motion being larger and the motion
having more steps along the trajectory causing uneven pressure changes in the
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Fig. 9. Loading (left) and unloading (right) for roll motion for the three silicone sheets
with varying sensing matrix density, showing an average of the loading and unloading
cycles from one trial.

MCP. When it reached 0° in the pitch motion, the air pressure differences caused
a small spike and a delay in the estimations stabilising again. This was not an
issue with the roll motion since it was a more consistent motion.

5 Conclusion and future work

The MCP is a contact-based optical tactile sensor, that uses an array of mark-
ers. The optimal density of these markers has been evaluated in this work by
comparing three spacing parameters (5 mm, 10 mm, and 15 mm) for the sensing
matrix embedded in the silicone sheets of the pillow panels. This was used for
tracking the motion of a 3D printed weighted mannequin head for two rotatory
motions - pitch and roll with respect to Fp.

It shows that a higher density of the sensing matrix in the optical tactile
sensor can improve the accuracy of the head tracking for rotational motions in
the pitch and roll axes of Fp. This was established using performance metrics
such as Spearman’s correlation and MAE. Sources of noise in the data are due
to hysteresis, air pressure changes in the MCP, and background noise, which re-
quire further processing to filter through. These results create a solid foundation
to further investigate the relationship between the KLT values from the dense
sensing matrix and the head poses.

Future works also involve testing the MCP in a participant study to make it
more versatile to the variations in human motions and the variations in their head
types (e.g. weight, shape, and hair type); along with improving the robustness
of the sensor with sensor fusion techniques using a gyroscope.

Acknowledgment

We are grateful to the EPSRC providing funding the PhD research of the first
author of this work (Grant number: 2607213). This work was also supported
by the Henry Royce Institute for Advanced Materials, funded through EPSRC
grants EP/R00661X/1, EP/P025021/1 and EP/S019367/1.



Marker Density of Optical Tactile Sensor for Moving Object Tracking 13

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

AlignRT®) Advance - Vision RT — visionrt.com. https://www.visionrt.com/
alignrtadvance/, [Accessed 01-Jun-2022]

Berkels, B., Bauer, S., Ettl, S., Arold, O., Hornegger, J., Rumpf, M.: Joint surface
reconstruction and 4d deformation estimation from sparse data and prior knowl-
edge for marker-less respiratory motion tracking. Medical Physics 40(9), 091703
(2013)

. Das, K., de Paula Oliveira, T., Newell, J.: Comparison of markerless and marker-

based motion capture systems using 95% functional limits of agreement in a linear
mixed-effects modelling framework. Scientific Reports 13(1), 22880 (2023)

. Do, W.K., Kennedy, M.: Densetact: Optical tactile sensor for dense shape recon-

struction. In: 2022 International Conference on Robotics and Automation (ICRA).
pp. 6188-6194. IEEE (2022)

. Gandhi, B., Mihaylova, L., Dogramadzi, S.: Head tracking using an optical soft

tactile sensing surface. Frontiers in Robotics and AT 11, 1410858 (2024)

. Goldsworthy, S., McNair, H., Dogramadzi, S.: Motion capture pillow (mcp): A

novel method to improve comfort and accuracy in radiotherapy. Clinical Medicine
19(Suppl 2), 103 (2019)

. Griffiths, G., Cross, P., Goldsworthy, S., Winstone, B., Dogramadzi, S.: Motion

capture pillow for head-and-neck cancer radiotherapy treatment. In: 2018 7th IEEE
International Conference on Biomedical Robotics and Biomechatronics (Biorob).
pp. 813-818. IEEE (2018)

. Hauke, J., Kossowski, T.: Comparison of values of pearson’s and spearman’s corre-

lation coefficients on the same sets of data. Quaestiones geographicae 30(2), 87-93
(2011)

. Hughes, J., Culha, U., Giardina, F., Guenther, F., Rosendo, A., Iida, F.: Soft

manipulators and grippers: A review. Frontiers in Robotics and AT 3, 69 (2016)
Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy.
International journal of forecasting 22(4), 679688 (2006)

Kanko, R.M., Laende, E.K., Davis, E.M., Selbie, W.S., Deluzio, K.J.: Concurrent
assessment of gait kinematics using marker-based and markerless motion capture.
Journal of biomechanics 127, 110665 (2021)

Le Moing, G., Ponce, J., Schmid, C.: Dense optical tracking: Connecting the dots.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 19187-19197 (2024)

Lee, B.Y., Liew, L.H., Cheah, W.S.;, Wang, Y.C.: Occlusion handling in videos ob-
ject tracking: A survey. In: IOP conference series: earth and environmental science.
vol. 18, p. 012020. IOP Publishing (2014)

Lepora, N.F., Ward-Cherrier, B.: Superresolution with an optical tactile sensor.
In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 2686-2691. IEEE (2015)

Li, K., He, F.Z., Yu, H.P.: Robust visual tracking based on convolutional features
with illumination and occlusion handing. Journal of Computer Science and Tech-
nology 33, 223-236 (2018)

Puthenveetil, S.C., Daphalapurkar, C.P.; Zhu, W., Leu, M.C., Liu, X.F., Chang,
A.M., Gilpin-Mcminn, J.K., Wu, P.H., Snodgrass, S.D.: Comparison of marker-
based and marker-less systems for low-cost human motion capture. In: Interna-
tional Design Engineering Technical Conferences and Computers and Information
in Engineering Conference. vol. 55867, p. VO2BT02A036. American Society of Me-
chanical Engineers (2013)


https://www.visionrt.com/alignrtadvance/
https://www.visionrt.com/alignrtadvance/

14

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

B. Gandhi et al.

Pyo, S., Lee, J., Bae, K., Sim, S., Kim, J.: Recent progress in flexible tactile sensors
for human-interactive systems: from sensors to advanced applications. Advanced
Materials 33(47), 2005902 (2021)

Quan, S., Liang, X., Zhu, H., Hirano, M., Yamakawa, Y.: Hivtac: A high-speed
vision-based tactile sensor for precise and real-time force reconstruction with fewer
markers. Sensors 22(11), 4196 (2022)

Slipsager, J.M., Ellegaard, A.H., Glimberg, S.L., Paulsen, R.R., Tisdall, M.D.,
Wighton, P., Van Der Kouwe, A., Marner, L., Henriksen, O.M., Law, 1., et al.:
Markerless motion tracking and correction for pet, mri, and simultaneous pet,/mri.
Plos one 14(4), €0215524 (2019)

Sundaram, S., Kellnhofer, P.; Li, Y., Zhu, J.Y., Torralba, A., Matusik, W.: Learning
the signatures of the human grasp using a scalable tactile glove. Nature 569(7758),
698-702 (2019)

Wang, H., Ma, L., Nie, Q., Hu, X., Li, X., Min, R., Wang, Z.: Optical tactile sensor
based on a flexible optical fiber ring resonator for intelligent braille recognition.
Optics Express 33(2), 2512-2528 (2025)

Ward-Cherrier, B., Pestell, N.,; Cramphorn, L., Winstone, B., Giannaccini, M.E.,
Rossiter, J., Lepora, N.F.: The tactip family: Soft optical tactile sensors with 3d-
printed biomimetic morphologies. Soft robotics 5(2), 216227 (2018)

Wettels, N., Santos, V.J., Johansson, R.S., Loeb, G.E.: Biomimetic tactile sensor
array. Advanced robotics 22(8), 829-849 (2008)

Wiersma, R.D., Tomarken, S., Grelewicz, Z., Belcher, A.H., Kang, H.: Spatial and
temporal performance of 3d optical surface imaging for real-time head position
tracking. Medical physics 40(11), 111712 (2013)

Winstone, B., Griffiths, G., Melhuish, C., Pipe, T., Rossiter, J.: Tactip—tactile
fingertip device, challenges in reduction of size to ready for robot hand integration.
In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).
pp. 160-166. IEEE (2012)

Xu, W., Huang, M.C., Amini, N., He, L., Sarrafzadeh, M.: ecushion: A textile
pressure sensor array design and calibration for sitting posture analysis. IEEE
Sensors Journal 13(10), 3926-3934 (2013)

Yoganandan, N., Pintar, F.A., Zhang, J., Baisden, J.L.: Physical properties of the
human head: mass, center of gravity and moment of inertia. Journal of biomechan-
ics 42(9), 1177-1192 (2009)

Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: Unsupervised learning
of optical flow via brightness constancy and motion smoothness. In: Computer
Vision—-ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and
15-16, 2016, Proceedings, Part III 14. pp. 3-10. Springer (2016)

Yuan, W., Dong, S., Adelson, E.H.: Gelsight: High-resolution robot tactile sensors
for estimating geometry and force. Sensors 17(12), 2762 (2017)



	Marker Density of Optical Tactile Sensor for Moving Object Tracking

