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AbstractÐAs power systems with multiple microgrids evolve
to integrate distributed and renewable energy sources across
different areas and regions, maintaining stable microgrid voltage
and frequency control becomes increasingly reliant on fast and
reliable communication infrastructure. Despite recent progress
in wireless communication, many existing solutions still suffer
from latency and packet loss that degrade control loop perfor-
mance. This work presents a simulation framework that couple
DC microgrids with proportional±integral (PI) voltage control
loops and a 5G slicing-aware wireless communication model.
A Q-learning-based algorithm is introduced to dynamically
allocate bandwidth between two microgrids across three network
slice types, namely legacy, shared, and ultra-reliable low-latency
communication (URLLC) to optimize control performance un-
der constrained radio resources. The impact of communication
latency and reliability is evaluated through key performance
indicators including voltage recovery, control reward, delay,
packet loss, and throughput. Simulation results demonstrate
that URLLC slicing significantly enhances control performance.
Specifically, it reduces voltage recovery time by approximately
24%, lowers control-packet loss rate by up to 70% relative to
legacy modes, and sustains a throughput improvement exceeding
20%. These results underscore the pivotal role of low-latency and
high-reliability communication in enabling stable and efficient
smart grid operation.

Index TermsÐ5G, network slicing, URLLC, microgrids, volt-
age control.

I. INTRODUCTION

As modern power systems with multiple microgrids embed-

ded across different areas and regions are evolving into cyber-

physical systems, communication networks play a critical role

in enabling distributed sensing, coordination, and control [1],

[2]. However, most existing microgrid deployments rely on

power line communication (PLC), or Wi-Fi, all of which

lack the ultra-low latency and high reliability required for

fast control loops. While fifth-generation (5G) networks, par-

ticularly ultra-reliable low-latency communication (URLLC),

offer promising capabilities, their integration into microgrid

simulation and control design remains limited [3]±[5]. In

particular, the impact of slice-level quality of service (QoS)

characteristics, such as communication delay and packet loss,

on control loop performance is rarely examined in existing

microgrid studies. This highlights a critical gap in modeling

the co-effects of advanced wireless communication features

and power system control dynamics, especially under hetero-

geneous slicing conditions.

Most existing works on 5G slicing emphasize

communication-side performance, with limited attention

to how slicing affects real-time control in power systems.

Zhou et al. [6] proposed a deep transfer reinforcement

learning (DTRL) scheme for joint radio and cache resource

allocation to serve 5G radio access network (RAN)

slicing, but their work primarily focuses on algorithmic

optimization within the communication layer. Choudhury

et al. [7] developed a coordinated set-point automatic

adjustment with correction enabled (C-SPAACE) framework

for microgrid control using 5G slicing and introduced an

age of information (AoI)-based scheduler for spectrum

allocation. While it emphasizes communication-aware

coordination, it primarily addresses resource scheduling

without considering the impact of slice-specific QoS on the

control performance. Feng et al. [8] leveraged 5G RAN

slicing to optimize virtual power plant (VPP) scheduling for

economic gains, whereas this paper focuses on how slicing-

induced communication dynamics impact closed-loop control

performance in microgrids. Troia et al. [9] optimized 5G

slice admission using deep reinforcement learning, focusing

on network-level resource allocation without addressing

control-layer performance. Meng et al. [10] proposed a

DRL-based strategy for smart grid RAN slice allocation,

emphasizing adaptive bandwidth management for elastic and

real-time applications. However, their work focused solely

on network-level resource optimization, without analyzing

the impact on microgrid control performance such as voltage

regulation.

In this paper, we propose a simulation framework that

integrates simplified DC microgrid models with PI-based

voltage control loops and a 5G RAN slicing-aware commu-

nication network. A Q-learning-based algorithm is employed

to dynamically allocate bandwidth between microgrids under

different slicing modes. The framework explicitly models

communication-induced latency and packet loss to evalu-

ate their impact on system performance. Simulation results

demonstrate that slice-specific QoS has a significant influence

on voltage recovery and control efficiency, as reflected by re-



ward evolution, delay profiles, packet loss rates, and through-

put trends. These findings provide insights for the co-design

of wireless communication and power control strategies in

intelligent energy systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Microgrid Topology and Control Model

Fig. 1 illustrates the overall system configuration, featuring

base station microgrids (BSMG1 and BSMG2) equipped

with photovoltaic (PV), wind generation, energy storage, and

centralized energy management systems. Both microgrids

communicate via a 5G network infrastructure that provides

three types of RAN slices. These slices differ in their latency

and reliability characteristics and are used to transmit the

control signals from the centralized voltage controller.

Fig. 1. RAN slices model for BSMG

To evaluate the impact of communication impairments

on voltage regulation, we build a simplified DC microgrid

model consisting of two battery-inverter units connected to

a common DC bus that supplies a constant-power load. For

simplicity, the following assumptions are adopted:

1) Single-bus topology: All generation and load are con-

nected to one node, enabling centralized control analy-

sis.

2) Constant-power load: The load steps from 1 kW to

2 kW at t = 0.1 s, creating a voltage disturbance to

evaluate the controller’s transient response.

3) Lumped bus capacitance: All DC bus and inverter

filter capacitors are aggregated into an equivalent ca-

pacitance Ceq .

The goal of the PI controller is to regulate the DC-bus

voltage Vbus(k) to match a predefined reference value Vref.

• Error calculation

e(k) = Vref − Vbus(k) (1)

where e(k) is the voltage error at step k.

• Proportional and integral Terms

uunsat(k) = Kpe(k) +Ki

k
∑

i=0

e(i)∆t (2)

where uunsat(k) is the final control signal before saturation,

Kp is proportional gain, and Ki is integral gain.

• Limiting and final control current

Ibatt(k) = sat
(

uunsat(k), Imin, Imax

)

(3)

where sat() is a saturation function, Ibatt(k) denotes the

instantaneous battery output current delivered to the DC bus

at time step k, and Imin and Imax represent saturation limits.

B. Bus Voltage Dynamics

According to the relationship between capacitor charging

and discharging, the bus voltage update formula is shown as:

Ceq

dVbus(k)

dt
= Ibatt(k)− Iload(k) (4)

where Iload(k) is the current drawn by the load.

The discrete-time form after transformation is:

Vbus(k + 1) = Vbus(k) +
(

Ibatt(k)− Iload(k)
) ∆t

Ceq

(5)

where k is discrete time index, Pload(k) is constant power

load at time step k, ∆t is the simulation time step.

C. 5G RAN Slicing Model

To accurately describe the transmission characteristics of

microgrid control commands under 5G RAN slicing, we

model each wireless link as a superposition of Rayleigh

small-scale fading and constant additive white Gaussian noise

(AWGN).

• Rayleigh fading

The complex channel gain h(k) at time step k is modeled

as a zero-mean and circularly symmetric complex Gaussian

random variable:

h(k) ∼ CN (0, σ2
r) (6)

where σ2
r is the variance of the underlying Gaussian process.

Consequently, the instantaneous power gain |h(k)|2 follows

an exponential distribution:

f|h|2(x) =
1

σ2
r

exp

(

−
x

σ2
r

)

, x ≥ 0 (7)

where x is the realized power gain, and f|h|2(x) is the

probability density function.

• AWGN noise power

The receiver observes additive white Gaussian noise with

constant power:

N0 = σg (8)



where N0 is the one-sided noise power spectral density, and

σg is the variance of the AWGN.

• Signal-to-Noise Ratio (SNR)

With normalized transmit power Ptx, the SNR is:

SNR(k) =
Ptx |h(k)|

2

N0

(9)

• Spectral efficiency and capacity

Under the Shannon capacity formula, the spectral efficiency

is:

η(k) = log2 (1 + SNR(k)) (10)

where η(k) is spectral efficiency at time k.

The instantaneous link capacity is:

Ck = b η(k) (11)

where Ck is instantaneous capacity, and b is allocated band-

width.

• Packet transmission delay

For a control packet of size B bits, the one-way transmis-

sion delay is:

d(k) =
B

C(k)
(12)

where d(k) is transmission delay at time k.

• Packet loss probability

A packet is considered lost if either the transmission delay

exceeds a slice-specific threshold or a random radio resource

loss occurs due to insufficient bandwidth. The overall loss

probability is:

Ploss(k) = 1−(1− 1{Delay(k) > Dth}) (1− pradio(b)) (13)

where Ploss(k) is total loss probability at time k, 1{} is the

indicator function (1 if condition true, else 0), Dth is slice-

specific maximum acceptable delay, and pradio(b) is baseline

radio loss probability.

III. DEEP REINFORCEMENT LEARNING-BASED SLICING

ALGORITHM

To dynamically allocate RAN slice bandwidth between two

BSMGs, we cast the problem as a Markov decision process

and employ a Q-learning agent. At each discrete time step

k, the agent observes a system state sk, selects an action ak,

receives an immediate reward rk, and updates its action-value

function Q(s, a).

A. State Representation

The state vector captures both overall voltage regulation

error and inter-microgrid voltage imbalance:

sk = (eavg(k), vdiff(k)) (14)

eavg(k) = Vref −
1

2
(V1(k) + V2(k)) (15)

vdiff = |V1(k)− V2(k)| (16)

where Vi(k) is the measured voltage of microgrid i at time

k, eavg(k) denotes the average voltage regulation error, and

vdiff(k) represents the voltage imbalance between the two

microgrids.

B. Action Space

At each instant, the RL agent chooses how much of the

total bandwidth pool to allocate to BSMG1, and then BSMG2

automatically receives what remains.

b = b1(k) + b2(k) (17)

where b1(k) and b2(k) are bandwidth assigned to BSMG1

and BSMG2 at time k, respectively.

C. Reward Function

The instantaneous reward is designed to evaluate both com-

munication performance and control stability. It is expressed

as a weighted combination of spectral efficiency, utility, and

penalty terms:

rk = λ
[

η1(k) + η2(k)
]

+ µUe(k) + ξUπ(k)

− α
[

d1(k) + d2(k)
]

− β
[

ploss,1(k) + ploss,2(k)
]

− γvdiff(k) (18)

Ue(k) = 1− exp

(

−k0
b

bmax

)

(19)

Uπ(k) = 1− exp

(

−k1
b2

k2 + b

)

(20)

where ηi(k) is spectral efficiency of BSMG i at time k,

Ue(k) is utility of elastic slice, Uπ(k) is utility of real-time

slice, di(k) is packet delay for BSMG i, ploss,i(k) is loss

probability for MG i. λ, µ, ξ, α, β, γ are weights to balance

system objectives, and k0, k1, and k2 are slice utility shaping

parameters.



D. Q-Learning Update

To optimize the bandwidth allocation strategy, we employ

the classical Q-learning algorithm. The agent maintains an

action-value function, which estimates the expected cumula-

tive reward of taking action ak in state sk. After executing

action ak, receiving reward rk, and transitioning to the next

state sk+1, the Q-value is updated as follows:

Q(sk, ak)← Q(sk, ak) + αQ

[

rk + γD max
a′

Q(sk+1, a
′)

−Q(sk, ak)
]

(21)

where αQ is the learning rate, which controls how much

newly acquired information overrides the old, γD is the

discount factor, representing the importance of future rewards,

and maxQ(sk+1, a
′) reflects the Bellman optimality princi-

ple, estimating the value of the best future action at the next

state.

To balance exploration and exploitation, the agent follows

an ε-greedy policy. Specifically, with probability ε ≤ 1, a

random action is selected to promote exploration. Otherwise,

the action with the highest estimated Q-value is chosen.

IV. SIMULATION RESULTS

A. Simulation Setup

To evaluate the proposed joint control and slicing strategy,

we simulate a two BSMGs system connected to a common

DC bus, as previously described. Each BSMG consists of an

inverter-based generator and serves one of the three network

slice types: legacy, shared, and URLLC. The system is

subjected to a step load change from 1 kW to 2 kW at 0.1 s,

inducing a voltage transient to test the dynamic performance

of the voltage regulation.

The simulation is implemented in MATLAB with a time

step of ∆t = 0.1ms. Each simulation lasts 300 ms. The

nominal bus voltage is set to Vref = 380V, and the equivalent

bus-side capacitance is Ceq = 50µF. The load disturbance

occurs at 100 ms, and all inverter controllers adopt the same

PI control parameters for consistency across different slices.

In the communication layer, bandwidth allocation is dis-

cretized into 0±8 MHz. For each MG, the control packet is 80

bits long, and delay is computed using the Shannon capacity

model with Rayleigh fading and AWGN channel assumptions.

The Q-learning agent dynamically adjusts the bandwidth of

each slice to optimize a reward function that jointly considers

throughput, delay, packet loss, and voltage deviation penalties.

B. Results Analysis

Fig. 2 shows the DC bus voltage recovery following a

load disturbance at 100 ms. All configurations exhibit prompt

voltage regulation, but differences arise across microgrids and

slice types. Among the slicing schemes, URLLC achieves

the quickest voltage restoration, with recovery times around

160 ms, compared to 190 ms for the shared slice and 210 ms

for the legacy slice, representing a 24% reduction in recovery

time relative to the legacy configuration. This improvement

highlights the benefit of low-latency communication in en-

hancing transient control responsiveness. Shared slices offer

intermediate performance, while legacy slices recover more

slowly and exhibit larger voltage deviations. These results

confirm the effectiveness of latency-aware slicing in improv-

ing voltage stability under load transients.
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Fig. 2. Bus voltage recovery

Fig. 3 presents the reward evolution of different slice

types in BSMG1. The URLLC slice consistently achieves

the highest average reward, stabilizing around 1.0, benefiting

from its prioritized access to bandwidth and strict delay

constraints. In contrast, the shared and legacy slices achieve

lower average rewards of approximately 0.6 and 0.4, respec-

tively, and exhibit greater temporal fluctuation due to their

lower or adaptive priority in bandwidth allocation. These

results validate the reward function’s ability to capture service

differentiation and highlight the advantage of URLLC in

maintaining consistent control performance.
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Fig. 4 shows the distribution of control packet transmission

delays across different slice types and microgrids. It is evident

that the majority of URLLC packets experience delays below

3 ms, with over 80% concentrated in the first three bins (0±

3 ms), reflecting the effectiveness of latency-aware allocation.

In contrast, legacy slices exhibit a wider delay spread, with a

significant number of packets experiencing delays exceeding

10 ms. Shared slices fall in between, with moderate dispersion

and a peak around 5±7 ms. These results confirm that the

proposed slicing mechanism successfully prioritizes URLLC

traffic while maintaining acceptable delay for other service

types.

Fig. 4. Latency distribution

Fig. 5 presents the cumulative packet loss rate for each

slice type. The URLLC slices exhibit the lowest loss rate,

stabilizing below 4% throughout the simulation, which is

approximately 70% lower than the legacy slices in BSMG1,

whose loss rate converges around 13.5%. Shared slices main-

tain moderate performance, with loss rates settling between

6±10%.
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Fig. 5. Packet loss rate

Fig. 6 illustrates the slice-wise throughput dynamics over

time, calculated using a 50 ms moving average window. After

an initial convergence period within the first 100 ms, the

throughput stabilizes across all configurations. URLLC slices

consistently achieve the highest throughput, reaching approx-

imately 20 pkt/s, which is 15±20% higher than the shared

slices (17.5 pkt/s) and 25±30% higher than the legacy slices

(16 pkt/s). This performance gain is attributed to URLLC’s

prioritized access to spectrum resources and its latency-aware

scheduling mechanism. The results underscore the system’s

ability to ensure differentiated service levels and highlight

the throughput-efficiency advantage of URLLC under the

proposed resource allocation policy.
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Table I summarizes the performance metrics of different

slice types in BSMG1 based on the simulation results shown

in Fig. 2±Fig. 6.

TABLE I
PERFORMANCE COMPARISON OF SLICE TYPES IN BSMG1

Metric URLLC Shared Legacy

Voltage recovery time (ms) 160 190 210

Average reward 1.0 0.6 0.4

Delay (ms) 0±3 5±7 > 10

Packet loss rate (%) 4 6 13.5

Throughput (pkt/s) 20 17.5 16

V. CONCLUSION

This work presents a simulation framework integrating

microgrid control and 5G communication, enabling joint

evaluation of control performance under varying communi-

cation qualities. The framework models DC microgrids with

distributed inverter-based units regulated by PI controllers,

where control packets are delivered via emulated 5G network

slices. The analysis of voltage regulation, bandwidth alloca-

tion, and communication metrics reveals several key findings,

summarized as follows:

1) Communication quality directly influences voltage reg-

ulation performance. Following the load disturbance



at 100 ms, all slices restore bus voltage, but URLLC

achieves the fastest recovery. Compared to the legacy

slice, URLLC shortens the settling time by 24%,

demonstrating improved responsiveness under low-

latency conditions.

2) The slicing-aware strategy enables dynamic and

priority-driven resource allocation. During transients,

bandwidth is adaptively allocated, with URLLC receiv-

ing the largest share to ensure timely control. Conse-

quently, URLLC achieves the highest average reward

(1.0), outperforming shared (0.6) and legacy (0.4) slices,

validating both reward design and slice prioritization.

3) Slicing enhances communication reliability and reduces

delay. Over 95% of URLLC packets are delivered

within 5 ms, while legacy traffic shows delays up to

20 ms. Packet loss for URLLC remains below 4%,

approximately 70% lower than the 13% observed in

legacy slices, highlighting the value of differentiated

QoS in latency-sensitive control.

4) URLLC slicing improves throughput and scalability.

URLLC sustains the highest throughput (20 pkt/s), ex-

ceeding shared (17.5 pkt/s) and legacy (16 pkt/s) modes.

This demonstrates its advantage in supporting dense

control traffic while maintaining low-latency perfor-

mance.

Overall, this study highlights the necessity of joint control-

communication design in future microgrids and showcases

how network slicing, particularly URLLC, can significantly

enhance the resilience and performance of cyber-physical

energy systems.
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