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ABSTRACT: Non-structural protein 14 (NSP14) is a key two-
domain protein responsible for maintaining coronavirus replication
fidelity, and in its absence reproduction is severely impacted. With
the goal of identifying new inhibitors of SARS-CoV-2 NSP14, we
selected a previously reported scaffold as an appropriate starting
point. Medicinal chemistry exploration provided a series of
trisubstituted pyrazolines as inhibitors of NSP14 methyltransferase
(MTase) activity, with improved synthetic tractability and in a
promising molecular property space. This led to compound 35 as a
potent inhibitor of NSP14 MTase with a favorable in vitro ADMET
profile, and antiviral activity against SARS-CoV-2 replication. We
propose that 35 is a useful chemical probe which is well-positioned
to further interrogate in vitro biology and for further optimization
toward the treatment of human coronaviruses.
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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-
2) is the seventh known coronavirus (CoV) to infect humans,
and follows SARS-CoV and Middle East respiratory syndrome
coronavirus (MERS-CoV) as viruses which frequently cause
severe disease and death.' There remains a clear and unmet
need for novel antiviral agents that are designed to specifically
target CoVs. SARS-CoV, SARS-CoV-2 and MERS-CoV are all
Betacoronaviruses (BetaCoV) and it is likely that some future
zoonotic threats will fall within this viral genus. Moreover, an
increase in globalization, climate change and deforestation has
made the prospect of future pandemics more likely -
pandemics may become more frequent, with viruses able to
spread more rapidly.”” Therefore, there is a significant and
growing focus on the development of therapeutics with pan-
BetaCoV activity. This could be achieved by targeting a
conserved BetaCoV mechanism or enhancing the activity of
existing antiviral drugs. For example, many prior SARS-CoV-2
drug discovery efforts focused on well-characterized targets
including chymotrypsin-like cysteine main protease (MP®), a
structurally well-characterized protein with diverse chemical
starting points for inhibitor development.*”

Among other possible viral targets for therapeutic inter-
vention, non-structural protein 14 (NSP14) is an essential
CoV-specific protein responsible for maintaining replication
fidelity and evasion of the immune response. SARS-CoV
NSP14 is well characterized structurally and biochemically,®
and several examples of NSP14 inhibitors have been previously
reported.” However, the majority of these remain in preclinical
drug discovery stages. NSP14 is a bifunctional protein,
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comprising an N-terminal 3'-5" proofreading exoribonuclease
(ExoN) domain and a C-terminal N7-guanine methyltransfer-
ase (MTase) domain. Mutational studies have shown the
ExoN and MTase activities to be functionally independent,
with the two domains separated by a flexible hinge region.® In
addition, NSP14 has been shown to be partly responsible for
excessive inflammation following SARS-CoV-2 infection.’
The N7-methylation of the viral mRNA cap is essential for
the synthesis of viral proteins and is a key event for viral
infection.'” The N7-methyl guanosine cap structure is
recognized by the eukaryotic translation initiation factor 4E
and participates in the initiation of viral mRNA translation into
proteins. NSP14 uses S-adenosyl methionine (SAM) as a
methyl donor to methylate the N7 position of 5’ guanine,
generating S-adenosyl homocysteine (SAH) as a byproduct, an
endogenous competitive inhibitor of SAM. This is a key step in
constructing the cap that is essential for mRNA stability and
translation in human cells."' Ogando et al. investigated the
functional importance of conserved N7-MTase residues and
identified two substitutions (R310A and F426A in SARS-CoV)
which abrogated SARS-CoV viability, and one substitution
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(H424A) which attenuated SARS-CoV, SARS-CoV-2, MERS-
CoV, and MHYV, suggesting that the N7-MTase function is
critical for BetaCoV replication.'” However, finding selective
inhibitors of MTase activity may be challenging due to the
presence of methyltransferases across the human pro-

Methyltransferases in general have been subjected to
significant drug discovery efforts, likely due to their roles in
numerous cellular processes, and have been thoroughly
reviewed.'® Commonly, inhibitors fall into two categories.
Nucleoside inhibitors of MTases, in common with SAM-like
structures, often suffer from limited selectivity and poor
absorption, distribution, metabolism, excretion and toxicity
(ADMET) properties.”” In contrast, MTase inhibitors with
non-nucleoside structures are often more selective, and
typically have improved ADMET and pharmacokinetic (PK)
properties.'° Screening against NSP14 MTase is well
documented within the literature and a range of nucleoside'®"”
and non-nucleoside inhibitors”**~>* have been identified.
Meyer and co-workers report high-throughput screening of
NSP14 MTase using a MTase-Glo assay, and identified
compounds with ICj, values less than 10 uM.” Hit selection
and thorough optimization led to TDI-015051 with picomolar
biochemical inhibition of NSP14 MTase. A second key
approach utilized high-throughput screening of a 5000-
compound library in a homologous time-resolved fluorescence
(HTRF) assay, and identified a number of low micromolar
inhibitors of NSP14 MTase, including a nonsteroidal
mineralocorticoid antagonist, PF-03882845 (1, Figure 1).*
Typically, the pan-MTase inhibitor sinefungin (2, Figure 1) is
used as a positive control in screening campaigns.B_25

In this work, we initially sought to validate previously
reported inhibitors of NSP14 MTase in an NSP14 MTase-Glo
assay,”® with a goal to identify and prioritise chemotypes
suitable for further design and optimization (Figures S1, S2;

o
OH

Figure 1. Examples of reported inhibitors of NSP14 MTase.*

Table S1).***"*” Compound 1 emerged, displaying notable
biochemical potency, with an IC; of 0.16 4uM (in our hands,
this was 10-fold more potent than previouslzf reported).
Compound 1 has been thoroughly characterized,”**” and was
previously in development for the treatment of diabetic
nephropathy and hypertension. Molecular docking of 1 to an
NSP14 MTase crystal structure (PDB: SC8T") was used to
investigate the putative binding mode and guide further
compound design (Figure S3). The synthetic route to 1 and its
analogues is well understood and requires four steps, including
chiral separation by chiral supercritical fluid chromatography
(SFC) to isolate the desired single enantiomer. Hence, we
selected this molecule as the focus for further work.

We began by characterizing 1 and a small number of close
analogues 3-6, prepared using routes adopted from Meyers et

al. (Scheme $1)***? in biochemical and ADMET assays, and
observed that this tricyclic series suffered from poor kinetic
solubility (Table 1). The inclusion of an acidic substituent
appeared to be important for biochemical activity, as replacing
the carboxylic acid (4) with a methyl ester (3) or removing it
entirely (S) abolished activity. Moreover, the tricyclic fused-
ring system did not lend itself to a rapid structure—activity
relationship (SAR) assessment. To overcome these factors, we
designed an alternative ‘ring-opened’ scaffold. Compound 7
was prepared following literature precedent,”® and showed a
significant improvement in kinetic solubility, though with a
decrease in biochemical potency - which may be due to an
entropic penalty for the ligand to adopt the bound
conformation.”’ A decrease in lipophilic ligand efficiency
(LLE) was also observed as a result of the reduction in
biochemical activity.

Although a significant loss in potency was observed, moving
to a ring-opened aryl pyrazoline chemotype gave a simplified
scaffold amenable to multiple synthetic approaches. Pyrazo-
line-containing molecules are commonly observed in drug
discovery, for example in molecules with application in
inflammation, oncology, and neurodegeneration settings.32_36
As a result, substituted pyrazolines are commonly accessed via
a number of orthogonal routes using widely available starting
materials which enable broad chemical exploration.

With a continuing focus on lipophilicity and solubility, we
assessed whether a cyclopentyl group was required for the ring-
opened series of compounds. Utilizing a linear synthetic route,
an initial condensation of aryl hydrazines with a,f-unsaturated
esters under basic conditions afforded key pyrazolinone
intermediates. Subsequent chlorination was followed by
coupling with aryl boronic acids or esters using standard
Suzuki coupling conditions. Utilizing this or similar routes,
where the required @,f-unsaturated esters were not commer-
cially available, compounds 8-12 were prepared. In the
alternative route, a,f-unsaturated ketones were prepared either
by using an aldol procedure from a methyl ketone and the
desired aldehyde, or via a 3-step process (Scheme S2).

Our initial SAR analysis indicated that the cyclopentyl group
was not essential for inhibiting NSP14 MTase. Removing it
completely (8), or replacing it with smaller methyl (9) or ethyl
(10) groups gave improvements to physicochemical properties,
particularly a significant reduction in ChromLogD; 4 (Table 2).
The methyl analogue 9 also showed no loss of biochemical
activity and a 2.5-fold increase in kinetic solubility. This
increase in potency was coupled with a pleasing sign of an
improved LLE between 7 and 9 (0.7 vs 1.9). In contrast, larger,
more lipophilic substituents, such as cyclohexyl (12), were not
tolerated and resulted in a poorer profile.

In order to establish requirements in the southern aromatic
ring, the pyrazoline core bearing a methyl group was
maintained, as this gave the best balance of potency,
physicochemical properties, and synthetic tractability. Key
molecules 18-20 were prepared from unsaturated ester 13, via
intermediates 14-17 (Scheme 1), to assess the influence of the
chlorine and nitrile substituents (Table 3). We found that both
appeared to contribute to the potency of these molecules,
particularly the chlorine substituent, which provided a ~10-
fold increase in potency. However, this came at a detriment to
solubility, as compound 9 (bearing both the chlorine and
nitrile substituents) showed a reduction in solubility, which
was restored when either or both were removed.
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Table 1. Structures, NSP14 MTase Biochemical Activity, and Physicochemical Properties of 1 and 3—7 (Compound 7 is
Coloured According to Each Component of the Molecule Subsequently Investigated; Northern Ring (Purple), Pyrazoline
Core (Orange), Pyrazoline 3’-Substituent (Green) and Southern Ring (Blue))
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R
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] O\
N-N ——
/ Cl
4 4 ©
N
3-6 7
Kinetic a
Compound R pICso Solubility (M) ChromLogD7.4 LLE
(o]
1 6.8 7 4.6 22
OH
[0}
3 <4.0 <l >6.4 -
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[0}
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H
5 ke <4.0 <1 >6.4 -
6 2 OH 5.3 8 >6.4 -
7 - 52 32 4.5 0.7
“LLE = pICg, — ChromLogD,.
Table 2. Structures, NSP14 MTase Biochemical Activity, We turned to the second aryl ring to investigate whether
and Physicochemical Properties of 7—12 alternative substitution patterns or heterocycles could be
o incorporated. Hence a further small set of compounds were
prepared using a similar synthetic approach to that shown in
OH Scheme 1. Moving the carboxylic acid from the 4’-position (as
in 9) to the 3'-position (as in 21) maintained biochemical
R | activity (Table 4). Though furan 22 gave a marked loss in
N-N inhibitory activity, the commonly employed isostere thiophene
23 increased potency and lipophilic efficiency.
One factor contributing to these substantial changes in
cl activity could be a substituent vector effect. For 3'-substituted
V//i compound 21 and 4’-substituted compound 9 the angles are
N 120° and 180°, respectively. Similarly, furan 22 and thiophene
Kinetic 23 have different substitution angles, 125° and 148°,
Solubility respectively.”” Alternatively, the difference in activity could
C d R IC M ChromLogD,, LLE* : ’ Y
ompout 1 P () FOmLO8T be due to the relative electron densities of each of the aromatic
7 CyPentyl 5.2 32 5 07 rings. Although thiophene 23 functioned as a suitable benzene
8 H 4.3 9 3.0 1.3 . . . . . . ..
ring isostere with improvements to biochemical activity and
9 Me 5.3 86 3.4 1.9 .
LLE, we chose not to pursue its further development.
10 Et 6.4 S1 3.8 2.6 . . .
- ipr s 48 39 L6 Substituted thiophenes are commonly oxidized by cytochrome
b CyHel <40 36 <1 P450 enzymes, leading to metabolites which cause toxic side

effects.”® Furthermore, we decided that adding a thiophene
moiety would impede a rapid SAR study, because of the
limited availability of commercially sourced substituted

“LLE = pICg, — ChromLogD .
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Scheme 1. Route used to Synthesise Compounds 9 and 18—20

o —-(YCI OH

1417

9, 18-20

“Reagents and conditions: (a) aryl hydrazine, NaOEt, EtOH; (b) POCl;, MeCN; (c) 4-carboxybenzeneboronic acid pinacol ester, Pd(PPh,),,

Na,CO;, H,0, 1,4-dioxane or DME.

Table 3. NSP14 MTase Biochemical Activity and
Physicochemical Properties of Compounds 9 and 18—20

Kinetic
Solubility
Compound R' R*> pIC, (uM) ChromLogD,, LLE®
9 CN Cl 5.3 86 3.4 1.9
18 H H 4.0 >200 3.1 0.9
19 CN H 4.4 >200 2.7 1.7
20 H Cl S.1 >200 3.8 1.3

“LLE = pICg, — ChromLogD .

thiophenes suitable for inclusion. Despite some improvement
in solubility when moving to a 3’-substituted acid (21), a 4'-
benzoic acid (as in 9) was maintained in future designs.

To probe the requirement for the carboxylic acid, we
prepared compounds bearing alternative acidic functional
groups via the same chemical approach. Replacing the
carboxylic acid with an amide (24) or sulfonamide (25)

abolished the activity (Table 5). In contrast, the more acidic
acyl sulfonamides 26-27 showed low micromolar inhibition of
NSP14 MTase, albeit with a significantly poorer kinetic
solubility. Another well-known carboxylic acid isostere,
tetrazole 28, was prepared and retained a single-digit
micromolar inhibition. Phenol 29 showed no biochemical
activity and suggested a more acidic motif was required. These
replacements of the carboxylic acid also led to expected
increases in lipophilicity (except for 26), and typically reduced
kinetic solubility.

Finally, the impact of additional substitution to the northern
ring was examined with a view to improving key molecular
properties. It was hypothesized that adding an ortho-
substituent to the northern ring may introduce a conforma-
tional ‘twist’ to this series of molecules, with potential for
further increasing solubility. To probe this, compounds bearing
2'-substituents were designed and synthesized as before.
Encouragingly, the addition of a 2’-methyl group (30) gave
an improvement in solubility, and while similar levels of

Table 4. Structures, NSP14 MTase Biochemical Activity, and Physicochemical Properties of 9, 21—-23

R
|
N-N
cl
/i
N
Kinetic
Compound R pICso Solubility ChromLogD7.4 LLE“
)
[¢)
9 \(Q)L OH 53 86 3.4 1.9
21 &0 55 >200 3.2 23
OH
0
» R 42 200 28 1.4
O OH
o}
23 R 6.1 200 32 29
S OH
“LLE = pICg, — ChromLogD,.
D https://doi.org/10.1021/acsmedchemlett.5c00155
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Table 5. Biochemical Activity and Physicochemical Properties of Compounds 9 and 24—-29

R
|
N-N
cl
/i
N
Kinetic «
Compound R pICso Solubility (M) ChromLogD7.4 LLE
0
9 53 86 34 1.9
OH
o)
24 N <4.0 <1 55 -
H
0.0
25 s/ <4.0 <1 5.5 -
4 NH,
oes,,o o]
26 YN 5.7 <1 33 2.4
H
?Q o
27 %J\N/S\ 5.7 7 3.6 2.1
H
T
28 {LN'N 52 20 3.8 1.4
H
29 2 OH <40 81 63 ;

“LLE = pICs, — ChromLogD; .

Table 6. NSP14 MTase Biochemical Activity and Physicochemical Properties of Compounds 9, 10 and 30—35

Compound

9

10
30
31
32
33
34
35

o

I
O™z m I X

=

S
o
0Zo0o0no
a
Z

|
=

“LLE = pICgy — ChromLogD .

(o}
z | OH
N
R T X
N-N
Cl
Vi
N
pICso Kinetic Solubility (#M)
5.3 86
6.4 S1
5.8 151
54 16
4.7 162
5.0 46
<4.0 >200
6.6 50

ChromLogD, , LLE“

3.4 1.9
3.8 2.6
3.5 2.3
3.5 1.9
3.5 1.2
34 1.7
2.8 -

4.1 2.6

potency were observed, this came with increased lipophilicity
and resulted in a modest improvement to LLE (Table 6).
Hence further 2’'-substituents such as fluoro (31), methoxy

(32) and cyano (33) groups were prepared for further
comparison. While a marked improvement in kinetic solubility
was observed for methyl- and methoxy-containing compounds
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ACS Med. Chem. Lett. XXXX, XXX, XXX—=XXX


https://pubs.acs.org/doi/10.1021/acsmedchemlett.5c00155?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.5c00155?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.5c00155?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.5c00155?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.5c00155?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.5c00155?fig=tbl5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.5c00155?fig=tbl6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.5c00155?fig=tbl6&ref=pdf
pubs.acs.org/acsmedchemlett?ref=pdf
https://doi.org/10.1021/acsmedchemlett.5c00155?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Medicinal Chemistry Letters

pubs.acs.org/acsmedchemlett

Scheme 2. Synthesis of Compound 35

(o]
\/\/lLo/
36
+ a,b
NHNH2.HCI
/]
N
/ Cl
N4
37 38

OH

N-N

Cl

35

“Reagents and conditions: (a) NaOEt, EtOH; (b) POCL;, MeCN; (c) 3-Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid,

Pd(PPh;),, Na,CO,, H,O, 1,4-dioxane or DME.

Table 7. Further In Vitro ADMET Characterization of
Compounds 1 and 35

Compound 1 35
MLM CL;,, (#L/mL/mg) 7.1 <5.0
HLM CL,, (4L/mL/mg) <5.0 <5.0
Permeability (Caco-2)
A-B P, (10° cm/s) 6.0 9.7
B-A P, (10 cm/s) 4.8 12.3
Efflux ratio 0.8 1.3
CTG [A549] EC;, (uM) >50 >50

30 and 32, all other compounds had moderate solubility and
did not maintain the biochemical activity shown by 30. A final
adjustment to incorporate a 2/-pyridyl ring (34), which could
also lower lipophilicity via additional polarity, showed no
biochemical activity, which may be due to a larger change in
dihedral angle between the two rings, causing a stable, but
unfavorable conformation.

To combine previous observations, we reverted to an ethyl-
substituted core (in 10) and installed the 2’-methyl group,
resulting in compound 35 (Scheme 2). This promisingly
showed an additive effect with respect to biochemical activity
with potent inhibition of NSP14 MTase with a pICy, of 6.6. A

continued improvement in LLE was observed when compared
to compound 9, indicating that the additional groups were
efficiently contributing to biochemical activity.

We subsequently assessed compound 35 in in vitro ADMET
assays, particularly to evaluate metabolic stability, permeability
and cell toxicity, and compared these to compound 1 (Table
7). Good metabolic stability was observed in both microsomes
and hepatocytes, with half-lives >60 min which were
comparable to starting point 1. To probe the selectivity of
this series, compounds 1 and 35 were assessed against in a
panel of 15 methyltransferase proteins (Figure S4). Satisfy-
ingly, both compounds showed good selectivity with moderate
inhibition of only two methyltransferases at 10 M. Following
this, compound 35 was profiled in a permeability assay in
Caco-2 cells. Pleasingly, an improvement in permeability was
observed, and compound 35 exhibited a Caco-2 Py, value of
9.7 X 107® cm/s, and neither compound 1 nor 35 showed
significant efflux concerns. In order to assess for compound
toxicity, a CellTiter-Glo (CTG) cell viability assay showed no
cytotoxicity was observed for the selected compounds, with
ECs, values >50 uM in both cases. Hence, compound 35
possessed a well-balanced in vitro profile and prompted us to
investigate its activity in a cellular assay.
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Figure 2. (A) Antiviral activity of NSP14 MTase inhibitors 1, 7, 9, 10, 25, and 3$ against SARS-CoV-2. Calu3 cells were pretreated with a 3-fold
dilution range of inhibitor or remdesivir and infected with SARS-CoV-2 B.1.617.2 at an MOI of 0.1 for 72 h. The percentage of viral-induced cell
clearance or cytopathic effect (CPE) at each concentration was scored microscopically relative to the untreated infected and mock-infected control
wells on each plate. Toxicity-induced cell clearance was observed for compounds 1, 7, and 35 only at 100 uM, therefore these points were excluded
from the analysis and ECy calculations. Data are mean + standard deviation from two independent biological experiments (n = 2). Individual
points represent the mean of two technical duplicates per biological replicate. (B) Table showing comparison of NSP14 MTase biochemical activity

and antiviral activity for remdesivir 1, 7, 9, 10, 25 and 35.
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Compounds 1 and 35, and a further set of representative
inhibitors, were subsequently assessed in a viral infection assay
(Figure 2, Figure SS, Table S2). Each compound was screened
against the SARS-CoV-2 B.1.617.2 (Delta) variant in Calu3
cells. Viral-induced cell clearance in the presence of each
serially diluted compound or remdesivir control® was scored
microscopically, 3 days post infection. Both compounds 1 and
35 inhibited viral-induced cell clearance with ECy, values in
the low micromolar range, similar to remdesivir. Toxicity-
induced clearance was observed only at a top concentration of
100 uM for 1, 7 and 35. A dose-dependent response was
observed for all compounds except 25, which showed no effect
up to 100 M and did not inhibit NSP14 in biochemical
assays. Overall, in vitro biochemical activity correlated well with
cellular assay results, with the most potent NSP14 inhibitors
exhibiting the strongest antiviral effects. Notably, several low
micromolar NSP14 MTase inhibitors displayed ECy, values
exceeding 20 M in cellular assays, indicating a >10-fold
reduction in potency. A representative example is the matched
pair 10 and 38, for which similar biochemical potencies (ICs,
= 0.42 and 0.24 uM, respectively), were accompanied by
differentiated cellular activities (ECs, = 24.1 and 4.20 uM,
respectively). This discrepancy may be attributed to a
moderate increase in lipophilicity (ChromLogD,, = 3.8 and
4.1), potentially improving the cell permeability for compound
3S.

In conclusion, our study successfully identified and explored
a series of potent NSP14 MTase inhibitors, with compound 35
emerging as a promisingly positioned key exemplar. Com-
pound 35 not only demonstrated excellent biochemical
inhibition of NSP14 MTase, but also exhibited a favorable
ADMET profile, including good metabolic stability and low
cytotoxicity. Its potent antiviral activity, comparable to
remdesivir, further derisks the target and series as an approach
against human coronaviruses. Interestingly, evidence from the
literature had previously suggested that potent, cell permeable
NSP14 MTase inhibitors might have no effect on viral
replication in SARS-CoV-2."" Compound 35 exemplifies one
of the first small molecule inhibitors of NSP14 MTase with
antiviral activity. Hence, we have begun to investigate a series
of potent inhibitors of NSP14, with excellent ADMET profiles,
in an attractive position for further optimization for the
treatment of human coronaviruses.
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