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Breast cancer (BC) recurrence remains a major clinical challenge, leaving patients in perpetual uncertainty about disease relapse
after primary treatment. BC dormancy, an adaptive survival state of disseminated tumour cells, is a key driver of both early and late
recurrence. However, the mechanisms regulating BC dormancy remain poorly understood. Emerging evidence suggests that
tumour hypoxia, extracellular matrix (ECM) remodelling, and therapy-induced stress drive dormancy by altering cellular
metabolism, gene expression, and immune interactions, enabling long-term survival of dormant BC cells. With no dormancy-
specific therapies currently approved, a deeper understanding of dormancy-associated survival mechanisms is crucial for
identifying therapeutic targets and developing strategies to eradicate dormant BC cells, thereby preventing recurrence and
improving patient outcomes. This review comprehensively examines major dormancy-inducing factors and the adaptive survival
mechanisms of dormant BC cells. We also highlight critical gaps in preclinical models that hinder the translation of preclinical
cancer dormancy insights into clinical applications and propose potential therapeutic strategies to prevent BC recurrence.

Oncogene (2025) 44:3759-3773; https://doi.org/10.1038/541388-025-03529-3

INTRODUCTION

Despite significant advances in early diagnosis and treatment,
breast cancer (BC) remains one of the most devastating
malignancies worldwide, accounting for over 1 million deaths
globally each year [1]. In the UK alone, BC accounts for about
11,500 deaths with ~56,000 new cases every year [2]. With current
treatment advances, BC patients often respond to initial primary
treatments (surgery + radio and chemotherapy) with 76%
attaining a 10-year survival rate in the UK [2]. However, despite
the initial response to treatment, 25-45% of patients relapse with
fatal secondary or metastatic disease at distant sites (e.g. lungs,
liver, bone, brain, etc) months or years later [3, 4]. BC relapse/
recurrence and distant metastasis account for >90% of all BC-
related deaths and remain a significant challenge for curative
treatment [4]. Once metastasis occurs in BC patients, the 5-year
survival rate in the UK decreases from 86 to <20%, depending on
the location of the metastases [2, 5].

BC is a heterogeneous disease with subtypes defined by the
expression of hormone receptors: oestrogen (ER), progesterone
(PR), and HER2 [6]. Although the effectiveness of BC primary
treatment depends on the molecular subtype [7], the occurrence
of BC relapse is independent of the disease subtype [4]. All BC
subtypes can relapse post-treatment with aggressive metastatic
recurrence. However, the site of recurrence, rate, and timing are
subtype-specific. For example, the triple negative BC subtype
characteristically relapses early ( < 5 years) [8], whilst relapse in the
hormone receptor-positive subtypes occurs late (5-20 years) [3, 9].
Metastatic relapses remain a hallmark of incurable BC and occur
when cancer cells from the primary tumour site migrate into

secondary sites in multiple steps, often in a series of sequential
cascading events before re-emerging as clinically detectable
aggressive metastases [10]. Unfortunately, despite the clinical
relevance of dormancy and its role in breast cancer relapse and
recurrence, the biological mechanisms underlying these events
remain largely elusive. Cancer dormancy has long been proposed
to explain the late metastasis in patients, yet little is known about
the survival mechanisms that sustain long-term dormancy [11, 12].
Cancer dormancy is the phenomenon where disseminated
tumour cells (DTCs) from the primary tumour lie dormant and
undetectable for many years, surviving in blood/lymphatic
circulation before homing and re-proliferating at distant recur-
rence sites (the brain, bone, liver, lymph nodes, and lungs) [10].
This is often referred to as minimal residual disease (MRD) i.e. a
population of dormant BC cells which are non-proliferative and
resistant to anti-proliferative therapeutics [13, 14]. With no
treatments available currently to target and eradicate dormant
BC cells, the uncertainty about possible relapse after primary
treatment remains a significant concern for patients in remission.
Thus, understanding the mechanisms underlying cancer dor-
mancy and subsequent metastatic recurrence remains crucial for
identifying biomarkers and/or druggable targets to develop novel
dormancy-specific therapeutics.

This review, hence, aims to provide emerging insights into
different processes and factors that promote dormancy and
metastatic recurrence in BC and comprehensively discuss various
adaptive mechanisms that sustain the long-term survival of
dormant BC cells (Fig. 1). We conclude by providing insights into
new strategies that may be exploited as therapeutic approaches
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Fig.1 Overview of how breast cancer dormancy fuels recurrence. The emergence of dormant breast cancer (BC) cell populations occurs as an

adaptive response to dormancy-inducing stressors within the primary tumour microenvironment, including hypoxia, extracellular matrix (ECM)
remodelling, and anti-cancer therapies. Dormant disseminated tumour cells (DTCs) employ various survival mechanisms, mainly DNA damage
repair, autophagy, immune evasion, and transcriptional and epigenetic reprogramming. These adaptations enable dormant DTCs to persist
undetected in circulation while remaining biologically active. Upon reaching various metastatic niches, such as the bone (most common), lungs,
liver, and brain, disseminated tumour cells (DTCs) may encounter specialised microenvironments that provide dormancy-supporting signals.
These cues enable DTCs to persist in a quiescent state for extended periods. However, in response to reactivation signals such as inflammation,
niche remodelling, or immunosuppression, DTCs can exit dormancy, resume proliferation, and give rise to overt metastases, ultimately leading to
disease relapse. Although several potential therapeutic strategies have been suggested and are currently being attempted [185], we suggest that
targeting the survival mechanisms sustaining BC dormancy holds significant promise for preventing recurrence.

for eradicating disseminated dormant breast cancer cells before
the clinical recurrence of the disease.

BREAST CANCER DORMANCY
Cancer dormancy was first proposed by Rupert Willis in 1934 to
explain the late metastasis in patients where there was little
evidence of local recurrence, suggesting that cancer cells may lay
dormant in the tissues before recurrence [12]. These early
observations were further expanded by Geoffrey Hadfield who
suggested that recurrence occurred due to the dormant cancer
cells entering “temporary mitotic arrest” [15]. The term “dormant”
cancer cells describes the fact that these cancer cells remain alive
in the tissues for long periods, halting proliferation while retaining
the ability to reactivate and proliferate aggressively should
conditions change. Dormant cancer cells are non-proliferating
quiescent cells (albeit transcriptionally active) that have under-
gone GO-G1 cell cycle arrest with downregulated proliferation-
related markers such as Ki67 and pRb [16] and high expression
levels of dormancy-associated markers, including NR2F1 [17, 18].
It should be noted that tumour cell dormancy (cellular
dormancy) as described above is different from tumour mass
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dormancy. Tumour mass dormancy is the steady state of tumour
mass due to the balance between cell proliferation and death,
with no apparent tumour progression [14, 19]. However, cellular
dormancy (the focus of this review) is a slow-cycling or non-
proliferative (quiescence) yet metabolically active state of cancer
cells, which is more consistent with the classical definition of
dormancy than tumour mass dormancy [20].

Dormant cancer cells and cancer stem cells

Dormant cancer cells are often confused with cancer stem cells
(CSQ) such that the term dormant DTC and CSC are often used
interchangeably. It is worth highlighting that although dormant
DTC and CSC share common features, including the ability to
remain quiescent, stem-like characteristics and therapy resistance,
all of which are related, they are altogether a distinct population of
cells. CSC are defined as cancer cells which can self-renew and
differentiate, aiding the heterogeneity often found within tumours
[21]. CSC also have an enhanced resistance to therapeutics whilst
displaying the ability to evade the immune system, invade
surrounding tissues, and metastasise to secondary sites [21].
Whilst these characteristics are very similar to those used to define
dormant DTC, the key differences are that, firstly, CSC haven't
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undergone cell cycle arrest and continue to cycle and divide albeit
very slowly in contrast to the GO-G1 cell cycle arrest seen in
dormant DTC [22, 23]. Secondly, CSCs express (by their very
nature) stem-ness markers such as CD34, NANOG, etc, which
dormant cancer cells do not express or express as a minimal
selection of markers [14]. Thirdly, CSCs may retain the ability to
differentiate into different cell types, unlike the dormant cancer
cells, which remain at the same stage of differentiation and
additionally represent a subpopulation that can perpetuate the
growth of the malignant cell population indefinitely [14, 24-26].

Cancer dormancy drive BC recurrence

Although the biological understanding remains elusive, cancer
dormancy has now been well-established as a key culprit of BC
relapse. Patients diagnosed with BC, regardless of the clinical
stage, already harbour dormant disseminated tumour cells (DTCs)
in distant metastatic sites, bone marrow, in particular [27, 28]. For
example, almost 50% of BC patients with persistent DTCs in their
bone marrow experience recurrence >5 years post-treatment [29].
Additionally, the increased number of DTCs found in bone marrow
aspirates was found to correlate directly with reduced metastasis-
free survival in BC patients [30]. Clinical evidence in both primary
tumours and metastases suggests that late BC recurrence occurs
as a result of dormant BC cells having the ability to survive silently
in a state of dormancy and escape treatment, considering that
conventional cancer therapies target proliferating cells [31].

Dormant DTCs in blood or lymphatic circulation are referred to
as circulating tumour cells (CTCs). The detection of CTCs in BC
patients has been shown to correlate with the incidence of
metastasis and disease progression [28, 32, 33]. For example, a
recent study in 177 women with metastatic BC demonstrated that
the burden of CTCs in patients’ blood was directly related to
disease progression and a poor prognosis [34]. In addition, CTCs
have been detected in patients’ blood decades after primary
treatment [3, 35]. These observations suggest that tumour cells
exist in circulation in a state of dynamic dormancy, which fuels BC
relapse [36].

Surprisingly, the detection of circulating BC cells has also been
reported in healthy women without BC [33, 37]. For example, in a
recent study, CTCs of BC were detected in 17.2% of healthy
women with no BC diagnosis [33]. These observations support the
narrative that cancer cells disseminate early in the form of
dormant disseminated tumour cells (DTC) before an initial
diagnosis of the disease. With the current limitations in detecting
DTCs and CTCs, the clinical burden of DTCs and CTCs is thought to
be underestimated in patients with many solid tumours, including
BC [37]. Although the biological understanding of recurrence and
metastatic BC remains limited, the recent evidence, as discussed,
strongly implicates dormancy as a key culprit of the disease. Thus,
a better understanding of the biological mechanisms underlying
the establishment and maintenance of BC dormancy and
recurrence is key to improving patients’ outcomes.

INDUCTION AND ESTABLISHMENT OF DORMANCY IN BC

The signals and factors that drive dormancy in cancers remain
poorly understood, however, cellular dormancy of most cancers,
including BC, is believed to be an induced adaptive and protective
state of cancer cells in response to primary tumour microenviron-
ment stresses (hypoxia, reduced access to nutrients), extracellular
matrix (ECM) interactions, and anti-cancer therapeutics
[17, 38-40]. Thus, cancer dormancy is considered a protective
state adopted by cancer cells to promote survival whilst evading
treatment. Recent and expanding evidence strongly suggests that
the microenvironment surrounding both DTCs and CTCs is critical
in establishing and maintaining this cell population [41].
Considering the scarcity of experimental models which accurately
mimic clinical dormant phenotypes, characterised by low or
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absent expression of proliferation markers (e.g., Ki-67, PCNA),
upregulation of dormancy-associated genes (e.g., NR2F1, DEC2,
p27), resistance to chemotherapy, and altered metabolic and
signalling pathways, the understanding of how dormant BC cells
are induced and sustained remains critical for developing
clinically-relevant experimental models.

Tumour hypoxia

Tumour hypoxia is a common and significant feature of BC due to
the aberrant vascularisation and poor intratumour blood supply,
which reduces oxygen supply to some regions within the tumour
[42]. Hypoxic regions within tumours are clinically significant,
having an established association with distant metastases, chemo-
and radio-resistance, and ultimately a poor prognosis. For
example, in a recent study where 1178 women with primary BC
were followed up for 15 years for recurrence, patients with
hypoxic primary breast tumours were demonstrated to have an
increased risk of recurrence [43]. The relationship between
hypoxia, metastasis, and recurrence in BC is well-established, such
that intravasation of BC cells in the primary tumour is proven to be
initiated by hypoxia [44]. Even though there is no definitive
answer to how dormancy is induced and established in BC, it is
generally agreed that hypoxia plays a role here (Fig. 2).

The hypoxic population of solid tumours has been demonstrated
to enter a state of dormancy (G1/GO arrest) with reduced cellular
metabolism as an adaptive survival mechanism [45, 46]. In support
of these observations, Fluegen et al. have demonstrated that tumour
hypoxia generates a population of dormant DTCs, with a long-lived
dormancy and stress-sustaining programme that influences the
eventual fate of these dormant DTCs [17]. BC cells in a hypoxic
microenvironment have been shown to exhibit high expression of
key dormancy genes, including NR2F1, DEC2, and pRb [17, 46].
Hypoxia priming of DTCs in BC may contribute to their enhanced
survival in the hypoxic bone marrow microenvironment. The bone
marrow is the most favourable homing metastatic site for
disseminated dormant BC cells, such that about 60% of ER* BC
patients with metastatic relapse exhibit bone metastasis [27, 47, 48].
Although the exact reason for this preferential affinity is not yet
known, the hypoxic microenvironment of the bone is believed to
support the survival of DTCs and further influences the induction of
the proliferative DTCs to enter dormancy [49]. DTCs in patients’ bone
marrow have been implicated as the major culprits that eventually
re-proliferate into overt bone metastases.

Hypoxia-inducible factor-1a (HIF-1a) signalling has been postu-
lated as key to the establishment of dormant DTC populations in
the hypoxic microenvironment [50]. However, it has been
demonstrated that BC dormancy in hypoxia can also occur via
HIF1a-independent mechanisms [39, 51]. This suggests that
different sets of hypoxia-related mechanisms could be responsible
for dormancy in hypoxic BC. One such HIF-10-independent
signalling pathway is the activation and signalling of nuclear
factor erythroid 2-related factor 2 (NRF2). NRF2 is the master
regulator of the cellular antioxidant response [51]. High nuclear
NRF2 staining and subsequent increased antioxidant response to
oxidative stress has been demonstrated to be critical to the
survival and recurrence of BC in preclinical dormancy models [51].
With elevated levels of reactive oxygen species (ROS) associated
with hypoxia leading to high oxidative stress, hypoxia-induced
dormancy perhaps is an adaptive state of BC cells to survive the
associated oxidative stress [52].

Interestingly, the impact of hypoxia on cancer dormancy is not
limited to the generation of dormant DTC populations in the
hypoxic microenvironment, but also to the fate of these cells as
CTCs in blood circulation [53]. Hypoxia priming of DTCs has been
shown to increase their resistance to oxidative stress, with
improved survival and metastatic efficiency [54-56]. In addition,
the downregulation of proliferation markers such as Ki67 and
cyclin-dependent kinases (CDKs) [57], and upregulation of the CDK
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Fig.2 Tumour hypoxia as a major inducer of breast cancer dormancy. Hypoxia is a key driver of breast cancer (BC) dormancy. The presence
of hypoxic subregions within the primary tumour is a common feature of BC, arising due to rapid tumour growth exceeding angiogenesis and
leading to insufficient oxygen supply. Through both HIF-1a-dependent and independent signalling pathways, hypoxia primes BC cells with
stress-adaptive mechanisms that enhance their resilience and survival. This adaptation contributes to the survival of dormant BC cells in the
bone marrow, a naturally hypoxic microenvironment. Hypoxia-primed BC cells exhibit a dormant phenotype (G0/G1 arrest) with increased
expression of dormancy-associated genes such as NR2F1, DEC2, and post-translational events like pRb, along with activation of the NRF2
oxidative stress response. The well-established link between hypoxia and BC dormancy in disseminated tumour cells (DTCs) may explain the
poor prognosis and aggressive recurrence commonly observed in hypoxic BC cases.

inhibitors p16 and p27 in hypoxic BC cells [58, 59], confirms a key Extracellular matrix interactions

role of hypoxia on dormancy. Hypoxia has been well implicated to Aside from the hypoxic microenvironment, the interaction of
trigger intravasation and increase the metastatic ability of BC cells tumour cells with the extracellular matrix (ECM) of the primary
[53]; however, it remains unexplored how hypoxia influences the tumour is considered as critical to the induction and establish-
establishment of long metastatic dormancy in BC. ment of dormant BC cells [60]. The ECM is the major non-cellular
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Fig. 3 Extracellular matrix (ECM) remodelling and interaction with BC cells induce dormancy. As a major component of the tumour
microenvironment, the extracellular matrix (ECM), particularly collagen (Col-3) and fibronectin, plays a pivotal role in inducing dormancy in
breast cancer (BC). ECM remodelling in the primary tumour enhances BC cell dormancy through the activation of STAT signalling and ERK/p38
pathways. In addition, collagen-rich ECM, commonly found in tumour hypoxia, increases ECM stiffness. This stiffness restricts cancer cell
proliferation by mechanically confining the cells within a limited microenvironment, thereby increasing mechanical stress, which promotes an
adaptive dormant state in breast cancer (BC) cells. Thus, the ECM-induced dormancy is considered as an adaptive state of BC cells in response

to mechanical stress originating from the tumour microenvironment.

component of the tumour microenvironment (TME) [61]. Evidence
has long been provided that the basement membrane provides a
conducive microenvironment that promotes dormancy in BC cells
[62]. The impact of tumour ECM on dormancy in BC is component-
dependent, such that interaction with different components of the
ECM exerts different cellular fates (either to induce dormancy or
remain proliferative). For example, several studies have estab-
lished collagen type Ill (Col-3) enriched ECM as a major regulator
of tumour cell dormancy in BC, particularly in HER2+ and ER+
subtypes [60, 63, 64]. BC cells/Col-3 interaction has been
demonstrated to induce and maintain dormancy by disrupting
DDR1 kinase-mediated STAT1 signalling [60]. In addition, the
remodelling and assembly of fibronectin (ECM protein) via
transforming growth factor beta (TGFP) signalling and ERK/p38
activation has been shown to be key in maintaining dormancy in
BC cells (Fig. 3) [65, 66]. Elevated levels of TGFf are a common
feature of the tumour microenvironment and contribute to
extracellular matrix (ECM) remodelling by promoting fibronectin
production from both stromal and tumour cells [67]. The altered
ECM, characterised by increased stiffness and enriched fibronectin
content, trigger cellular stress-mediated activation of
p38 signalling, a key regulator of dormancy in breast cancer
[66, 68]. A delicate balance between the activation (phosphoryla-
tion) of ERK1/2 and p38 MAPK plays a critical role in determining
whether cancer cells enter a proliferative or dormant state. A high
p38-to-ERK activity ratio is a well-established molecular hallmark
of dormancy, promoting cell cycle arrest and enhancing the
survival of disseminated tumour cells (DTCs) [69-71] Recently,
dormant TNBC cells have been demonstrated to be enriched with
ECM proteins that induce and sustain dormancy via MAPK
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signalling pathway [72]. It has been well-documented that the
tumour ECM s critical to the survival and treatment-resistant
phenotype of BC dormant cells.

The ECM influence on dormancy in BC has perhaps been well
described with integrin signalling. However, contrary to the BC
cells/Col-3 or fibronectin interactions that induce dormancy, it is
the loss of integrin-mediated ECM attachment that induces
dormancy in BC cells [73-75]. Integrins are adhesion receptors
that are known to transduce signals from the ECM, which are
crucial to cell proliferation, survival, and motility [76]; hence, its
loss has been shown to promote cell cycle transition from a
proliferative to a quiescent state. In BC preclinical models, the loss
of integrin betal, in particular, has been well demonstrated to
induce and sustain dormancy by disrupting the integrin (3;-Focal
Adhesion Kinase signalling axis, which is crucial for pro-survival
pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt
signalling [77, 78]. Although the loss of integrin-dependent
anchorage induces anoikis, a form of cell death [79], BC cells
employ various other mechanisms, including the induction of an
anoikis-resistant phenotype and stromal alterations, to suppress
anoikis [80, 81]. These observations are consistent with reported
cytostasis associated with integrin inhibitors in BC [82]. The
influence of ECM proteins on dormancy induction and sustenance
in BC perhaps explains the preferential affinity of dormant BC cells
to home in the bone, as osteoblasts and osteoclasts in the bone
microenvironment can secrete many ECM-related factors similar to
those found in the ECM of breast tumours [83].

Mechanical forces originating from the tumour microenviron-
ment, such as ECM stiffness, are another identified factor that
stimulates dormancy induction in BC [84]. Collagen production

SPRINGER NATURE
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determines matrix stiffness and regulates the balance between
tumour dormancy and proliferation. Tumour hypoxia increases
collagen hydroxylation and deposition by both cancer cells and
cancer-associated fibroblasts, which stiffens the extracellular
matrix [85, 86]. Increased ECM stiffness is considered to restrict
the proliferation of cancer cells in a confined microenvironment;
hence, dormancy is induced as an adaptive state in response to
this mechanical stress [41]. In general, ECM stiffness has been
shown to generate dormant subpopulations of cancer cells with
enhanced invasive and recurrence ability [87, 88]. Although
mechanisms underlying matrix stiffness and BC dormancy remain
largely obscure, several ECM-sensing and mechano-transduction
pathways have been proposed. For example, in TNBC cells,
increased ECM stiffness was demonstrated to induce and sustain
dormancy via an epigenetic programme that activates cell-cycle
inhibitors, p21 and p27, whilst downregulating integrin b3 [89].
Also, BC cells grown on a stiff matrix induced expression of
dormancy genes through the integrin Bl1-mediated PI3K/Akt
pathway in response to the mechanical stress [90]. Breast tumour
stiffness is strongly linked to distant metastasis [91, 92], and this
may be due to an increase in dormant BC population in response
to ECM-induced mechanical stress.

Therapy-induced stress

In response to treatment, BC cells are now known to induce pro-
dormancy programmes as a resistance mechanism to evade
treatment. BC dormancy in patients occurring in the therapy
setting, either ongoing or completed, has been reported [93]. The
induction of dormancy during anti-BC therapy may either be
directly through epigenetic and metabolic reprogramming
[94-96] or indirectly by creating dormancy-inducing stress factors,
such as hypoxia, nutrient deficiencies, and ROS generation, that
stimulate the treatment-resistant dormant phenotype [97, 98]. For
example, endocrine therapy (ET) has now been established to
force BC cells to enter a dormancy state, rather than killing them
in HR™ BC [94, 99]. A similar observation has been reported in
palbociclib (CDK4/6 inhibitor)-treated ER + BC cells [100] and in
entinostat (histone deacetylase inhibitor)-treated in breast cancer
cells, independent of ER status [95]. In TNBC cells, the use of
5-azacytidine (AZA, a DNA methylation inhibitor) in combination
with retinoic acid has been demonstrated to induce dormancy
[101]. With the recent discovery of induced cellular dormancy
associated with ET and CDKA4/6i treatment of BC cells, it is no
surprise that most BC patients who receive ET and CDK4/6i
eventually relapse, even decades after the treatment period
[9, 102]. ET and CDK4/6i is the standard treatment for HR*, HER2-
ve metastatic breast cancer [102]. The long latency period and
subsequent fatal relapse experienced by HR™ BC patients is
therefore likely due to the induction of a population of dormant
BC cells by these targeted therapies [4].

Therapy-induced dormancy in BC is not limited to targeted
therapy, as earlier discussed, but also in response to conventional
chemotherapy. In TNBC cells, treatments with doxorubicin and
cyclophosphamide have been shown to generate a dormant
population of TNBC cells, which eventually regrow as metastases
post-treatment [103]. Again, neoadjuvant chemotherapy (NAC) in
TNBC patients led to a dormant persistent population that was
adaptively selected via transcriptional reprogramming [104].
Additionally, in a preclinical mouse model, cyclophosphamide
treatment was observed to induce epithelial-to-mesenchymal
transition (EMT) of BC cells to generate a persister cell population
with a dormant phenotype (reduced proliferation, increased
resistance to apoptosis), which was key to metastatic recurrence
in the lung post-treatment [105]. Variety of mechanisms under-
lying therapy-induced dormancy has been reported, although
mechanism appears therapy dependent. For example, AZA-
treatment of BC cells induce dormancy via a SMAD4-
transcriptional programme that restores TGF-B-signalling, which
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promotes dormancy [101, 106]; however, in metformin-treated BC
cells, the induction of dormancy has been attributed to increased
mitochondrial respiration and increased oxidative stress [96]. In
addition, a global increase in heterochromatin-associated mod-
ifications has been reported as responsible for ET-induced
dormancy [94, 107]. It is worth noting that these mechanisms
are usually not mutually exclusive but co-exist. For example, the
activation of the p38-MAPK pathway and the induced expression
of p27 often coexist with most other identified mechanisms
underlying therapy-induced dormancy [70, 101, 108]. In summary,
BC cells induce dormancy as an adaptive protective state to
survive different types of chemotherapy or targeted therapy. This
significantly contributes to the burden of dormant DTC associated
with both early and late recurrence of BC.

SURVIVAL MECHANISMS OF DORMANT BC

Cancer dormancy remains an unmet priority in BC treatment, with
an urgent need for novel therapeutics that eradicate dormant
cancer cells before the fatal recurrence of the disease. Unfortu-
nately, the adaptive mechanisms that sustain both initial and
long-term survival of disseminated dormant BC cells before their
recurrence are poorly understood. However, several mechanisms,
including stress signalling responses, transcriptional and metabo-
lism reprogramming, post-transcriptional alterations, DNA damage
repair (DDR), immunosuppression etc., which are not mutually
exclusive, have recently been suggested to be key to the survival
and treatment-resistant phenotype of dormant BC cells (Fig. 4).
Although these are early days, a better understanding of the
biological factors underpinning these dormancy-sustaining
mechanisms is critical in developing new therapeutic strategies
that eradicate dormant BC populations, thus suppressing their re-
emergence as fatal clinical relapse of the disease.

Transcriptional reprogramming
Transcriptional reprogramming is an early event in cancer
dormancy as it is required to induce the genetic programme
critical to the induction and maintenance of dormant phenotypes.
Cancer dormancy initiates a comprehensive re-writing of tran-
scriptional programmes by selectively activating the expression of
pro-dormancy genes whilst suppressing pro-proliferative gene
expression [109-111]. This event primes dormant cancer cells with
dormancy-surviving programmes, such as autophagy [112], stress-
induced p38-regulated transcription factor network [69], EMT
programme [104, 113], DNA damage repair [114], and NR2F1-
mediated quiescence programmes [109], which are key to the
survival, invasiveness, and treatment-resistant phenotype of these
cells. For example, dormant BC cells with high affinity for bone
metastasis have been shown to exhibit a distinct transcriptional
signature via transcriptional reprogramming to activate the
expression of prominent BM-associated genes that promote bone
metastasis whilst suppressing the expression of a heterogeneous
group of genes associated with the primary TME [115].
Additionally, chemo-resistant transcriptional programmes
observed in dormant DTC of BC patients after treatment were
found not to be pre-existing, but rather acquired through
transcriptional reprogramming in response to treatment [104].
The reprogramming of transcriptional activities in cancer
dormancy is critical to the survival of dormant cells, such that
the genetic signature of the dormancy in BC is considered strongly
predictive of a metastatic phenotype [116]. Interestingly, the
resultant genetic profile of individual dormant cancer cells after
transcriptional reprogramming is diverse and heterogeneous
depending on the tumour type and a patient’s genetic makeup.
For example, the molecular characterisation of circulating dormant
cells from the same blood sample of a BC patient demonstrated
heterogeneous subpopulations with different transcriptional
profiles [117, 118]. The heterogeneous nature of the resultant
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Fig. 4 Hallmarks of adaptive survival mechanisms in dormant breast cancer. This summarizes five major adaptive survival mechanisms
employed by dormant breast cancer cells. These mechanisms enable the cells to endure extended periods of dormancy and facilitate
recurrence when environmental conditions change. Importantly, the mechanisms are not mutually exclusive but are likely to converge on a

common intersecting pathway.

transcriptional profiles of dormant breast cancer (BC) cells post-
reprogramming reflects the clinical heterogeneity among meta-
static lesions, which remains a challenge to treatment [119].

Global transcriptional repression. With this said, the reprogram-
ming of transcriptional activities, despite the diverse resultant
dormancy-sustaining signatures and programmes of individual
dormant BC cells, converges on global repression of the
transcription machinery [111]. The reduction in the rate of global
transcription (global transcriptional repression) is a common and
key feature of all transcriptional reprogramming in cancer
dormancy [109, 111], which enables dormant cells to remain
transcriptionally active yet at a reduced rate compared to
proliferating cell [120]. The occurrence of transcription repression
is evident in dormant cancer cells with the induction of global
chromatin repression and condensation [109, 120], although its
significance as a survival mechanism for dormant cancer cells
remains elusive.

However, in dormant yeast models, global transcriptional
repression has been demonstrated as an essential mechanism
required for the longevity and reversibility of the dormant yeast,
as it allows only the expression of genes that promote survival
whilst maintaining low transcription-associated DNA damage
[120, 121]. The inhibition of global transcriptional repression in
these cells induced permanent arrest with a shortened lifespan
[121]. With the repression of transcriptional activity in dormant
yeast demonstrated to be similar to their mammalian counterparts
[122], global transcription repression could potentially be an
adaptive survival mechanism of dormant BC cells, although the
mechanism underlying this process during cancer dormancy
remains unknown.

Autophagy

Autophagy is a well-established adaptive survival mechanism of
cells by which cellular components are recycled to generate
energy in response to cellular stress, such as DNA damage,
hypoxia, nutrient deprivation, and other metabolic stresses [123].
As a stress signalling response, the activation of autophagy is
central to tumour development. It has been described as being
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key to the progression and treatment-resistant phenotype of
many tumours, including BC [124]. The induction of autophagy in
BC dormancy is well demonstrated and has been long proposed
as a potential survival mechanism of dormant cancer cells [112].
Although little experimental evidence initially supported this, a
growing body of evidence in recent times now seems to establish
autophagy as critical to the survival of disseminated dormant
breast cancer cells [46, 125-127]. The occurrence of autophagy
has now been demonstrated and validated in various experi-
mental BC dormancy models, including hypoxia-induced [46],
ECM-induced [127] or therapy-induced [125, 128] dormancy
models. In these models, the induction of autophagy in dormant
breast cancer (BC) cells has been shown to occur through various
mechanisms. These autophagy-inducing mechanisms include the
activation of PTEN-induced putative kinase protein 1 (PINK1) in
response to increased oxidative stress induced by high ROS levels
in dormant BC cells [52, 127], activation of AMP-activated protein
kinase (AMPK) in response to ECM detachment and hypoxia
[129, 130], and reduced PI3K-AKT signalling in response to
nutritional stress [131]

Autophagy has been demonstrated in many preclinical models
as a critical survival mechanism for dormant breast cancer (BC)
cells, with the pharmacological and genetic inhibition of
autophagy leading to the death of dormant BC cells and the
subsequent inhibition of tumour recurrence. Additionally, autop-
hagy has been shown to protect dormant BC cells by inducing
chemo-resistant phenotypes leading to the survival of dormant BC
cells during treatment [132]. On the contrary, in dormant BC stem
cells, the inhibition of autophagy was observed to drive the
escape from metastatic dormancy as well as activate the
proliferative programmes of BC stem cells (tumour relapse)
[112], suggesting autophagy as an anti-proliferative mechanism
of dormancy rather than an adaptive survival mechanism as earlier
stated. To explain this contradiction, Aqui et al. demonstrated that
it is the genetic inhibition of autophagy via ATG5 deletion that
elicits dormancy escape but not pharmacological inhibition of
autophagy using hydroxychloroquine [125]. With the role of
autophagy in dormancy still largely elusive, it would be essential
to identify autophagy mechanisms that either support survival or
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maintenance of quiescent phenotypes of dormant BC cells, as this
will be critical in the consideration of which pathway can be
targeted as a therapeutic strategy. Interestingly, the role of
autophagy in dormancy is not limited to cancer dormancy as it
has also been shown to support the survival of nematode larvae in
their dormant state [133]. This further underscores the significance
of autophagy in the survival of quiescent cells such as BC
dormant cells.

Clinical significance of autophagy in BC dormancy. With these
encouraging pre-clinical findings, the inhibition of autophagy as a
therapeutic strategy to eliminate dormant breast cancer (BC) cells
is currently being assessed in several clinical trials (NCT03032406;
NCT04841148; NCT0452385). These trials are evaluating the
efficacy of the autophagy inhibitor hydroxychloroquine either as
a monotherapy or in combination with a checkpoint inhibitor
(avelumab), a CDKA4/6 inhibitor (palbociclib/ abemaciclib), or an
MTOR inhibitor (everolimus) to eliminate dormant cancer cells in
BC patients who are in remission but harbour DTCs in their bone
marrow. Although publication of this data is currently eagerly
awaited, a preliminary report from one of these ongoing trials in
TNBC patients (NCT03032406) suggests that hydroxychloroquine
and everolimus effectively reduced DTC burden (80% reduction)
with only 2/53 patients experiencing disease recurrence after a
median follow-up of 42 months (range 7-60 months) [134]. In
summary, the current data, although limited, appear to position
autophagy as a critical survival mechanism for dormant breast
cancer (BC) cells and suggest that inhibiting autophagy may be a
potential therapeutic strategy to suppress BC recurrence by
eradicating residual dormant cancer cells.

DNA damage repair mechanisms

Breast cancer cells with a dormant phenotype exhibit highly
efficient DNA damage repair (DDR) machinery, with upregulation
of several DDR pathways which contribute to their chemo- and
radio-resistant phenotype [135-138]. The activation of DDR
mechanisms is crucial for the survival of dormant cancer cells
following primary treatment. The DDR machinery is a highly
complex network of mechanisms that detect and repair DNA
damage to maintain genomic stability and integrity. Hence, the
effectiveness of chemo-and radio therapies as cancer treatment is
dependent on the inability of cancer cells to efficiently repair the
high levels of DNA damage inflicted on them by these therapies
[139]. However, enhanced DDR activity is reported in many
dormant cancer cells, including BC [136], such that DDR signalling,
particularly the ATR-Chk1 pathway (a key DDR mechanism) in a
cohort of invasive BC patients, was shown to be predictive of early
local and distant recurrence [140]. This is suggestive of an
essential role of DDR in the survival of dormant BC cells,
considering that dormant BC cells are responsible for BC
recurrence. In addition, expression of DDR proteins, ERCC1 [141]
and RAD51 [142], in dormant CTCs in blood samples of metastatic
BC patients has a significant association with therapy failure,
which is suggestive of enhanced DDR capacity, particularly base
excision and homologous recombination repairs. Non-
homologous end joining repair has also been implicated in
facilitating DNA damage repair in ER+ dormant breast cancer cells
in response to chemotherapy and radiotherapy treatment [138].
Consistently, the inhibition of the DDR pathway has been shown
to sensitise dormant BC cells to chemotherapy such that the
combination of DDR inhibitors to current chemotherapy has been
proposed as a potential strategy to eliminate dormant BC cells
[1371. In support of this, an inhibitor of PARP (a DDR protein) was
observed to significantly reduce recurrence risk by 42% and
prevent progression to metastatic disease among high-risk, HER2-
negative BC patients [143]. Just as with most active proteins in BC
dormancy, the exact role of PARP in the survival of dormant BC
cells remains unknown, although its inhibition appears to hold
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therapeutic potential in eliminating dormant BC cells, which in
turn reduces metastatic recurrence.

DDR and oxidative stress in BC dormancy

Resistance to oxidative stress is common features of dormant
cancer cells, which some have suggested may be due to the high
expression and activity of antioxidant elements such GPX4, ALDH,
and NRF2 in these cells [54, 144]. However, the increased
activation of DDR mechanisms in BC dormant cells even in the
absence of DNA damage may perhaps contribute to the resistant
phenotype of dormant BC cells to oxidative stress. Dormant DTCs
are highly sensitive to intracellular ROS activation, a series of
molecular mechanisms, aiming to control excessive oxidative
stress [145]. Loss of DDR players such as NUMA and ATM has been
shown to increase oxidative DNA damage in quiescent cells like
neuron [146]. However, this phenomenon is yet to be studied in
dormant cancer cells. Interestingly, in normal quiescent cells,
PARP1 has recently been reported to play a key role in the repair
of oxidative DNA breaks and cell survival by binding to chromatin
through NuMA following oxidative DNA damage to cells [147].
With high levels of ROS in dormant BC cells, PARP1 could play a
critical role in the continuous repair of oxidative DNA damage,
potentially contributing to the resistance of dormant BC cells to
oxidative stress. However, this has yet to be tested. Coincidentally,
PARP inhibition has been shown to significantly reduce the
incidence of recurrence in BC patients. These observations
reinforce the potential yet unexplored role of DDR players and
oxidative stress in dormant BC cells [143].

The expression of DDR proteins in dormant BC cells has been
suggested to occur in response to DNA damaging treatment [114].
However, an increased expression of DDR proteins has been
reported in yeast dormancy models in the absence of DNA
damage [121]. In this model, the expression of DDR protein Rad93
(human homologue CHK2) was shown as a key checkpoint in the
induction and maintenance of dormancy/quiescence in response
to replicative stress (not DNA damage) such that the inhibition of
this checkpoint led to apoptotic cell death. Additionally, Rad93
was demonstrated to be key to the transcriptional reprogramming
of these cells during dormancy [121]. It remains to be elucidated if
these mechanisms are relevant to the survival of dormant BC cells.

Epigenetics mechanisms

Dormancy-induced epigenetic programmes, particularly DNA
methylation and histone modifications, have been well implicated
in both the survival and subsequent re-proliferation of dormant
BC cells. Epigenetic alterations are common in BC, particularly HR*
subtypes, and are suggested to contribute to the long-term
dormancy associated with this disease [148]. For example, ET-
induced dormancy in HR* BC patients is characterised by a
consistent epigenetic reprogramming which includes a global
increase in histone repressive marks (H3K9me2, H3K27me3, and
H4K20me3) [107]. Interestingly, H3K27me3-associated polycomb
repressors are key in the global transcriptional repression of
genes, particularly notch-related genes in dormancy [149].
Consequently, the addition of epigenetic therapy to the current
treatment of BC is being investigated in BC patients
(NCT02115282, NCT01935947, NCT01928576, NCT02453620) as a
new strategy to eliminate dormant BC cells and prevent a
recurrence.

Tumour hypoxia, ECM stiffness and antiproliferative therapies
have been reported to trigger and sustain dormancy in BC
through diverse epigenetic programmes which mediate the
activation of different dormancy-sustain programmes, leading to
heterogeneous populations of dormant BC cells [89, 103, 150] The
epigenetic landscape of dormant BC cells is complex, and little is
currently known about the definite epigenetic mechanism
responsible or critical to the survival of dormant cancer cells.
However, increased hypermethylation of genes including the
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tumour suppressor genes CST6, SOX17, and BRMS1 has been
shown in dormant CTCs from BC patients, particularly with
metastatic disease [37]. In addition, the upregulation and
activation of NR2F1-mediated dormancy programmes, which
included the transcriptional activation of histone repressive marks
(H3K4me3 and H3K27ac) and the deacetylation of histone H3, is
epigenetically upregulated [109]. The upregulation of Tet-2,
epigenetic enzyme, and subsequent generation  of
5-hydroxymethylcytosine has been shown to be associated with
the maintenance of dormancy in BC cells [89].

Despite these insights, it remains to be determined whether the
epigenetic reprogramming in dormant cancer cells promotes anti-
proliferative mechanisms of dormancy rather than an adaptive
survival mechanism, as the direct inhibition of dormancy-induced
epigenetic programmes does not eliminate the population of
dormant BC cells but rather prolongs their latency period of
dormancy. For example, the inhibition of histone deacetylase in
BC cells was shown to induce a promotion of dormancy (not cell
death) through epigenetic reprogramming [95]. However, inhibit-
ing histone methyltransferase, EHMT2, was observed to prevent
the development of dormancy in BC cells and further eradicate
dormant BC cells by reversing their dormancy-induced epigenetic
programme [107]. It is possible that the epigenetic reprogram-
ming of dormant BC cells complements their transcriptional
reprogramming to activate various dormancy-surviving pro-
grammes, including autophagy, immunosuppression and DDR
mechanisms. For example, this inhibition of autophagy in dormant
BC cells using hydroxychloroquine also deregulates DNA methyla-
tion and DDR mechanisms of these cells [137, 151]. These reports
suggest that epigenetic reprogramming in dormant breast cancer
(BC) cells may play a critical role in both the induction and
maintenance of dormancy, as well as in subsequent adaptive
survival mechanisms.

Immunoevasion

The immunosurveillance of cancer cells by the hosts’ immunity is a
barrier to the successful dissemination and subsequent metastatic
colonisation of cancer cells. However, dormant cancer cells,
particularly those in circulation, are now known to evade this
immunity through various immunoevasive mechanisms, thereby
advancing their survival and progression [152]. Immunoevasion is
considered as an emerging hallmark of cancers, although its
generality remains to be established among human cancers [153].
Nevertheless, its significance has been established as key to the
progression of BCs. For example, the suppression of the innate
immunity (interferon pathways in particular) by BC cells has been
shown to enhance escape from immunosurveillance, thus
increasing CTC population in circulation and promoting bone
metastasis [154]. In addition, BC patients with a suppressed
expression of genes associated with innate immune responses
developed a higher number of bone metastases [154].

Dormant BC cells are now known to be primed with several
immune-escape properties in the primary TME prior to their
dissemination. In addition, the expression of programmed cell
death ligand 1 (PD-L1) is upregulated in hypoxic cancer cells as an
immune escape from cytotoxic T-cells [155]. Similar observations
have been reported with EMT- and drug-induced dormancy
[156, 157].

Consequently, dormant BC cells, whether within the primary
tumour or in circulation as CTCs or at the site of colonisation,
exhibit diverse immunosuppressive and immunoediting proper-
ties which promote their survival. Dormant populations of TNBC
cells have been shown to resist T cell attack by forming an
immunosuppressive cluster through activation of a hypoxia-
induced programme [158]. Dormant DTCs of BC in the lungs are
also reported to avoid immune attack by recruiting and
accumulating neutrophils to create immunosuppressive niches
[159]. CTCs from BC patients, regardless of HR or HER2 status,
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frequently express PD-L1 expression as a means to avoid their
elimination by T cells in circulation [160]. This high PD-L1
expression on CTCs from BC patients has been suggested as a
useful biomarker for immune checkpoint therapies like PD-1/PD-
L1 inhibitors. However, resistance to PD-L1 checkpoint therapy has
been reported in BC patients despite the high expression of PD-L1
on CTCs [161], suggesting that CTCs may possess compensatory
immune-escape mechanisms beyond PD-L1 expression that
promotes their survival. In HER2* BC, dormant DTCs, through
inhibiting the WNT signalling pathway, supress ligands for natural
killers to evade innate immunity [162]. Aside these immune-
escape mechanisms, circulating dormant BC cells are also known
to mechanistically aggregate with platelets to avoid immune
detection in the circulation [163]. With all this said, the
immunoevasion mechanisms of dormant BC cells remain complex,
with further studies required to understand this adaptive survival
mechanism fully. Insight into these mechanisms hold significant
potential to target BC dormancy before the occurrence of overt
distant metastases.

IMPACT OF THE METASTATIC NICHE ON BREAST CANCER
DORMANCY

In addition to the discussed adaptive mechanisms that enable the
long-term maintenance and survival of dormant disseminated
breast cancer (BC) cells, their eventual capacity to persist, colonize,
and recur in distant organs such as the lung, liver, and bone (Fig. 1),
is ultimately governed by the organ-specific characteristics of the
metastatic niche. These niches provide specialised microenviron-
ments that can be either hospitable or hostile to the survival of
dormant BC cells that arrive in these distant organs. For example,
whilst the bone microenvironment provides endothelium, osteo-
blasts, and hematopoietic stem cells, which support the colonisa-
tion and survival of dormant BC cells [164], the high levels of
oxidative stress in skeletal muscle suppress their colonisation and
survival [165]. Thus, the bone represents a favourable site for BC
metastasis, whereas skeletal muscle remains largely inhospitable
to these cells. Even more importantly, the microenvironment of
the metastatic niche can actively induce dormancy in proliferative
BC cells upon their arrival. In the lungs, interactions between
disseminated proliferative BC cells and resident alveolar macro-
phages have been shown to induce dormancy through TGF-
(32 signalling [166]. Also, the high levels of retinoic acid in addition
to hypoxic nature of the bone marrow has been demonstrated to
induce dormancy in proliferative BC cells [39, 109, 167]. Thus, the
dormancy-inducing and -sustaining capacity of these metastatic
microenvironments plays a critical role in regulating the dormancy
and long-term survival of disseminated BC cells.

With this said, although the induction and maintenance of BC
dormancy at various metastatic sites largely results from interac-
tions of BC cells with the foreign microenvironment at the distant
organ, the adaptability of these cells likely reflects their plastic
phenotype that is either acquired or preconditioned by the
primary tumour microenvironment, as earlier discussed [168]. This
acquired plasticity enables dynamic phenotypic transitions and
functional flexibility, allowing disseminated breast cancer (BC)
cells to respond to diverse microenvironmental factors within
various metastatic niches and to persist in a dormant state
[169, 170]. It's worth noting that, although the mechanisms
underlying dormancy induction in the primary tumour may differ
from those in secondary metastatic sites, dormant BC cells often
share similar adaptive survival mechanisms: autophagy, transcrip-
tional and epigenetic reprogramming, immune evasion, and DDR
(Fig. 4) to resist apoptosis and maintain the dormant phenotype
across both environments [111, 171].

Perhaps the most crucial role of the metastatic niche in breast
cancer biology is its key function in reactivating dormant
disseminated tumour cells (DTCs), a significant challenge for
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Described survival mechanism

Table 1. Examples of reported BC dormancy models used to study various dormancy survival mechanisms.
Mode of dormancy induction Model type
Therapy induced (5-azacytidine and in vitro (2D)

retinoic acid)

Therapy induced (aromatase inhibitor- in vivo (mouse)

mimicking)

Therapy induced (tamoxifen) in vitro (2D)
Hypoxia in vitro (2D)
Hypoxia in vivo (mouse)
Extracellular matrix interactions in vitro (3D)

Extracellular matrix interactions
(metastatic niche)

Extracellular matrix interaction
chicken eggs)

Extracellular matrix interaction
Metastatic niche (bone marrow)

Metastatic niche (lungs) in vivo (mouse)

improving patient outcomes. While the microenvironment of
various metastatic niches does support the long-term, clinically
undetectable dormancy of disseminated BC cells, specific changes
and signals are known to trigger dormancy escape and promote
rapid metastatic outgrowth. In truth, it remains incompletely
understood which definitive factors and mechanisms drive the
reawakening of dormant breast cancer cells across metastatic
sites. However, inflammatory cytokines and neutrophils [172-174],
activated macrophages [166, 175], and age-related changes in the
microenvironment of these metastatic sites [176-178] have been
strongly implicated. For example, reduced oestrogen, a hallmark
of menopause, has been shown to increase the expression of
angiopoietin-2 and interleukin-6 (IL-6) in the bone, both of which
can activate the growth of dormant DTCs [179, 180]. Similarly, age-
induced increases in platelet-derived growth factor (PDGF)
expression in the ageing lungs have been shown to stimulate
dormant BC cell reawakening and drive relapse of ER+ breast
cancer in the lung [176]. Inflammatory cytokines released by
various metastatic niches, whether triggered by injury, smoking or
disease, are increasingly recognised as major contributors to BC
recurrence. However, the mechanistic understanding of this
process remains in its early stages [178, 181, 182].

Collectively, changes in the microenvironment of BC metastatic
niches have the potential to override intrinsic or therapy-induced
dormancy signals in dormant BC cells, reactivating their prolif-
erative programmes and driving the aggressive outgrowth of
clinically detectable metastases. Therefore, preclinical models that
deepen our understanding of strategies to eliminate dormant
breast cancer cells, rather than merely maintaining them in a
dormant state either in the primary tumour or metastatic niches,
are essential for preventing relapse and improving long-term
patient outcomes.

PRECLINICAL MODELS IN BC DORMANCY

Experimental models remain essential for understanding breast
cancer (BC) dormancy and identifying clinically relevant targets.
Several in vitro and in vivo models have been used to investigate
various dormancy survival mechanisms in different dormancy-
inducing settings. While a comprehensive overview of these
models has recently been reviewed [183], Table 1 highlights a few
representative examples. It is important to note that some
dormancy mechanisms identified in experimental models, parti-
cularly in vitro models, are yet to be observed in clinical settings
[111], underscoring the need to design new models that better
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in vitro (2D) & in vivo (mouse & zebrafish)

in vitro (2D) & in vivo (mouse &

in vitro (3D) & In vivo (mouse)
in vitro (co-culture, 2D) & in vivo (mouse)

Transcriptional reprogramming [101]

Metabolic and Transcriptional reprogramming,
Autophagy [96]

Transcriptional [190] and Epigenetic [107]
reprogramming

Metabolic reprogramming, Autophagy [46, 184]
Transcriptional reprogramming [17]
Transcriptional reprogramming [191]
Transcriptional reprogramming [192]

Transcriptional reprogramming [60]

Transcriptional reprogramming [193]
Autophagy [194]
Immune evasion and Cytokine signalling [195]

reflect the biology of clinical dormancy. Unfortunately, this is not
the case, as most in vitro dormancy models primarily focus on
either therapy-induced or ECM remodelling-induced dormancy in
BC cancer.

Specific cytokines and growth factors, as well as serum
deprivation, have often been employed to induce dormancy in
these models [183]. However, the inclusion of hypoxia is often
lacking in most reported models. Out of 94 in vitro BC dormancy
studies published in the past 20 years, only two have incorporated
hypoxia [46, 183, 184]. Surprisingly, hypoxia in the primary breast
tumour has now been shown to programme BC cells with a
dormancy phenotype that persists in metastatic cells at various
non-hypoxic sites of recurrence [17], emphasising the importance
of hypoxia on breast cancer dormancy. This hypoxic priming is
particularly relevant to the bone marrow, a common site of breast
cancer metastasis, which is inherently hypoxic [27]. The bone
marrow microenvironment appears to provide a supportive niche
that favours the survival and maintenance of these precondi-
tioned dormant cancer cells. Even more importantly, disseminated
dormant BC cells preconditioned by hypoxia in the primary
tumour have been shown to survive better in non-hypoxic
metastatic niches, such as the lungs, compared to non-hypoxia-
exposed dormant BC cells [17]. This observation highlights a
critical gap in current models that neglect the influence of
hypoxia. Admittedly, BC cancer dormancy is a complex phenom-
enon, and the lack of experimental models, particularly in an
in vitro setting, that accurately recapitulate the in vivo setting and
clinical realities of the disease remains a significant challenge.
However, the inclusion of factors critical to the clinical biology of
disseminated BC cells, particularly hypoxia, is more likely to model
clinical dormancy and offer a more clinically relevant under-
standing of BC dormancy.

CONCLUSION AND PERSPECTIVES

Breast cancer recurrence remains a major clinical challenge in BC
treatment. Although several theories have been proposed to
explain this phenomenon, the molecular mechanisms underlying
breast cancer (BC) recurrence are currently poorly understood,
thus limiting the development of novel therapeutic solutions.
Growing evidence in recent years, as we have discussed, strongly
implicates dormant BC cells as the culprit for both early and late
BC recurrence. Hence, targeting dormant cancer cells is consid-
ered a promising strategy in preventing cancer recurrence.
Unfortunately, no dormancy-specific therapy has yet been
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approved. However, three potential therapeutic strategies have
been suggested and are currently being attempted [185], namely:

® Strategies to maintain dormant cancer cells in a perpetual
dormant state — This strategy is considered the most popular
as it appears to explain the clinical successes of anti-oestrogen
therapeutics and CDK4/6 inhibitors (dormancy-inducing
agents), which support long-period remission and prevent
recurrence [186]. Unfortunately, the sudden re-proliferation of
dormant BC cells into metastatic lesions, as is now known, is
not necessarily driven by the activation of something new
within the dormant cells, but rather as a response to
microenvironmental changes within the homing organ
[176, 187]. This discovery thus discredits this strategy and
unravels the awaiting danger of sudden BC recurrence in
response to microenvironmental changes despite the pre-
sence of these dormancy-inducing agents.

® Strategies to intentionally reactivate dormant cells and target
their proliferation with current anti-proliferative agents—This
strategy has been suggested and demonstrated in other
cancers (not BCs) to improve the response to chemotherapy
[188, 189]. However, this is considered a very risky approach as
failure of the reactivated dormant cells to respond to anti-
proliferative therapy could worsen the outcome of the disease

® Strategies to eradicate dormant cancer cells are considered as
the most promising yet challenging approach with the
inherently acquired treatment-resistant phenotype of dor-
mant BC cells. However, growing preclinical and clinical
evidence suggests a strong correlation between the inhibition
of the adaptive survival mechanisms of dormant cells and the
depletion of these cells. The challenge of this strategy remains
with the certainty of complete eradication of dormant cells as
surviving dormant cells, post-dormancy-specific treatment,
could transform into aggressive disease. A better under-
standing of the adaptive survival mechanisms, as comprehen-
sively discussed, could assist with the development of novel
therapeutics capable of completely eradicating DTC cells both
before and after primary treatment.

The development of novel therapeutics aimed at depleting the
DTCs and CTCs population in BC patients, in our view, is the preferred
approach to preventing recurrence and improving BC treatment.
However, the specificity of the discussed survival mechanisms to
cancer dormancy remains to be answered as dormancy-sustaining
mechanisms also have significant functions in normal homoeostasis.
For example, although the inhibition of autophagy [134] and DDR
mechanisms [143] appear to successfully demonstrate the clinical
significance of inhibiting dormancy-sustaining mechanisms in the
eradication of minimal residual disease (MRD), it remains to be
determined whether extended administrations of these therapies,
which perhaps is required for complete MRD eradication, will be
accompanied by additional toxicities. Additionally, the generality and
compensatory nature of these mechanisms across BC subtypes
remain unknown, and it would be prudent to establish this to stratify
patients likely to benefit from MRD eradication agents. Ultimately,
the identification of a dormancy-specific pathway, which is critical to
the survival of dormant DTC regardless of their BC subtype and its
dormancy-inducing conditions, would be valuable in treating the
current incurable phenomenon of BC recurrence.
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