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ABSTRACT

The development of the microstructure during polymeric spinodal decomposition can be monitored in real time using small-angle scattering.
Information about the microstructure can be deduced from measurements of the structure factor—a quantity directly proportional to the
scattered intensity. While the time evolution of the structure factor can be measured relatively easily, modeling it has proved to be much more
difficult. We believe the latter could be impeding our ability to control spinodal decomposition. Using synthetic data corresponding to two
different polymer blends, we investigate the use of dynamic mode decomposition to model the time evolution of the structure factor during
polymeric spinodal decomposition. Based on the accuracy and range of the predictions we obtained using dynamic mode decomposition, we
believe our results are promising for the use of dynamic mode decomposition in an experimental setting, which could improve our ability to

control spinodal decomposition in automated experiments.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0286708

I. INTRODUCTION

Polymer blends, the polymer equivalent of metal alloys, offer
the chance to develop new materials with unique properties. In
general, polymer blends are prone to phase separation, leading
to the formation of phase-separated microstructures, which affect
the properties of the resulting material.'" Phase separation can be
key to the emergence of desirable properties—see, for example,
Refs. 2-5.

In this paper, we are primarily concerned with thermally
induced polymeric spinodal decomposition”’ —the process of spon-
taneous phase separation following a temperature change into the
unstable region of the phase diagram. Depending on several factors,
such as the temperature of the blend and the ratio of the con-
stituent polymers, spinodal decomposition can give rise to a range
of phase-separated microstructures, from dispersed droplets to co-
continuous networks.”” Polymeric materials with co-continuous
microstructures have generated significant interest over recent years,

finding applications in many industries, including renewable energy,
membrane technology, and metamaterials.”>>'""'* Improving our
ability to control spinodal decomposition could drive advances in
these industries, as well as many others, by opening the door to the
development of tailored, tunable microstructures.

The development of the microstructure during spinodal
decomposition can be monitored in real time using small-angle
scattering. Information about the microstructure can be deduced
from measurements of the structure factor'”'*—a quantity that is
directly proportional to the scattered intensity. The equation of
motion for the structure factor during spinodal decomposition is
known to be unclosed."” " In other words, it is an intractable infi-
nite hierarchy of coupled differential equations. Existing attempts
to model the time evolution of the structure factor have focused
on deriving approximate equations of motion based on truncation
schemes. One such approximate equation of motion is the lin-
ear Cahn-Hilliard-Cook-Flory-Huggins-de Gennes equation.'® **
This equation has proved to be a useful tool in the analysis of
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scattering data.”**"*" However, it is only applicable under a restric-
tive set of conditions and assumptions.”"**”’ Motivated to improve
this situatlon, Akcasu et al. set out to derive a non-linear equation
of motion.'””"”" However, there is currently very little literature
aimed at testing the Akcasu equation.”’ Consequently, we lack an
adequate, verified model for the time evolution of the structure
factor during spinodal decomposition. This impedes our ability to
control the process: without an adequate model for the structure
factor, it is not possible to make future predictions of the structure
factor—valuable information for a control system. Predictions of
the future evolution based on past and present data could be
incorporated into a control system that uses the predictions to
automatically adjust process parameters, such as temperature, in
order to direct the phase separation toward a target structure with
known properties. With this in mind, we propose the application of
dynamic mode decomposition to the problem of modeling the time
evolution of the structure factor. Dynamic mode decomposition
is a quasi-linear and equation-free system identification technique
for predicting the future, over a limited time window, based on
past data. In this paper, we investigate the use of dynamic mode
decomposition to predict future snapshots of the structure factor
during spinodal decomposition based on the knowledge of previ-
ous snapshots. We work with synthetic time series of structure factor
snapshots, which we generate ourselves. We assess the accuracy and
range of the predictions obtained using dynamic mode decompo-
sition, and we investigate the hyperparameter choices required to
construct effective models.

Il. THEORY
A. Polymeric spinodal decomposition

Let us consider an incompressible binary polymer blend. For
simplicity, we assume equal degrees of polymerization, monomeric
volumes, and Kuhn lengths.

Arguably, the most commonly used and successful the-
ory for describing spinodal decomposition in polymer blends is
the Cahn- Hllllard Cook-Flory-Huggins-de Gennes (CHC-FHdAG)
theory.'” ">’ Assuming a constant mobility,”* M, and using the
Flory-Huggins free energy supplemented with a non-local gradient
term, the CHC-FHdAG equation of motion takes the form

a¢(r, k
% _ sz[z\aln(tp)—z\;m(l—@—b@

o* 1 2 o*
- ﬁ(sb(l—sb))v o 36(<¢<1 )’ )(W) ]
+&(nt), (1)

where kg is Boltzmann’s constant, T is temperature, ¢ is the local
volume fraction of polymer A, vo is the monomeric volume, y is
the interaction parameter, and o is the Kuhn length. N4 and Np are
the degrees of polymerization of each polymer, which, for simplic-
ity, we take to be equal for the remainder of our analysis, such that
N4 = Np = N. Again, for simplicity, we assume that both polymers
have the same monomeric volumes and Kuhn lengths. The noise,
&(r,t), is assumed to be Gaussian distributed with the following

20.29

moments: "

(&(r.0)) =0, (2a)
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(€(r,t)£(r', t')) =BS(r-+)8(t-1), (2b)

where B is an operator—the form of which ensures any change
in ¢(r,t) due to &(r,t) is balanced by the correct flux. In other
words, B ensures no material is created or destroyed. To determine
B, it is assumed that the system will evolve to its equilibrium state
over a sufficiently long time period. Non-linear Langevin equations,
such as Eq. (1), are hard to solve analytically. The most practi-
cal approach to deal with them is to construct the corresponding
Fokker-Planck equation, which describes the time evolution of the
probability distribution of the order parameter,”"

3P({¢(r)} t) 3 ,8F  B6P
fd 575[ V6—¢P 2%]. (3)

As t — oo, the solution to Eq. (1) approaches the equilibrium
solution. Equilibrium thermodynamics tells us this should be a
Boltzmann distribution; therefore,**

B = -2Mkp TV~ (4)

Specifically, it is the factor of V? in B that ensures material
is conserved. We discuss this point further in Sec. S.1.1 of the
supplementary material.

In its current form, Eq. (1) can only be solved numerically. To
make it analytically tractable, we must linearize it.””** Upon mak-
ing the substitution ¢(r,t) = ¢, + 8¢(r,t), where ¢, is the average
volume fraction and 8¢ is a fluctuation, performing a power series
expansion, and neglecting all non-linear terms in 6¢(r, t), we obtain

A8¢(r,t) MkpT 1 4
R RS e
+&(r1), (5)

where x, =2/4N¢ (1 - ¢,) is the value of the interaction para-
meter on the spinodal. We refer to Eq. (5) as the linear CHC-FHdAG
equation. In the case of spinodal decomposition, we expect the lin-
ear CHC-FHAG equation to be valid during the early stage, i.e.,
when the composition fluctuations are small.”*** Upon comparing
Eq. (5) with Fick’s second law, we can identify the mutual diffusion
coefficient of the blend as’

2MksT (xs = x)
Vo ’

D= (6)
In the case of spinodal decomposition, D is negative. Therefore, dif-
fusion occurs against the composition gradient, or “uphill,” which
leads to phase separation. The solution to Eq. (5) without noise is
given by’

d¢(r.t) = 3 exp (R(q)t)(A(q) cos(q-1) + B(q)sin(q-r)), (7)
q

where A and B are the initial amplitudes of the composition
fluctuations present in the sample, and
1 4]
(8)
o(1 = ¢o) )

is a g-dependent amplification factor. The symbol g denotes the
wavenumber of a composition fluctuation, which is related to the

R(q)——MZJBT[Z(xs g + 0(
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wavelength via A = 277/q. By calculating the value of g that corre-
sponds to the maximum value of R, one can predict the wavelength
of the fastest-growing composition fluctuations, which defines the
characteristic length scale of the blend during the early stage of
spinodal decomposition.

The linear CHC-FHAG equation has been shown to quantita-
tively capture the early stage of spinodal decomposition in polymer
blends.”**** Beyond the early stage, the non-linear CHC-FHAG
equation qualitatively captures the dynamics of the process.””
For example, it captures coarsening and can be used to gener-
ate simulated morphologies that are representative of spinodal
decomposition.

B. Small-angle scattering

Small-angle scattering experiments are often used to monitor
the time evolution of composition fluctuations, i.e., the development
of the microstructure in polymer blends.”'”'**" The intensity of the
scattered radiation is directly proportional to a quantity called the
structure factor. One can learn about the microstructure by analyz-
ing the structure factor.”'>'**” For example, in the case of spinodal
decomposition, the characteristic length can be determined from the
peak. The structure factor is essentially the power spectrum of the
composition fluctuations, i.e., the product of the Fourier transform
with its complex conjugate. It is not possible to obtain full knowl-
edge of the microstructure from the structure factor.'* The structure
factor can be written compactly as'*

1
S(a.0) = & (P(@.0), ©)
where P(g, 1) is the power spectrum of ¢(r),

P(g,t) = 0¢(q,1)0¢(-q,1), (10)

where V is the volume of the system, (---) denotes a time aver-
age, and 8¢(q) = [ d’rd¢(r)exp(~iq - r), i.e., 8¢(q) is the Fourier
transform of ¢(r). In isotropic systems, the structure factor depends
on ¢ instead of q. In the absence of external fields, we expect
phase separation in polymer blends to be isotropic. In an exper-
imental context, S(q,t) is calculated as the radial average of a
two-dimensional scattering image, S(q, t)."""

Differentiating Eq. (9) with respect to time, we obtain the
following equation of motion for the structure factor in terms of

90¢(q,t)/0t,

a0 (00 ) 0]

Using the CHC-FHAG equation for the equation of motion for
8¢(g.t), ie, 08¢(q,t)/Ot, we obtain the following linearized
equation of motion:

9S(gt)

o = R@S(g.) + 2MkpTq’. (12)

The amplification factor can be written as*®

R(q) = -MksTq’S7' (q), (13)

ARTICLE pubs.aip.org/aipl/jcp

where St is the stationary solution to Eq. (12),

o

2 ] T
Sr(q) = 00[2()(5 -x)+ ls(m)q ] . (14)

In dissolution, St coincides with the small-q limit of de Gennes’
random phase approximation for the static structure factor.”*”” In
spinodal decomposition, St coincides with the small-g limit of the
“virtual” structure factor.”*”” The solution to Eq. (12) is given by’

S(g,t) = (S(q,0) - St) exp (2R(q)1) + Sr(9q). (15)

From this solution, a fitting relationship can be established to cal-
culate R(q) from experimental (or simulated) data.” This provides
a means of testing the linear CHC-FHAG equation, which, as we
mentioned earlier, has been shown to quantitatively capture the early
stage of spinodal decomposition in polymer blends.

The linear CHC-FHAG equation for the structure factor
[Eq. (12)] is only valid during the early stage of spinodal decompo-
sition, i.e., while composition fluctuations are small. Therefore, the
validity of the linear CHC-FHAG equation is limited. Motivated to
improve this situation, Akcasu et al. set out to develop an approx-
imate, tractable, non-linear equation of motion for the structure
factor.'””"’! Their equation is based on that of Langer et al.," who
worked on the same problem but in the context of small molecule
mixtures.

The derivation of the Akcasu equation is quite long. Therefore,
we simply quote the result in its simplest, most interpretable form

P@L) _ on(g)s(a,0[1 +2(8.0] - 2R(@)Sa(@)[1 + Za(0))

(16)
where Z(g,t) is a non-linear mode-coupling term, Ze(q) is the
equilibrium value of Z(g,t), and Seq(g) is the equilibrium value of
S(g,t). The mode-coupling term describes the coupling of compo-
sition fluctuations with different wavelengths. The term after the
minus sign on the right-hand side is the noise term, which ensures
the correct long-time (equilibrium) behavior of S(g,t). As a result
of the closure approximations introduced by Akcasu et al., the noise
term here is, in general, different from that in Eq. (12).

There has been no reported comparison between the pre-
dictions of the Akcasu equation and numerical or experimental
measurements of the structure factor in the case of spinodal decom-
position. In the case of dissolution, a comparison with experimental
data was performed by Akcasu et al.*’ The comparison revealed
a quantitative discrepancy between theory and experiment, which
worsened as the dissolution time increased. Akcasu et al. used best-
guess values of molecular and thermodynamic parameters to solve
their equation because some of the parameters are hard to mea-
sure. It is unclear whether the Akcasu equation failed as a result of
the equation being inadequate or incorrect parameter values being
used. It is this uncertainty and lack of a tested model that result in
the duality that, although it is relatively easy to measure, it is much
harder to model the structure factor."”'° As a consequence, there is
no reliable methodology for quantitatively predicting the evolution
based on real-time measurements. This duality motivates our work
described below, in which we show that a data driven approach to
predicting the evolution of the structure factor is a viable alternative
to physics based modeling.
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C. Dynamic mode decomposition

Dynamical systems are ubiquitous in a wide range of fields.
In many of these fields, there is a duality between abundant mea-
surement data and elusive governing equations,*' i.., differential
equations describing a process of interest. Embracing this duality,
the field of system identification, concerned with building models
of dynamical systems from measurement data, has emerged as an
alternative to traditional theory-driven modeling.*’

In this paper, we consider a linear system identification tech-
nique called dynamic mode decomposition (DMD). Developed by
Schmid* in the field of fluid mechanics before being developed
by others,”**"" DMD is an algorithm for calculating the lead-
ing eigenvectors and eigenvalues of the best-fit linear operator
A that approximately describes the dynamics of a high-dimensional,
non-linear, spatio-temporal system. A purely data-driven technique,
DMD only requires snapshots of the system as an input. Examples
of applying DMD and its extensions, including code, can be found
in Ref. 45. We outline DMD below."""**

DMD is formulated based on the following equation:

X' ~ AX, (17)

where X and X' are data matrices comprised of snapshots
x; appended column-wise. Given m snapshots sampled every At in
time, the data matrices are given by

X=|x1 x Xm—-1 |» (18)
and
X' =% x5 ... Xnl (19)

One might wonder about the point of using DMD to calculate the
eigendecomposition of A when they could calculate A directly using
least-squares regression instead,

A = argmin | X' - AX|r = X'X', (20)
A

where F denotes the Frobenius norm and ' denotes the
Moore-Penrose pseudoinverse.”* The motivation for the approach
adopted in DMD is that the calculation in Eq. (20) can prove prob-
lematic if A is high-dimensional. Given that each snapshot contains
n elements, A will contain n° elements. Therefore, if n is large,
just representing A could be problematic, let alone performing
calculations involving it.

To circumvent any calculations that directly involve A, DMD
makes use of dimensionality reduction through singular value
decomposition (SVD),*! a data-driven technique for matrix factor-
ization. The SVD factorization is structured in such a way that a
low-dimensional, or low-rank, approximation to the original matrix
is often easy to obtain. To illustrate this, we consider the SVD
of X. Given that the snapshots x; contain n elements, meaning
X e ("D 'the SVD of X is given by

X =UZV", (21)

ARTICLE pubs.aip.org/aipl/jcp

where U e R™" and V e R ("1 are ynitary matrices with
orthonormal columns and £ € R™ ("1 s a diagonal matrix with
real, positive entries, collectively referred to as singular values. The
symbol * denotes the complex conjugate transpose. The columns of
U are referred to as proper orthogonal decomposition (POD) modes.
These modes are a superposition of patterns or signals in the data.
When POD modes are constructed, temporal information is largely
ignored—typically, patterns or signals that oscillate at different fre-
quencies are mixed. The rows of V* describe the time evolution of
the POD modes. The singular values in X are ordered hierarchically.
The magnitude of a given singular value ranks the relative impor-
tance of the corresponding POD mode in U for describing the data
in X, i.e., the first POD mode is more important than the second,
and so on. Therefore, to calculate a low-rank approximation to X,
one can simply choose to keep the leading # columns of U, rows of
V¥, and singular values in 2, discarding everything else,

X~ USV*, (22)

where Ue C™, Ve CU D% $ R and7<m-—1. Choosing
the rank 7 is an important, albeit often subjective, part of this dimen-
sionality reduction procedure. A heuristic approach is to locate
“elbows” in an ordered plot of the singular values. The result-
ing reduced SVD defines a low-dimensional, orthogonal coordinate
system in which the data in X can be represented. Functions for
calculating the SVD are standard in most programming languages.
References regarding the numerical implementation of the SVD can
be found in Ref. 41.

We are now in a position to outline the DMD algorithm. The
first step is to calculate the reduced SVD of the data matrix X, which
is given by Eq. (22). The second step is to project A onto the POD
modes in U,

A=U"AU=0"X'VE™" (23)

The reduced matrix A has the same nonzero eigenvalues as the
full matrix A. It is this step that enables one to circumvent cal-
culations that directly involve A. The third step is to calculate the
eigendecomposition of A,

AW = WA, (24)

where W contains the eigenvectors of A, appended column-wise,
and A is a diagonal matrix containing the eigenvalues. The final
step, developed by Tu et al,""" is to construct the eigenmodes of
A from W,

o=XVE'w. (25)

We subsequently refer to these modes as DMD modes.

With knowledge of @ and A, one can use the following equa-
tion to reconstruct the data in X and make predictions of future
snapshots:*!

X ~ @ exp (QkAt)b, (26)

where Q =1n(A)/At and b is a vector of coefficients. The vector
b can be calculated in two ways: either directly using b = ®'x; or
indirectly using a projection onto the POD modes. In contrast to
POD modes, DMD modes consist of patterns or signals in the data
that oscillate, with growth or decay, at the same frequency. The
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oscillatory behavior is described by the corresponding eigenvalue.
In general, the eigenvalues are complex. The real part encapsulates
growth or decay, while the imaginary part encapsulates periodic
behavior. Eigenvalues with a modulus greater than or equal to one
are unstable, limiting how far one can use Eq. (26) to accurately and
reliably predict into the future.

To summarize the application of the DMD methodology to our
work, synthetic snapshots of the structure factor are used to con-
struct the matrices X and X’ [Egs. (18) and (19)]. Each column in the
two matrices represents one snapshot in time of the structure factor,
with each row representing the value of the structure factor at a given
value of g. As indicated in Eqs. (18) and (19), only the first column
of X and the last column of X’ are unique between the two matrices.
Rather than directly calculating the matrix A of Eq. (17), we then
numerically undertake the four steps outlined in Eqgs. (22)-(24). We
are then able to make predictions of future iterations of the structure
factor using Eq. (26).

I1l. METHODOLOGY

A. Generating time series of synthetic structure
factor snapshots

1. Overview and key equations

We used two time series of synthetic structure factor snapshots
to obtain the results in Sec. V. An overview of the method we used
to generate each time series is as follows:

e We simulated polymeric spinodal decomposition using a
finite difference scheme, namely a non-dimensionalized and
discretized version of the CHC-FHAG equation [Eq. (1)].

e During the simulations, we calculated snapshots of the
power spectrum using a modified version of Eq. (10).

e After running several repeat simulations, we calculated
snapshots of the structure factor by applying a modified
version of Eq. (9) to the power spectrum snapshots we
accumulated.

There are three key equations: the finite difference scheme and the
equations we used to calculate the snapshots of the power spectrum
and the structure factor. We present these equations below. In the
interest of orderliness, we defer the derivations of the equations to
Sec. S.1.1 of the supplementary material.

a. Finite difference equation. To simulate polymeric spinodal
decomposition, we applied the following finite difference scheme—a
non-dimensionalized and discretized version of Eq. (1)—to a simple
cubic lattice with periodic boundary conditions,

- ¢k \
biki = Piki+ zsz Z [2|X Xsl ( 1- (/’Zlk,l )
1 207k 1 m
bik,
36((¢Jkl(l¢]k1)) 4Ax21,g "
1/2 1/4

1 1 m X — Xl
- 2 ﬁ 5 ') N Y
(36¢j,k,z(1 = k) ) Ax® %; Y kl] o

1 m m m m m m
X Ax [’71;j+1,k,l ~ Nkt T Majk+1,0 — Mokl + U3k l+1 — ’73;j,k,l]’
(27)

X975
X = xdl
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where m denotes the number of dimensionless time steps, A7 is the
duration of a dimensionless time step, j, k, and [ denote the coordi-
nates of each lattice site, Ax is the dimensionless length of each lattice
site, 3., and [, are short-hand operators, and #,,7,, and 7, are
dimensionless Gaussian random variables. The shorthand operators
are defined as

D fiki = fievkd + fi-vki + fikernd + fik-vi + fikier + fikio1 = 6 fikis
nn
(28a)

2 2 2 2 2 2
H fiki = fj+1,k,l + fj—l,k,l + fj,k+1,l + fj,k—l,l + fj,k,l+1 + fj,k,l—l
nn

= 2(fisrkifi-vki + fikerifik-1i + fikser fiki-1).  (28b)

The first and second moments of the Gaussian random variables are
given by

(miks) =0, (292)
m m’ A
<’1n;j,k,1’1n';j’,k',z') AP 8,087 Ok O O (29b)

The dimensionless variables we used to obtain Eq. (27) are as follows:

_ |12
X = w r, (30a)
o
U Vo
for) = TN () (300
T 2MkBT|X—XS\2 e

These dimensionless variables are inspired by those in Ref. 36. They
relate to the fastest growing wavelength and its growth rate during
the early stage of spinodal decomposition.

In the context of lattice sites in the top row of a cubic lattice,
periodic boundary conditions mean that the nearest neighbors in the
vertical direction are the corresponding lattice sites in the bottom
row. The nearest neighbors to the left of lattice sites in the left-most
row, to the right of lattice sites in the right-most row, and below
lattice sites in the bottom row follow analogously.

For later reference, we denote the total number of time steps in
a simulation as Mmax.

b. Snapshots of the power spectrum. To calculate snapshots of
the power spectrum during the simulations, we used

N;—1 N,—1 N;—-1

nd Ax Z Z Z 6¢n jok,l e*%’(“j”’k)

j=0 k=0 I=0

N,=1N,~1N,~1
) , (31)

% Z Z Z 5¢ﬂ] r RACELS

j'=0k'=0 I'=0 R
where 7 allows one to distinguish between repeat simulations, N
is the number of lattice sites in each dimension of the cubic sim-
ulation lattice, a and b are integers in the range —(N;-1)/2<a,
b<(Ns-1)/2, and (---)r denotes a radial average. Note that
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Eq. (31) represents the sum along one dimension of a series of
two-dimensional Fourier transforms. We have chosen this method
to calculate the power spectrum, as it most closely conforms to
a small angle experiment in which the magnitude of the scatter-
ing vector parallel to the incoming beam is negligible compared to
the magnitude of the scattering vector perpendicular to the beam
(i.e., in the plane of the detector). This is quantified further in the
supplementary material. The radial average can be written explicitly
as

ubst round(V a®+b*)= dfah
Zabstmund(\/a 2+b?)= d

where d is an integer in the range 0 < d < ¥

(fap)p = fa= (32)

c. Snapshots of the structure factor. After implementing
N, repeat simulations, we calculated snapshots of the structure
factor using

H (33)

N N3 A Z
Throughout the remainder of the paper, we express snapshots of S
as S(k, 7), where k = 21d/N;Ax and T = mAT. The symbol k denotes
the magnitude of the dimensionless scattering vector, i.e., k = |Kk|.
We note that Egs. (31) and (33) are non-dimensional and dis-
crete, consistent with Eq. (27). The non-dimensionalization was
performed using Eq. (30a) and the dimensionless variables below:

g —9 (34a)
\x xsl?
- xl2
$(k,7) = %S(q, t). (34b)

2. Parameter values and initial conditions

Each of the time series we generated corresponds to a different
combination of ¢, and y values. For ease of reference, we devised
a name for each time series based on these values (see Table ).
We implemented five repeat simulations (N, =5) for each com-
bination of ¢, and y values. In each simulation, we set the initial
composition at each lattice site equal to the corresponding value
of ¢,. After the first time step, the Gaussian random variable term
in Eq. (27) introduced random fluctuations into the composition,
initiating spinodal decomposition. We calculated snapshots of the
power spectrum after the first and every 400th time step, i.e., when
m = 1,400, 800, 1200, etc. The values of the other parameters we
used in the simulations were Ax = 0.25, AT = 6.25 x 107>, N, = 257,

1
Mmax = 8 x 10°, N = 2700, and ¢ = \/ 20v; , where the factor of /20

2
is the square root of the characteristic ratio, Coo = 0”/v; . In the case
of the critical time series, the value of y, corresponding to N = 2700
is y, = 0.000 741, while in the case of the off-critical time series, it is
X, = 0.000 814. We based the values of N and y on those used in Refs.
47-49. The value of Coo corresponds to a relatively stiff polymer.”
We found using larger values of Co increased the numerical stability
of the simulations, which we believe is due to a resultant reduc-
tion in the magnitude of the noise term in Eq. (27). Large values of
noise will cause large gradients in the composition, which can lead to

ARTICLE pubs.aip.org/aipl/jcp

TABLE . Values of ¢, and y corresponding to each time series we generated.

Time series name 0N X
Critical (spinodal decomposition) 0.5 0.000 765
Off-critical (spinodal decomposition) 0.35 0.000 937

overshoot errors in the finite difference approximation to the equa-
tion of motion unless much smaller, computationally prohibitive,
values of Ax and At are used. We used trial and error to determine
suitable values of Ax and Ar, i.e., values of Ax and At that can be
used in the simulations to generate time series that are independent
of these values. Further details on this are provided in Sec. S.1.2 of
the supplementary material.

3. Implementing the simulations

We implemented the simulations in Julia.”! To keep the com-
putation time to a minimum, we made use of the CUDA.jl package.”
This allowed us to implement Eq. (27) on a graphics processing
unit (GPU), which we accessed on the University of Sheffield’s
high-performance computer, Stanage. The code we developed to
implement the simulations is available on ORDA, the University of
Sheffield’s research data repository. Text files from which the time
series can be calculated using Eq. (33) are also located there. Please
see the Data Availability statement at the end of the paper for more
details.

4. Conforming with the small-k limit

As we have already mentioned, Eq. (27) is a non-
dimensionalized and discretized version of Eq. (1). Since Eq. (1) is
only valid in the small-g limit, it follows that Eq. (27) is only valid
in the corresponding small-k limit. The small-k limit is somewhat
ambiguously defined as krg <«< 1, where rg is the dimensionless
radius of gyration. To determine whether to truncate the snapshots
of the synthetic structure factor we generated to conform with the
small-k limit when obtaining our results, we attempted to quantify
the small-k limit.

We determined inequalities that specify the small-k limit corre-
sponding to each time series. We then compared these inequalities
with the k-values associated with the constituent snapshots. In the
case of the critical-time series, we determined the small-k limit cor-
responds to k < 5, and in the case of the off-critical time series, we
determined k < 3. In the derivation of the random phase approx-
imation, which gives rise to the pre-factor of the square gradient
term in Eq. (1), deGennes’”” used the linear expansion of the
single chain scattering function, the Debye function. Hence, phys-
ically, the small-k limit is defined by the values of k for which
the linearized version remains a good approximation to the full
Debye function. We outline the calculations we performed to deter-
mine these inequalities in Sec. S.1.3 of the supplementary material.
Given that we used N, = 257 and Ax = 0.25 in the simulations, each
snapshot of the synthetic structure factor we generated consists of
129 values, with the 129th value corresponding to k »~ 12.5. There-
fore, we concluded that truncating the snapshots is necessary to
conform with the small-k limit. For simplicity, we applied the
k < 3 limit to both time series, which corresponds to only using the
first 33 k-values associated with each snapshot.
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B. Applying dynamic mode decomposition

Two features of DMD that appealed to us are its simple for-
mulation in terms of a best-fit linear model and its computational
efficiency. We believe these features make it a good choice of tech-
nique to benchmark other, more complex techniques against. In
addition to these features, the fact that no knowledge of governing
equations or system parameters is required suggests that DMD has
the potential to work well in a control system.

For both the critical and off-critical quenches, we trained and
tested 50 DMD models to predict the synthetic structure factor at
integer values of 7 in the range 1 < 7 < 50. The specific set of struc-
ture factors from earlier times used in the training of each of the
models is given below. We implemented the training and testing of
the DMD models using MATLAB code adapted from Ref. 44. The
performance of DMD depends on the careful selection of several
hyperparameters: 144 the number of snapshots, m; the (dimension-
less) time between the snapshots, At; the rank of the reduced SVD,
#; and the predictive horizon, 7,;,. Based on trial and error, we used
m =10, At = 0.025, 7 = 3, and 1y, = 0.75 to obtain the majority of
our results. We also present results obtained using different values of
Tph- We chose 7 = 3 since this value seemed to be the most consistent
for accurately predicting the time evolution of the synthetic struc-
ture factor snapshots. To put the listed hyperparameter values into
context, the DMD models were trained on ten uniformly synthetic
structure factor snapshots in the range 7 -1 < 7’ < 7-0.750, and
the predictions they made extended beyond the last training snap-
shot by three times the length of the training range. For example,
the model that predicted the snapshot of the synthetic structure fac-
tor at T = 9 was trained on the snapshots at 7 = 8.025, 8.050, . . ., and
8.250.

To quantify how well the DMD models were able to predict
the synthetic structure factor snapshots, the percentage errors asso-
ciated with each prediction were calculated as a function of the
wavenumber using

|§(k, T) - SDMD(k, T)| <

PE(k,7) = S, 1)

100, (35)

where S(k, 7) is the value of the synthetic structure factor snapshot to
be predicted and Spyp(k, 7) is the prediction of the corresponding
DMD model. To analyze the errors, box plots describing the sum-
mary statistics of PE(k, 7) at different values of T were plotted and
compared.

Compared to fields such as fluid dynamics,”"** the syn-
thetic structure factor snapshots used in this paper are not high-
dimensional. Given the small-k limit and the size of Ax required to
perform accurate and discretization-independent simulations, it is
hard to generate high-dimensional synthetic structure factor snap-
shots using the method outlined in Sec. I1I A. Nevertheless, we were
motivated to apply DMD because of the increased likelihood of our
findings generalizing to higher-dimensional snapshots compared
with simply applying linear regression. Furthermore, successfully
demonstrating DMD might open the door to applying extensions of
the algorithm, which could shift the focus of research toward work-
ing with experimental data and perhaps even the control of phase
separation. We also note that the synthetic structure factor snapshots
used in this paper are free of measurement noise, which is unlikely
to be the case for experimental data.
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FIG. 1. Comparison between the 7 = 5 synthetic structure factor snapshot from
the critical time series and the corresponding DMD prediction. Three of the ten
snapshots on which the DMD model was trained are also shown. These snapshots
correspond to 7 = 4.025, 4.125, and 4.250 (in order of increasing magnitude).

IV. RESULTS AND DISCUSSION

We now present our results from using DMD to model the time
evolution of the synthetic structure factor snapshots from the criti-
cal and off-critical time series. Since we obtained similar results for
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7 = 1 Synthetic snapshot
7 =1DMD
_0.04+ 7 = 2 Synthetic snapshot B
= . 7=2DMD
af 7 = 3 Synthetic snapshot
= 0.02 7 =3 DMD
wn VU2
0 ‘ ‘ ‘ e ) ‘
0 0.5 1 1.5 2 2.5 3
" "
7 = 4 Synthetic snapshot
0.1 - r=4DMD |
: 7 = 5 Synthetic snapshot
—
= « 7=5DMD
o 7 = 6 Synthetic snapshot
= 0.05L 7 =6 DMD |
N .
0 . n
0 0.5 1 1.5 2 2.5 3
L \ ! LI
0.2 / \ 7 = T Synthetic snapshot
7 =7DMD
7 = 8 Synthetic snapshot
— y
- / 7 =8 DMD
o / Y 7 = 9 Synthetic snapshot
L LA \ ) |
2 0.1 « 7=9DMD
i \ 7 = 10 Synthetic snapshot
/ A 7 =10 DMD
0 I I S I I
0 0.5 1 1.5 2 2.5 3
k

FIG. 2. Comparison between synthetic structure factor snapshots from the criti-
cal time series and those predicted by DMD models for values of 7 in the range
1 < 7 < 10. The hyperparameters used in the DMD models are listed in Sec. || B.
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FIG. 3. Box plots of the percentage errors associated with the predictions of each
DMD model in Fig. 2. In each box plot, the red line shows the median, the blue
box outlines the interquartile range, the black dotted lines extend beyond the box
by 1.5 times the interquartile range, and the blue circles denote outliers. The solid
blue line shows the time evolution of the mean.
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both, we only present the results corresponding to the critical time
series in this section. The results corresponding to the off-critical
time series can be found in Sec. S.2.2 of the supplementary material.
To illustrate our methodology, in Fig. 1, we show one example that
includes three of the ten training snapshots at 7 = 4.025, 4.125, and
4.250 (the other seven, at 7 =4, 4.050, 4.075, 4.100, 4.150, 4.175,
and 4.200, are omitted for clarity), the DMD predicted structure
factor, and the synthetic structure factor at 7 =5, such that the
predictive horizon is 7y, = 0.75. Figure 1 provides qualitative justifi-
cation for our choice of calculating snapshots of the structure factor
every 400th time step in our simulations of spinodal decomposition
such that the dimensionless time between snapshots is A7 = 0.025.
It can be seen that the difference between structure factor snap-
shots is very small. Those shown correspond to the second, sixth,
and tenth of ten snapshots used to train the DMD model, so we
are confident that this demonstrates that taking a snapshot every
400th time step is sufficient for the purposes of demonstrating the
feasibility of the DMD methodology. Further exploration of the
optimum time between snapshots would benefit from engagement
with experimental data, since the measurement technique will dic-
tate the time gap between consecutive measurements of the structure
factor.
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FIG. 4. Eigenvalues of the DMD models used to make the predictions of the synthetic structure factor snapshots at (a) = = 2, (b) 7 = 3, and (c) = = 10 in Fig. 2.
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Figure 2 compares synthetic structure factor snapshots from the
critical time series with those predicted by DMD models for val-
ues of 7 in the range 1 < 7 < 10. The hyperparameters used in the
DMD models are listed in Sec. IIT B. We opted not to use a log scale
on the y axis since this makes the curves less distinguishable. How-
ever, without a log-scale on the y axis, it is hard to see how good
the predictions are at k-values where the values of the synthetic
structure factor snapshots are small. Therefore, the same compari-
son is presented with a log-scale (base 10) on the y axis in Fig. S.3 of
the supplementary material. For 7 < 3, there is a low level of agree-
ment between the synthetic structure factor snapshots and those
predicted by the DMD models. The level of agreement improves for
4 < 7 < 10. These observations are confirmed by Fig. 3, which shows
a box plot of the percentage errors associated with the predictions
of each DMD model. The solid blue line shows the time evolu-
tion of the mean percentage error, which starts off high for 7 <3
but decreases over 4 < 7 < 10, eventually reaching a plateau around
3%-5%. To capture the rapid early growth of the structure factor, the
eigenvalues of A must be highly unstable, which means the resulting
DMD models are only suitable for very short-term predictions. This
is exemplified in Fig. 4, which compares the eigenvalues of the DMD
models used to make the predictions of the synthetic structure factor
snapshots at 7 =2, 7=3, and 7 =10 in Fig. 2. The models corre-
sponding to T = 2 and 7 = 3 have eigenvalues that extend beyond the
unit circle further than those belonging to the model corresponding
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0.4+ « 7=10DMD 7
= 15 Synthetic snapshot
= =15 DMD
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=02k ~ =20 DMD ]
N
0 ! 1
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FIG. 5. Comparison between synthetic structure factor snapshots from the criti-
cal time series and those predicted by DMD models for values of 7 in the range
10 < 7 < 50. The hyperparameters used in the DMD models are listed in Sec. II| B.
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to 7 =10. This indicates that they are more unstable. The oscilla-
tory modes associated with the small imaginary component for the
7 =2 and 7 = 3 eigenvalues are unphysical, further demonstrating
the challenge of using DMD during the early stages.

Another comparison between synthetic structure factor snap-
shots from the critical time series and those predicted by DMD
models is shown in Fig. 5, this time for values of 7 in the range
10 < 7 < 50. Again, the hyperparameters used in the DMD models
are listed in Sec. I1I B. The same comparison is presented with a log-
scale (base 10) on the y axis in Fig. S.4 of the supplementary material.
For all values of 7, there is a high level of agreement between
the synthetic structure factor snapshots and those predicted by the
DMD models. This is confirmed by Fig. 6, which shows a box plot
of the percentage errors associated with the predictions of each
DMD model. The mean percentage error line is more or less flat,
fluctuating between values of 1%-5%. From Figs. 2-6, we infer
that, with the exception of 7 <3, DMD can be used to accu-
rately model the time evolution of the synthetic structure factor
snapshots.

To investigate whether more accurate predictions of the syn-
thetic structure factor snapshots could be made for 7 < 3, we tested
the predictions of several DMD models with values of 7, < 0.75 at
7=1 and 7 = 3. Figure 7 compares the predictions of these mod-
els with the corresponding synthetic structure factor snapshots. The
figure reveals that the level of agreement between the synthetic
structure factor snapshots and those predicted by the DMD mod-
els increases as the value of 7, decreases. A greater reduction in the
value of 7, is required at 7 =1 than at 7 = 3 to achieve this effect.
These findings suggest that there is a trade-off between the accu-
racy and extrapolation of the DMD predictions. Furthermore, the
trade-off seems to be coupled to the value of 7 for which a prediction
is made: to make accurate predictions at smaller values of 7, one is
constrained by having to use a smaller value of 7.

€

10t |

100 |

Percentage Errors

1071 L

10 15 20 25 30 35 40 45 50

FIG. 6. Box plots of the percentage errors associated with the predictions of each
DMD model in Fig. 5. In each box plot, the red line shows the median, the blue
box outlines the interquartile range, the black dotted lines extend beyond the box
by 1.5 times the interquartile range, and the blue circles denote outliers. The solid
blue line shows the time evolution of the mean.
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FIG. 7. Comparison between synthetic structure factor snapshots from the critical
time series and those predicted by DMD models with values of 7, < 0.75at 7 = 1
(top panel) and 7 = 3 (bottom panel). The values of the other hyperparameters
used in the DMD models are the same as those listed in Sec. Il B.

To test whether the trade-off between the accuracy and extrap-
olation of the DMD predictions is indeed time-dependent, and to
explore how far into the future we are able to extrapolate with
DMD, we tested the predictions of DMD models with values of
Tph > 0.75 at 7 = 20, 30,40, and 50. We used increasingly large values
of Ty, to predict the synthetic structure factor snapshots correspond-
ing to increasingly large values of 7. For these results, we used
synthetic structure factor snapshots in the range 7 — (7, + 0.25)
<t<T- Typ to train the DMD models. Figure 8 compares the pre-
dictions of these models with the corresponding synthetic structure

0.6 7\ T T
\ Synthetic snapshot 7 = 20
DMD 7 =20 7y, = 1
0.4 Synthetic snapshot 7 = 30
/: S DMD 1 =30 7, = 1.25 ]
N
=
0.2 i
0 I .
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DMD 7 =40 7, = L5
Synthetic snapshot 7 = 50
DMD 7 =50 7 = L5

FIG. 8. Comparison between synthetic structure factor snapshots from the criti-
cal time series and those predicted by DMD models with values of 7y, > 0.75 at
7 =20 and 30 (top panel) and = = 40 and 50 (bottom panel). The values of the
other hyperparameters used in the DMD models are the same as those listed in
Sec. Il B.
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FIG. 9. Box plots of the percentage errors associated with the predictions of each
DMD model in Fig. 8. In each box plot, the red line shows the median, the blue
box outlines the interquartile range, the black dotted lines extend beyond the box
by 1.5 times the interquartile range, and the blue circles denote outliers. The solid
blue line shows the time evolution of the mean.

factor snapshots. The figure reveals that there is a high level of agree-
ment between the synthetic structure factor snapshots and those
predicted by the DMD models. This is confirmed by Fig. 9, which
shows a box plot of the percentage errors associated with the pre-
dictions of each DMD model. The percentage errors in Fig. 9 are
comparable with those in Fig. 6. The results in Figs. 8 and 9 ver-
ify that the trade-off between the accuracy and extrapolation is time
dependent. Specifically, the trade-off is more important early on and
becomes less important as 7 increases. In other words, as 7 increases,
one can maintain a certain level of accuracy while predicting further
into the future.

The time-dependent accuracy-extrapolation trade-off can be
linked to the growth rate of the structure factor during spinodal
decomposition, which is a diffusion-like process. Early on in the
process, the growth rate of the structure factor is rapid (indeed, it
is exponential for a short period at the start). As time goes on, the
growth rate decreases. As mentioned in Sec. III B, DMD models
with 7 = 3 seemed to be the most consistent at accurately predict-
ing the time evolution of the synthetic structure factor snapshots.
We believe that the DMD models with 7 < 3 often did not capture
enough of the dynamics, while models with 7 > 3 had an increased
likelihood of containing unstable eigenvalues.

The practicality of DMD in an experimental setting depends
on how the dimensionless time used to demonstrate the technique
scales to physical time. Using Egs. (6) and (30b), one can estimate
a range of values of the mutual diffusion coefficient, D, for which
the technique is likely to work well. Using Eq. (30b), it can be
seen that for one dimensionless time unit to correspond to more
than 1s, M < v90®/2ksT(y — xs)*. Substituting this inequality into
Eq. (6), one obtains [D| < 0*/(y - x,)- In the case of the critical

time series, 0 = 20%1)05 and (y —x,) » 2 x 107°. A typical value””” of

vp is 107°* m’. Substituting these values of o, (x —y,), and o

1

into the inequality for |D| yields |D| < 107 m®s™", which provides
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an upper limit on the diffusion coefficient. If the actual diffusion
coefficient is smaller than this, we would expect DMD to be able
to forecast sufficiently far into the future to be of practical ben-
efit from a control perspective. Using the representative data in
Ref. 2, we calculate a typical experimental value of the diffusion
coefficient: |Dexp| ~ 107'® m?s~!, which is three orders of magni-
tude lower than the estimated upper limit, which is an encouraging
sign.

From the results mentioned earlier, we believe that DMD is a
promising tool to enable automated control processes, particularly if
combined with a method that enables microstructure characteristics
to be extracted from the structure factor. We recently showed*” that
it is possible to obtain, using Gaussian Process regression, informa-
tion about the phase separated structure beyond that of the length
scale. Such information, specifically the interfacial area between and
the interconnectivity of phase-separated regions, is critical for the
properties of the final material. For example, phase separation is
used to create filtration membranes, with the interfacial area and
the interconnectivity of the phases determining the performance
of the membrane.”> DMD, which lends itself to real-time usage
due to its low computational cost, combined with Gaussian Process
regression, would enable real-time predictions of the structure factor
and microstructure characteristics during spinodal decomposition
to facilitate real-time adjustments of, for example, the processing
temperature based on the ultimate microstructure requirements.
This opens the door to the automated control of phase separation
as a means of tailoring and tuning the microstructures of materials
derived from polymer blends.

V. CONCLUSIONS AND FUTURE WORK

Using DMD models constructed from batches of synthetic
structure factor snapshots from the critical and off-critical time
series, we modeled the time evolution of the structure factor in
two simulated polymer blends undergoing spinodal decomposition.
Apart from early on in the process (7 < 3), the DMD models were
able to make accurate future predictions of the synthetic structure
factor snapshots that extended beyond the last training snapshot by
three times the length of the training range. We identified a trade-
off between the accuracy and extrapolation of the DMD predictions.
The trade-off was coupled to the value of 7 for which the prediction
was made, i.e., the trade-off was more important early on, decreas-
ing in importance as 7 increased. Using smaller values of 7, to make
predictions of the synthetic structure factor snapshots at 7 = 1 and
7 = 3, we showed that one could improve the accuracy of the pre-
dictions at these times. We also showed that one could maintain the
accuracy of predictions made at later times, specifically at 7 = 20, 30,
40, and 50, while increasing the value of 7,,. We sought to explain
the accuracy-extrapolation trade-off by making a connection with
the diffusion-like nature of spinodal decomposition and the eigen-
values required by the DMD models to capture the dynamics of
the synthetic structure factor snapshots. The practicality of DMD in
an experimental setting will likely depend on the mutual diffusion
coefficient of the blend in question.

We believe our results are promising for the development of
an experimental technique to predict structure factor snapshots and
microstructure characteristics corresponding to materials derived
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from the phase separation of polymer blends in real time. Such pre-
dictions could be useful in a control system. Of course, this will hinge
on being able to replicate our results using experimental data. To
address this, a logical next step should be to demonstrate whether
our findings can be replicated with synthetic structure factor snap-
shots, which, for example, could be corrupted with external noise,
have missing values, or be sampled irregularly. An extension to
DMD for dealing with noise,”* BOP-DMD, also offers the ability to
quantify the uncertainty in the predictions, which could make DMD
more practical to use in an experimental setting. From an automated
control perspective, it would also be interesting to work with data
from multi-step spinodal decomposition.”” >’ Multi-step spinodal
decomposition would mimic a process in which the temperature
is changed by a control system in response to predictions of the
structure factor and microstructure characteristics. One might also
consider investigating the application of DMDc to such a system, i.e.,
one with actuation.

SUPPLEMENTARY MATERIAL

Please refer to the supplementary material for additional infor-
mation about generating time series of synthetic structure factor
snapshots and supplementary material results.
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