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Abstract 3D printing technology offers the possibility of producing synthetic samples with accurately
defined microstructures. As indicated by effective medium theory (EMT), the shapes, orientations, and sizes of
voids significantly affect the overall elastic response of a solid body. By performing uniaxial compression tests
on 20 types of 3D‐printed samples containing voids of different geometries, we examine whether the measured
effective elasticities are accurately predicted by EMT. To manufacture the sample, we selected printers that use
different technologies; fused deposition modelling (FDM), and stereolithography (SLA). We show how printer
settings (FDM case) or sample cure time (SLA case) affect the measured properties. We also examine the
reproducibility of elasticity tests on identically designed samples. To obtain the range of theoretical predictions,
we assume either uniform strain or uniform stress. Our study of over two hundred samples shows that measured
effective elastic moduli can fit EMT predictions with an error of less than 5% using both FDM and SLAmethods
if certain printing specifications and sample design considerations are taken into account. Notably, we find that
the pore volume fraction of the designed samples should be above ≈1% to induce a measurable softening effect,
but below ≈5% to produce accurate EMT estimations that fit the measured elastic properties of the samples. Our
results highlight both the strengths of EMT for predicting the effective properties of solids with low pore
fraction volume microstructural configurations, and the limitations for high porosity microstructures,
particularly, those with interactive pores geometries.

Plain Language Summary The mechanical strength of solid materials can be greatly influenced by
the presence of cavities or voids within them. These voids tend to weaken the material, a phenomenon that can
be estimated using effective medium approximations—mathematical models that predict the overall properties
of materials with inhomogeneous internal structures. In this study, we compared theoretical predictions for the
elastic properties of solids containing voids of different shapes and sizes with actual measurements taken from
3D‐printed samples designed to replicate the same pore structures used in our calculations. We found that the
predictions closely matched the measured elastic modulus, with an error of less than 5%. However, the accuracy
of the results was affected by the choice of 3D printing technology and printing settings. Overall, our study
confirms the use of effective medium approximations and provides a foundation for future research involving
3D printing to replicate rocks with complex internal pore structures.

1. Introduction
The elasticity of a material containing voids (empty pores) or inclusions (fluid‐filled or solid pores) can be
approximated using effective medium theory (EMT). The theory allows one to homogenize a medium and view
its response on a larger scale. In turn, understanding how the microstructure (pores shape, orientation, and size)
influences the overall response is beneficial in many disciplines, such as materials science, biomechanics, rock
mechanics, seismology, oil and gas exploration, among others.

Probably the first steps in treating a material as effectively elastic were done by Voigt (1889), Reuss (1929), and
Bruggeman (1937). Their works were followed and greatly developed by Hill (1952), Eshelby (1957),
Hashin (1959), and Bristow (1960); researchers inspired by problems in metallurgy. Subsequently, their aver-
aging approach was expanded by Walsh (1965), Budiansky (1965), Hill (1965), O’Connell and Budian-
sky (1974), Kachanov (1980), Oda et al. (1984), Zimmerman (1986), and Sayers and Kachanov (1991) who
described how the specific geometry of ellipsoidal pores and cracks affect the stiffness (compliance) of a solid; a
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rock in particular. Independent efforts were made in the field of seismology by Postma (1955), Backus (1962),
Schoenberg and Douma (1988), and Schoenberg and Helbig (1997), who focused on layered inhomogeneities or
long and thin cracks instead of ellipsoidal shapes. Nevertheless, their approaches give approximately equal
predictions when the layered features are viewed as a series of aligned penny‐shaped cracks (Schoenberg &
Douma, 1988). All effective elasticity approximations utilized by the aforementioned authors—and numerous
researchers not mentioned herein—share the same concept, that the elasticity of the constituents (i.e., solid matrix
and inhomogeneities) can be averaged to predict the overall medium's stiffness under given boundary conditions.
Because there is no single recipe on how to do it, authors often use the notion of “effective medium theory” to
refer to this general concept of averaging. The EMT goes beyond elasticity, with its origins in electromagnetic
properties of materials; it makes an essential part of a multidisciplinary field called micromechanics (Kachanov &
Sevostianov, 2018).

The EMT prediction for even the simple scenario of a single void embedded in a homogeneous matrix is not
straightforward. The approximation is unequivocal only if (a) the background is isotropic or transversely
isotropic, (b) the void is ellipsoidal, and (c) the void is very small. In the case that one of the first two conditions is
not satisfied, an analytical solution cannot be obtained (Kachanov & Sevostianov, 2018). In the case that the void
is relatively large, then the prediction will vary depending on the assumption chosen, due to the boundary effects
(Hill, 1952). Then, the so‐called apparent, and not effective, elasticity parameters are considered (Huet, 1990).
One possibility is to assume uniform strain throughout the sample. Another is to assume uniform stress. Either
assumption leads to an approximately identical result if the inhomogeneity is small, but are discrepant for larger
sizes. This discrepancy also arises if there are more than one void that interact with each other, thus disturbing the
stress and strain fields. If the distribution of voids is sparse, then the so‐called non‐interactive approximations are
proposed (Kachanov, 1992). If voids are close together or even overlapping slightly, the interaction effect needs to
be taken into consideration (Hill, 1965).

Early studies on ceramics with spherical pores have confirmed empirically the usefulness of EMT (Walsh, 1965).
However, empirical validation becomes more difficult in the case of strongly oblate or prolate spheroids, shapes
that may be good approximations for cracks present in for example, rocks. Because geomaterials usually have
complex microstructures, the empirical validation of EMT using rocks is limited. For instance, we can verify that
cracks of known orientation reduce the magnitude of specific parameters in the elasticity tensor (Brantut &
Petit, 2022; Markov et al., 2006; Sayers & Kachanov, 1995), and therefore weaken the rocks, as predicted by the
theory. However, the magnitude of the effect remains difficult to evaluate due to uncertainties in crack geom-
etries, crack concentration, and crack interactions.

Attempts to examine EMT on synthetic materials, where the microstructure can be much better constrained,
include placing polymeric inhomogeneities inside a previously prepared sandy matrix, with the polymeric ma-
terials being subsequently removed by chemical or thermal processes, leaving voids behind (Santos et al., 2017),
and the use of rubber pieces placed in epoxy glass (Henriques et al., 2018). Alternatively, laser etching can be used
to create cracks in glass (Stewart et al., 2013), or the geometry of cracked glass can be determined using Scanning
Electron Microscopy (Mallet et al., 2013). Efforts of using additive manufacturing techniques for EMT validation
purposes have employed either acoustic measurements of 3D printed samples containing ellipsoidal cracks
(Dugarov et al., 2022; Huang et al., 2016; Ndao et al., 2017) or uniaxial tension/compression experiments of
synthetic samples containing isotropic arrays of spherical/elliptical voids (Peloquin et al., 2023; Zerhouni, 2019).
While these works have revealed crucial insights on the predictive capabilities of EMT, they have been restricted
to small inhomogeneities only. This is because pores of a much smaller size than the wavelength are required for
acoustic measurements in order to satisfy the quasi‐static assumption of EMT. This way, a full elasticity tensor
can be obtained at the expense of inaccuracy in the manufacture of small pores. Apart from the inaccuracy in
microstructure design, small pores do not soften the material significantly and limit the possibility of validating
the non‐interaction approximation. In other words, small pores must be densely packed in order to obtain a
measurable weakening effect on stiffnesses. In turn, one cannot clearly distinguish the impact of interactions from
the effect of pore concentration itself. Also, the small size of pores impedes fluid injection to measure the
poroelastic response of such samples. All the aforementioned problems can be overcome if larger in-
homogeneities are considered. A downside of such a solution, though, is that the acoustic measurements are
heavily degraded due to the static assumption violation. Also, the theoretical prediction is not unequivocal due to
the impact of the choice of boundary conditions.
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In this paper, we used fused deposition modelling (FDM) and stereolithography (SLA), two standard 3D printing
technologies, to produce 20 different types of samples that contain relatively large voids with different geome-
tries, including spherical, oblate, and prolate ellipsoidal pores with a variety of sizes, aspect ratios, and orien-
tations. Samples were then uniaxially compressed to obtain the elastic components of the stiffness matrix
(Young's modulus and Poisson's ratio), which were compared with theoretical predictions to test EMT empiri-
cally. Our research fills the gap in experimental studies on effective elasticity for several reasons. First, void
geometries were designed to be large enough to enhance the softening effect and overcome measurement errors,
instead of using dense microcracks only. Also, we propose various pore interaction configurations that have not
been previously examined experimentally. In addition, the sizes of voids might facilitate future tests involving
fluid injection into pores for direct measurement of poroelastic parameters. Finally, we report results from over
two hundred samples, which enhances the robustness of our experimental validation and minimizes susceptibility
to random errors. In addition, we discuss three main issues regarding uniaxial compression tests of 3D‐printed
samples with voids. First, we attempt to understand how the differences between 3D printing technologies and
their specifications may affect the effective Young's modulus measurements. Second, we present the impact of
Young's modulus computation methodology. Third, and most importantly, we focus on whether EMT accurately
predicts Young's modulus given the issues mentioned above.

2. Materials and Methods
2.1. 3D Printing Technologies

3D printing has revolutionized the manufacturing industry, and numerous different printing technologies have
emerged during the past decades. These technologies range in price, accessibility, post‐printing processing re-
quirements, printing resolution, surface finishing quality, and environmental impact. Two standard 3D printing
technologies were used in this study: stereolithography (SLA) and Fused Deposition Modelling (FDM).

SLA is a type of additive manufacturing process that employs a laser source to solidify liquid‐state, light‐reactive
resin into solid polymers through a process called photopolymerization. A Computer‐Aided Design (CAD) model
is imported into the 3D printer which then constructs the object layer by layer with 0.1 mm resolution. The
resulting products usually require post‐printing treatment. They are first immersed in isopropyl alcohol (IPA) to
remove any residual, uncured resin. Subsequently, an additional curing step under heat may be needed to finalize
the polymerization reaction, which brings the material to its optimal mechanical properties. The SLA method is
known for producing highly detailed and accurate objects with seamless surface finishes. Once the resin is
hardened, though, it cannot be recycled. Discarded parts need to be disposed as household waste.

FDM is a widely used, cost‐effective 3D printing technology. A thermoplastic filament, in our case, biode-
gradable, polyactic acid (PLA), is fed into a heated nozzle that melts the material and then precisely extrudes it
onto the build platform, constructing the 3D object layer by layer. FDM printing is characterized by the lowest
entry and material price of the 3D printing market, by very simple usage, and for having the lowest environmental
impact with respect to other 3D printing technologies (Y. Li et al., 2017). The latter is mainly due to its lower
process energy consumption and the possibility of reusing or recycling its wasted products. These factors make
FDM a highly popular choice for proof of concept purposes and prototyping. However, the level of accuracy and
precision that FDM can offer is limited by the diameter of the circular orifice of the nozzle tip (in our case
0.4 mm). In addition, the layer‐by‐layer deposition (with 0.1 mm of resolution) limits the quality of curved
surfaces, causing a grainy surface finishing.

The ability of defining the exact shape, position, orientation, and density of the pore microstructure in a ho-
mogeneous matrix makes 3D printing highly attractive for evaluating the predictive capacity and limitations of
EMT. In the context of 3D printing for EMT testing purposes, the starting material needs to be as isotropic, non‐
porous, and homogeneous as possible. Because both SLA and FDM printed objects are built layer by layer, some
anisotropy is to be expected in the mechanical properties of printed materials. Mechanical anisotropy has been
shown to be low (≈1%) for SLA printed objects (Kazmer, 2017) although it can be affected by the prescribed
resolution/layer thickness (Chockalingam et al., 2006). A helium pycnometer was used to measured the con-
nected porosity of our 3D printed cylindrical samples, obtaining a porosity of 1.2% for whole SLA printed
samples.
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By contrast, mechanical anisotropy can be significant for FDM printed
samples (Kazmer, 2017). The magnitude of mechanical anisotropy is affected
by several printing parameters, which define the drawing pattern to be fol-
lowed by the nozzle tip. One or more perimeters are first drawn to delimit the
object's boundary. Then, the nozzle tip moves back and forth at a prescribed
angle (raster angle) to fill the delimited perimeter(s). The prescribed amount
of delimiting perimeters, the raster angle, and the layered structured of the
samples will determine the mechanical anisotropy of FDM printed samples
(Mohamed et al., 2015). To verify the magnitude of anisotropy of FDM
printed samples, we performed acoustic velocity measurements on four PLA
cubes (30 mm3) with two perimeters, rectilinear infill—the only recom-
mended pattern for 100% infill—and default other printing specifications.
Our results indicated 0.8%–3.3% of anisotropy in the direction orthogonal to
layering compared with parallel to layering. This anisotropy can be consid-

ered non‐significant, hence, isotropic symmetry was assumed in the context of EMT predictions and experimental
limitations. Another potential issue is caused by the air gaps between layers and rasters that result in an intrinsic
porosity for FDM 3D printed samples of around 5%, as measured by a helium displacement pycnometer. Main
aforementioned features of both 3D printing technologies are listed in Table 1.

2.2. Young's Modulus Measurements

The magnitude of Young's modulus may be significantly affected by the selected calculation methodology. Dean
et al. (1995) distinguished at least three terms that can be used to specify the Young's modulus value: tangent
modulus, chord modulus, and secant modulus. The first term describes a modulus obtained from a tangent line to
the stress‐strain curve. According to the ASTM standards for compression measurements of rigid plastic materials
(ASTM‐D695), a tangent line should be constructed at any point in the straight‐line part, whereas if there is no
clearly linear region, one should construct a tangent to reach the maximum (steepest) slope of the curve. The
second term describes a modulus measured as the slope of the line connecting the selected start and end points of
the stress‐strain curve. Finally, the secant modulus is a particular type of chord modulus, where the start point is
defined as the origin of the stress/strain curve.

As reported by Malkowski et al. (2018), based on over two hundred compressed rock samples, Young's moduli
values differ significantly based on the choice of modulus computation and of the start and end points for the
modulus calculation. For example, they find that the secant modulus measure is inadequate for Young's modulus
calculation of sedimentary rocks, and suggest that chord modulus of a narrower range (e.g., 30%–70% of ultimate
strength) might be the most suitable measure of Young's moduli.

In this paper, our primary goal is to consider the impact of voids on the effective elastic moduli of materials.
Because results might be affected by the selected Young's moduli derivation methodology, we follow a similar
approach to that of Malkowski et al. (2018) and compare different Young's moduli computation methods (see
Section 3.3) to determine the most suitable approach for calculating Young's Modulus for 3D printed, polymer
materials.

2.3. Effective Medium Predictions

In this section, we indicate how the elastic moduli that we measure during uniaxial compression tests are
employed to obtain the theoretical effective medium predictions, and we specify how these predictions are
calculated.

In a uniaxial compression test, the components of the principal stress tensor can be written as σ1 ≠ 0, σ2 = 0, and
σ3 = 0. In every test, we measure the axial strain in the direction of compression that—invoking Hooke's law— is
equal to ε1 = S1111σ1, where Sijkℓ denotes the forth‐order compliance tensor. Additionally, if a sample is isotropic
or transversely isotropic (TI) with the symmetry axis aligned with the compression direction, we measure the
radial strain that is equal to εr = ε2 = ε3 = S1122σ1. The above elastic properties can be expressed as Young's
modulus and Poisson's ratio, namely, E ≔ σ1/ε1 = 1/ S1111 and ν ≔ − εr/ε1 = − S1122/S1111, respectively. In
the case of a compression test of a solid sample, both Young's modulus and Poisson's ratio are background moduli

Table 1
Comparison of Features Between SLA and FDM 3D Printing Technologies
in the Context of EMT Testing

Feature SLA FDM In favour of

Resolution and accuracy Higher Lower SLA

Surface finishing Smooth Not smooth SLA

Mechanical anisotropy Lower Higher SLA

Porosity 1% 5% SLA

Post‐printing processing Required Not required FDM

Printer and material cost Higher Lower FDM

Environmental impact Higher Lower FDM
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used in the theoretical predictions, as explained later. In the case of a sample with a void (that usually induces
anisotropy of lower symmetry than TI), we measure Young's modulus only, which is the effective parameter.

In effective medium theory, it is assumed that a representative volume element (RVE) constitutes a sufficiently
large and statistically representative sample of the composite/porous material (Kachanov & Sevostianov, 2018).
In addition, the RVE should be small enough not to be influenced by variations in macroscopic forces. If the RVE
is defined correctly (Cosenza et al., 2019), the effective properties should be independent of the selected boundary
conditions. However, because of experimental restrictions, in some cases our samples are smaller than the RVE.
Hence, their effective properties or, as called by Huet (1990), their apparent properties, depend on the boundary
conditions. Nevertheless, experiments on samples with volumes smaller than RVE are meaningful, and provide
valuable information on effective properties. As proved by Huet (1990), for any volume of averaging, the
“apparent” constants provided by the uniform stress and uniform displacement boundary conditions constitute
bounds for the effective constants, as explained below.

Effective properties of a medium with a single inhomogeneity (e.g., void) can be predicted differently depending
on the boundary conditions we choose. If stress is assumed to be uniform under the absence of the ellipsoidal
inhomogeneity, then the findings by Hill (1952) and Eshelby (1957) can be formulated as (Shafiro &
Kachanov, 1997),

Sσijkℓ = S0ijkℓ + ϕHijkℓ + ϕΔHijkℓ, (1)

where S0ijkℓ is the background compliance tensor, ϕ is the inhomogeneity volume fraction, Hijkℓ is the compliance
increase due to void presence, and ΔHijkℓ is the compliance correction factor due to the presence of fluid or solid
in the void. If displacement, not stress, is assumed to be uniform, then

Sεijkℓ = (C0
ijkℓ + ϕNijkℓ + ϕΔNijkℓ)

− 1, (2)

where C0
ijkℓ is the background stiffness tensor, Nijkℓ is the stiffness decrease due to the presence of the void, and

ΔNijkℓ is the stiffness correction factor due to the presence of fluid or solid in the void. In this paper, we do not
consider fluid or solid filling of the void; hence, the last term in Equations 1 and 2 equals zero.

Since, as proved by Huet (1990),

Sσijkl ≥ Seffijkℓ ≥ Sεijkℓ (3)

we can use Equations 1 and 2 to obtain the maximum and minimum predicted values of the effective Young's
modulus 1/Seff1111, respectively. Both expressions give approximately equal values if the void is small because the
RVE assumption is satisfied. However, the range of prediction rises with larger ϕ due to the apparent properties
measured (RVE smaller than the sample).

Hijkℓ and Nijkℓ can be derived analytically for ellipsoids embedded in an isotropic or TI background. They depend
on (a) void shape, (b) void orientation, and (c) background Poisson's ratio. The exact expressions for Hijkℓ and
Nijkℓ are presented in Appendix A. Therefore, the range of effective Young's modulus can be predicted if we know
the geometry of the void, and we measured Young's modulus and Poisson's ratio of the solid sample, since the
same elastic properties are assumed to describe the background of the sample with a void.

In the case of multiple voids, if one assumes that the distance between inhomogeneities is great enough, then the
stress at the boundary of each void region is nearly the same as at the boundary of the body. We can write the so‐
called non‐interaction approximation (NIA) as

Sσijkℓ = S0ijkℓ +∑
m

ϕ(m)H(m)
ijkℓ, (4)

where superscriptm describes each void in the medium. If the displacement at the boundary of each void region is
nearly the same as at the boundary of the body, we get a dual version of NIA,

Journal of Geophysical Research: Solid Earth 10.1029/2024JB030747

ADAMUS ET AL. 5 of 28

 21699356, 2025, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JB

030747 by N
IC

E
, N

ational Institute for H
ealth and C

are E
xcellence, W

iley O
nline L

ibrary on [03/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Sεijkℓ = (C0
ijkℓ +∑

m
ϕ(m)N(m)ijkℓ)

− 1

. (5)

In the case where voids are relatively close to each other, the interaction between them may disturb the stress and
displacement field. This is why several interaction schemes, such as the self‐consistent, differential, Maxwell, or
Mori‐Tanaka schemes, were proposed (Kachanov, 1992). Nevertheless, all of them use NIA as a building block
and predict effective compliances within the range provided by expressions Equations 4 and 5 because these
schemes are designed to account for larger concentrations of voids where the interactions effects mostly balance
each other. In our case, however, there are few relatively large voids, where local impacts may be more dominant
(Kachanov & Sevostianov, 2018). As revised by Kachanov (1992), at local scale, the shielding or amplification
effects can lead to smaller or larger softening of the material, respectively. Sevostianov and Kachanov (2010)
indicate that these effects are especially noticeable in case of cracks. Co‐linear cracks can lead to stronger
softening (decreased Young's modulus) as it would be predicted by NIA, whereas stacked cracks lead to weaker
softening (increased Young's modulus) as compared to non‐interactive estimation. In fact, two stacked cracks, if
close to each other, can act as one in terms of the elasticity softening (Kachanov & Sevostianov, 2018). To our
best knowledge, there is no universal formula to quantify the shielding/amplification within EMT. In this paper,
we compare the experimental results with the range of theoretical predictions from Equations 3 and 4, conscious
of NIA limitations. In fact, the discrepancy between NIA and experimental results might indicate the importance
and strength of local interaction effects.

3. Experiments
3.1. Experimental Setup: Uniaxial Compression

3D printed samples were subjected to uniaxial compression using a servo‐controlled uniaxial load frame in the
Rock and Ice Physics Laboratory of University College London (Figure 1a). Samples were loaded at a strain rate

Figure 1. (a) 3D printed sample loaded in the uniaxial frame. (b) Extensometer and parameters to obtain circumferential
strain.
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of 10− 5s− 1 until yielding. Strain rate was kept constant and equal for all the experiments to avoid strain‐rate
sensitivity issues (e.g., viscoelasticity) that are known to affect polymer materials (Z. Li & Lambros, 2001).
Axial strain was continuously measured using an external linear variable differential transformer (LVDT)
displacement transducer, while load was recorded using a 200 kN load cell. Corrections were applied to the axial
displacement data to account for machine stiffness. Intact (solid) 3D printed cores were uniaxially deformed while
taking continuous measurements of circumferential strain using an LVDT extensometer (Figure 1b). The
correction applied to convert from linear displacement (LVDT output) to circumferential strain is detailed as
follows. The initial aperture angle θi is obtained from the initial sample radius Ri, the total chain length lc = 7ll,
where ll is the link length, and extensometer rod radius r from,

θi = 2π −
lc

Ri + r
. (6)

The circumferential strain ϵc is calculated from the differential LVDT output δl = l f − li (see Figure 1) as,

ϵc =
2πδl

sin(θi/2) + cos(θi/2)(π − θi/2)
. (7)

3.2. Samples: Configuration and Preparation

We designed 20 types of cylindrical samples having different configurations of voids. These samples were
62.5 mm long with a diameter of 25 mm. This way, the 2.5 proportion between length and diameter suggested by
ASTM‐D695 and rock experimentalists (e.g., Paterson & Wong, 2005) is achieved. We divided the samples into
two groups designed for two phases of experiments. In the preliminary phase of tests (numbering of samples
preceded with 1), we compressed only five types of cores that are either solid or have a single void (samples 1.1–
1.5). Their simple configuration allowed us to verify the influence of 3D printer type, specifications (or cure time),
and long‐crack edge effects on the results (see Section 4.5). Subsequently, in the second phase, we chose the best
performing—in the context of measurement/prediction error—3D printer and specification to perform experi-
ments on 15 types of cores having voids with diminished edge effect and more complicated configurations
(samples 2.1–2.15). Let us discuss the configuration and preparation of the samples from each group separately.

The longitudinal and cross‐sections of samples designed for the preliminary phase of experiments are depicted in
Figure 2. Concise description of the voids geometries can be found in Table 2. Sample 1.1 is necessary to obtain
the elastic properties of the background material that are used in the theoretical calculations Equations 4 and 5.
Theoretically, a void with a very low aspect ratio makes the softening more pronounced, an this effect should be
even more significant if the volume of the pore increases. Therefore, samples 1.2 and 1.4 were designed to verify
the influence of pore volume along with the possible effects of decreasing the distance between pore boundary and
sample edge. Samples 1.3 and 1.5 contain one prolate ellipsoid and one sphere, respectively. The sizes of voids are

Figure 2. Geometry of samples designed for the preliminary phase of the experiments, where dimensions are in millimeters.
Sample 1.1 is solid, whereas samples 1.2 and 1.4 consist of strongly oblate spheres having a 0.1 aspect ratio.
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designed in such a way as to overcome the limitation of printer resolution and make the softening significant
enough for it to be easily measurable. The samples were printed using FDM (Prusa i3 MK3S+ printer) and SLA
(Form3+ printer) technologies. In the case of FDM printing, we used PLA as the filament material. We set 100%
rectilinear infill and select two different options for wall thicknesses (perimeters); our samples have either two or
five perimeters. In Figure 4, we present half‐printed samples having two perimeters. It can be seen that the low
aspect ratio of cracks in samples 1.2 and 1.4 leads to some printing imperfections. Also, the visual effect that the
number of perimeters has on the edges of both the sample and the internal void can be appreciated in Figure 3.

In the case of the SLA printing, we used standard grey resin. The manufacturer suggests putting freshly printed
material in IPA (alcohol) and heating it to make the fabric stiffer. In this paper, we go beyond this suggestion and
check two other procedures: (a) IPA cleaning and cure for a month without heating, (b) IPA cleaning and cure for
a week without heating, and (c) IPA cleaning, heating (60°C), and fast cure (between 4 hr and 2 days). This way,
we verify the influence of a cure time on the sample stiffness and compare it with the influence of the heating. In
Figure 5, we present cleaned SLA samples cut in half. While cutting them, we noticed the remaining residual resin
inside the voids that may have an influence on sample stiffness, as shown in Figure 6.

The longitudinal and cross‐sections of samples designed for the final phase of experiments are depicted in
Figure 7; the concise description of voids' geometries can be found in Table 3. Samples 2.1 and 2.2 contain a
sphere and a prolate spheroid, respectively. They are similar to samples 1.5 and 1.3, but the volume fraction of the
voids is larger to augment the softening effect. In the remaining samples, 2.3–2.15, we focus on crack‐like shapes
that are crucial in the context of for example, geomaterials. These samples consist of either isolated, overlapping,
or crossing oblate spheroids having a 0.2 aspect ratio and radius of 8 mm. The radius of the voids is smaller than

Table 2
Description of Samples Designed for the Preliminary Phase of the Experiments

Sample Void type Radius [mm] Aspect ratio Number of voids Orientation

1.1 — — — 0 —

1.2 Oblate spheroid 2.5 0.1 1 Horizontal

1.3 Prolate spheroid 1.5 10 1 Vertical

1.4 Oblate spheroid 10 0.1 1 Horizontal

1.5 Sphere 4 1 1 —

Note. All voids are placed in the center of the sample.

Figure 3. Difference of prescribed perimeters (two in the left, five to the right) on the final structure of porous samples printed
with the FDM technology. The thickness of the perimeters delimiting the samples and the pores edges are highlighted in
yellow, showing that for an equal size pore, the prescription of five printing perimeter results in a significantly thicker,
concentric boundary that affects the internal microstructure of the sample.
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that of sample 1.4; this way, the edge effect is diminished and potential collapse of the crack is inhibited. By
contrast, the aspect ratio is augmented to (a) avoid printing imperfections, (b) keep a significant softening effect,
(c) keep it flat enough to be considered a crack, and (d) allow fluid injection in the future. Samples 2.3 and 2.4 are
designed to verify the influence of a crack‐like void orientation. We designed other samples to verify the possible
influence of interactions between two vertical cracks (samples 2.5 and 2.8), horizontal cracks (samples 2.6 and
2.9), and vertical and horizontal cracks (samples 2.7, 2.10, and 2.11). Further, samples 2.12–2.15 may allow us to
measure the significant softening effect (as compared to solid sample 1.1) and interaction influence of a moderate
crack concentration; the total volume fraction of voids in samples 2.12–2.13 is ϕ ≈ 5.6% and in samples 2.14–
2.15 is ϕ ≈ 11.2%. Note that the overlapping of the samples is small enough to keep the crack‐like shapes but
perhaps sufficient to equilibrate pore pressure in future fluid injection experiments. In this phase of experiments,
all samples are printed using FDM technology and have two perimeters. The interior of each void (either isolated,
overlapping, or crossing) type is shown in Figure 8.

3.3. Moduli Definitions and Measurement Repetitions

As mentioned in Section 2.3, we measured either Young's modulus and Poisson's ratio (solid samples) or Young's
modulus only (samples with voids). We calculated Young's modulus from the slope of the following portions of
the strain‐stress curve:

Figure 5. Printed and deformed SLA samples cut in half with voids cleaned.

Figure 4. Half‐printed FDM samples having two perimeters used in the preliminary phase of experiments. Samples have
brims that prevent their detachment from the bed.
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• 15% and 30% of the yield strength, E15 – 30,
• 25% and 50% of the yield strength, E25 – 50,
• 25% and 75% of the yield strength, E25 – 75,
• Lower and upper elastic limits, Eel.

In the case of FDM, the yield strength (σy) was determined based on the first
peak of the stress‐strain curve. In the case of SLA, σy is difficult to determine
unequivocally due to the continuous growth of stress with displacement.
Therefore, we arbitrarily chose a threshold of 6% strain to obtain the reference
point (yield strength approximation) used to calculate the limits of Young's
modulus. To define the Poisson's ratio, we first estimated two ranges of
stresses that correspond to the elastic part of the axial and radial strain curves.
Second, we chose a common range of stress that—in a set theory sense—is
the intersection of the two aforementioned ranges. This way, the parts of ε1
and εr needed for Poisson's ratio computation are unequivocally determined.

Our compression experiments and modulus measurements are less prone to
random errors due to the repetitions of 3D printing and testing of identically
designed samples. This way, more reliable average values of moduli can be
obtained. Table 4 lists the number of repetitions of valid measurements for
each sample type of this study. Note that the solid sample (1.1) has the most
repetitions; this is due to its importance for the EMT calculations.

4. Results
4.1. Stress‐Strain Curves

Results of axial strain as a function of stress are plotted for the five preliminary‐phase microstructural config-
urations (samples 1.1–1.5) (Figure 9). Selected curves are plotted for (a) FDM printed samples with 2 perimeters
(FDMt), (b) FDM printed samples with 5 perimeters (FDMv), (c) SLA printed samples tested after month of post‐
printing curing time at room temperature (SLAm), (d) SLA after a week of curing time at ambient temperature
(SLAw) and (e) SLA after curing in a heated chamber at 60°C for 1 hr, and then post‐curing at ambient tem-
perature for a minimum time of 4 hr and a maximum of 2 days (SLAf). Curves are plotted up to their yield points,
displaying their elastic ranges and the portions of the curves considered for elasticity modulus computation.
Circumferential strain as a function of stress is plotted for a solid FDMt sample, displaying the ranges considered
for Poisson's ratio determination.

It can be seen that FDM printed samples are stiffer and stonger with respect to SLA samples, and that the printing
pattern (numbers of delimiting perimeters) does not significantly affect their mechanical behavior, although
samples printed with two perimeters (FDMt) consistently display higher stiffness and higher yield strength with
respect to those with five delimiting contours (FDMv) for all preliminary‐phase samples except for 1.4. SLA
printed samples are relatively soft, elasto‐plastic materials. Curing time and method have a significant influence
on the mechanical properties of SLA printed samples. Two days of curing time within a heated chamber at 60°C is
shown to be the most effective method to drive the material to higher mechanical strength. In addition, samples
cured for 1 month are consistently stiffer and stronger than samples cured for 1 week.

The microstructural configuration of samples does not significantly affect the mechanical properties of
preliminary‐phase 3D printed samples, except for the 1.4 microstructural design, which notably alters the
deformation mechanism of FDM printed samples. This design has the largest void fraction and smallest distance
from void to sample edge. Predictably, this microstructural configuration induces a significant softening effect
and causes a different deformation mechanism by which the pore boundaries collapse at lower stress due to stress
concentrations at the thin walls surrounding the pore (Figure 10).

Poisson's ratio measurements for solid FDM samples printed with two and five perimeters (FDMt, FDMv) and
SLA samples with the previously described curing methods (SLAm, SLAw, SLAf) are indicated in Table 5.

Figure 6. Residual resin present in the uncleaned void of an SLA printed
sample.
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4.2. Mean Young's Modulus of Solid FDM Samples

The average Young's modulus calculated from the arithmetic mean of 12 and 6 repeated tests for solid FDM
samples, and samples 1.2–1.5, respectively, are shown in Figure 11 and listed in Table 6 for the four modulus
determination methods described in Section 2.2. Young's modulus of solid samples consistently lie between 2.6
and 2.7GPa, and display a scatter of ±0.2GPa, in accordance with magnitudes reported in the literature (Dizon
et al., 2018). Results do not follow a Gaussian distribution, although this is likely due to insufficient number of
tested samples. These results highlight the need for considering means calculated from a significant statistical
sample size to obtain meaningful and representative results for the elasticity modulus of 3D printed samples.

Young's modulus results vary depending on the portion of the elastic range chosen for modulus computation. The
higher magnitudes are obtained using the 25 to 50% portion of the elastic range. FDMt samples display a
consistently higher Young's modulus with respect to FDMv, although the difference is not significant (0.05GPa or
less).

Figure 7. Geometry of samples designed for the final phase of experiments, where dimensions are in millimetres. Samples
2.3–2.15 consist of either isolated, overlapping, or crossing oblate spheroids having a 0.2 aspect ratio and 8 mm of radius.
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4.3. Effect of Post‐Printing Curing Methods for the Mechanical Behaviour of SLA Samples

Samples 1.1–1.5 were printed using the SLA method and treated with the curing procedures described in Sec-
tion 4.1 (1month at room temperature, 1week at room temperature, 1 hr in 60°C chamber). Three series of samples
1.1–1.5 were printed, treated, and tested for each curing method. Two additional series of samples were tested
immediately after heating (no curing time). This workflow was followed to evaluate the repeatability of results for
printed samples following the same post‐printing processing. Calculations of E25–50 for the different series pro-
cessed using the same method, for each curing procedure, are displayed in Figure 12. The Young's modulus
(E25–50) axis ranges are set purposely to allow visualization of the scatter of results between different series. The
scatter in E25− 50 is overall is below 0.2 GPa (equivalent to 20% of themean effective modulus). However, there is a
consistent trend in the magnitude of Young's modulus between series. For example, series 2 of 1 month‐cured
samples have consistently higher E25–50 magnitudes for all 1.1–1.5 samples with respect to series 1 and 3,
which were subjected to equal post‐printing procedures. Similar trends are observed for all curing methods,
indicating a clear influence of printing batch on the resultingmechanical properties. This observation highlights the
difficulty of repeatability for SLA printed samples, even after following the same post‐processing procedures.

The effect of the elapsed time between the curing of whole SLA samples and the execution of the uniaxial test to
determine the mechanical properties of SLA samples is displayed in Figure 13 for samples that were printed,
cured in a 60°C chamber, and tested after 15 min to 2.5 hr. It can be seen that the elapsed time between heating and
conducting the deformation experiments correlates positively with stiffness, that is, allowing the samples to cool
has a hardening effect on SLA printed samples.

4.4. Elastic and Inelastic Ranges for FDM and SLA Samples

Figure 14 displays results from the strain‐curves from tests on preliminary phase FDM and SLA printed samples
split into the average percentages of the lower inelastic phase (origin to lower elastic limit), elastic phase (lower to

Table 3
Description of Samples Designed for the Final Phase of Experiments

Sample Void type(s) Number of voids Void center to sample center [mm] Orientation(s)

2.1 Sphere, a = 8 mm 1 0 —

2.2 Prolate spheroid a = 5 mm, γ = 3 1 0 vrt.

2.3 Oblate spheroid 1 0 vert.

2.4 Oblate spheroid 1 0 hor.

2.5 Oblate spheroids 2 18/− 18 vrt./vrt.

2.6 Oblate spheroids 2 11.6/− 11.6 hor./hor.

2.7 Oblate spheroids 2 14.8/− 14.8 vrt./hor.

2.8 Oblate spheroids 2 7.7/− 7.7 vrt./vrt.

2.9 Oblate spheroids 2 1.3/− 1.3 hor./hor.

2.10 Oblate spheroids 2 7.7/− 1.3 vrt./hor.

2.11 Oblate spheroids 2 0/0 vrt./hor.

2.12 Oblate spheroids 4 18.75/3.35/− 22.55/− 25.15 vrt./vrt./hor./hor.

2.13 Oblate spheroids 4 15.4/0/− 9/− 11.6 vrt./vrt./hor./hor.

2.14 Oblate spheroids 8 18.75/3.35/− 12.15/− 14.75/ vrt.x2/hor.x6

− 17.35/− 19.95/− 22.55/− 25.15

2.15 Oblate spheroids 8 15.5/0.1/− 8.9/− 11.5/ vrt.x2/hor.x6

− 14.1/− 16.7/− 19.3/− 21.9

Note. All voids are centered horizontally. The distance measured from the void center towards the bottom of the sample is
positive. Orientations of the voids are listed in descending order starting from the uppermost void. All oblate spheroids have a
radius a = 8 mm and aspect ratio γ = 0.2.
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upper elastic limits) and the upper inelastic phase (upper elastic limit to yield point). FDM samples deform
elastically over a wider range of stress, with an average of 61.7% of the stress‐strain curves. This average is
significantly decreased by sample 1.4, which displays amuch smaller elastic range due to the different deformation
mechanism driven by the pore space collapse. Average elastic ranges for the secondary phase of FDM printed
samples (Figure 15) are likely more representative of the mechanical behavior of FDM samples, as none of them
displays pore space collapse. They display an average elastic range of 72.4% of the total stress‐strain curve.

By contrast, SLA printed samples experience a consistent, albeit smaller, elastic range of 49.3%. The micro-
structural configuration of sample 1.4 does not produce deformation due to pore space collapse in SLA printed

Figure 8. Half‐printed FDM samples having two perimeters, used in the final phase of experiments. Each type of printed void
is shown. These configurations are present in (a) sample 2.1, (b) sample 2.2, (c) samples 2.3, 2.5, 2.7, 2.8, 2.10, 2.12–2.15,
(d) samples 2.4, 2.6, 2.7, 2.9, 2.10, 2.12–2.15, (e) sample 2.11, and (f) samples 2.14–2.15. All cores have brims that prevent
their detachment from the bed.

Table 4
Number of Repetitions of Valid Young's Moduli and Poisson's Ratio Measurements for Each Sample Type

YM valid measurements PR valid measurements
Sample 1.1 Sample 1.2–1.5 Sample 2.1–2.15 Sample 1.1

FDMt (two perim.) 12 6 6 5

FDMv (five perim.) 12 6 — 4

SLAm (month cure) 3 3 — 3

SLAw (week cure) 3 3 — 3

SLAf (fast cure, heated) 3 3 — 3
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Figure 9. Selected stress‐strain curves for samples 1.1–1.5 that are FDM with two perimeters (FDMt) or five perimeters (FDMv), SLA cured for a month (SLAm), a
week (SLAw), or heated and fast‐cured for less than 2 days (SLAf). Elastic parts, yield points and the range of curve to obtain E15–30 are presented. Additionally, the left‐
upper figure presents the circumferential and volumetric strains of solid FDM sample having two perimeters (FDMt). The Poisson's ratio is obtained based on the elastic
portion of the circumferential strain that lies within elastic part of the axial strain.
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samples. However, it is important to note that the yield point for SLA
printed samples is less well defined. To avoid arbitrary definitions, the yield
point of SLA samples was assumed to correspond to 6% of axial strain,
throughout.

4.5. Prediction Range From EMT Using Solid Samples Results

Now that we have confidently determined the elastic properties of solid
SLA and FDM printed samples (Section 4.2), we can use these results to
compute the predicted effective modulus for each sample with voids.
However, EMT predictions may not be unequivocal; as they depend on the
boundary conditions chosen for theoretical calculations (uniform stress or
uniform strain). As a result, for certain pore geometries, different boundary
conditions can result in different predicted magnitudes for equal void con-
figurations. In such cases, the prediction of effective Young's modulus from
EMT is a range, and not a single magnitude. Herein, we describe the effect
that pore space volume and shape have on the range of predictions by EMT.
Theoretically, the larger the softening effect caused by a void, the larger the
range of estimation is– meaning that the prediction becomes equivocal and,

hence, less accurate. Both the softening effect and the prediction range are affected by the interplay of the void's
orientation, shape, and size. For the sake of analysis, let us assume a single, horizontal, oblate void, such as
those embedded in samples 1.2, 1.4, and 2.4, within a FDM printed sample with two perimeters (FDMt,
E0 = 2.69 GPa, and Poisson's ratio of ν0 = 0.41). If we consider a fixed shape of the horizontal spheroidal
void and we increase its radius (e.g., samples 1.2 and 1.4), then the increased volume of the void leads to higher
inaccuracy of EMT prediction (Figure 16). By contrast, in the case of a fixed volume of the horizontal void
(e.g., samples 2.4 and 1.4), the EMT inaccuracy is affected by the aspect ratio of the spheroid; the lower the
aspect ratio, the higher the inaccuracy.

4.6. Comparison With Predictions From Effective Medium Theory

The measured effective elastic modulus of 3D printed samples, considering four different ranges for elasticity
modulus computation (E15–30, E25–50, E25–75 and the whole elastic portion of the curves), are plotted along with
the predicted range for effective Young's modulus calculated from EMT for each microstructral configuration for
(a) FDM, preliminary phase printed samples (Figure 17), (b) SLA, preliminary phase printed samples (Figure 18),
and (c) secondary phase, FDM printed samples (Figure 19). Details of the plotted values and the computed error
of experimental results with respect to EMT predictions are listed in Tables B1–B3 in Appendix B. The error
between measured and predicted values was calculated as follows:

|R| =
|Epredicted − Emeasured|

|Epredicted|
×100% (8)

where Emeasured is the average effective Young's modulus (averaged over a number of repetitions), and Epredicted is
the middle value within the EMT prediction range.

The results of effective Young's modulus for FDM secondary phase samples correspond to the arithmetic mean of
six tested samples per sample type, and are plotted normalized with respect to the measured Young's modulus of
solid cores. The best fit to EMT predictions is achieved for effective moduli computed with E15–30, and for
samples printed with two perimeters, which display very small errors of 0.94%, 0.23%, and 1.08% for samples 1.2,
1.3, and 1.5, respectively. The mismatch between measurements and predictions is highest for sample 1.4

(deformed due to pore space collapse) for any printing set‐up and modulus
calculation. Measured effective modulus for samples 1.4 are between 5.95%
and 65.6% lower than EMT predictions.

The details of computed effective Young's modulus and comparison with
EMT predictions for SLA printed samples are displayed in Table B2 and
Figure 18. Results are shown for each curing method (1 month cure SLAm,

Figure 10. Inelastic deformation mechanism due to pore space collapse in
FDM printed sample with a large oblate pore (1.4).

Table 5
Poisson's Ratio for Solid FDM and SLA Samples

FDMt FDMv SLAm SLAw SLAf

ν0 = 0.41 ν0 = 0.38 ν0 = 0.42 ν0 = 0.42 ν0 = 0.45
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1 week cure SLAw, fast and heated cure SLAf) and for different portions of the elastic curve used for modulus
computation. The closest results in terms of matching EMT predictions are achieved with 1 month cured samples
(SLAm). The misfit between measurements and predictions are 1.06%, 0.55% and 0.39% for samples 1.2, 1.3, and
1.5, respectively, using E15–30 from the stress versus strain curves. Higher errors are consistently observed for

sample 1.4, with a mismatch ranging between 11.3% and 22.4%. In contrast to
FDM samples, EMT predictions underestimate the effective modulus for this
microstructural arrangement with respect to measurements on SLA printed
samples.

Comparisons between EMT prediction with respect to measured effective
moduli for secondary phase FDM printed samples (Figure 19, Table 3) reveal
that, as previously observed, lower mismatches between measurements and
predictions are obtained using the E15–30 range of the stress versus strain
curve, although results are not significantly affected by the modulus
computation method. Overall, the best fits to predictions (error below 5%) are
obtained for samples with simple microstructural arrangements (either one or
two pores) and with lower pore volume fraction (below 3%), which is the case
for samples 2.3–2.11. The effective Young's modulus for sample 2.2 (prolate
pore, 5.12% porosity) is consistently underestimated by EMT predictions by
9%–10%. By contrast, EMT overestimates the effective modulus of sample 7
(1 oblate plus 1 prolate pore) with respect to measurements, by 4%–9%. The
effective modulus for two overlapping oblate pores (sample 9) is under-
estimated by EMT predictions by 7%–9.5%. Its value is generally similar to

Figure 11. Distributions of experimentally obtained Young's modulus for solid FDM samples having either two (FDMt) or
five (FDMv) perimeters. In total, there were 24 samples tested. Results in each chart are grouped into 12 bins.

Table 6
Experimentally Obtained Young's Modulus for Solid FDM Samples Having
Either Two (Sample 1.1t , Twelve Tests) or Five Perimeters (Sample 1.1v,
Twelve Tests)

1.1t 1.1v 1.1t & 1.1v

E15–30 Mean 2.69 2.64 2.67

Range 2.52–2.83 2.44–2.77 2.44–2.83

E25–50 Mean 2.73 2.68 2.71

Range 2.61–2.79 2.46–2.77 2.46–2.79

E25–75 Mean 2.64 2.61 2.62

Range 2.50–2.73 2.44–2.77 2.44–2.77

Eel Mean 2.63 2.59 2.61

Range 2.54–2.70 2.41–2.70 2.41–2.70

Note. Mean values and ranges of differently defined modulus are given.
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effective modulus for sample 4, where only one horizontal oblate pore is present. On the other hand, sample 6
(two horizontal oblate pores further from each other) is well predicted by EMT—the softening effect is stronger as
compared to samples 4 and 9.

More complex pore arrangements such as those constituting the internal structure of samples 2.12–2.15 display
the highest errors between measurements and predictions. The higher pore fraction volume of these samples
causes a larger softening effect, which results in a wider prediction range from EMT. Effective modulus mea-
surements for samples 2.12 and 2.13 (ϕ ≈ 5.6%) lie 6%–11.4% above the upper limit of the effective modulus
range predicted by EMT. By contrast, measured moduli for samples 2.14 and 2.15 (ϕ ≈ 11.2%) lie approximately
150% above the upper bound of the predicted range.

5. Discussion
We have produced and subjected to uniaxial compression over two hundred 3D printed samples using two
different printing technologies, considering distinct printing specifications and post‐printing processing
methods, and 20 different microstructural configurations. This thorough approach allows us to confidently state

Figure 12. Effective Young's moduli obtained from compression tests of SLA samples. They were printed in a series of five
samples 1.1–1.5. Cores were cured for a month, week, were heated with a short cure (between 4 hr and 2 days) or almost no
cure. The results show that series differ from each other, and particular printing sessions may affect the stiffness of samples.
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the strengths and limitations of 3D printing to emulate solids with relatively
large voids and the capacity of effective medium theory to predict their
effective elastic properties. We first discuss the methods and practices that
we have seen to optimize the fit of measured elastic moduli with EMT
predictions. We then examine the constraints on sample dimension and
microstructural design that need to be considered for manufacturing repre-
sentative porous media.

5.1. 3D Printing Methods and Practices for Best Fit to EMT Predictions

The best fit between measured and predicted elasticity moduli for FDM
printed samples (error less than 5%, Table B1) were obtained by specifying
two contour perimeters, and by computing Young's modulus using 15%–30%
of the stress/strain curve. Our results suggest that the inherent anisotropy in
the background medium produced by the printing method (depositional
layering, raster angle), the inter‐layer porosity, and the limited resolution of
the printing method, does not impact significantly on the capacity of FDM
samples to emulate a solid medium with voids, when sample design con-
siderations are taken into account (see the following section).

SLA printed samples can also be used to produce controlled porous media.
The best fit of measured effective elastic properties with respect to EMT
predictions (error below 1%, Table B2) is achieved by curing the printed

samples for extended periods (1 month in our case), and by considering E15–30 (as above). Successful results using
SLA printing methods to match EMT predictions were also obtained by Zerhouni et al. (2019). Importantly,
though, our results indicate that repeatability using SLA printed samples is more difficult to achieve. The me-
chanical properties of SLA samples appear to be affected by uncontrolled factors (e.g., ambient temperature) that
cause slightly different results between printed batches, even if subjected to equal post‐printing processing. In
consequence, meaningful comparisons between elastic properties of SLA cores should always be done on
samples printed in the same batch.

We can conclude that both FDM and SLA methods can be used to emulate representative solids with a controlled
void space whose effective elastic properties can be predicted by EMT. However, the need for long curing times

Figure 13. Effect of a cure time of heated samples. Decreasing temperature
leads to the stiffening of the samples.

Figure 14. Elastic and inelastic parts (in percentages) of an average curve of each FDM and SLA sample type, where the
curve ends at the yield strength. In the case of FDM, the yield is determined based on the flat part of the curve. In the case of
SLA, yield is difficult to determine; hence, it is assumed to correspond to 6% of strain. For FDM, on average, the elastic part
takes 61.7% of the curve. For SLA, on average, the elastic part takes 49.3% of the curve.
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of SLA samples, along with the difficulty of repeatability, added to the higher
cost of this technology and the impossibility of recycling its wasted products,
makes FDM amore convenient and equally effective method for this purpose.

It is important to note that the porous microstructure of 3D‐printed samples is
constrained by the printing resolution (0.1 mm), which limits the minimum
achievable aspect ratio of ellipsoidal pores to 0.01. In contrast, penny‐shaped
cracks with lower aspect ratios (≈ 0.001) are typically used to theoretically
model microcracked media but cannot be reproduced with current 3D printing
technologies. This limitation prevents 3D printing from accurately emulating
cracked media. However, the ellipsoidal pores with higher aspect ratios and
spherical voids produced in this study effectively represent the microstructure
of naturally porous materials, particularly porous rocks. As a result, 3D
printing remains a valuable tool for simulating porous media.

5.2. Considerations for Microstructural Design: Pore Volume Fraction
and Edge Effect

In order to produce 3D printed samples of an homogeneous medium with
voids that can be significantly compared to predictions from EMT, some
considerations need to be taken into account. First, the pore volume fraction
needs to be sufficient to induce a measurable softening effect, but, at the same

time, too large pore volume fraction results in an equivocal, wide range of estimation by EMT that fails to predict
the measured effective moduli of samples.

We observe that, for a pore fraction of ϕ ≈ 5.6%, such as that prescribed for samples 2.12 and 2.13, the range of
effective moduli estimations from EMT becomes too wide, and lie below the measured effective properties of 3D
printed samples. Results become extremely inaccurate for a pore volume fraction of ϕ ≈ 11.2% (samples 2.14,
2.15) with errors above 150% (Table B3). These discrepancies above the upper bound might come from strong
shielding effect due to stacked horizontal oblate pores. Interestingly, measured effective moduli are relatively
similar to effective Young's modulus for sample 2.6, where only two horizontal oblate but distant pores are
present. This may emphasize the importance of distance between horizontal crack‐like pores.

More detailed comparisons can be made between samples with a single pore,
equal shape and orientation, but different pore volume fractions. Samples 1.3
and 2.2 both contain a single, prolate, vertical pore, but with pore volume
fractions of ϕ = 0.46% and ϕ = 5.12%. The misfit between measurements
and EMT predictions were 0.23% and 9.34%, respectively. The effect of
increased pore volume is smaller when pores are spherical. Sample 1.5
(ϕ = 0.87%) displayed a prediction error of 1% whereas sample 2.1
(ϕ = 7%) had a 2.4% error with respect to predictions. Samples 1.2, 1.4, and
2.4 all contain a single, horizontal, oblate pore but with volume fractions of
ϕ = 0.02%, ϕ = 1.4%, ϕ = 1.4%, the latter with an aspect ratio of 0.2 as
opposed to 0.1. The best fit to predictions was obtained for the smaller pore
(error of 0.94%), while samples 1.4 and 2.4 displayed errors of 8% and 6%,
respectively.

From these results, it is tempting to conclude that smaller pore volume
fractions allow EMT to better predict measured values. However, very small
pores induce a negligible softening effect on samples. In these cases (e.g.,
sample 1.2, ϕ = 0.02%) the measured and predicted effective Young's
modulus lie within the range of measurements of solid sample modulus,
which makes this comparison meaningless. A pore volume fraction of above
≈1% induces a measurable softening effect, and is therefore interesting for
EMT evaluation purposes. We obtained errors of less than 5% with respect to
predictions for samples with either ϕ = 1.4% or ϕ = 2.8% (samples 2.3, 2.5,
2.6, 2.8, 2.10, 2.11) and for ϕ = 5.2%, if the pore is spherical (sample 2.1).

Figure 15. Elastic and inelastic parts (in percentages) of an average curve of
each FDM secondary phase sample, where the curve ends at the yield
strength. On average, the elastic part takes 72.4% of the curve.

Figure 16. Ranges of predictions for FDM samples based on background
Young's modulus, E0 = 2.69 GPa, and background Poisson's ratio,
ν0 = 0.41. The range of prediction increase with the augmentation of the radius
of the designed crack, and with the decrease of the aspect ratio of the ellipsoid.
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Interestingly, a good fit between measurements and predictions was also obtained for overlapping pores (e.g.,
samples 2.8, 2.10, 2.11), in which the NIA is non‐valid. Overall, experimental results show that closer interactions
augment measured effective elasticity as compared to samples where voids are not overlapping, resulting in EMT
predictions underestimating the effective properties of samples with interacting pores. Such underestimation is
expected if local shielding effect is present.

It is also relevant to note that although the volume of the oblate, horizontal pores in samples 1.4 and 2.4 are the
same, the increased aspect ratio of the pore in sample 2.4 (0.2) with respect to sample 1.4 (0.1) reduced the
distance between void boundary and sample edge by 1 mm, which was enough to avoid the edge effect and a
deformation mechanism dominated by pore space collapse. A distance of ≈ 4 mm from pore boundary to the
sample edge is therefore recommended to avert pore collapse.

Finally, the mean error between predicted and measured effective moduli considering samples 1–13 of the
secondary printing phase lie between 2% and 5% (Table B3, column 16). This averaged error increases to up to
25% when also considering samples 2.14, 2.15 (Table B3, column 17). These results highlight the strengths of
EMT for predicting the effective properties of solids containing large, and even interacting, voids, as long as the

Figure 17. Effective Young's moduli obtained from compression tests of FDM samples (arithmetic mean of results from six
tested prints per sample type). Results are normalized by Young's modulus of the average solid core taken from Table 6.
Samples have either two or five perimeters. Each figure corresponds to different measures of Young's moduli. The relative
error [%] between mean EMT predictions and mean uniaxial results are presented. The best fit, on average 2.73%, appears for
Young's moduli measured within the 15%–30% yield range and for samples having two perimeters.
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pore volume fraction lies below ≈ 5%. The prediction is even better if we do not consider samples with strong
shielding effect. Namely, considering samples without stacked horizontal and oblate pores, 2.1–2.8, and 2.10–
2.11, the mean relative error lies between 2% and 3%.

5.3. Future Perspectives: Pore‐Fluid Injection Into 3D Printed Samples for Undrained Poroelasticity Tests

When porous, elastic materials saturated with fluids are subjected to stress changes that may reduce or increase
the volume of pore space, the fluids within them experience a change in pore fluid pressure, which can signif-
icantly influence the strength and deformation of materials (Biot, 1941, 1955). The most significant poroelastic
effects occur in “undrained” conditions, that is, when fluids are trapped within a poorly connected pore space and
cannot immediately flow in response to stress changes. The undrained poroelastic response of a material subjected
to a change in mean stress can be predicted using the relation (Rice & Cleary, 1976; Skempton, 1954):

Figure 18. Effective Young's moduli obtained from compression tests of SLA samples (arithmetic mean of results from three
tested prints per sample type). Results are normalized by Young's modulus of the average solid core taken from Table B2.
Samples were cured for a month (m), week (w), or were heated (h) with a short cure (up to 2 days). Each figure corresponds to
different measures of Young's moduli. The relative differences [%] between mean EMT predictions and mean uniaxial
results are presented. The best fit, on average 4.07%, appears for Young's moduli measured within the elastic range and for
samples being cured for a month.
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Δpu = BΔσm (9)

where Δpu is the change in pore fluid pressure, Δσm the change in mean stress, and B is the Skempton's coef-
ficient, a scalar for isotropic materials and a tensor for anisotropic solids and/or with an anisotropic pore space
(Wang, 2000). Obtaining direct measurements of B in the laboratory is a challenging feat, even for the “simple”
isotropic case. As a result, the effect of pore space fabric on the poroelastic response of materials has been only
predicted by means of theoretical simulations (Sayers & Kachanov, 1995).

3D printed samples with voids would enable the injection of pore fluids into their isolated pores and to
conduct compression experiments while measuring in situ pore fluid pressure change, using methods adapted
from Brantut and Aben (2021) and/or Proctor et al. (2020). This workflow would lead to direct quantification
of poroelastic parameters, which added to the absolute control of pore space fabric that 3D printing methods
offer, would allow to fully describe the effect of pore geometry anisotropy on the poroelastic response of
materials. This overarching goal constitutes the major motivation for the present study, and is currently a work
in progress.

Figure 19. Effective Young's moduli obtained from compressions of FDM solid samples (arithmetic mean of results from 12
tested prints) and 15 types of FDM cores with designed voids (arithmetic mean of results from six tested prints per sample
type). All samples have two perimeters. Each figure corresponds to different measures of Young's moduli. The relative error
[%] between mean EMT predictions and mean uniaxial results are presented. The best fit, on average 23.6%, appears for
Young's moduli measured within the 15%–30% yield range.
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6. Conclusions
We have fabricated over two hundred 3D printed samples with relatively large voids of different sizes and ge-
ometries, using two printing technologies and various specifications, and compared their measured effective
properties with predictions from EMT. From this large amount of data, we can conclude that both FDM and SLA
printing technologies can emulate homogeneous solids with voids whose effective elastic properties can be
predicted by EMTwith an error of less than 5%, if certain specifications and considerations are taken into account:

• Best results for FDM printed samples are obtained by specifying two contour printing perimeters, and when
15%–30% of the stress/strain curve is considered for effective elastic modulus computation.

• Best results for SLA printed samples are obtained by longer, post‐printing, curing times (1 month in our
case).

• Although the accuracy obtained for SLA and FDM samples can be similar, the lower cost of FDM, added to
the necessity of long curing times plus identified issues with repeatability and recyclability for SLA printed
samples, makes FDM overall more convenient for the manufacture of solids with voids.

• The pore volume fraction of the designed porous samples needs to be above 1% to induce a measurable
softening effect. However, a pore volume fraction above 5% results in equivocal, wide range of estimation by
EMT that fails to predict the measured effective moduli of samples.

• Better fits are obtained for spherical pores with respect to horizontally and vertically oriented pores.
• Close interactions between voids leads to a diminished softening effect that is thus overestimated by EMT

predictions. This might be caused by local shielding excluded from effective approximations.
• A minimum distance of 16% of the sample diameter from the pore boundary to the sample edge should be

prescribed for FDM printed samples to avoid an inelastic deformation mechanism through pore space
collapse.

Appendix A: Contribution Tensors for Spheroidal Void
Compliance contribution tensor, Hijkℓ, responsible for an increase of compliance due to void presence can be
written as

Hijkℓ = (C0
ijmn − C0

ijmnPmnrsC0
rskℓ)

− 1, (A1)

where C0
ijmn is the background stiffness tensor and Pmnrs is Hill's tensor. The stiffness contribution tensor, Nijkℓ,

responsible for a decrease of stiffness due to void presence can be written as

Nijkℓ = (Pijkℓ − S0ijkℓ)
− 1, (A2)

where S0ijKℓ is the background compliance tensor (Kachanov & Sevostianov, 2018).

If a void is a spheroid (a = a2 = a3), the components of Hill's tensor can be written as

P1111 =
2(1 + ν)

E
[(1 − κ) (1 − 2f0) + 2κf1], P2222 = P3333 =

1 + ν
2E

[(4 − 3κ) f0 + 3κf1], (A3)

P2233 = P3322 =
κ(1 + ν)

2E
( f1 − f0), P1122 = P2211 = P1133 = P3311 =

− 2κ(1 + ν)
E

f1, (A4)

P2323 =
1 + ν
2E

[(2 − κ)f0 + κf1], P1212 = P1313 =
1 + ν
2E

(1 − f0 − 4κf1), (A5)

where E is Young's modulus, ν is Poisson's ratio, κ = 1/ [2(1 − ν)], and

f0 =
1 − g

2(1 − γ2)
, f1 =

(2 + γ2) g − 3γ2

4(1 − γ2)2
, (A6)
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where γ is aspect ratio and

g =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
γ

̅̅̅̅̅̅̅̅̅̅̅̅
1 − γ2

√ arctan
̅̅̅̅̅̅̅̅̅̅̅̅
1 − γ2

√

γ
, for oblate shape (γ ≥ 1)

1
γ

̅̅̅̅̅̅̅̅̅̅̅̅
γ2 − 1

√ ln(γ +
̅̅̅̅̅̅̅̅̅̅̅̅
γ2 − 1

√
), for prolate shape (γ ≤ 1)

. (A7)

Hill's tensor is transversely isotropic, its components are consistent with Kachanov and Sevostianov (2018)
derivations, however, in our case the x1‐axis, (not the x3‐axis) is the rotational symmetry axis.

Appendix B: Tables

Table B1
Mean Experimental (exp.) and Theoretical (th.) Young's Moduli for Five FDM Sample Types, Along With the Span of the Experimental Results, Range of Theoretical
Predictions, and the Relative Errors

1.1t 1.2t 1.3t 1.4t 1.5t 1.1t–1.5t 1.1v 1.2v 1.3v 1.4v 1.5v 1.1v–1.5v

exp. E15–30 2.69 2.66 2.65 2.06 2.62 2.54 2.64 2.56 2.68 1.99 2.53 2.48

exp. span 0.31 0.26 0.29 0.23 0.18 − 0.33 0.35 0.30 0.14 0.14 −

th. E15–30 − 2.69 2.66 2.25 2.65 2.60 − 2.63 2.61 2.22 2.60 2.51

th. range − ±0.00 ±0.00 ±0.07 ±0.00 − − ±0.00 ±0.00 ±0.06 ±0.00 −

|R|m15–30 [%] − 0.94 0.23 8.66 1.08 2.73 − 2.84 2.62 10.1 2.68 4.55

|R|cls15–30 [%] − 0.94 0.22 5.65 1.07 1.97 − 2.84 2.62 7.74 2.66 3.97

exp. E25–50 2.73 2.69 2.69 0.79 2.68 2.31 2.68 2.62 2.69 0.75 2.64 2.28

exp. span 0.19 0.19 0.21 0.11 0.16 − 0.31 0.32 0.16 0.11 0.15 −

th. E25–50 − 2.72 2.69 2.28 2.68 2.60 − 2.68 2.65 2.25 2.64 2.55

th. range − ±0.00 ±0.00 ±0.07 ±0.00 − − ±0.00 ±0.00 ±0.06 ±0.00 −

|R|m25–50 [%] − 1.31 0.35 65.6 0.20 16.9 − 2.14 1.59 66.8 0.06 17.6

|R|cls25–50 [%] − 1.31 0.34 64.4 0.19 16.6 − 2.14 1.58 65.9 0.04 17.4

exp. E25–75 2.64 2.61 2.61 0.94 2.59 2.27 2.61 2.54 2.59 0.91 2.56 2.24

exp. span 0.23 0.10 0.18 0.07 0.10 − 0.32 0.23 0.20 0.10 0.11 −

th. E25–75 − 2.63 2.60 2.21 2.59 2.51 − 2.60 2.58 2.19 2.56 2.48

th. range − ±0.00 ±0.00 ±0.07 ±0.00 − − ±0.00 ±0.00 ±0.06 ±0.00 −

|R|m25–75 [%] − 0.79 0.02 57.6 0.22 14.7 − 2.36 0.52 58.3 0.21 15.4

|R|cls25–75 [%] − 0.79 0.01 56.2 0.20 14.3 − 2.36 0.51 57.2 0.20 15.1

exp. Eel 2.63 2.61 2.61 2.00 2.56 2.48 2.59 2.49 2.56 1.94 2.52 2.42

exp. span 0.17 0.17 0.24 0.33 0.15 − 0.29 0.28 0.19 0.25 0.24 −

th. Eel − 2.62 2.60 2.20 2.58 2.50 − 2.59 2.56 2.18 2.55 2.47

th. range − ±0.00 ±0.00 ±0.07 ±0.00 − − ±0.00 ±0.00 ±0.06 ±0.00 −

|R|mel [%] − 0.46 0.75 8.95 0.88 2.76 − 3.55 0.15 11.1 1.18 3.99

|R|clsel [%] − 0.46 0.74 5.95 0.86 2.00 − 3.55 0.14 8.76 1.17 3.40

Note. Samples have either two (subscript t) or five perimeters (subscript v). Predictions are made based on mean Young's moduli and Poisson's ratios of solid samples
(1.1t or 1.1v). |R|mY stands for the relative error of the mean prediction (central value within the predicted Young's modulus range) with respect to the mean measurement,
|R|clsY denotes the relative error of the closest prediction (value within the predicted Young's modulus range) with respect to the mean measurement, where Y is replaced by
15–30, 25–50, 25–75, or “el” indicating Young's moduli calculation method.
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