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For given graphs F and G , the minimum number of edges in an inclusion-maximal F -

free subgraph of G is called the F -saturation number and denoted sat(G, F ). For the star 

F = K1,r , the asymptotics of sat(G(n, p), F ) is known. We prove a sharper result: whp 

sat(G(n, p), K1,r) is concentrated in a set of 2 consecutive points.

 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 

CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The concept of “saturation number” was introduced by Zykov [14] and then independently by Erdős, Hajnal and Moon 

[1]. They asked about the minimum number of edges in an F -free inclusion-maximal graph on n vertices. In other words, a 

graph G is F -saturated if G is F -free (i.e. does not contain any copy of F ), but addition of any edge creates a copy of F . For 

example, any complete bipartite graph is a K3-saturated graph. The minimum number of edges in an F -saturated graph is 

called the F -saturation number and is denoted by sat(n, F ).

For example, if F = Km (i.e. a complete graph on m vertices), then sat(n, F ) is known, this result was obtained by Erdős, 

Hajnal and Moon [1]: for all n �m � 2

sat(n, Km) = (m − 2)(n −m + 2) +
(

m − 2

2

)

=
(

n

2

)

−
(

n −m + 2

2

)

.

For stars (we denote by K1,r a star with r leaves), the problem was solved by Kászonyi and Tuza [6]:

sat(n, K1,r) =

⎧

⎨

⎩

(

r
2

)

+
(

n−r
2

)

, r + 1� n�
3r
2

;
⌈

(r−1)n
2

− r2

8

⌉

, n�
3r
2

.

The notion of saturation can be generalized to arbitrary host graphs. For a given host graph G , a spanning subgraph H

of G is called F -saturated in G if H is F -free, but every graph obtained by adding an edge from E(G) \ E(H) to H , has at 

least one copy of F as a subgraph. The minimum number of edges in an F -saturated subgraph of G is denoted by sat(G, F ). 
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Thus sat(n, F ) = sat(Kn, F ). In [7] Korándi and Sudakov initiated the study of saturation number of “typical” host graphs. We 

say that a graph property Q holds with high probability (whp), if P (G(n, p) ∈ Q ) → 1 as n → ∞. As usual, we denote by 

G(n, p) the binomial random graph on [n] := {1, . . . , n}, i.e. a graph with every edge drawn independently with probability 

p. Korándi and Sudakov proved that whp sat(G(n, p = const), Ks) = n log 1
1−p

n(1 + o(1)). In this paper, we consider only the 

dense setting, i.e. p = const ∈ (0, 1).

For stars, the saturation number of the random graph was also studied. In [13] Zito proved that whp

n

2
− log 1

1−p
(np) � sat

(

G(n, p), K1,2

)

�
n

2
− log 1

1−p

(√
n
)

.

Note that sat(G, K1,2) is the minimum cardinality of a maximal matching in G .

In [12] Mohammadian and Tayfeh–Rezaie prove that for any fixed p ∈ (0, 1) and any fixed integer r � 2 whp

sat
(

G(n, p), K1,r

)

= (r − 1)n

2
− (1+ o(1)) (r − 1) log 1

1−p
n.

Here we want to emphasize the fact that, for any maximal matching in G , the deletion of its vertex set leaves only an 

independent set of G . On the other hand, it is well known that whp any large enough subset of G(n, p) contains a matching 

(see e.g. [3, Remark 4.3]) and that the independence number of G(n, p) is concentrated in a set of two consecutive points 

[9–11,2]: for a fixed 0 < p < 1 and any ε > 0, whp

⌊

αp(n) − ε
⌋

� α(G(n, p)) �
⌊

αp(n) + ε
⌋

, (1)

where αp(n) := 2 logb n − 2 logb logb n + 2 logb(e/2) + 1, b = 1/(1 − p).

Thus, whp sat(G(n, p), K1,2) is equal to a half of the size of the complement to a maximum independent set (if this size 

is odd, then it is 1/2 less), and so it is concentrated in a set of two consecutive points as well. We further consider r � 3.

In this paper, we show that for all r, whp sat(G(n, p), K1,r) is concentrated in a set of two consecutive points (this is as 

sharp as possible) and thus significantly improve the result of Mohammadian and Tayfeh–Rezaie [12]. We let

ϕm(k) =
(

n

k

)(
(

k
2

)

m

)

pm(1− p)(
k
2)−m.

The main result of our paper is stated below.

Theorem 1. Let p ∈ (0, 1) be a constant, r � 3. Let δ > 0, 0 < ε′ ≪ ε ≪ δ and n > n0(δ) be large enough. Let

x0 =
⌊

αp(n) + ε
⌋

and r′ =
⌈

r − 3

2

⌉

− I(n − x0, r − 1 are odd).

If ϕr′ (x0) < ε′ , then, with probability at least 1 − δ,

sat(G(n, p), K1,r) =
⌈

(r − 1)(n − x0)

2

⌉

+ μ, μ := r′ + 1.

Otherwise, let μ � r′ be the smallest non-negative integer such that ϕμ(x0) � ε′ . Then, with probability at least 1 − δ,

sat(G(n, p), K1,r) ∈
{⌈

(r − 1)(n − x0)

2

⌉

+ μ,

⌈

(r − 1)(n − x0)

2

⌉

+ μ + 1

}

.

To prove the theorem, we first show (and this is the trickiest part of the paper) that the almost optimal strategy is

(1) to take a set that induces at most r′ edges and has the maximum size, and

(2) to preserve r − 1 edges adjacent to each of the vertices outside this set,

and, after that, constructively prove the upper bound.

The rest of the paper is organized as follows. Section 2 contains definitions and theorems needed to prove the main 

result. In Sections 3 and 4 the lower and upper bounds are proved respectively.

2. Preliminaries

2.1. Almost independent sets

Let ε > 0 be small enough and let ξm(k) be the number of sets of size k that induce exactly m edges in G(n, p). Let αm

be the maximum cardinality of a set of vertices that induces exactly m edges in G(n, p). In particular, α0 = α(G(n, p)) is 

the independence number. Note that ϕm(k) = Eξm(k) and that αm is the maximum k such that ξm(k) � 1.

2
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In [5] it was proven that, for any constant m ∈ Z+ , whp αm is concentrated in a set of 2 consecutive points. Moreover, 

these points are the same for different values of m: for every m ∈ Z+ , whp

⌊

αp(n) − ε
⌋

� αm �
⌊

αp(n) + ε
⌋

.

More precisely, the following is true.

Theorem 2 ([5]). Let ε′, ε, δ, n, x0 be defined as in Theorem 1 with the additional requirement that n ≫m. We have αm ∈ {x0 − 1, x0}
with probability at least 1 − δ. If ϕm(x0) < ε′ , then αm = x0 − 1 with probability at least 1 − δ. If ϕm(x0) > 1/ε′ , then αm = x0 with 

probability at least 1 − δ.

Note that, for every m, ϕm(x0) ≪ ϕm+1(x0). Consider separately two cases distinguished in Theorem 1.

1. If ϕr′(x0) < ε′ , then ϕm(x0) < ε′ as well for all m < r′ implying that αm = x0 − 1 for all m � r′ with probability at least 

1 − δ.

2. Otherwise, αm = x0 − 1 for all m < μ, αμ ∈ {x0 − 1, x0} and αμ+1 = x0 with probability at least 1 − δ.

2.2. Powers of Hamilton cycles

The ℓ-th power of a graph H is obtained by the addition to H of edges between all pairs of vertices that are at distance 

at most ℓ. A Hamilton ℓ-cycle in a graph G is the ℓ-th power of a Hamilton cycle in G . To prove our main result, we need 

the following theorem from [4,8].

Theorem 3 ([4,8]). Let ℓ � 2 be fixed. Suppose that pn1/ℓ → ∞ as n → ∞. Then whp G(n, p) contains a Hamilton ℓ-cycle.

Note that the ℓ-th power of a Hamilton cycle in a graph on k(ℓ + 1) vertices admits a Kℓ+1-factor, i.e. contains a disjoint 

union of cliques of size ℓ + 1 covering all vertices of this graph.

Theorem 3 implies the following.

Lemma 1. Let p = const ∈ (0, 1). Fix a positive integer ℓ. Whp for every set W ⊂ [n] of size at most 2 logb n the graph G(n, p)|[n]\W
obtained by the deletion of vertices from W contains the ℓ-th power of a Hamilton cycle.

The proof is standard and is based on a sequential exposure of edges of G(n, p) sufficiently many times and indepen-

dently with probability slightly bigger than the threshold probability of an appearance of the ℓ-th power of a Hamilton 

cycle. For the sake of completeness, we give this argument in Appendix.

3. Lower bound

Let G be a graph, and H be K1,r-saturated in G with the minimum possible number of edges. Obviously, the maximum 

degree of H does not exceed r − 1. Let us divide the set of vertices of H into two subsets: V (H) = V1 ⊔ V2 , where V1

comprises all the vertices of H with degrees at most r − 2, and all the vertices in V2 have degree exactly r − 1. Let the 

induced subgraph H1 := H[V1] have k vertices and m edges. Then the graph H has at least r−1
2

(n − k) +m edges, i.e.

sat(G, K1,r) �

⌈

r − 1

2
(n − k)

⌉

+m. (2)

It is clear that H1 is also the induced subgraph of G itself. If this were not the case, then we could draw an edge inside 

H1 that does not create K1,r , a contradiction. So, |E(G[V1])| =m. We will show that if G = G(n, p), then whp it is optimal 

to take V1 such that m � r′ + 1. For that, let us rewrite (2) as follows:

sat(G, K1,r) �
r − 1

2
(n − k) +m = r − 1

2
(n − x0) +

(

m − r − 1

2
(k − x0)

)

. (3)

The term 
r−1
2

(n − x0) refers to the number of edges in H , when G = G(n, p), H1 is an independent set of a maximum 

size, and there are no edges between V1 and V2 in H . We show that the second summand in the right hand side of (3)

is whp at least μ, where μ is defined in the statement of Theorem 1. In other words, whp it is impossible to enlarge a 

maximum set that induces exactly μ edges and get an induced subgraph where the increase in the number of edges is less 

than the increase in the number of vertices times r−1
2

.

Lemma 2. Let p ∈ (0, 1) be a constant. Then whp for any k � x0 + 1 there are no induced subgraphs on k vertices in G(n, p) with 

fewer than r−1
2

(k − x0) + μ edges.

3
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Assume that Lemma 2 is true and consider separately three cases.

1. If k � x0 − 1, then (3) implies sat(G, K1,r) �
⌈

r−1
2

(n − x0) + r−1
2

⌉

�
⌈

r−1
2

(n − x0)
⌉

+ μ as needed.

2. If k = x0 , then, due to the definition of μ, whp m � μ, see the discussion in Section 2.1 after the statement of Theo-

rem 2. It readily implies the desired inequality sat(G, K1,r) �
r−1
2

(n − x0) + μ.

3. Finally, if k � x0 + 1, then, due to Lemma 2, whp m − r−1
2

(k − x0) � μ and therefore sat(G, K1,r) �
r−1
2

(n − x0) + μ as 

well.

This finishes the proof of the lower bound in Theorem 1. In Section 3.1 we give the proof of Lemma 2.

3.1. Proof of Lemma 2

Denote x1 := x0 + 1. Let Xk be a random variable equal to the number of induced subgraphs on k vertices with the 

number of edges fewer than r−1
2

(k − x0) + μ, X =
∑

k�x1

Xk . Notice that Lemma 2 states that X = 0 whp. We will prove it 

using Markov’s inequality. Thus, it is sufficient to show that EX → 0 as n → ∞.

Due to the linearity of the expectation

EX =
∑

k�x1

EXk =
∑

k�x1

(

n

k

)

∑

m<μ+ r−1
2 (k−x0)

(
(

k
2

)

m

)

pm(1− p)(
k
2)−m. (4)

Let us show that the function f (m) :=
((k2)
m

)

pm(1 − p)(
k
2)−m increases in our range. To do this, consider the ratio 

f (m+1)
f (m)

and show that it is greater than 1:

f (m + 1)

f (m)
= p

1− p
×

(

k
2

)

−m

m + 1
�

p

1− p
×

(

k
2

)

− r−1
2

(k − x0) − μ
r−1
2

(k − x0) + μ + 1
> 1

for n large enough.

Let us rewrite (4) as follows:

EX =
(

n

x1

)

∑

m<μ+ r−1
2

(
(

x1
2

)

m

)

pm(1− p)(
x1
2
)−m +

∑

k�x1+1

(

n

k

)

∑

m<μ+ r−1
2 (k−x0)

(
(

k
2

)

m

)

pm(1− p)(
k
2)−m. (5)

Consider separately the first and second terms in (5) and show that they tend to zero. We start with the first summand. 

Let us recall that

x1 =
⌊

2 logb n − 2 logb logb n + 2 logb(e/2) + 1+ ε
⌋

+ 1.

Therefore,

x1 − 1

2
� logb n − logb logb n + logb(e/2) + ε

2
.

We get

(

n

x1

)

(1 − p)(
x1
2
)
�

(

en

x1

)x1

(1 − p)(
x1
2
) = exp

[

x1

(

lnn + 1− ln x1 − x1 − 1

2
lnb

)]

� exp
[

x1

(

1 − ln2− logb(e/2) lnb − ε

2
+ o(1)

)]

= exp
[

−x1

(ε

2
+ o(1)

)]

= exp [−ε logb n(1 + o(1))] .

Moreover,

∑

m<μ+ r−1
2

(
(

x1
2

)

m

)(

p

1− p

)m

�

[

μ + r − 1

2

]

max
m

(

(

x1
2

)

e

m

)m
(

p

1− p

)m

= o(x
2μ+r
1 ).

From the above, the first summand in (5) is bounded from above as follows:

(

n

x1

)

(1 − p)(
x1
2
)

∑

m<μ+ r−1
2

(
(

x1
2

)

m

)(

p

1− p

)m

� exp[−ε logb n(1 + o(1)) + (r + 2μ) ln x1] = o(1) (6)

4
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as needed.

Now let us switch to the second summand in (5). Let k � x1 + 1. Then

(

n

k

)

∑

m<μ+ r−1
2 (k−x0)

(
(

k
2

)

m

)

pm(1− p)(
k
2)−m

�

(ne

k

)k
[

μ + r − 1

2
(k − x0)

]

(

(

k
2

)

e

μ +
⌊

r−1
2

(k − x0)
⌋

)μ+
⌊

r−1
2 (k−x0)

⌋

(

p

1− p

)μ+
⌊

r−1
2 (k−x0)

⌋

(1− p)(
k
2)

=
[(

ne

x1

)x1

(1− p)(
x1
2
)
]

(ne)k−x1
x
x1
1

kk

[

μ + r − 1

2
(k − x0)

]

×

×
(

(

k
2

)

e

μ +
⌊

r−1
2

(k − x0)
⌋

)μ+
⌊

r−1
2 (k−x0)

⌋

(

p

1− p

)μ+
⌊

r−1
2 (k−x0)

⌋

(1− p)(
k
2)−(x1

2
).

Note that the factor 
(

ne
x1

)x1
(1 − p)(

x1
2
) does not exceed 1, because this is an upper bound for Eξ0(x1) (the expected 

number of independent sets of size x1), and x1 is chosen exactly in a way such that this bound approaches 0 (see [3, 

Remark 7.3]). Then the last expression can be estimated from above for large enough n as

(ne)k−x1x
x1
1

kk

[

μ + r − 1

2
(k − x0)

]

(

(

k
2

)

e

μ +
⌊

r−1
2

(k − x0)
⌋

)μ+
⌊

r−1
2 (k−x0)

⌋

×

×
(

p

1− p

)μ+
⌊

r−1
2 (k−x0)

⌋

(1 − p)(
k
2)−(x1

2
) =: f (k). (7)

Then

ln f (k) ∼ (k − x1) lnn − (k − x1) lnk +
[

μ + r − 1

2
(k − x0)

]

ln

(

k

2

)

−

−
[

μ + r − 1

2
(k − x0)

]

ln

(

μ + r − 1

2
(k − x0)

)

−
((

k

2

)

−
(

x1

2

))

ln
1

1− p

� (k − x1) lnn +
[

μ + r − 1

2
(k − x0)

]

ln

(

k

2

)

−
((

k

2

)

−
(

x1

2

))

ln
1

1− p

∼ (k − x1) lnn + (r − 1)(k − x1) lnk − (k − x1)(k + x1)

2
ln

1

1 − p
.

Denote c := k − x1 , then

ln f (k) � c

(

lnn + (r − 1) lnk − 2x1 + c

2
ln

1

1− p

)

(1 + o(1)).

Differentiating the function inside the brackets with respect to k, we get 
(

r−1
k

− 1
2
ln 1

1−p

)

. Since k → ∞, then r−1
k

−
1
2
ln 1

1−p
< 0 for sufficiently large n, and hence the function itself is decreasing when k � x1 . And since it decreases, then its 

maximum value is reached at the smallest possible k = x1 . Note that ln x1 = O (ln lnn), and it does not affect asymptotics. 

Summing up, we get that

ln f (k) � (k − x1)

(

lnn − x1 ln
1

1− p

)

(1 + o(1)) ∼ − lnn(k − x1)(1 + o(1)).

Therefore, the second summand in (5) is bounded from above as follows:

∑

k�x1+1

(

n

k

)

∑

m<μ+ r−1
2 (k−x0)

(
(

k
2

)

m

)

pm(1− p)(
k
2)−m

�
∑

c�1

e−c lnn(1+o(1)) → 0. (8)

Due to (6) and (8), EX → 0 as n → ∞ as needed.

5
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4. Upper bound

Assume first that μ � r′ . Then whp there exists a set with μ + 1 edges and x0 vertices (see the discussion after the 

statement of Theorem 2), and we let V1 to be such a set. If μ = r′ + 1, then V1 is an independent set on x0 − 1 vertices (it 

exists whp due to (1)).

Let us show that whp there exists a subgraph in G such that

1. V1 induces the same set of edges in this subgraph as in G ,

2. each vertex from V2 := [n] \ V1 has degree exactly r − 1, and

3. there is at most 1 edge between V1 and V2 .

Let us show that whp there exists a subgraph in G such that each vertex from V2 := [n] \ V1 has degree exactly r − 1, 

and there is at most 1 edge between V1 and V2 . Clearly, such a subgraph is saturated in G .

According to Lemma 1, whp G|V2 contains the (2r − 2)-th power of a Hamilton cycle. Let us preserve in this cycle a 

disjoint union of cliques Kr of size r and a clique K ∗ with at least r and at most 2r − 1 vertices such that this union covers 

all vertices of V2 .

It remains to show that we may turn K ∗ into an (r − 1)-regular graph by deleting some edges of K ∗ and drawing at 

most 1 edge from K ∗ to V1 .

Let us first remove some edges from K ∗ so that only a simple cycle containing all its vertices remains.

If r − 1 = 2s is even, then join each vertex in this cycle with s nearest neighbors. We get (r − 1)-regular graph. If 

r − 1 = 2s + 1 is odd and |V (K ∗)| is even then join each vertex in the cycle with s nearest neighbors and also with the 

opposite vertex. And finally, if r − 1 = 2s + 1 is odd and |V (K ∗)| is odd as well, then we arbitrarily choose a single vertex 

v1 in the cycle. Note that V1 is either an independent set with maximum possible size or a set with μ + 1 edges with 

maximum possible size, and therefore v1 has a neighbor in V1 . Draw a single edge of G from v1 to V1 . Inside the cycle, we 

join each vertex with its s nearest neighbors. Then, eventually, consider the cyclic order on V (K ∗) \ {v1} which is exactly 

the order induced by the initial cycle from which we exclude the vertex v1 . Draw from every vertex in V (K ∗) \ {v1} the 

edge to the opposite vertex in this order.

The desired saturated subgraph of G is constructed, it has exactly 
⌈

(r−1)(n−x0)
2

⌉

+μ +1 edges if μ � r′ and 

⌈

(r−1)(n−x0)
2

⌉

+
μ edges if μ = r′ + 1 due to the choice of r′ implying the upper bound in Theorem 1.
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Appendix A. Proof of Lemma 1

Let Q be the property that a graph contains the ℓ-th power of a Hamilton cycle. According to Theorem 3, the threshold 

probability of this property is p̂ = n− 1
ℓ . Let p0 = n− 1

ℓ lnn. Then P (G(n, p0) /∈ Q ) � 1
2
for large enough n.

Let x be the maximum integer such that 1 − p � (1 − p0)
x . Let us take logarithm of the both sides of this inequality and 

find the asymptotic behavior of x:

(x + O (1)) ln(1− p0) = ln(1− p). (9)

Since p0 → 0 for n → ∞, then ln(1 − p0) ∼ −p0 and (9) can be written as

x ∼ 1

p0
ln

(

1

1− p

)

= n
1
ℓ

lnn
ln

(

1

1− p

)

.

Consider a union of x independent copies G1, . . . , Gx of G(n, p0). Clearly, there exists a coupling such that this union G

is a subgraph of G(n, p). Therefore, if G(n, p) does not contain the ℓ-th power of a Hamilton cycle, then G does not contain 

it as well, and the same applies to each of G1, . . . , Gx . Then

P(G(n, p) /∈ Q ) � (P(G(n, p0) /∈ Q ))x �

(

1

2

)n1/ℓ(lnb+o(1))/ lnn

.

By the union bound, the probability that there exists a set W of size at most 2 logb n such that G(n, p)|[n]\W does not 

contain the ℓ-th power of a Hamilton cycle is at most

6
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2 logb n n2 logb n P (G(n(1 − o(1)), p) /∈ Q ) � 2 logb n n2 logb n e− ln2 lnbn1/ℓ(lnn)−1(1+o(1)) → 0, n → ∞
as needed.
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