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Abstract

This work presents numerical and analytic approaches for calculating the amplitude of edge
harmonic oscillations (EHOs) associated with Quiescent H-modes in the presence of symmetry
breaking magnetic coils. The analytic approach uses a linear ideal MHD model for EHOs and
external kink modes subject to a given boundary condition defined by an externally applied
helical field. The imposed 3D field is found to extend the parameter space of unstable external
kink modes and EHOs, also providing an amplitude for the MHD perturbation, including the
edge corrugation. The saturated states obtained using the linear time-invariant MHD equations
are compared with those obtained with the VMEC nonlinear free boundary code, where the error
field correction coils (EFCCs) in JET-like geometry were added to obtain a self-consistent
equilibrium solution including the plasma response. Quantitative and qualitative agreement is
found between the saturated amplitude calculated analytically and with VMEC for the case of the
external kink modes. Only qualitative agreement was found for the most complex case of the
EHO amplitude, though saturated amplitudes in both approaches are of the same order of
magnitude and follow a similar linear trend with applied current to the EFCCs. The results
obtained in this paper may help the modelling of the plasma response for external saturated
modes, as well as offer an attractive route for scenario development and control in tokamak
devices.
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resonant magnetic perturbations, external kink modes
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1. Introduction

Given the increased risk that edge localised modes (ELMs)
pose to the integrity of plasma facing components in toka-
mak devices, special attention has been directed to high per-
formance operational regimes which are intrinsically ELM-
free. One important of such operational modes is the quiescent
H-mode (QH-mode) [1], a state that retains H-mode level of
energy confinement while replacing ELMs by the more benign
edge harmonic oscillations (EHOs). EHOs are 3D edge cor-
rugations that keep the plasma on the boundary of the peeling-
ballooning stability diagram by enhancing particle transport
across the pedestal, where the edge transport barrier is located
during H-mode operation. While QH-mode has been success-
fully achieved in many tokamaks today, it is desirable to access
it robustly using a wide range of plasma actuators.

Non-axisymmetric magnetic perturbation (MP) coils are
typically used in tokamak plasmas to avoid the triggering of
dangerous instabilities such as ELMs [2] and resistive wall
modes [3]. With the installation of resonant MP coil systems
in numerous tokamaks today (including ITER), MP coils can
be used for other purposes, particularly, to widen the para-
meter space of weakly 3D tokamak configurations with optim-
ised confinement properties, such as QH-mode. A good under-
standing of the plasma response to the MPs is required to
robustly access such states. Modelling and simulations of MPs
using linear and nonlinear techniques has been extensively
studied in the past decades [4—10], and a good comparison
between the most used numerical modelling approaches is
presented in [11, 12]. The plasma response on 3D saturated
plasma states can be studied in a dynamic or in an equilib-
rium manner. In the dynamic technique, linear (or nonlinear)
MHD equations are used to evolve the plasma from an equi-
librium state where a small 3D MP is added to the system.
In the equilibrium technique the MHD equations are solved
self-consistently in the presence of a 3D MP. In this work
we explore the linear and non-linear equilibrium approaches,
the linear one using an analytic large aspect ratio model of a
tokamak plasma, and the nonlinear one using the VMEC free-
boundary code [13]. Both approaches presented here are based
on solving the linear (or nonlinear) equilibrium ideal MHD
equations in the presence of a non-axisymmetric magnetic
component, so agreement in the limit of very small satur-
ated amplitude is expected. Given the similarities of the lin-
ear eigenmode spectrum and the VMEC nonlinear radial sat-
urated spectrum observed for some external instabilities (see
[14-16]), it is perhaps not surprising that agreement can found
even at moderate amplitude.

Three important physical effects are left out in the VMEC
numerical model that could modify the plasma response to
MPs: plasma resistivity, rotation and the presence of a resist-
ive wall. In a typical discharge with resonant MPs, magnetic
islands at the rational surfaces can interact with the resistive
wall and slow down the plasma rotation, eventually leading
to locked wall modes (if the island is large enough) and to
the termination of the discharge. Previous studies comparing
the equilibrium plasma response between linear MHD codes

and the VMEC code concluded that the fundamental differences
in the obtained results are mainly attributed to the insuffi-
cient resolution of the VMEC code to properly resolve the loc-
alised singular currents appearing at rational surfaces, which
in turn would shield the plasma perturbation from going fur-
ther into the plasma [8, 12, 17]. The work presented in this
paper is focused on saturated external modes whose physical
drive does not rely on an exact resonance within the plasma,
thus avoiding the limitations in the VMEC code. The goal of
this paper is twofold. Firstly, we aim to show that VMEC is a
useful tool to study the plasma response to non-axisymmetric
external perturbations if the physics studied is independent of
the induced current at rational surfaces. This is done by com-
paring a very simple analytical external kink model with the
3D saturated states calculated in VMEC. Secondly, and once the
first goal is demonstrated, a study the modification of the para-
meter space on saturated exfernal modes is presented, which
have been theorised to be the EHOs observed during QH-mode
operation in tokamak plasmas [15, 18]. This result could result
in an important application since robust access to QH-mode in
future machines could be aided by the application of MPs.
The paper is structured as follows. Section 2 presents
the analytical and numerical models of the applied non-
axisymmetric MPs. Section 3 applies both approaches to the
case of saturated external kink modes, where a quantitat-
ive comparison is presented and shown to be in good agree-
ment. Section 4 presents the application of MPs to the case
of saturated exfernal modes, where a comparison between the
two approaches is presented and the expansion of the para-
meter space for saturated exfernal modes is explored. Finally,
section 5 presents a summary and conclusions of the work.

2. Models for the non-axisymmetric MPs

2.1. The antenna time-invariant linear model

The analytical model under consideration is a subset of the
one reported by Lazzaro and Nave [4], where an external non-
axisymmetric MP is introduced through a surface current loc-
ated in the vacuum region, as shown in figure 1. The use of
this simplified ‘anfenna’ model, rather than a magnetic field
generated by realistic 3D coils, is justified by the assump-
tion that only the MP component with the same helicity as
the plasma mode significantly influences the plasma response.
This assumption is supported by the results in [8] for external
kink modes, and further validated in this study by the quantit-
ative agreement on the saturated amplitude obtained the ana-
lytical model and with a nonlinear numerical simulation that
employs full 3D coils.

The coordinate system (7,6, ¢) is used, where r labels flux
surfaces, 6 is the straight field line (SFL) poloidal angle and
¢ is the geometrical toroidal angle. The tokamak ordering is
assumed:

By ¢|VoxVr

2P 5
~ ~ed, 2= T T IEV| ~e,
o B " B | Vgl e

q(r)~1,
(1)
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Plasma wall

Figure 1. Diagram of the plasma system with an antenna at r = b.

where € = a/Rj < 1, with a and R, the minor and major radius
respectively, w,; is the radial derivative of the poloidal mag-
netic flux and F = By is the covariant component of the mag-
netic field in the toroidal direction. The plasmaregion (€ [0,a])
is separated from an ideally conducting wall (located at r = ¢)
by a vacuum region (€ [a,c]). Atradius r=»5 (a < b <c), an
antenna with a current I oc e/("®="%) provides a static hel-
ical perturbed magnetic field. The equation describing the per-
turbed vacuum magnetic flux for each independent poloidal
mode is [4]

V20, (r,0,6) = %IA(S(r— b)eilmo—ne). )

The solutions in the regions a < r < b and b < r < c are given
respectively by

U (r) = A (r/b)" + By (r/b) ™"
( Co(r/c)" +Dy(r/c)™, 3)

S
=
—~
~
~—
I

m

where the constants are determined by the boundary condi-
tions at the interfaces and current carrying layers, which read

@ (c)=0

www+®i§3magv>é
U (b—6)=TP (b+0)

d
|:|:rdr\l’m:|:| ) = /J/OIAa (4)

where k| = m/q —n is the dimensionless parallel wave num-
ber, By is the plasma magnetic field evaluated at the magnetic
axis, ¢ is the safety factor and &,,(r) is the radial saturated
plasma displacement with the same helicity as the antenna.
The first condition corresponds to the vanishing of the per-
turbed normal magnetic field at the ideal conducting wall. The
second and third conditions are derived invoking the continu-
ity of the normal magnetic field at the plasma-vacuum inter-
face and at the antenna respectively. The fourth condition is
found by integrating equation (2) across the antenna, which is
the equivalent jump condition of the tangential perturbed field

6Bfn = —U/ . The constants A,,, By, C,, and D,, are respect-
ively given by

(b/a)" [Hule +2¢(afc)" k)
om [1 - (a/c)z’”}
(b/a)™" [Hylg + 2ekq]
2m [1 - (a/c)z'"}

(b/c)" [(a/b)z’" - 1] I +2¢ (a/c)" kya
= Bo&n (a)
2 [(a/c)z"' - 1} m
(b/e)" [(a/b)" = 1] I = 2¢(a/e)" Ky
2 [(a/c)zm - 1} m

Am:— B() m(a)

B, =

Bofm (a)

m

m = By m(a)v

&)

where ¢ = a/Ry, It = B(fé,ffF@ and Hy = [1—(b/c)*™)] (a/b)".

Note that the perturbed magnetic field is composed of two
sources. The first one corresponds to the perturbed field gen-
erated by the saturated edge plasma corrugation (&,,(a)), and
the second one corresponds to the non-axisymmetric field
imposed externally. Therefore, the finite amplitude mode
&n(a) which is in force balance with the applied non-
axisymmetric field already contains the plasma response. In
the limit of §,,(a) — 0, the perturbed vacuum field corresponds
to that of an helical winding current between two ideally con-
ducting toroidal surfaces. Finally, we point out that the per-
turbed magnetic field from the antenna considers a single hel-
ical harmonic (m, n). In reality, non-axisymmetric coils used
in fusion experiments contain a spectrum of harmonics, and
coupling between them and the plasma perturbation is pos-
sible. Nevertheless, previous work shows that a single hel-
ical harmonic in SFL coordinates quite reasonably describes
the plasma response [8]. This is also shown in the present
paper for saturated external kink and exfernal modes. Note
that the validity of the linear model is limited to cases where
the axisymmetric plasma in the absence of MPs is stable due
to the absence of inertial forces in the linear model that would
drive the plasma out of force balance, as discussed in section 3.

2.2. The VMEC nonlinear model

The calculation of external saturated states in the VMEC free
boundary equilibrium code [13] requires a description of the
vacuum magnetic field. Such field is calculated through the
Biot-Savart law from a series of one dimensional filaments
carrying current using the MAKEGRID code from the STELLOPT
package [19]. Since VMEC is a 3D code, the filaments are not
restricted to axisymmetry and MPs can easily be included
by just adding a set of non-axisymmetric coils. The plasma
equilibrium in VMEC is calculated self-consistently with the
MPs, and therefore the plasma response is already included
in the solution. A JET-like set of coils is used as illustrated in
figure 2, consisting of 32 toroidal coils, six poloidal coils and
4 error field correction coils (EFCCs), where the later ones
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Figure 2. JET-like coil system, consisting on 32 toroidal coils (red),
6 poloidal coils (purple, green and blue) and 4 error field correction
coils (black).

provide the non-axisymmetric perturbation. Toroidal and pol-
oidal coils are made by four filaments carrying 1/4 of the cur-
rent, while the EFCCs are made by a single filament. In the JET
tokamak, each EFCC contains 16 turns with a current capacity
of 3 kA per turn [20], resulting in a total of 48 kA per coil. In
order to compare the saturated states calculated in VMEC with
those calculated analytically, it is necessary to characterise the
vacuum MPs generated by the EFCCs.

While the VMEC code is able to calculate MHD equilibria
without assuming any special symmetry, stellarator symmetry
is chosen because the calculations are faster and have better
convergence. In axisymmetric devices, stellarator symmetry is
reduced to up-down symmetry, which is satisfied by the pol-
oidal and toroidal coils in our set as shown in figure 2. The
EFCC coils are modified to be an up-down symmetric approx-
imation of the real set of JET coils in order to preserve stellar-
ator symmetry. Figure 3(a) shows schematically the location
of the EFCC coils in the tokamak system. Stellarator sym-
metry requires all scalar quantities, including current in the
coils, to be mirrored about the ¢ =0 and Z =0 planes. The
current applied to coil number 1 (4) will be mirrored in coil
number 2 (3), meaning that coils 1 and 2 (or 3 and 4) will flow
in opposite directions, as shown in figure 3(b). With such coil
configuration it is possible to apply a dominant nggcc = 1 or
ngrce = 2 vacuum MP without breaking stellarator symmetry
by changing the current pattern in coils 1 and 4, as shown in
figure 3(b).

The perturbed toroidal spectrum of the magnetic field is
dominated by a ngpcc =1 or nggcc =2 mode due to the
EFCCs, but a second source of non-axisymmetric field exist
because of the finite number of toroidal coils, denominated as
‘toroidal ripple’. In our JET-like coil set, the toroidal ripple
has nipple = 32 dominant toroidal mode number. Therefore,
the most sensible choice for our study is to completely elim-
inate the toroidal ripple, which is done by choosing 32 (or
16) toroidal planes in the VMEC numerical grid so that each
plane coincides with a toroidal coil, giving the effect of an
axisymmetric vacuum field coming from the toroidal field

coils (as shown in figure 4). A different choice of toroidal
planes could result on incorrect numerical resolution of the
magnetic field in VMEC due to aliasing. In the VMEC free-
boundary code, the numerical grid considers a user-specified
number of toroidal planes where the vacuum magnetic field
is to be calculated. To correctly resolve such toroidal ripple
the sampling points must satisfy the Nyquist criterion, so at
least 64 toroidal planes are necessary along with the inclu-
sion of 65 toroidal modes in the VMEC Fourier expansion. Note
that 65 toroidal modes in a VMEC equilibrium calculation cor-
responds to the toroidal spectrum —32 < nympc < 32. The
present study is not addressed to resolve the toroidal ripple
nor the physics related with high-n modes. Moreover, simu-
lations with a large number of toroidal modes generally do
not converge well in VMEC and are extremely time consum-
ing, so special care must be taken in deciding the appropriate
number of toroidal planes used in the vacuum field calculation.
For our JET-like set of coils, if the number of planes used is
smaller than 64 (with the exception of 32,16,8,4,2), then the
toroidal ripple will shift to an observable frequency due to ali-
asing. Figure 4 shows the toroidal spectrum of the radial per-
turbed magnetic field given by the toroidal field coils plus the
EFCCs with 25, 32 and 80 planes in the VMEC numerical grid.
It can be seen that using 25 coils shifts the toroidal ripple to
Myipple = 32 — 25 =7, and that this mode is of the same order
than the ngpcc = 1,2 produced by the EFCCs with 100 kA at
the last closed flux surface (LCFS). Contrary to the perturba-
tion produced by the EFCCs, the toroidal ripple decays quite
fast when going towards the magnetic axis, where the ripple is
negligible compared to the EFCCs perturbed field (as seen in
figure 4). It is noted that these modes exist on the vacuum field,
but whether they will be captured by the VMEC equilibrium cal-
culation will depend on the number of toroidal modes included
in the VMEC Fourier expansion. For example, in a VMEC simula-
tion with 30 toroidal planes, a “fictitious’ npple = 32 — 30 =2
vacuum perturbation will be included in the equilibrium cal-
culation if —2 < nypmgc < 2 toroidal modes are allowed in the
VMEC Fourier expansion. Here relies the importance to care-
fully choose the number of toroidal planes in the calculation of
the vacuum field, specially when studying the effect of extern-
ally applied MPs.

The antenna model described in the analytical model only
considers a single helical mode (m,n), while the EFCCs in
our JET-like coil set have a wider toroidal and poloidal spec-
trum. To make a proper comparison with the analytical model,
the poloidal vacuum spectrum in the VMEC simulations must
be resolved in SFL coordinates. This is done by calculat-
ing the perturbed vacuum field from the EFCC coils alone
using the MAKEGRID code. The cylindrical components of
the obtained field (6B%,6B% 0B?) are extracted at the loca-
tion of the LCFS of a neighbouring axisymmetric VMEC equi-
librium?® (R(SZ 1,95FL),Z(S= I,HSFL)), where fgpp is the
SFL poloidal angle in VMEC and S is the radial coordinate,

5 Given a 3D saturated equilibrium state, a neighbouring axisymmetric equi-
librium is defined as the 2D equivalent equilibrium obtained by restricting
n = 0 toroidal modes in the VMEC Fourier expansion. For more detailed inform-
ation refer to [14].
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Figure 3. (a) Diagram of the EFCC of the JET-like set in VMEC. Stellarator symmetry means that the currents are mirrored with respect to
the ¢ = 0 plane (in red) and the Z = 0 plane (in black). Applied currents (in purple) in coils 1 and 4 are mirrored in coils 2 and 3 respectively
(in blue). (b) Current patterns producing ngrcc = 1 (top) or ngrcc = 2 (bottom) dominant toroidal vacuum perturbations.
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Figure 4. Toroidal Fourier decomposition of the vacuum magnetic field perturbation at the magnetic axis (up) and at the last closed flux
surface (b) using different number of poloidal planes in the VMEC numerical grid. Note that the toroidal ripple shifts to an observable
frequency if not enough planes are used. Also note that the toroidal ripple disappears if 32 planes are used. The current at the EFCCs was set
to 100 kA for the calculation.
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Figure 5. Poloidal and toroidal spectrum of the perturbed vacuum radial magnetic field d Bgrcc in SFL coordinates for (a) ngrcc = 1 and

(b)ngrcc

which in VMEC can be chosen to be either the normalised tor-
oidal or poloidal magnetic flux. The components of the per-
turbed vacuum magnetic field in flux coordinates are calcu-
lated through the transformation

—1

OB’ OR OpR 0 OBR
OB | = (0,2 99z 0 OB? | . (6)
OB? 0 0 R dB?

So that the vacuum EFCC field in the normal direction to the
plasma

0z OR
8B — | =5 0B" — —6B”| —S5. 7
Brec = 7 [ae 90 ] @
Can be Fourier decomposed and compared to the analytical
vacuum field from the antenna in the absence of a plasma

JH,
6B;ntenna —1 TZMOIA . (8)

In equations (6) and (7), R and Z describe the flux surfaces
in the neighbouring axisymmetric VMEC equilibrium, 7 is the
corresponding Jacobian and S = 1) /1egge is the radial VMEC
flux function, which can be either the normalised toroidal or
poloidal flux. Figure 5 shows the spectrum of §Bgpqc in SFL
coordinates at the LCFS for a ngrcc = 1 and a ngrcc = 2 mode
applied by the EFCCs. As can be seen, the amplitude of the
mode decays with increasing poloidal mode number, although
the m =1 mode is dominant in both cases. Note that while
ngrcc = 2 does have higher toroidal harmonics, they are only
faintly visible on figure 5(b) due to the relative amplitude with
the n =2 component, which follows from the numerical solu-
tion of the Biot—Savart Law and the EFCC geometry. Even
though the spectrum of the vacuum MP contains many har-
monics, when comparing the VMEC results with analytic model
it is assumed that only the vacuum component with the same
helicity in SFL as the saturated edge mode has an effect in the
final equilibrium state.

=2 externally applied modes. Note that 32 toroidal planes in the VMEC numerical grid were used to eliminate the toroidal ripple.

3. MP-induced saturated external kink modes

A non-resonant saturated external kink mode provides a valu-
able proof of concept for the comparison between the satur-
ated states obtained with the VMEC code and our analytical
predictions. Particularly, this is because this scenario avoids
the formation of singular ‘screening’ currents and magnetic
islands in response to MPs, allowing for a clean comparison
between our two approaches. Moreover, it also connects dir-
ectly to the broader physics discussed in this work, as the
exfernal modes studied in section 4 are driven unstable by
the coupling between an external kink drive and an infernal
drive [16]. By first studying the plasma response of saturated
external kink modes to MPs, we gain insight into the mechan-
isms that may underlie more complex coupled modes.

Finally, it represents the simplest experimentally relev-
ant external mode, making it an ideal starting point for
exploring the response of edge MHD instabilities to MPs.
Saturated external kink modes in the presence of MPs have
been investigated theoretically [21], and have been sug-
gested to play a role in the suppression of edge local-
ised modes (ELMs) in AUG and DIII-D discharges [9].
The present analysis offers a quantitative assessment of
the external kink response using ideal MHD tools and
linking it to the general framework developed in this
manuscript.

3.1 Linear equilibrium equation for the analytic treatment of
external kink modes with MP

Ideal MHD saturated states typically exist in a plasma as a
consequence of the nonlinear evolution of a linearly unstable
mode. Regardless of the dynamics leading to saturation, the
final plasma state is a solution of the ideal MHD 3D equi-
librium equation. For certain types of modes, the equilibrium
solutions can be found using the linearised ideal MHD equi-
librium equation. To lowest order, a time invariant perturbation
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with mode number (m, n) satisfies Newcomb’s equation [22]:

d {ﬁ/& d gm] —r(m* = 1) k& =0, )

e

where &,(r) inside the plasma is fully determined by
adequate boundary conditions, given by equations (3) and (4).
Integrating equation (9) across the plasma-vacuum interface

gives
d
|:|:kﬁ dJ"Em:|:| = Oa

where [], denotes jump conditions across r =a. We note that
¢! is discontinuous across the boundary since 6B =/ ~ &/
corresponds to the jump of the tangential magnetic field. On
the other hand, &,, is continuous across the boundary due to the
continuity of the normal field (§,,(a) ~ dB’,), so we can divide
the whole equation by the non-zero mode amplitude §,,(a). On

. _ . _ R r
the vacuum side of r = a, we substitute &, = lBokH §Bm’a+6’

(10)

giving the equilibrium condition

B

K (a) (; In (&)’

> =0, 1D
a+o

a—9o

€ [m (m_ 14 B+ (a)c)™ (m+1— Bm)) —(afe)" (m—1— B nga — (m+1+Bp)nga

with two independent solutions

q(a)=m/n

5B\’
()
ki

where B, = r[In(§,)] |a—s is typically calculated numeric-
ally from equation (9). The first solution is independent from
the applied MP and corresponds to k|(a) =0, giving a res-
onance at the plasma edge. For such a solution, the plasma
response to a helical displacement will drive a singular cur-
rent at the boundary to screen the MP, which as discussed
earlier, is not well represented in the VMEC code [17, 23].
Moreover, the assumed boundary conditions neglect sur-
face currents, so the physics included in the present model
is incomplete 6. For these reasons, this work will not focus on
the first equilibrium solution. The second equilibrium solu-
tion corresponds to the parenthesis term in equation (11)
equal to zero, where we note that §B;, contains both the per-
turbed field due to the saturated edge plasma corrugation
and from the antenna. Substituting the solution to the per-
turbed vacuum field (3) gives an equation for the function /¢

) (12)
a+o

; (13)

Hyl; = —

where the right hand side only depends on equilibrium para-
meters without the application of the MPs and we recall that
I = Bolg:f(“a) . Note that if I = 0, then the vacuum contribution
equation for ideal external kink modes is exactly recovered
[24, 25]. Equation (13) contains the solution to equations (2)
and (9), and represents a plasma in equilibrium with a finite
perturbation at the edge &,,(a) when applying a current I to
the antenna. One of the goals of this study is to verify this rela-
tion in the VMEC code, which will be achieved in section 3.2.
Even though this work is dedicated to solve only for equilib-
rium states, it is useful to think of the problem in terms of the
stability of the plasma in the absence of MPs. If the axisym-
metric plasma is at marginal stability, then I4 = O is the only
solution to equation (13) because the plasma is already in equi-
librium to lowest order for an arbitrary perturbation amplitude.
If the plasma is stable, then equation (13) will give the neces-
sary current such that a saturated plasma perturbation with
finite amplitude &,,(a) remains in equilibrium with the per-
turbed field coming from the antenna. If the plasma is unstable,
the linear analytical model predicts that the MPs would restore
the plasma to force balance by creating a small amplitude

6 A generalisation to include surface currents can be made without much
difficulty by applying the boundary conditions described by Friedberg [24],
p 356-358.

mda

external kink in equilibrium with the applied field perturba-
tion. Note however that such scenario is not physical because
the inertial forces that are in action when a finite growth
rate is present are not captured by the linear equilibrium
model [11].

Let us consider a Wesson-like current density profile

r/ja 2
Jo(r) = jo[1 = (r/a)?]" [25], which gives q(r) = =/

and ¢,/qo =1+ v. Consider alsoa =1.09 m, b =3.8 m, ¢ —
00, Rg =3.02 m and By = 2.3 T, which roughly correspond
to the JET-like plasma discussed in the next section. For
such profile, equation (9) has to be solved numerically in
order to evaluate B,. By choosing gy =1.2 an external
kink with mode number (m=3,n=1) is unstable in the
region 2.95 < g, < 3 in the absence of MPs. Figure 6 shows
the evaluation of equation (13), where the necessary cur-
rent to obtain a plasma equilibrium with saturated amplitude
&n(a) is calculated as a function of the safety factor at the
plasma boundary. It is found that a small amplitude satur-
ated external kink mode can be induced with a modest cur-
rent in the antenna over a region of the parameter space
where an external kink is stable in the absence of MPs.
Note that at marginal stability (g, ~ 2.95) all curves con-
verge to zero current, which is the only equilibrium solution
for an arbitrary amplitude mode, consistent with the linear
theory.
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Figure 6. Necessary current in the antenna to obtain a saturated
external kink mode of different amplitudes as a function of the edge
safety factor ga.

3.2. Comparison with 3D states calculated with the VMEC
code

Now that we have calculated the saturated amplitude of
external kinks in the presence of an antenna producing a single
helicity MP, we proceed to verify numerically that the physics
included in our linear estimation can describe some of the main
features of the saturated external kink modes. This is done by
calculating the equilibrium states using the VMEC code under
the application of MPs.

The calculation of 3D saturated states in VMEC follows the
procedure outlined in [14, 15]. In summary, a free boundary
VMEC equilibrium is calculated in 3D geometry along with its
neighbouring axisymmetric state, where the later is obtained
by restricting n = 0 toroidal modes in the VMEC Fourier expan-
sion. Then, the nonlinear normal saturated plasma displace-
ment is calculated by subtracting the 3D surface from the 2D
surface at each location in the normal direction of the 2D sur-
face. It is pointed out that saturated external kink modes have
already been successfully obtained using the VMEC code [14].

Following the analytical example outlined above, we
use a Wesson-like current profile, with go = 1.2 so that
a cylindrical plasma would be external kink unstable in
the interval 2.95 < g, < 3. The pressure profile is given
by P(s) = Po(1—s?), where Py=oB3/(20) with fp=

0.02 and By =2.7T. Here, s =, /4:/%;,,.. Both the safety

factor and pressure profiles are plotted in figure 7. An
almost circular cross section (k ~ 1.2, § ~0.125, with k,0
being elongation and triangularity respectively) is used to
improve the comparison with the analytical results. Figure 7(b)
shows the LCFS at different toroidal angles for the case
of g, =2.8, where we note that there is a weak 3D
perturbation.

The Fourier decomposition of the nonlinear saturated dis-
placement (7,,,) is plotted in figure 8(a) for g, = 2.8 without
the application of MPs, showing that the 3D state does indeed
correspond to a saturated external kink. Note in particular that
the coupling between poloidal modes is very weak, as the main
(m = 3,n = 1) external kink strongly dominates the spectrum.
This makes our comparison with the analytical model more
viable. We clarify that the saturated states calculated without
MPs adopt a completely axisymmetric vacuum magnetic field,
but an initial perturbation on the magnetic axis guess is neces-
sary to steer VMEC towards a converged 3D state [26, 27].

Figure 8(b) shows the saturated amplitude of the (m =
3,n = 1) nonlinear displacement as a function of ¢,. A small
saturated displacement exists between 2.7 < g, < 3.1 in the
absence of MPs. This corresponds to a somewhat broader
region than the range over which the analytical cylindrical
model is unstable. Therefore, a comparison with the analytical
model should consider g, < 2.7. It can be seen that the amp-
litude of the saturated plasma displacement increases with the
current applied to the EFCCs, and moreover, the parameter
space where such equilibrium modes can be obtained is also
expanded with the application of the non-axisymmetric MPs,
consistent with our linear equilibrium theory (figure 6).

To make a quantitative comparison between the analyt-
ical model and the 3D saturated states obtained in VMEC, we
plot the amplitude of the saturated (m =3,n=1) as a func-
tion of the vacuum radial perturbed magnetic field calcu-
lated through equation (8) for the linear analytical model, and
through equation (7) for the full nonlinear VMEC equilibria.
The amplitude of the linear equilibrium displacement (§) is
plotted as dashed lines, while the amplitude of the nonlin-
ear saturated state (1) is plotted as points for each of the dif-
ferent VMEC simulations. As shown in figure 9, good agree-
ment between the two approaches is obtained for cases where
the axisymmetric equilibrium is stable in the absence of MPs.
Three important implications can be derived from this result.
The first one is that non-resonant saturated external perturb-
ations can be accurately modelled with linear theory in the
frame of ideal MHD provided that the mode is stable or only
weakly unstable in the absence of MPs. The second one is
that MPs could be used to expand the parameter space for the
saturation of external instabilities. The third one is that since
good agreement is found between the full nonlinear solution
and the simplified one in cylindrical geometry, poloidal coup-
ling of the plasma response with different harmonics of the
MPs does not seem to be important, at least when the effect
of the MPs is dominant. Finally, we point out that agreement
between the analytical model and VMEC for cases where the
equilibrium is external kink-unstable in the absence of MPs
was not obtained, which is in line with our previous predic-
tion that the linear equilibrium model is inconsistent due to
the absence of plasma inertia and the 3D nonlinear correc-
tions associated with nonlinear saturation in the absence of
the antenna. Instead, the MPs seem to enhance amplitude of
the existent saturated external kink, as shown in figure 8(b).
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Figure 7. (a) Safety factor and pressure profiles of a VMEC equilibrium with a Wesson-like current density profile and (b) corresponding
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Figure 8. (a) Poloidal spectrum of the nonlinear saturated plasma displacement with n = 1 for a Wesson-like current density profile, with

go = 1.2 and g, = 2.8.(b) (m = 3,n = 1) Fourier component of the nonlinear saturated plasma displacement calculated in VMEC at different
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Figure 9. (a) Saturated amplitude of the external kink mode at the plasma edge as a function of the single helicity radial perturbed magnetic
field. VMEC calculation (shown by the markers) is compared with the analytical estimation of our linear model (dashed lines) in
equation (13). (b) Zoom over the region where the saturated amplitude is small, and thus where the analytical model is more valid.
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4. MP-induced saturated exfernal modes

Infernal modes are MHD instabilities that occur in plasmas
where an extended region of low magnetic shear (with the
safety factor close to a resonance, though the exact reson-
ance is not required) coincides with a region with large pres-
sure gradient. If such region of low magnetic shear is located
near the edge, the upper sidebands of the main infernal mode
can connect to the vacuum and trigger an external instability.
Infernal external (infernal) modes result from the coupling of
an infernal drive located in the pedestal region with its upper
sideband external kink drive. The onset of exfernal modes has
been linked to the saturated edge localised modes observed
during QH-mode operation [28, 29]. As has been shown in the
previous section, saturated external kink modes can be induced
by the use of externally applied MPs, so it is expected that MPs
have a similar effect on exfernal modes as well.

4.1. Linear equilibrium equation for exfernal modes with MP

The equilibrium under consideration models the key aspects
observed during a QH-mode discharge, as seen in a simplified
cartoon in figure 10. The pressure profile sits on a pedestal loc-
ated near the plasma edge, creating a region of high pressure

’.2
gradient (o = —2“‘;# is the ballooning « parameter). The
0

safety factor monotonically increases in the region r € [0, r],
where r;, is the radius of the pedestal top. Then the safety factor
is flat in the region r € [r,, a] as a consequence of the large edge
bootstrap current generated in the low collisionality regime.
The value of the safety factor plateau is located near a rational
surface, i.e. ¢ = m/n+ Agq, where |Aq| < 1. It is pointed out
that Ag can be positive or negative.

The antenna is again placed in the vacuum region, between
the plasma boundary and the ideal wall. We separate the
plasma into two regions, a high-shear and a low-shear region.
The physics involving the exfernal drive is on the low-shear
region, located at the plasma pedestal. The equation describ-
ing an exfernal time-invariant perturbation with mode number
(m,n) is given by [30-32]

2 2
d 1 1 d 1 1
P2 s oG-
dr q gqs/) dr q s
o r 1
+—=—\=-1] |7
7> Ro <612 )] .
a r]+m rl—m
— L_|=0 14
+2q2[1—|—m g } ’ (19

where g, = m/n and the constants L appear after integration
and substitution of the sideband equations

/ 1+m
(’_2:|:m€mil) :Lir1i2m+ 5 Vlim()éfm.

(15)
Note that the saturated amplitude of the main mode and of
the sidebands is in force balance with the applied external
MP. The solution to equation (14) gives the linear equilib-
rium amplitude of the main mode in terms of the applied
current in the antenna, which is embedded in the constants
Ly =Ly (I). It is therefore necessary to calculate the con-
stants L. in terms of the saturated amplitude of the main
mode &, (r). Evaluation of equation (15) at r=r, and r=r,
gives
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where C+ = rpé,, 1, (rp)/Ent1(rp) is calculated from the cyl-
indrical solution of the sideband equations in the low-shear
region: r € [0,r,]. Assuming Dirichlet boundary conditions for
the main mode at » = r, and r = a [16, 32], the function B4 =
at,, . (a)/&n+1(a) takes the same form as equation (12). Note
that the vacuum MP is now assumed to be composed of two
different harmonics corresponding to the upper and lower side-
band helicities. The main harmonic is only affected by the
MPs through coupling with the sidebands since the Dirichlet
boundary condition at r = a prohibits a direct effect from the
vacuum perturbation. Integrating equation (15) in the interval
[rp,a] gives

a r2(1:‘:m)Li

a ld+m
r2:|:m ” —
St | 2(1+m)

2

/ ar'®™¢,dr. (17)

’
P P

Finally, equations (12), (16) and (17) are solved for the con-
stants L4

a™20E (14 m)? (2£m+Cy) [(Zi m+Bi)eDy 22 H ’%}

Ly = ,
T [(2i1n+ci) (£m—By) — (re /a)*EM (£m—Cy) (2im+Bi)]

(18)

Ap

(1+m)’2+m+ By (rp)][2+m+ By (r)]

where D1 = fra ar'®m¢, dr and we have redefined
P

(1= (/0P "™*P] (a/p)"™!
[(m+1)/q,—n] {1 — (a/C)Z(mﬂ:I)}
(@)

G
By = lima2=—2~,
+ IAﬁoafmil (a)

Hy =

19)

It is noted that in the limit of 7, — 0, the definition of the con-
stant L from previous papers is recovered [30—32]. The amp-
litude of the antenna-driven, linearised equilibrium exfernal
mode is obtained by the solution of equation (14), which is
an integro-differential equation for ¢, (r) in the region r €
[rp,a]. Such an equation would typically be solved numer-
ically. Nevertheless, a rough estimate of the linear equilib-
rium amplitude can be obtained by assuming a simplified pres-
sure profile [32]: a o< P’ = —Py,0(r—r,) with r, <r, <a.
We then have D4 = ﬁ*e,jlriimﬁm(r*), with B; = 2P*q2/BS
and €, = r,/Ry. By writing the constants Ly and I¢ as

__apo
Bogm (V*)

Li = (12m)rFe ', (n) (Asfl + GoHile) . (0)

I¢

where the constants Ay are defined in a similar way as in
[18, 31, 32]:

—2(1£
21

(km— B (r,)) 2£m+ Ba (r,)] - (l

equation (14) can be integrated across r, to give

2¢2 1 .,
(H+G+—|—H_G_)BA* (Eﬁ* (A++A*)
)

l 2
[£1 %G
Em Ul . g3 q
It is pointed out that in the limit of I, — 0, equation (22) satis-
fies the marginal stability equation for exfernal modes [32]. In
the open intervals [ry, 7,) and (r,,al, the equation for £, (14)
reduces to Newcomb’s equation (9) with k| = constant , and

the solution takes a very simple form (equation (5.8) in [32]),
leading to

I = —

(22)

2m (1 fro" = (r. /)]

I:rg';i] — _2(a—|—rp).
gm - |:(r*/rp)2m o 1:| |:(r*/a)2m N 1:| a—rp
(23)

To evaluate equation (22) it is necessary to solve Newcomb’s
equation in the high-shear region to calculate the constants C ...

N\ 20Em) ’ @1)
) +m— By (I‘p)) (Z:thi (rx))

Ix

For that purpose, the following shape of the safety factor pro-
file is used

q(r){

where m, n are the poloidal and toroidal mode numbers of the
main infernal mode, r_ roughly defines the radius of the lower
sideband rational surface, gy is the safety factor at the magnetic
axis, p defines how peaked the profile is, and the constant
guarantees the continuity of the profile at r = rp,.

For the numerical calculation let us consider a=1.14
m, b=2.40m, ¢ = 00, €, =0.40, r,/a=0.95, r_ /a = 0.85,
By =2.5T, x=0.6and gop = 1.2, which roughly correspond to
the JET-like QH-mode plasma calculated in the next section.
Figure 11 shows the antenna current as a function of the value
of Ag and B «» corresponding to the evaluation of equation (22)
for different values of the linearised equilibrium amplitude. It
is pointed out that all curves converge to zero at Ag ~ —0.1 in
figure 11(a), and at B* = 5.2% in figure 11(b). These points in

go(r+n)
k[1—=(r/r=)"*]+n

dp

ifr € (0,1,
. (24
ifr, <r<a,
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Figure 11. Necessary current in the antenna to obtain a saturated exfernal mode of different amplitudes as a function of (a) the distance to
the rational surface in the pedestal (Ag) and (b) the value of (... Figure (a) considers /3, = 0.045, and figure (b) considers Ag = —0.12.
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Figure 12. (a) LCFS at equally spaced (/2). toroidal angles in QH-mode equilibrium with g, = 3.98 and without the application of MPs.

(b) Pressure and safety factor profiles in VMEC.

the parameter space correspond to the marginally stable points
in the absence of MPs.

4.2. Comparison with 3D states calculated with the VMEC
code

For the comparison in this section, a more realistic QH-mode-
like equilibrium is investigated, which is plotted in figure 12.
Note that the safety factor is the same as in the analytical model
given by equation (24), with the exception of the spike at the
edge that takes the value of g, above the (m = 4,n = 1) rational
surface. The effect of such a spike on the stability of the plasma
does not significantly affect the saturated state of the exfernal
mode [16], and the particular consequences of the spike on
the interaction with external MPs will be discussed below.
Figure 12(a) shows the LCFS of the 3D saturated equilibrium

at different toroidal angles in the absence of MPs, revealing
a strong 3D distortion of the plasma edge. Such 3D distor-
tion corresponds to a saturated exfernal mode, which is spec-
ulated to be the EHOs observed during QH-mode operation.
The large amplitude of the saturated mode found by VMEC is
similar to what it was found in previous studies of QH-mode
operation in JET-like plasmas [14, 16].

A quantitative comparison between the analytical equilib-
rium model and the VMEC results is more challenging for this
more advanced case because of a number of reasons. Firstly,
due to all the simplifications in the derivation of equation (22)
(step-like pressure profile, flat safety factor, etc). Secondly,
the vacuum perturbed magnetic field affecting each of the

sideband harmonics scales differently in both approaches, i.e.
OBipcc (m—1,n) OB e (M —1,1)
5B;‘EFCC (m+l )n) 6B£n[ennu (m+ 1 7”)
model the vacuum perturbed magnetic field scales with the

. This is because in the analytical
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Figure 13. Saturated amplitude of the main infernal mode (m = 4,n = 1) at the pedestal calculated in VMEC and in the analytical model as a
function of the (m = 5,n = 1) Fourier component of the vacuum radial perturbed magnetic field. The value of the safety factor plateau is
qp = 3.88, where the mode is stable and very close to marginal stability in the absence of MPs.

poloidal mode number m as given by equation (8), while
in VMEC it follows the EFCC poloidal geometry (figure 5).
Nevertheless, examination of the linear eigenfunctions of mar-
ginal cases without the application of MPs show that the lower
sideband vacuum connection is also weak. Therefore, we can
neglect the effect of MPs on the lower sideband and only con-
sider the (m + 1,n) Fourier component of the vacuum radial
perturbed field in both approaches. Thirdly, the value of the
safety factor at the boundary is different in both approaches
since the analytical model does not require a spike at the
plasma edge. Note that the coupling between the upper side-
band external kink drive with the MPs is highly sensitive
to the value of g,. Finally, in the analytical model the main
(m,n) mode in the pedestal is not directly affected by the
MP due to the imposed boundary condition at the plasma-
vacuum interphase (note that indirect coupling of the main
mode with the MPs is still present through interaction with
the sidebands), while in VMEC the edge plasma surface is free
to move and the equilibrium solution is self-consistent with
the applied MPs for all the modes. While some of these dif-
ficulties could be avoided by numerically solving the integro-
differential equation (14), a direct evaluation of our analytical
estimation (22) gives a rough approximation of the saturated
amplitude.

In order to compare the two approaches we need to analyse
an equilibrium that is linearly stable in the absence of MPs.
We choose g, = 3.88, which corresponds to a point with van-
ishing nonlinear amplitude of the plasma displacement in the
absence of MPs (see figure 14(a)). The comparison is shown in
figure 13. We point out that the vacuum radial perturbed field
in the nonlinear numerical approach is only the one corres-
ponding to the upper sideband helicity (m =5,n=1). In the
linear analytical approach, the current I4 in equation (22) is
substituted by 6By, , | using equation (8). Then it is assumed
that G, /G_ < 1 (which for our case is ~ 1072) to isolate

OBy, ., from the amplitude of the mode &,,(r.). The saturated
amplitude in VMEC has a linear dependency on the (m = 5,n =
1) component of the vacuum radial perturbed field, similar to
the analytical model. Moreover, the calculated saturated amp-
litude of the plasma displacement in both approaches is of the
same order of magnitude. We attribute the difference in slope
primarily to the approximations outlined above, though some
assumptions may have a stronger impact than others. As shown
in [15] (figure 15), analytical growth rates for external modes
calculated using similar profile assumptions are comparable
to those obtained from realistic equilibria with the KINX code
[33] in the absence of MPs, which suggests that the simpli-
fications in the plasma profiles are expected to have a limited
effect. Therefore, the dominant contribution likely comes from
the different physics included on the MP modelling between
the two approaches. In particular, the absence of direct coup-
ling between the main (m, n) mode and the perturbed vacuum
field is expected to have the strongest influence since the per-
turbation amplitude scales with MP coupling strength.

4.3. Beyond linear modelling: The extended parameter
space of saturated exfernal modes

One of the main goals of this work is to verify that EHOs (or
saturated exfernal modes) can be induced over a wider para-
meter space with the assistance of externally applied MPs. In
the previous section it was shown using analytical and numer-
ical approaches that MPs can indeed be used for such purposes.
Now we go beyond the validity of the linear model and analyse
the effect of MPs also in cases where the plasma is exfernal-
unstable in the absence of MPs. Figure 14(a) shows the sat-
urated amplitude of the main infernal (m = 4,n = 1) mode at
the pedestal as a function of the value of the safety factor plat-
eau ¢, and magnetic shear s over the pedestal region. A sig-
nificant expansion of the parameter space is observed for both
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Figure 14. (a) Peak of the (m = 4,n = 1) Fourier component of the nonlinear plasma displacement evaluated at the pedestal as a function of
the value of the safety factor plateau (up) and (b) of the magnetic shear (bottom). (b) Poloidal Fourier spectrum (with n = 1) of the nonlinear
plasma displacement with flat safety factor and ¢, = 3.98 and 0 kA (up), and with g, = 3.90 and 100 kA (bottom).

parameter scans. Since the amplitude of the saturated modes is
not small anymore, the validity of the linear model is limited
even for the cases where the exfernal modes were induced only
by the MPs (i.e. cases that are exfernal-stable in the absence
of MPs). Still, it is possible to check that the same exfernal
mode is excited with and without MPs at different regions of
the parameter space by analysing two equilibria with similar
amplitude with and without MPs. Figure 14(b) shows the pol-
oidal Fourier spectrum of the nonlinear saturated plasma dis-
placement for g, = 3.98 at 0 kA, and for 3.90 at 100 kA. As
can be seen, the exact same mode is observed, confirming that
the parameter space of static exfernal modes is expanded by
the application of MPs.

5. Summary and conclusions

Two approaches to model non-axisymmetric MPs in toka-
mak plasmas have been presented. The first one invokes the
analytical model developed in [4], which corresponds to an

antenna located in the vacuum region in between the plasma
surface and an ideal wall. The current in the antenna pro-
duces a perturbed helical magnetic field, which modifies the
boundary conditions of the linearised ideal MHD equilibrium
equations. The second method uses a set of non-axisymmetric
coils, where the vacuum magnetic field is evaluated numeric-
ally through Biot—Savart law. The vacuum field is then used to
calculate a nonlinear equilibrium state in the VMEC free bound-
ary code. We point out that in both approaches the obtained
plasma displacement is in force balance with the applied MPs,
so the plasma response is automatically included in the solu-
tion. To make a quantitative comparison of the applied MP,
in the nonlinear VMEC approach the radial perturbed vacuum
field is Fourier decomposed in SFL coordinates using the geo-
metry of the axisymmetric equilibrium. Then, the amplitude of
the helical component of interest is compared with the radial
vacuum field of the antenna calculated in the absence of a
plasma.

On a first instance, both approaches to model the MPs were
applied to the case of a saturated external kink. It was found
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that such saturated modes can be induced by the application of
MPs, and the saturated amplitude of the plasma displacement
is in quantitative agreement in both approaches for paramet-
ers for which the plasma is linearly stable in the absence of
MPs. This means that, within the approximations of the ideal
MHD model, there is a good understanding of the mechan-
ism that describes the effect of the applied perturbed field on
non-resonant external modes. On a second instance we also
model equilibrium states with MPs for the case of saturated
exfernal modes, assumed here to be the EHOs observed dur-
ing QH-mode operation. For this more complex case quantit-
ative agreement was limited, with both approaches giving the
same order of magnitude of the saturated plasma displacement
as well as a similar linear dependency of the amplitude on the
applied MP.

Finally, the VMEC code was used to estimate the increase of
the parameter space of saturated EHOs with the application of
MPs. An extensive parameter scan was performed with respect
to the value of the safety factor at the plateau and the magnetic
shear in the pedestal. In both cases it was found that a signi-
ficant increase in the parameter space can be achieved by the
application of MPs. By analysing the Fourier spectrum of the
saturated amplitude in equilibria with and without the applic-
ation of MPs at different locations of the parameter space, it
was concluded that the same mode can be excited with the
help of MPs. This important results points to the possibility of
using external non-axisymmetric coils as an actuator to access
weakly 3D plasma states in advanced operational regimes such
as QH-mode operation.
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