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Abstract
This paper proposes a model attempting to explain the appearance of fast growing global
disruptive instabilities in diverted configurations when the safety factor near the magnetic
separatrix approaches two. We show that if edge density and pressure gradients are strong
enough, although external kink modes are stable, poloidal harmonics may couple allowing for a
global fluid perturbation to become unstable. The instability window is approached sharply as
the mode resonance occurs in the edge region, and is characterised by rather large growth rates
even with modest gradients.

Keywords: MHD, stability, q95, tokamak

1. Introduction

Tokamak operation is typically limited by the amount of cur-
rent Ip that can flow within the plasma. For a given strength of
the toroidal field, if Ip is too large, a catastrophic collapse of
the plasma column is almost certain. Indeed, it is a well known
fact that the lower the value of the edge safety factor qedge, with
q measuring the pitch of the field lines, the more difficult the
machine operation.
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In limited plasmas, the total current is inversely propor-
tional to the qedge: as the current increases, qedge decreases
passing through several m/n rationals. As a consequence, an
instability of helicity m/n can be triggered, exhibiting either
tearing or external kink-like nature depending on how far (or
close) qedge is to the rational numberm/n [1, 2]. Usually, a dis-
ruptive (hard) limit is reached when qedge approaches 2. For
limited tokamak configurations, such behaviour can be eas-
ily explained by conjecturing that a current driven external
kink mode is triggered when qedge drops below 2 [1]. External
kinks are global disturbances growing on Alfvénic time-scales
which, to be unstable, require their associated mode resonance
to occur in vacuum region, i.e. not within the plasma.

A similar phenomenology is observed in diverted geomet-
ries where, because of the divergence of q at the plasma bound-
ary identified by the magnetic separatrix, the role of qedge is
taken instead by q95, namely the value of q associated with the

1 © 2025 The Author(s). Published by IOP Publishing Ltd
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surface enclosing 95% of the poloidal flux. However, invok-
ing the onset of an external kink to explain the q95 = 2 hard
limit in diverted plasmas is challenged by imposing an infin-
ite number of m/n> q95 resonances inside the plasma, mak-
ing external kink modes intrinsically stable regardless of the
current peaking which is measured by the ratio qedge/q0 with
q0 the value of at the axis. Hence, we must devise an altern-
ative approach for explaining such behaviour. Notice that we
do not address the issue of the triggering of global magneto-
hydrodynamic (MHD) modes during, e.g. vertical displace-
ment events in limited geometry [3, 4].

Contrary to the resistive analysis of [2], we develop our ana-
lysis within the ideal plasma approximation and leverage the
presence of strong mass density (hereafter referred to just as
density), and thus pressure, gradients in the edge region [5].
The idea is to exploit the pressure induced mode coupling
occurring near the plasma boundary to allow for perturbations
with kink features to develop. The resulting instability, whose
onset must occur only when q95 ≈ 2, is required to exhibit a
global character with a fairly fast growth and indeed much
faster than that predicted by a resistive model.

The letter is organised as follows: after providing the neces-
sary information about the equilibrium plasma state we lay
down the model equations accounting for the required phys-
ical mechanisms occurring in the plasma and vacuum regions.
With a highly simplified, yet physically relevant profiles, we
then proceed to derive the dispersion relation for a perturbation
characterised by a dominant helicity. The dispersion relation
is thus analysed for the specific case of q95 ≈ 2, and several
conclusions about parameter dependencies, mode structure are
instability window are drawn. Concluding remarks are finally
discussed.

2. Simplified model equilibrium

We consider a large aspect ratio circular tokamak plasma of
major and minor radii R0 and a respectively with ε= a/R0 ≪
1. We employ a right handed straight field line coordinate sys-
tem (r,ϑ,ϕ) where r is a flux label with the dimensions of
length zero on the magnetic axis, and ϑ (counter-clockwise
poloidally) and ϕ are the poloidal and toroidal angles respect-
ively. A vacuum gap separates the plasma from an ideally con-
ducting metallic wall located at distance b> awith b/R0 ≪ 1.
The equilibrium magnetic field is

B= F∇ϕ−∇ψ×∇ϕ, (1)

where ψ is the poloidal flux and F≈ R0B0 with B0 denot-
ing the magnetic field strength on the axis. The safety factor
is written as q=

√
gF/(R2ψ ′) with

√
g≈ rR0 denoting the

Jacobian. For the sake of simplicity, we introduced the nota-
tion ′ ≡ d/dr. To model the sharp rise of q induced by the
separatrix we assume that this divergence is well localised in
an infinitesimally narrow region about the boundary. Hence,
away from the plasma-vacuum boundary, q is taken to be
piece-wise continuous, constant for 0< r< r0 (inner region)
with value q0 and parabolic q= qa(r/a)2 for r0 < r< a and
r> a (outer region) such that q(r0) = q0. Note that in the outer

Figure 1. Safety factor (a), and pressure and density profiles (b)
used in the analytic calculations. The form of p and ρ for r< r∗ are
not required.

region the safety factor can also be written as q= q0(r/r0)2.
This is roughly in line with the results employed in numerical
investigations of diverted plasmas [6]. The logarithmic diver-
gence is crudely modelled by letting q=∞ at r= a.

Normalising µ0 = 1, a low-β ordering β = 2p/B2
0 ∼ ε2,

with p the equilibrium pressure, is assumed although enhanced
density and pressure gradients are allowed in the edge region
which extends from r∗ to a with r0 < r∗. Letting ρ denote the
equilibrium mass density, we assume

ρ= ρ0 and p= p0 for r∗ < r< rp,

ρ= ρ1 and p= 0 for rp < r< a, (2)

with ρ1 < ρ0.We take ρ1 strictly different from zero, otherwise
we would not be able to construct a finite ‘plasma’ solution.
Here we accounted for the fact that since p∝ ρT with T the
equilibrium temperature, the mass density profile is expected
to be more radially extended than the pressure one. The shape
of q, pressure and density profiles just described is depicted
in figure 1. We point out that mathematical manipulations are
highly simplified by such a choice of the equilibrium pro-
files, yet retaining many physically relevant elements. This is
because stability properties will be seen to depend on quantit-
ies which are integrated over the region of strong gradients,
so that the Heaviside nature of figure 1 will be effectively
smoothed out. Hence, having described the basic features of
our model tokamak equilibrium, we can divert now the atten-
tion to the dynamics of the perturbation.

3. Dynamical equations

As mentioned in the introduction, we work in the ideal MHD
approximation. Taking a time dependence of the form exp(γt),
for a given toroidal number n, the poloidal spectrum of the
radial component of the fluid displacement is (to relevant order
in a/R0) composed of three harmonics (m> 1)

ξr =
1
∑

l=−1

ξrm+le
i(m+l)ϑ−inϕ.

We refer tom+ l as the poloidal mode number of the harmonic
m+ l. We further assume the harmonic with helicity m/n to
resonate within the plasma, so that q0 < m/n< qa while the
lower sideband does not exhibit resonances (i.e. (m− 1)/n<
q0). Notice that the presence of the separatrix forces the reson-
ance of them+ 1 harmonic to be inside the plasma aswell. The

2
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definition of ξr can be extended to the vacuum region by link-
ing the magnetic perturbation to a fictitious fluid displacement
through the relation B̃rℓ ∝ (ℓ/q− n)ξrℓ where ℓ= m,m± 1. For
the sake of simplicity we write ξrℓ = ξℓ.

In the region 0< r< r∗, the dynamics of ξℓ obeys

[

r3k2ℓξ
′
ℓ

] ′ − r
(

ℓ2 − 1
)

k2ℓξℓ = 0, (3)

where kℓ = ℓµ− n with µ= 1/q. Denoting with rs the reson-
ance of the mode m (q(rs) = m/n), we impose r∗ < rs < a.
implying q(r∗)< q(rs) and also that the single helicity m/n
external kink mode is stable that is q(rs)< qa. Thus, for r0 <
r< r∗, the solution of (3) which is smooth at r0 reads

ξℓ ∝
1
kℓ

(

(r/r0)
ℓ−1

+
(r/r0)

−ℓ−1

ℓ− 1− nq0

)

. (4)

The absence of currents in the vacuum region implies that
∇×B= 0 so that the magnetic perturbation fulfils B̃=∇χ
which, expressed in terms of radial displacement, yields the
Robin boundary condition [1]

rξ ′ℓ
ξℓ

∣

∣

∣

a+ϵ
=

2ℓ
ℓ− nqa

− ℓ+ 1+(ℓ− 1)(a/b)2ℓ

1− (a/b)2ℓ
, (5)

where ϵ is an infinitesimally small positive quantity.
Focussing on the edge region where the strong gradients

occur, we must account for pressure induced mode coupling.
Since the plasma geometry is assumed to be circular to first
approximation, we assume the poloidal spectrum to be dom-
inated by the mth harmonic while the first neighbouring side-
bands are such that ξrm ∼ εξrm±1.

After introducing the ballooning parameter [7] α=
−2R0p ′q2/B2

0, for r∗ < r< a, the perturbation of helicitym/n
conforms to the following model equations [8, 9] (although ρ ′

was neglected in [8])

[

r3Qξ ′m
] ′
+ r2

R2
0γ

2

B2
0

(

1+ 2q2
)

ρ ′ξm

+ n2
α

2

∑

±

r1±mL±
1±m

= 0, (6)

Q= k2m+
ρR2

0

B2
0

γ2
(

1+ 2q2
)

, (7)

where the constants L± account for the coupling with the
neighbouring sidebands

L±
1±m

=
(1±m) [2±m+C±] [2±m+B±]a−2∓2m

(±m−B±) [2±m+C±]−
(

r∗
a

)2±2m
(±m−C±) [2±m+B±]

×
ˆ a

r∗

αr1±mξmdr,

with C± = rdlnξm±1/dr|r∗−ϵ and B± = rdlnξm±1/dr|a+ϵ.
The factor (1+ 2q2) is the inertia enhancement arising from
plasma compression in a torus which also includes the effects
of sidebands [10]. For the sake of simplicity we rescale the
growth rate γ2(1+ 2q2)→ γ2. Equation (6) is a simplified
form of the more general eigenmode equation for the mode
m [8, 9] in which the perturbation has been allowed to have
large radial gradients. We point out that from this general
equation, neglecting pressure induced coupling terms and
dropping the assumption of strong radial excursions of the
fluid displacement, (3) is immediately recovered in the limit
γ→ 0. It can be shown that ξm±1 and ξ ′m±1 are continuous at
r∗ so thatC± can be computed by means of (4). The computa-
tion of B± will be discussed later. Finally, note that magnetic
well effects such as thosemodelled in [11] have been neglected
since they are of higher order compared to the coupling contri-
butions appearing in equation (6). It is nevertheless worthmen-
tioning that, if included, instability is expected to be slightly
weakened while achieving complete suppression of Mercier
modes thanks to the fact that q> 1.

Now, exploiting the shape of the density and pressure pro-
files given in (2) one can easily obtain the solution for the
eigen-equation in the region of the edge gradients which reads

ξm =















c0 + c1 arctan

(

km (r)
γ/ωA

)

, r∗ < r< rp,

d0 + d1 arctan

(

km (r)λ−1

γ/ωA

)

, rp < r< a,

(8)

where ωA = B0/(R0
√
ρ0)(1+ 2q2)1/2 and λ=

√

ρ1/ρ0. The
constants ci and di will be determined later. Notice that if
we generalise to an arbitrary q profile such that q(rs) = m/n
for r∗ < rs < a with (a− r∗)/a≪ 1, we can write the lead-
ing order solution of (6) in a form equivalent to (8) by
substituting km → nsx where x= (r− rs)/rs and s denotes
the magnetic shear at rs. We now have all the elements to
obtain the dispersion whose derivation is discussed in the next
section.

4. Dispersion relation

For the moment, we shall not specify the poloidal and toroidal
mode numbers m and n. To obtain the dispersion relation, and
hence the growth rate, we integrate (6) across rp and a where

3
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the density jumps occur yielding respectively

[[rQξ ′m]]rp −
γ2

ω2
A

(

1−λ2
)

ξm (rp)

+ n2
R0p0q2p
rpB2

0

∑

±

r±m
p L±
1±m

= 0, (9)

[[rQξ ′m]]a−
γ2

ω2
A

λ2ξm (a) = 0, (10)

where [[A]]r = A(r+ ϵ)−A(r− ϵ) with ϵ→ 0. Notice that in
the neighbourhood of the separatrix where q=∞ the quant-
ity kℓ is well defined at the boundary for any harmonic since
µ(a)→ 0.

Firstly, one easily sees that [[r3Qξ ′m]]r∗ = 0, thus implying
that ξ ′m and ξm are continuous at r∗, so that

Cm ≡ rξ ′m
ξm

∣

∣

∣

r∗−ϵ
=
rξ ′m
ξm

∣

∣

∣

r∗+ϵ

=
γ

ωA
× (rk ′m)/Q
c0/c1 + arctan [km/(γ/ωA)]

∣

∣

∣

r∗
,

where the value of Cm is obtained from (4) in analogy to C±.
The relation above is inverted to get the ratio c0/c1.

Equations (8) and (10) yield

d0
d1

=

[

λrk ′mγ/ωA
k2mBm−λ2γ2/ω2

A

− arctan

(

kmλ−1

γ/ωA

)]

a−ϵ

,

where Bm = rξ ′m/ξm|a+ϵ and is obtained from (5) by setting
ℓ= m. Notice that because of the density step at r= a in gen-
eral rξ ′m/ξm|a−ϵ ̸= rξ ′m/ξm|a+ϵ with the difference expressed
by (10). Hence, the eigensolution of the mode m in the region
of strong gradients is completely determined, and we can now
proceed to derive the dispersion relation.

Under the condition that ξm is continuous at rp [9], the fol-
lowing dispersion relation is produced from (9):

γ

ωA
(rk ′m)rp

(

λ
d0
d1
+ arctan [km (rp)λ−1/(γ/ωA)]

− 1
c0
c1
+ arctan [km (rp)/(γ/ωA)]

)

− γ2

ω2
A

(

1−λ2
)

+

(

n
R0

rp
q2pβ

)2

U= 0, (11)

where we defined β = p0/B2
0 with qp = q(rp) and

U=
∑

±

2(1±m) [2±m+C±] [2±m+B±] (rp/a)
2±2m

(±m−B±) [2±m+C±]− (r∗/a)
2±2m

(±m−C±) [2±m+B±]
.

We first note that ignoring the presence of a separatrix,
the dispersion relation for external kink modes is immedi-
ately retrieved by letting λ= 1, β= 0 and r∗ → rp → a in (11),
which eventually gives c0/c1 = d0/d1.

In the neighbourhood of the marginal boundaries, the
growth rate is small enough so that contributions of order
γ2 are negligible. If the resonance m/n occurs at rs < rp we
obtain

γ

ωA
≈−π

[

(

n
R0

rp
q2pβ

)2 U
(rk ′m)rp

+
km (a)

1+ rk ′m
km

∣

∣

∣

a
B
−1
m − km(a)

km(rp)



 , (12)

whereas for the case rp < rs < a one has

γ

ωA
≈−π

λ

[

(

n
R0

rp
q2pβ

)2 U
(rk ′m)rp

− km (r∗)

1+ rk ′m
km

∣

∣

∣

r∗
C

−1
m − km(r∗)

km(rp)






. (13)

It will be shown later that a window in qa can be found within
which the mode becomes unstable. The largest value of the
growth rate is typically attained when the resonance coincides
with the location of the step in pressure. Hence, at this location
and assuming that γ/ωA is sufficiently small, we may write

γ

ωA
(1+λ)≈−π

2

(

n
R0

rp
q2pβ

)2 U
(rk ′m)rp

. (14)

Up to this point the discussion has been left sufficiently generic
such that no specific helicities have been taken into account.
Now, we study in detail the behaviour of the m= 2, n= 1
mode. This is detailed in the next section.

5. The m= 2, n= 1 mode

Let us first note that in proximity of a the radial fluid displace-
ment obeys equation (3). Because of the logarithmic diver-
gence of the safety factor at the edge, we may assume that
the resonance of the the m+ 1 harmonic occurs at r= a, that
is km+1(a) = 0. Upon introducing the variable y= (r− a)/a,
near this point we write

ξm+1 ∝ 1+Ayν ,

4
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whereA is a constant to be determined later and ν > 0. Close to
the resonance, we are allowed to approximate km+1 ∝ y. When
this form of ξm+1 is plugged into (3) we obtain

Aν (ν+ 1)yν−2 −
[

(m+ 1)2 − 1
]

= 0,

which is solved by setting ν= 2, meaning that the eigenfunc-
tion approaches the resonance with vanishing radial derivative
(the expression of A follows accordingly). Hence, the presence
of a separatrix dictates that B+ = 0.

Now, for the specific case of m= 2 and n= 1, it is straight-
forward to see from (4) that C− = 0, so that one has L− = 0.
This, therefore, implies that

U=
12(4+C+)(rp/a)

6

4+C+ − 2(2−C+)(r∗/a)
6 ,

where, exploiting the fact that q(r∗) = q0(r∗/r0)2, the quantity
C+ can be expressed as

C+ = 2+ 12





1− (r0/r∗)
6 − q0

2

(

1− (r0/r∗)
4
)

[3− q(r∗)]
[

2− q0 +(r0/r∗)
6
]



 .

Since we take 1< q0 < 2 and q(r∗)< 2 by hypothesis, it is
easily seen that the term in brackets on the right-hand-side of
the expression above is positive so thatC+ > 2. It thus follows
that U> 0. Hence, by comparing with (14) we see that if the
2/1 resonance occurs at the location of the step of the pressure
profile the mode is always unstable. We are thus led to infer
that there might be situations in which even an infinitesimally
small gradient in pressure is sufficient to trigger the instability.
If r∗/a= 1− h and rp/a= 1− h/2 with h≪ 1 the expression
for the growth rate can be further simplified leading to

γ

ωA
≈ 16π

1+λ

(

R0

rp
β

)2(

1+
4
C+

)

. (15)

An example of the magnitude of the growth rate computed
with experimentally relevant parameters is given in figure 2. A
window of instability opens exactly when the resonance of the
2/1 mode occurs in proximity of rp, namely the position of the
step of the pressure profile. In an experimental situation when
the plasma current is ramped up, the location of rs moves from
the core region towards the edge (i.e. left to right in figure 2) so
that, following the discussion below (15), we can expect that
an instability always occurs if the location of the resonance
aligns with that of the edge pressure gradients. Furthermore,
one sees that even with modest edge gradients the perturbation
can grow on quite fast time-scales of the order of few milli-
seconds or less. We shall point out, nonetheless, that these are
much slower than those associated with purely current driven
external kink modes in limited geometries [1].

The eigenfunction of the dominant m= 2 harmonic corres-
ponding to the case marked by the star of figure 2 is shown
in figure 3. The perturbed displacement is larger in the region
of the edge gradients, although it remains appreciably differ-
ent from zero in the core. In particular, we see that ξ2(a) ̸= 0.

Figure 2. (a) Growth rate for the 2/1 mode as a function of its
resonant position computed with parameters q0 = 1.3, r∗/a= 0.95,
rp/a= 0.975, a/R0 = 1/4, β= 0.005, ρ1/ρ0 = 0.2 and a/b→ 0. In
(a) the position of the step of the pressure profile is marked by the
vertical dot-dashed line whereas the two dashed Grey lines are
obtained from (12) and (13); the star denotes the approximated
growth rate computed from (15). The shaded area in (b) highlights
the corresponding instability window in qp.

Figure 3. Shape of the eigenfunction of the m= 2 harmonics
computed with the same parameters of figure 2 with the mode
resonance coinciding with the position of the step in the pressure
profile (i.e. rs = rp, star in figure 2). The dashed vertical line marks
the radius rp.

Larger growth rates are expected to yield bigger values of the
fluid displacement at the boundary.

Although our analysis has been carried out with a rather
‘rigid’ safety factor, we point out that the width of the instabil-
ity window, either in rs or qa, can be widened both by enhan-
cing the edge pressure gradient or by reducing the local
magnetic shear in the region r∗ < r< a. This can be indeed

5
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inferred from (12) and (14) by noting that k ′m ∼ s with s the
local shear in the gradient region, i.e. the lower the shear the
higher the instability drive.

6. Conclusions

To summarise, in this work we addressed the problem of
the excitation of global instabilities in a diverted configura-
tion, when single helicity current driven external kink modes
are intrinsically stable. The analysis has been carried out by
exploiting the presence of strong density and pressure gradi-
ents near the plasma edge. This induces an infernal-typemode
coupling [8], thus allowing for the onset of otherwise stable
global perturbations.

We found that the onset of the instability occurs when the
resonance of the dominant harmonic gets closer to the region
of strong gradients, that is when the field line bending sta-
bilisation associated with the magnetic shear is weakened.
The structure of the eigenfunction, although exhibiting a
sharp rise close to the edge, maintains a rather global char-
acter being different from zero all the way across the plasma
column.

Growth rates computed by using physical parameters,
which are not too far from those characterising typical toka-
mak experiments, fall within the range of few milliseconds
even with modest edge radial gradients, thus indicating a fairly
fast growth. The onset of the instability appears sharply when
the parameter qp, namely the value of the safety factor at the
location of the pressure step, approaches the value 2 in line
with the experimental evidence. In our model, the narrow-
ness of the region of instability is because of the choice of
the (simplified) equilibrium profiles. Nonetheless, it may be
widened by reducing the local magnetic shear, this being pos-
sible through bootstrap contributions.

Although our model has been developed within the ideal
MHD framework, we point out that a further worsening of
stability can be produced by including resistive effects, which
are expected to become important close to the ideal marginal
points and in regions where the plasma temperature is small.
The inclusion of these correction to the dynamics of the q95 =
2 limit is more likely addressed via numerical approaches [12].
Since this work has been focussing on global (i.e. n∼ 1) dis-
turbances only, the stability of large-n perturbations such as
ballooning modes has not been analysed. We nevertheless
point out that β and r∗ may be tuned to stabilise localised per-
turbations [13] while the global 2/1 mode may still be present
(see equation (15)). We finally envisage that this framework
may also be extended to model pressure driven core MHD

instabilities to give, at least, a qualitative description of their
behaviour.
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