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Urbanisation of a growing tropical mega-city during the 21st century — 

Landscape transformation and vegetation dynamics 
Phakhawat Thaweepworadej a,b, Karl L. Evans a,* 

a Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK 
b Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand   

H I G H L I G H T S  

• Impervious surface cover increased in Bangkok by ~ 474 km2 from ~ 2004 to ~ 2018. 
• Space-for-time substitution approaches can predict future vegetation dynamics. 
• ~583 km2 of grassland and ~ 94 km2 of rice-fields were lost; tree-cover grew by ~ 137 km2. 

• Expansion, not densification, drove these changes — raising heat stress & flood risk. 
• Densification drove substantial tree-cover loss, reducing ecosystem services, & biodiversity. 
• Schemes promoting urban growth through densification must increase tree protection.  
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A B S T R A C T   

Fine scale spatial and temporal patterns in land-cover dynamics arising from rapid urbanisation of tropical re-
gions are poorly understood. We quantify changes in landcover across the Bangkok region using high-resolution 
aerial imagery from ~ 2004 to ~ 2018 and address three questions: i) does urbanisation generate temporal shifts 
in the form of vegetation cover-urbanisation intensity relationships?, ii) do urban expansion and densification 
generate different vegetation dynamics?, iii) do net changes in vegetation cover and loss vary with urbanisation 
intensity? The form of vegetation cover-urbanisation intensity relationships exhibited negligible temporal 
variation, supporting the use of space-for-time substitution approaches for predicting future landcover dynamics. 
During our study period impervious surface cover increased by ~ 474 km2 and there were net losses of grassland 
(~583 km2) and rice-fields (~94 km2), and a net gain in tree cover (~137 km2). These changes have substantial 
implications for urban heat islands, flood risk and biodiversity. Urban expansion contributed more to vegetation 
dynamics than densification, partly because expansion impacted more land. Densification minimised loss of 
green-space, grasslands, and agriculture (rice-fields), but generated substantial local tree cover loss, which is 
critical to retain in highly urbanised areas. This contrasts with increasing tree cover elsewhere, including areas 
experiencing urban expansion. Trade-offs thus arise between impacts on different vegetation types when meeting 
the demand for tropical urban development through densification or expansion. Densification benefits most 
vegetation types but must be accompanied with tree protection and planting schemes to balance these trade-offs 
and minimise detrimental impacts of densification on people, ecosystem services and biodiversity.   

1. Introduction 

Urbanisation is rapidly transforming earth’s terrestrial surface, with 
0.6–1.3 million km2 of rural land having a high probability of being 
converted into urban areas between 2015 and 2050 (Huang, Li, Liu, & 
Seto, 2019). Nearly half of this growth is predicted to occur in Asia 

(Huang et al., 2019), a region which already contains significant urban 
regions (e.g. 16 megacities, defined as cities with over 10 million in-
habitants) even though most of the Asian human population still resides 
in rural areas (United Nations, 2019). South-east Asia has experienced 
one of the fastest rates of urbanisation within Asia (ASEAN, 2017; 
Hughes, 2017), especially in its mega-cities (Estoque & Murayama, 
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2015; Richards, Passy, & Oh, 2017; Xu et al., 2019). This is a major 
factor driving biodiversity loss in the region (Sodhi, Koh, Brook, & Ng, 
2004; Sodhi et al., 2010), with almost all of the region’s urban areas 
overlapping with its four biodiversity hotspots (Güneralp & Seto, 2013). 
The impact of urbanisation on biodiversity hotspots in Southeast Asia is 
predicted to increase significantly, with the urbanised area of these 
hotspots projected to grow from approximately 27,000 km2 in 2000 to 
nearly 100,000 km2 in 2030 (Seto, Güneralp, & Hutyra, 2012). 

Environmental impacts of urban expansion can arise directly 
through conversion of natural habitat of high biodiversity value, such as 
forest and wetland, or indirectly through loss of agricultural land-
—which is then replaced by clearance and conversion of natural vege-
tation types to create new farmland. These indirect impacts are often 
much greater than direct impacts (Song, Pijanowski, & Tayyebi, 2015; 
van Vliet, 2019). In southeast Asia, around 2.5 Mha of agricultural land 
was urbanised during 1992 to 2015, accounting for approximately 80% 
of the region’s urban land expansion (Barbier, 2004; Kummer & Turner, 
1994; van Vliet, 2019). Urbanisation thus contributes significantly to the 
impact of agricultural expansion on tropical deforestation (Geist & 
Lambin, 2002). Conversely, urban expansion can lead to gains in tree 
cover when urban management policies encourage urban forestry and 
planting of street trees, especially if the original landscape has limited 
tree cover (Díaz-Porras, Gaston, & Evans, 2014; Nowak, Noble, Sisinni, 
& Dwyer, 2001; Parris, 2016). 

There is a clear need to understand landscape dynamics arising from 
urbanisation which are spatially and temporally variable (Estoque & 
Murayama, 2015; Schneider et al., 2015; Seto, Fragkias, Güneralp, & 
Reilly, 2011; Song et al., 2021). Studies to date have quantified how 
topography and proximity to currently urbanised areas and transport 
networks influence the probability of urban expansion (e.g. Song et al., 
2015; Xu et al., 2019), and how urbanisation can proceed along a 
gradual transition of increasing anthropogenic alteration of landscapes, 
i.e. from forest, to agriculture to urban land (e.g. Lemoine-Rodriguez, 
MacGregor-Fors, & Muñoz-Robles, 2019). Adverse impacts of urban 
growth can be reduced by effective planning regulations that limit urban 
expansion and instead promote increasing urban intensity in already 
urbanised areas, i.e. urban densification (Broitman & Koomen, 2015). 
Such regulations are lacking, however, in much of the global south, 
including southeast Asian cities resulting in marked loss and degrada-
tion of surrounding agricultural and semi-natural land as cities expand 
(Chandan, Bharath, & Ramachandra, 2014; Srivanit, Hokao, & Phone-
keo, 2012; Song et al., 2021). 

Despite much interest and progress in understanding urban land-
scape dynamics there is limited knowledge of fine-scale spatial patterns 
of urban expansion, including which vegetation types are converted to 
urban land-covers, and how landscape dynamics vary depending on 
base-line levels of urbanisation. This is especially the case in rapidly 
urbanising regions. Here, as a case study, we focus on Bangkok, 
Thailand, which is located within the Indo-Burma biodiversity hotspot 
(Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000). Bangkok 
is one of southeast Asia’s rapidly growing mega-cities with population 
estimates of 6.4 million in 2000, increasing to 8.3 million in 2010 and 
10.5 million in 2020 (United Nations, 2018). 

Our overall objective is to quantify recent changes in landcover 
across the greater Bangkok region via landcover classification from 
high-resolution aerial imagery. We quantify temporal changes in land-
cover from ~ 2004 to ~ 2018. We contrast the impacts of urban 
densification and expansion on vegetation cover by assessing if newly 
urbanised areas (created by urban expansion) have different landcover 
change dynamics compared to areas experiencing urban densification. 
We then assess the spatial pattern of landcover across the rural to urban 
gradient, assessing if landcover changes have generated temporal shifts 
in the relationship between urbanisation intensity and coverage of 
specific vegetation types. We then quantify how temporal changes in 
landcover vary with the magnitude of urbanisation intensity. Finally, we 
quantify how changes in vegetation cover arising from conversion to 

impervious surfaces, and from impervious surfaces to vegetation vary 
along the gradient of urbanisation intensity. The resultant data inform 
understanding of environmental impacts of urban development in 
South-East Asia and help develop recommendations for minimizing 
adverse impacts of urban development. 

2. Methods 

2.1. Defining the study area 

Our study area was delimited by a 70 km × 80 km rectangle (5,600 
km2) centred approximately on the centre of Bangkok; it covers 
Metropolitan Bangkok and neighbouring provinces, i.e., Samuth- 
Prakarn, Samuth-Sakorn, Nakorn-Pathom, Nontaburi and Pathumthani 
(Fig. S1). The size and location of this grid captures the substantial 
amount of urban land-cover within the region that extends beyond the 
official administrative city limits, whilst also incorporating parts of the 
rural landscape surrounding Bangkok. This thus enables us to contrast 
land-cover change in urbanised and more rural locations whilst 
providing a suitable baseline for assessing further future impacts of 
urbanisation. 

2.2. Land cover classification 

The sampling region was divided into 5,600 1 km × 1 km cells and a 
grid of 140,000 evenly spaced sampling points (25 per cell, i.e. one 
sampling point every 200 m) in ArcGIS using the UTM coordinate sys-
tem. The habitat type at each sampling point was determined from high- 
resolution aerial imagery obtained via Google Earth (following Evans, 
Newson, and Gaston (2009)). High-resolution cloud free google earth 
images were selected that were centred on i) 2004 and ii) 2018. We used 
the cloud free image that was closest in time to our target year. Images 
used for the most recent time period were from 2017 or 2018 and for the 
2004 sampling date 94% of grid cells were assessed using images taken 
within three years of the target year (Table S1). The remaining 6% of 
grid cells were all located far from the centre of Bangkok in mainly rural 
areas and the images available for these cells were from 2008 to 2013. 
Urban land cover in these grid cells was typically small (1st time period: 
6.7%; 2nd time period (i.e. 2017/2018): 6.8%) and the difference in 
percentage urban land cover between two time periods was insignificant 
(matched pair t-test: P = 0.137; n = 272). Inclusion of these grid cells 
thus has negligible influence on our estimates of how urbanisation in-
fluences land-cover change. 

Land cover type at each sampling point was classified into one of 
nine categories: i) impervious surface (i.e. buildings, roads, pavements 
etc.; which is one of the most frequently used urbanisation intensity 
metrics (Moll et al., 2019), ii) trees (including shrubs), iii) grasslands 
(aerial imagery did not enable us to consistently distinguish managed 
and unmanaged grasslands), iv) rice fields (the dominant form of agri-
culture in the Bangkok region (Song et al., 2021)), v) salt pans, vi) green 
roofs, vii) bare ground, viii) construction sites and ix) water bodies. 
These categories were selected to enable us to distinguish grey-space (i. 
e. urban land cover), green-space (i.e. vegetation) and blue-space (i.e. 
areas of water) whilst obtaining as much information as is feasible given 
image quality regarding the precise nature of landcover within these 
categories. 

Images clearly enabled grassland to be distinguished from areas of 
trees and shrubs (identified by canopy shapes and generation of shade). 
Vegetated rice fields were distinguished from grassland by the lattice 
network of fields, and uniform lighter green colour compared to other 
vegetation. Flooded rice fields were distinguished from permanent open 
water by checking images taken at different points within the same focal 
year together with the lattice network of fields. Rice fields were distin-
guished from salt pans as the later only occur immediately next to the 
sea, are smaller than rice fields and never fully vegetated. Construction 
sites were distinguished from other areas of bare ground by the presence 
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of building equipment or partially constructed infrastructure. Other 
land-cover types (impervious surface, water bodies, and green roofs) 
were straightforward to classify. 

To validate the accuracy of our sampling approach we compared 
land-cover estimates generated in 20 grid cells using sampling grids of 
25 and 100 evenly spaced cells. We did so using two randomly selected 
cells from each of ten categories of impervious surface cover (0–10%, 
11–20%, …, 91–100%; defined using data from the 25 sampling point 
grid and 2018 imagery). For all major land cover types (i.e. impervious 
surface, total green area, trees, grassland, and rice field), the estimates of 
percentage land cover type derived from the two different sampling 
strategies are strongly correlated with each other (correlation co-
efficients ≥ 0.90; P < 0.0001 in all cases; Table S2). 

The accuracy of our classifications was further confirmed by 
comparing landcover classifications obtained from aerial imagery taken 
during our second time period (2017 or 2018) with ground-truthed 
landcover classifications in March–April 2018 (n = 1,355). These 
comprised 150 points located at the centre of 150 1 km × 1 km cells that 
were selected using random stratification across the rural to urban 
gradient, and an additional 1,205 sampling points that were selected 
haphazardly due to their location close to travel routes between the 
randomly selected cells. These comparisons revealed that classifications 
had at least 90% accuracy (some apparent inaccuracies will be due to 
genuine change) for almost all landcover types (Table S3), with the 
exceptions being bare ground (62.50% accuracy) and construction sites 
(77.8% accuracy). These landcover types are particularly likely to 
exhibit rapid genuine change (as bare ground becomes vegetated due to 
succession or conversion to a construction site; and as construction sites 
are turned to impervious surfaces). We thus assessed if changes at these 
sampling points were due to classification error or genuine change by 
assessing all available aerial imagery between the date of the original 
image and the date at which ground-truthing occurred. All discrepancies 
were due to genuine landcover change (Table S3) implying that there 
was 100% classification accuracy for bare ground and construction sites. 

2.3. Data analyses 

All analyses were performed in R version 4.1.2 (R Core Team, 2021). 
We excluded grid-cells with over 80% surface water cover as such cells 
contain an insufficient number of land-based sampling points with 
which to estimate changes in land-cover with sufficient precision; all 
analyses are thus based on 5,482 (97.9%) of our original 5,600 grid cells. 
We start by quantifying changes between ~ 2004 and ~ 2018 in the 
percentage cover of each of the nine landcover types and change in total 
green area (i.e. combining grasslands, rice fields and trees) using 
matched paired t-tests. Note that net change in vegetated area can be 
smaller than the sum of changes across vegetated landcover types as 
many of these changes will not result in the loss of green-space (e.g. 
grassland may be converted to trees). Only one sampling point (<0.001 

%) was a green roof, and this habitat type was excluded from the 
calculation of total green-space as the ecology of green roofs is very 
different to other green-spaces occurring at ground level (Maclvor, 
2016). We used the false discovery rate (FDR) method of Benjamini and 
Hochberg (1995) to correct for multiple testing and report the FDR 
corrected P-values (‘p.adjust’ function in stats package). We estimated 
the region’s area lost/gained of each landcover type by multiplying 
percentage lost/gained with the total area of land within our sampling 
grids, i.e. 5,482 km2. 

There is likely to be substantial heterogeneity in landcover change 
within the Bangkok region, especially regarding changes in vegetation 
types, depending on the original intensity of urbanisation. Areas that 
have recently become urbanised due to urban expansion will, for 
example, tend to have different vegetation dynamics than areas which 
were originally urbanised but are experiencing densification (Parris, 
2016). We define grid cells with at least 25% impervious surface cover as 
urbanised grid cells (following Bonnington, Gaston, and Evans. (2014)). 
We then conducted three sets of matched paired t-tests that compare 
changes in vegetation cover, in total and for each vegetation type, across 
our two time periods for i) grid cells that became urbanised between our 
two focal time periods (termed “Urban expansion”; 973 grid cells), ii) 
grid cells that were already urbanised in ~ 2004 but in which imper-
vious surface cover increases by <10% points, e.g. from 25% to 30% 
(termed “Remain urban”; 910 grid cells), iii) grid cells that were already 
urbanised in ~ 2004 and in which impervious surface cover increases by 
at least 10% points, e.g. changed from 25% to 35% impervious surface 
cover (termed “Urban densification”; 761 grid cells), and iv) grid cells 
that remained rural (i.e. impervious surface < 25%) during ~ 2004 to ~ 
2018 (termed “Remain rural”; 2,756 grid cells). Comparing the results of 
these analyses enables us to assess how urban expansion and urban 
densification differentially influence vegetation dynamics, by contrast-
ing rural sites that are converted to urban areas with those that remain 
rural, and contrasting urban sites that experience densification with 
those that do not. These analyses exclude a small proportion of grid cells 
(n = 82; 1.5%) that were urban in 2004 but which lose some impervious 
surface and became rural in 2018. The FDR method was applied for 
multiple comparison and corrected P-values are reported. 

Equivalent analyses conducted using 40% impervious surface as a 
threshold to define urbanised grid cells (rather than 25%) generated 
very similar results (see Fig. S2; Table S4). We also conducted equivalent 
analyses that uses a more extreme definition of urban densification, i.e. a 
15% point (not 10%) increase in impervious surface cover (e.g. from 
25% to 40% impervious surface), and equivalent changes in the defi-
nition of which grid cells remained urban. The direction and magnitude 
of change in vegetated land-cover types in cells that remain urban and 
experience urban densification obtained from this alternative approach 
(see Table S5) are very similar to those obtained when using a 10% 
threshold for defining urban densification (see Table 2), and have 
negligible impacts on our conclusions. 

Table 1 
Median, mean (±standard error) proportion of each landcover type in our two time periods ~ 2004 and ~ 2018, in 1 km × 1 km grid cells (n = 5,482). P-values of 
matched paired t-tests assessing the statistical significance of these changes were corrected using the false discovery rate (FDR) method (‘p.adjust’ function in stats 
package). Note that green roofs were only detect at one sampling point (<0.001% of the total).  

Landcover type ~2004 ~2018 Net area loss/gain (km2) Matched paired t-test results 
Median Mean ± s.e. Median Mean ± s.e. t P 

Impervious surface  0.125 0.205 ± 0.003  0.235 0.292 ± 0.33  474.74  51.16 <2.2e–16 
Green areas (total)  0.844 0.768 ± 0.003  0.714 0.670 ± 0.33  –540.52  –51.34 <2.2e–16 
Trees  0.160 0.189 ± 0.002  0.200 0.214 ± 0.21  136.50  13.50 <2.2e–16 
Grasslands  0.333 0.357 ± 0.003  0.208 0.251 ± 0.25  –582.74  –41.95 <2.2e–16 
Rice fields  0.004 0.222 ± 0.004  0.000 0.205 ± 0.38  –94.29  –9.35 <2.2e–16 
Salt pans  0.000 5.0e–4 ± 2.0e–4  0.000 4.0e–4 ± 0.002  –0.55  –2.23 0.029 
Green roof  0.000 0.000 ± 0.00  0.000 1.1e–5 ± 1.1e–5  0.05  1.00 0.317 
Bare ground  0.000 0.002 ± 0.07  0.000 0.331 ± 0.001  92.10  17.46 <2.2e–16 
Construction sites  0.000 0.001 ± 0.06  0.000 0.053 ± 3.0e–4  –25.77  –7.46 1.4e–13 
Water bodies  0.004 0.010 ± 0.20  0.004 0.104 ± 0.002  30.15  4.77 2.4e–6  
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We then assess if urbanisation have generated temporal shifts in the 
relationship between urbanisation intensity and total vegetation cover 
and each of the major types of vegetation cover (i.e. trees, grassland, and 
rice fields). We modelled the relationship between percentage total 

vegetation cover and impervious surface cover as these two variables are 
not simply the inverse of each other as three of our landcover classifi-
cations are neither green-space or impervious surface (i.e. bare ground, 
construction sites, and salt pans). We modelled the focal vegetation 

Table 2 
Median, mean (±standard error) proportion of each vegetation type in our two time periods ~ 2004 and ~ 2018, in 1 km × 1 km grid cells classified as cells that change 
from rural to urban over this time period (urban expansion; n = 973), remain rural (n = 2,756), experience urban densification (n = 761), and remain urban without 
experiencing densification (n = 910). P-values of matched paired t-tests assessing the statistical significance of these changes were corrected using the false discovery 
rate (FDR) method (p.adjust function in R).  

Urbanisation category ~2004 ~2018 Matched paired t-test results 
Median Mean ± s.e. Median Mean ± s.e. t P 

Green area cover (all vegetation types)   
Urban expansion  0.833 0.830 ± 0.003  0.609 0.583 ± 0.004  –55.83 <2.2e–16 
Remain rural  0.955 0.925 ± 0.002  0.880 0.865 ± 0.002  –28.12 <2.2e–16 
Urban densification  0.560 0.537 ± 0.005  0.360 0.356 ± 0.005  –52.36 <2.2e–16 
Remain urban  0.435 0.439 ± 0.006  0.440 0.426 ± 0.005  –0.91 0.363 
Tree cover       
Urban expansion  0.182 0.212 ± 0.005  0.208 0.225 ± 0.004  2.84 0.005 
Remain rural  0.136 0.178 ± 0.003  0.167 0.212 ± 0.003  12.72 <2.2e–16 
Urban densification  0.200 0.202 ± 0.005  0.160 0.175 ± 0.004  –6.28 7.6e–10 
Remain urban  0.160 0.180 ± 0.004  0.217 0.229 ± 0.004  12.80 <2.2e–16 
Grassland cover       
Urban expansion  0.500 0.484 ± 0.007  0.261 0.281 ± 0.005  –32.87 <2.2e–16 
Remain rural  0.320 0.365 ± 0.005  0.240 0.281 ± 0.004  –22.78 <2.2e–16 
Urban densification  0.320 0.316 ± 0.006  0.160 0.171 ± 0.004  –30.42 <2.2e–16 
Remain urban  0.208 0.234 ± 0.006  0.160 0.188 ± 0.005  –11.70 <2.2e–16 
Rice field cover       
Urban expansion  0.000 0.133 ± 0.006  0.000 0.761 ± 0.004  –13.91 <2.2e–16 
Remain rural  0.391 0.382 ± 0.006  0.360 0.372 ± 0.006  –3.24 0.001 
Urban densification  0.000 0.184 ± 0.002  0.000 0.009 ± 0.001  –6.30 7.4e–10 
Remain urban  0.000 0.143 ± 0.002  0.000 0.009 ± 0.001  –5.35 1.4e–7  

Fig. 1. Impervious surface cover across the Bangkok study region in a) ~ 2004 and b) ~ 2018, with lines representing major road networks, and c) number of 1 km 
× 1 km grid cells in each of the impervious surface categories in ~ 2004 (grey) and ~ 2018 (black). Note that much urban growth has arisen from urban sprawl, 
although urban densification is also occurring. 
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cover response variable as a function of the proportion of impervious 
surface (including linear, quadratic, and cubic terms to detect simple 
non-linear relationships) constructing separate models using data from 
each of our two time periods. We took this approach rather than fitting 
all data in the same model with additional predictors of time period and 
interaction terms between time period and urbanisation intensity due to 
the complexity of fitting and interpreting multiple interaction terms. 
Moran’s I test (ape package) detected significant spatial autocorrelation 
for all our response variable/year combinations (Table S6). We thus 
constructed generalised least squared models (‘gls’ function in nlme 
package) using three different spatial correlation structure (exponential, 
spherical, or gaussian), selecting the optimal structure based on Akaike 
Information Criterion (AIC) values (Table S7). We selected models with 
higher power predictors only when their AIC values were ≥ 2 point 
values lower than alternative models, and when parameter estimates of 
the higher power predictors had 95% confidence intervals that did not 
overlap zero. 

Finally, we calculated three measures of vegetation dynamics be-
tween our two time periods for each grid cell: i) total net loss/gain of 
total vegetation cover and each vegetation type, ii) loss of total vege-
tation cover and of each vegetation type arising from conversion to 
impervious surface cover, and iii) gain in total vegetation cover and each 
vegetation type arising from conversion of impervious surface cover to 

vegetation. This third type of vegetation dynamic is rare but can occur, 
for example, when an urban area is abandoned or when tree canopies 
expand. We then assess how vegetation dynamics change along the ur-
banisation gradient by modelling each type of vegetation dynamic as a 
function of impervious surface cover in our first time period whilst also 
taking into account the number of years between the two sets of images. 
We used linear, quadratic, and cubic terms of proportion of impervious 
surface, and again used AIC values, in combination with considering if 
95% confidence intervals of parameter estimates overlap zero, to assess 
model fit. Moran’s I tests (ape package) revealed positive spatial auto-
correlation in our initial models’ residuals (Table S8, S9), so we used 
generalised least squared model (‘gls’ function in nlme package) with 
three different spatial covariance structure (i.e., exponential, spherical, 
or gaussian) to take spatial correlation into account (Table S10). 

3. Results 

3.1. Summary of landcover transformations at the regional scale 

From ~ 2004 to ~ 2018 there were significant gains in impervious 
surface (474.7 km2) and tree cover (135.6 km2), and significant losses of 
total vegetation cover (540.5 km2), grassland (582.7 km2) and rice fields 
(94.3 km2) (Table 1; Fig. 2, Fig. 3). The net loss of total vegetation cover 

Fig. 2. Number of grid cells in each vegetated landcover category in ~ 2004 (grey) and ~ 2018 (black).  
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is smaller than the sum of the area loss of each vegetation type due to 
dynamics across vegetation types, e.g. some grassland areas changed to 
tree-cover. 

3.2. Impacts of urban expansion and densification on changes in 
vegetation cover 

Despite the increase in impervious surface cover, our study region 
remained primarily rural (51.0% of grid cells met our definition of <
25% impervious surface cover). Approximately 18% of grid cells expe-
rienced urban expansion, with c. 14% experiencing urban densification 
(with mean impervious surface cover increasing from 42.5% to 62.1%; 
changes were similar when using a more conservative definition of 
intensification; Table S5), and c. 16% of cells were already urban but did 
not experience densification. 

Total vegetation cover was substantially reduced in cells that expe-
rienced urban expansion and densification, declines were much smaller 
in cells that remained rural and there was no significant change in cells 
that remained urban (Table 2; Fig. 4a). Tree cover increased in all cell 
types, except those that experienced urban densification, where tree 
cover decreased (Table 2; Fig. 4b). Grassland cover declined in all cell 
types, including those that remained rural, with the smallest decline in 
cells that remained urban (Table 2; Fig. 4c). Rice field cover declined to 
a much greater extent in formerly rural grid cells that experienced urban 

expansion, than those that remained rural (Table 2; Fig. 4d). Change in 
rice field cover were negligibly elsewhere (Table 2; Fig. 4d). These 
patterns remain when using an alternative definition of urban densifi-
cation of an increase of at least 15% points in impervious surface cover, 
with the exception of patterns in the amount of green-space in urban 
cells that did not experience densification switching from a pattern of no 
significant change to one of a slight reduction in the amount of green- 
space (Table S5). 

3.3. Assessing temporal shifts in vegetation cover–urbanisation intensity 
relationships 

Total vegetation cover declined linearly with increasing urbanisation 
intensity, and the gradient of these declines was extremely similar in 
both time periods (Table 3; Fig. 5a, e). Whilst tree cover–urbanisation 
intensity relationships changes from a cubic to a quadratic model, both 
models predicted that tree cover was maintained at approximately 25% 
until impervious surface cover reached approximately ~ 25%, after 
which tree cover declined linearly to negligible levels in the most 
intensely urbanised grid cells (Table 3; Fig. 5b, f). Grassland cover 
declined along cubic curves in both time periods with declines starting at 
very low levels of impervious surface cover and continuing to negligible 
levels once impervious surface cover reached 75% (Table 3; Fig. 5c, g), 
although in the first time period grassland cover is greater along much of 

Fig. 3. Landcover maps show proportion of vegetation cover (total green area and three main vegetation types) of 1 km × 1 km grid cells in both time points and area 
net loss/gain (km2) during ~ 2004 to ~ 2018. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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the urbanisation gradient. The area of rice fields declined along a cubic 
curve in both time periods with sharp reductions as urbanisation 
increased to approximately 25% impervious surface cover (Table 3; 
Fig. 5d, h). Consequently, there is limited evidence, for any vegetation 
type, that increasing urbanisation substantially changed the form of the 
relationship between green-space and urbanisation intensity. 

3.4. Vegetation dynamics—net loss/gain along the urbanisation gradient 

Change (i.e., net loss/gain) in total vegetation cover between the two 
time periods varied with initial urbanisation intensity along a positive 
slightly accelerating curve. The least urbanised cells lost the most 
vegetation cover, but when initial impervious surface exceeded 50% 
grid cells gained increasing amounts of vegetation cover between time 
periods (Fig. 6a). 

Change in tree cover was positively and linearly associated with 
initial urbanisation intensity, such that the least urbanised areas have 
negligible gain in tree cover and the most urbanised cells gained the 
largest amount of tree cover (Table 4; Fig. 6b). Change in grassland 
cover exhibited a cubic relationship with initial urbanisation intensity 
(Table 4). The least urbanised locations in the first time period exhibited 
the largest losses in grassland cover, with the amount of grassland lost 
declining until initial impervious surface cover exceeded 70%, when 
cells gained grassland (Fig. 6c). Change in rice field cover exhibited a 

shallow linear relationship with initial impervious surface cover, with 
the largest (albeit still very limited) losses occurring in the least 
urbanised locations. In all these models the number of years between the 
first (~2004) and second images (~2018) was significantly negatively 
associated with change in total vegetation and grassland cover-
—indicating greater loss of these vegetation types as time progressed. 
Tree cover increases were larger as time progressed. These was no sig-
nificant relationship between rice field net loss/gain and the number of 
years between the two images. 

3.5. Vegetation dynamics—loss arising from conversion to impervious 
surface 

Total vegetation loss arising from conversion to impervious surface 
cover declined with initial impervious surface cover along a slight 
unimodal curve (Table 5), with the greatest loss occurring when original 
impervious surface cover was approximately 25% (Fig. 7a). Loss of tree 
cover arising from conversion to impervious surface exhibited a cubic 
relationship with initial impervious surface cover (Table 5); the 
magnitude of change was limited across the gradient, being lowest at the 
highest levels of impervious surface cover and declining to negligible 
levels when impervious surface cover exceeds c. 70% (Fig. 7b). Grass-
land loss from conversion to impervious surface changed along a cubic 
curve with loss peaking at grid cells with approximately 20% impervious 
surface cover in 2004 then declining to negligible levels at the most 
urbanised locations (Fig. 7c). Rice field area loss due to conversion to 
impervious surface cover was negligible across the gradient but declined 
linearly with increasing urbanisation intensity (Fig. 7d). The amount of 
total vegetation, grassland, and rice fields, but not tree cover, loss due to 
conversion to impervious surface cover increased with time (Table 5). 

3.6. Vegetation dynamics—gain arising from conversion from impervious 
surface 

Gain in total vegetation cover and tree cover arising from conversion 
of impervious surface cover to green-space increased with initial 
impervious surface cover along a decelerating quadratic curve, which 
plateaued at ~ 50% impervious surface cover for total vegetation 
(Table 6; Fig. 7e) and at ~ 70% impervious surface cover for tree cover 
(Table 6; Fig. 7f). Gains in grassland area arising from conversion of 
impervious surfaces exhibited a unimodal relationship with initial 
impervious surface cover, with maximum gains at approximately 50% 
impervious surface and negligible gains at either extreme of the gradient 
(Table 6; Fig. 7g). There was no significant relationship between gain in 
rice fields and original urbanisation intensity (Table 6), although con-
version of impervious surface to rice field is extremely rare (Fig. 7h; 
Fig. S3b). 

4. Discussion 

The Bangkok region has undergone intensive urbanisation during the 
focal study period, that has resulted in substantial loss of vegetation 
cover. The ultimate driver of this loss is increasing human population 
size (from 9.6 million in 2004 to 10.9 million in 2018; Bangkok 
Metropolitan Administration, 2018) and associated infrastructure 
development. There is substantial variation in trajectories of different 
vegetation types with substantial loss of grassland (582.7 km2), more 
limited loss of rice fields (94.3 km2), and tree cover increasing by 136.5 
km2. The increase in tree-cover in a region experiencing marked ur-
banisation is notable. It contrasts with frequent reports that tropical 
urbanisation drives loss of the urban forest (e.g. in Ghana, Tuffour-Mills, 
Antwi-Agyei, & Addo-Fordjour, 2020; Indonesia, Sejati, Buchori, & 
Rudiarto, 2018), but matches patterns reported in some areas of the 
global North (Díaz-Porras et al., 2014). This is probably a consequence 
of historical deforestation generating extremely limited tree cover in the 
agricultural land within the greater Bangkok area, combined with 

Fig. 4. Box and whisker plots comparing vegetation cover in ~ 2004 (white) 
and ~ 2018 (black) in each urbanisation category of 1 km × 1 km grid cells; 
urban expansion (UX), remain rural (RR), urban densification (UD), and remain 
urban (RU). Thick solid horizontal lines represent median, interquartile boxes 
represent middle 50% (25th to 75th percentile) of the data, and dashed lines 
represent mean values (on which matched paired t-tests are based; see Table 2), 
whiskers represent 25% ranges for the bottom and top of the data values, and 
dots represent outliers. 
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Table 3 
Parameter coefficients and standard errors of general least squared models (‘gls’ function in nlme package) with exponential spatial covariance structure that modelled total green area cover and cover of the three main 
vegetation types (i.e., trees, grassland, and rice fields) as a function of impervious surface cover in our two time periods (~2004 and ~ 2018) using linear, quadratic, and cubic models. Predicted values are illustrated in 
Fig. 5 derived from the best fitting model, identified in bold, i.e., that with the lowest AIC value in which 95% confidence intervals of all coefficients do not overlap zero.  

Year Response variable Model AIC Intercept Impervious surface cover 
(linear term) 

Impervious surface cover 
(quadratic term) 

Impervious surface cover 
(cubic term) 

Coeff ± s.e. Coeff ± s.e 95% CI 
(lower, upper) 

Coeff ± s.e 95% CI 
(lower, upper) 

Coeff ± s.e. 95% CI 
(lower, upper) 

~2004 Green area cover Linear  –15879.92 0.960 ± 0.006 –0.962 ± 0.006 –0.975, –0.950       
Quadratic  –15874.99 0.962 ± 0.006 –0.984 ± 0.013 –1.010, –0.958 0.032 ± 0.018 –0.002, 0.067     
Cubic  –15870.70 0.961 ± 0.006 –0.962 ± 0.022 –1.006, –0.918 –0.052 ± 0.071 –0.191, 0.088 0.074 ± 0.061 –0.045, 0.193  

Tree cover Linear  –8173.25 0.237 ± 0.021 –0.221 ± 0.013 –0.246, –0.197       
Quadratic  –8338.09 0.217 ± 0.022 0.093 ± 0.027 0.041, 0.146 –0.470 ± 0.036 –0.540, –0.400     
Cubic  –8342.25 0.213 ± 0.022 0.201 ± 0.046 0.111, 0.290 –0.879 ± 0.145 –1.163, –0.595 0.321 ± 0.124 0.118, 0.604  

Grassland cover Linear  –5742.53 0.454 ± 0.027 –0.493 ± 0.016 –0.524, –0.462       
Quadratic  –5760.65 0.444 ± 0.027 –0.344 ± 0.034 –0.410, –0.278 –0.221 ± 0.045 –0.309, –0.134     
Cubic  –5829.05 0.432 ± 0.028 0.045 ± 0.057 –0.066, 0.155 –1.708 ± 0.179 –2.059, –1.356 1.310 ± 0.153 1.010, 1.611  

Rice field cover Linear  –6442.84 0.259 ± 0.043 –0.242 ± 0.015 –0.271, –0.212       
Quadratic  –6727.25 0.289 ± 0.043 –0.713 ± 0.031 –0.773, –0.652 0.701 ± 0.040 0.621, 0.780     
Cubic  –6852.43 0.303 ± 0.044 –1.182 ± 0.051 –1.282, –1.082 2.498 ± 0.162 2.180, 2.815 –1.584 ± 0.138 –1.855, –1.313 

~2018 Green area cover Linear  –15469.94 0.936 ± 0.009 –0.939 ± 0.006 –0.951, –0.928       
Quadratic  –15467.48 0.939 ± 0.009 –0.969 ± 0.013 –0.995, –0.943 0.040 ± 0.016 0.008, 0.072     
Cubic  –15466.49 0.941 ± 0.009 –1.014 ± 0.024 –1.061, –0.966 0.194 ± 0.072 0.053, 0.335 –0.129 ± 0.059 –0.244, –0.014  

Tree cover Linear  –8511.35 0.288 ± 0.022 –0.278 ± 0.011 –0.299, –0.256       
Quadratic  –8718.95 0.255 ± 0.023 0.057 ± 0.025 0.008, 0.105 –0.449 ± 0.030 –0.508, –0.390     
Cubic  –8719.66 0.251 ± 0.023 0.143 ± 0.045 0.055, 0.231 –0.748 ± 0.133 –1.009, –0.488 0.251 ± 0.109 0.038, 0.464  

Grassland cover Linear  –7257.15 0.366 ± 0.023 –0.386 ± 0.012 –0.410, –0.362       
Quadratic  –7297.76 0.348 ± 0.023 –0.208 ± 0.028 –0.264, –0.152 –0.238 ± 0.034 –0.305, –0.171     
Cubic  –7350.98 0.334 ± 0.024 0.115 ± 0.051 0.015, 0.215 –1.355 ± 0.150 –1.650, –1.060 0.935 ± 0.123 0.694, 1.176  

Rice field cover Linear  –7182.49 0.272 ± 0.045 –0.265 ± 0.012 –0.289, –0.241       
Quadratic  –7594.96 0.322 ± 0.046 –0.781 ± 0.027 –0.835, –0.728 0.691 ± 0.033 0.626, 0.755     
Cubic  –7705.16 0.342 ± 0.048 –1.215 ± 0.048 –1.310, –1.120 2.191 ± 0.143 1.911, 2.471 –1.254 ± 0.116 –1.483, –1.026  
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investment in urban tree planting (Thaiutsa, Puangchit, Kjelgren, & 
Arunpraparut, 2008). 

4.1. Impacts of urban expansion and densification on vegetation 
dynamics 

Quantifying the contribution of urban expansion and densification 
on these regional landcover transitions is dependent on the precise 

definitions used. Using different thresholds to define urbanised grid cells 
(i.e. 25% or 40% impervious surface) and alternative densification 
definitions (i.e., 10% or 15% points increase in impervious surface) 
generates similar patterns of vegetation cover change. Expansion and 
densification have divergent impacts on vegetation dynamics. Although 
declines of vegetation cover in grid cells that experienced expansion 
were approximately equally to those that experienced densification 
(~20%; Table 2), area of vegetation cover loss to urban expansion 

Fig. 5. Relationships between the proportions of total vegetation cover and each of three main vegetation types (tree, grassland, and rice field) and impervious 
surface cover in ~ 2004 (a-d) and ~ 2018 (e-h). Fitted lines represent predicted values from the best fit spatial models (‘gls’ function in nlme package) reported 
in Table 2. 

Fig. 6. Relationships between estimated area (km2) net loss/gain of total green area (a) and three main vegetation types (b-d) during ~ 2004 to ~ 2018 with 
proportion of impervious surface in ~ 2004. Fitted lines illustrate predicted values and shading their 95% confidence intervals, derived from the best fitting spatial 
models (‘gls’ function in nlme package) presented in Table 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Table 4 
Parameter coefficients and standard errors from generalised least squares models (‘gls’ function in nlme package) with exponential spatial covariance structure that model area net loss/gain of total vegetation cover and the 
three main vegetation types (trees, grasslands, and rice fields) as a function of original impervious surface cover (i.e., in ~ 2004 with linear, quadratic, cubic terms) and number of years between the images. The best fitting 
models (assessed by AIC values and parameter estimates’ 95% confidence intervals not overlapping zero) are shown in bold. Predicted values are illustrated in Fig. 5.  

Response variable Model AIC  
Intercept 

Impervious surface cover 
(linear term) 

Impervious surface cover 
(quadratic term) 

Impervious surface cover 
(cubic term)  Numbers of year between image 

Coeff ± s.e. Coeff ± s.e. 95% CI 
(lower, upper) 

Coeff ± s.e. 95% CI 
(lower, upper) 

Coeff ± s.e. 95% CI 
(lower, upper) 

Coeff ± s.e. 95% CI 
(lower, upper) 

Green area 
net loss/gain 

Linear  –9153.24 −0.026 ± 0.027 0.267 ± 0.011 0.245, 0.289     –0.008 ± 0.002 –0.011, –0.004 
Quadratic  –9181.39 0.135 ± 0.025 0.196 ± 0.033 0.087, 0.183 0.196 ± 0.033 0.132, 0.261   –0.007 ± 0.002 –0.011, –0.004  
Cubic  –9178.63 –0.017 ± 0.027 0.089 ± 0.043 0.006, 0.173 0.368 ± 0.135 0.103, 0.633 –0.152 ± 0.116 –0.379, 0.075 –0.007 ± 0.002 –0.011, –0.004 

Area of tree cover 
net loss/gain 

Linear  –8619.20 –0.054 ± 0.024 0.052 ± 0.011 0.030, 0.074     0.005 ± 0.002 0.002, 0.008 
Quadratic  –8620.87 –0.050 ± 0.024 –0.016 ± 0.026 –0.066, 0.035 0.101 ± 0.035 0.034, 0.169   0.005 ± 0.002 0.002, 0.008  
Cubic  –8618.43 –0.052 ± 0.024 0.035 ± 0.045 –0.053, 0.123 –0.091 ± 0.143 –0.371, 0.189 0.170 ± 0.122 –0.070, 0.409 0.005 ± 0.002 0.002, 0.008 

Grassland area 
net loss/gain 

Linear  –6173.16 –6.4e–5 ± 0.035 0.165 ± 0.015 0.136, 0.194     –0.009 ± 0.002 –0.014, –0.004 
Quadratic  –6183.21 –0.007 ± 0.035 0.047 ± 0.033 –0.017, 0.111 0.177 ± 0.043 0.092, 0.262   –0.009 ± 0.002 –0.014, –0.004  
Cubic  –6185.78 0.011 ± 0.035 –0.069 ± 0.056 –0.178, 0.041 0.616 ± 0.177 0.268, 0.963 –0.387 ± 0.152 –0.685, –0.090 –0.009 ± 0.002 –0.014, –0.004 

Rice field area 
net loss/gain 

Linear  –9324.70 0.026 ± 0.027 0.041 ± 0.011 0.019, 0.063     –0.004 ± 0.002 –0.007, 2.4e–4 
Quadratic  –9324.97 0.022 ± 0.027 0.100 ± 0.024 0.052, 0.148 –0.088 ± 0.032 –0.151, –0.024   –0.004 ± 0.002 –0.007, 2.1e–4  
Cubic  –9321.18 0.021 ± 0.027 0.129 ± 0.042 0.047, 0.210 –0.197 ± 0.132 –0.456, 0.062 0.097 ± 0.113 –0.125, 0.318 –0.004 ± 0.002 –0.007, 2.2e–4  

Table 5 
Parameter coefficients and standard errors from generalised least squares models (‘gls’ function in nlme package) with exponential spatial covariance structure that model loss of total vegetation cover and cover of three 
main vegetation types (trees, grasslands, and rice fields) arising from conversion of impervious surface in relation to original impervious surface cover (i.e., in ~ 2004 with linear, quadratic, cubic terms) and number of 
years between images. The best fitting models (assessed by AIC values and parameter estimates’ 95% confidence intervals not overlapping zero) are shown in bold. Predicted values are illustrated in Fig. 6.  

Response variable Model AIC  
Intercept 

Impervious surface cover 
(linear term) 

Impervious surface cover 
(quadratic term) 

Impervious surface cover 
(cubic term)  Numbers of year between image 

Coeff ± s.e. Coeff ± s.e. 95% CI 
(lower, upper) 

Coeff ± s.e. 95% CI 
(lower, upper) 

Coeff ± s.e. 95% CI 
(lower, upper) 

Coeff ± s.e. 95% CI 
(lower, upper) 

Green area loss to 
impervious surface 

Linear  –12023.50 0.026 ± 0.024 –0.075 ± 0.009 –0.092, –0.058     0.006 ± 0.001 0.003, 0.008 
Quadratic  –12295.73 0.009 ± 0.024 0.211 ± 0.019 0.175, 0.248 –0.422 ± 0.025 –0.471, –0.374   0.005 ± 0.001 0.003, 0.008 
Cubic  –12294.12 0.007 ± 0.024 0.259 ± 0.032 0.197, 0.322 –0.605 ± 0.102 –0.805, –0.406 0.162 ± 0.087 –0.009, 0.332 0.005 ± 0.001 0.003, 0.008 

Area of tree cover loss to 
impervious surface 

Linear  –18813.19 0.020 ± 0.015 –0.009 ± 0.004 –0.018, –4.8e–4     0.001 ± 0.001 −0.001, 0.001 
Quadratic  –19037.82 0.012 ± 0.017 0.129 ± 0.010 0.110, 0.148 –0.205 ± 0.013 –0.231, –0.180   0.001 ± 0.001 −0.001, 0.002 
Cubic  –19043.53 0.014 ± 0.018 0.080 ± 0.017 0.047, 0.114 –0.021 ± 0.055 –0.129, 0.086 –0.163 ± 0.047 –0.255, –0.071 0.001 ± 0.001 −0.001, 0.002 

Grassland area loss to 
impervious surface 

Linear  –15185.08 0.013 ± 0.016 –0.045 ± 0.006 –0.058, –0.032     0.003 ± 0.001 0.001, 0.005 
Quadratic  –15340.59 0.004 ± 0.015 0.120 ± 0.014 0.092, 0.148 –0.243 ± 0.019 –0.280, –0.207   0.003 ± 0.001 0.001, 0.005 
Cubic  –15351.38 0.001 ± 0.015 0.200 ± 0.024 0.153, 0.247 –0.546 ± 0.077 –0.697, –0.395 0.267 ± 0.066 0.138, 0.397 0.003 ± 0.001 0.001, 0.005 

Rice field area loss to 
impervious surface 

Linear  –23055.13 –0.007 ± 0.007 –0.016 ± 0.003 –0.022, –0.010     0.002 ± 4.8e–4 0.001, 0.003 
Quadratic  –23050.00 –0.006 ± 0.007 –0.029 ± 0.007 –0.043, –0.016 0.019 ± 0.009 0.001, 0.038   0.002 ± 4.8e–4 0.001, 0.003 
Cubic  –23044.24 –0.007 ± 0.007 –0.018 ± 0.012 –0.042, 0.005 –0.022 ± 0.038 –0.097, 0.053 0.036 ± 0.033 –0.028, 0.101 0.002 ± 4.8e–4 0.001, 0.003  
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(~240.7 km2) was nearly double the loss from densification (~137.8 
km2) due to differences in the spatial extent of these processes. These 
losses were mainly driven by the conversion of grasslands, and again 
expansion resulted in almost twice as much grassland being lost than 
densification (expansion ~ 197.7 km2, densification ~ 110.1 km2). This 
is consistent with previous studies of urbanisation of South-East Asian 
megacities (Estoque & Murayama, 2015; Song et al., 2021; Xu et al., 
2019). Greater adverse effects of urban expansion on vegetation cover 
may be particularly detrimental for conservation as expansion is more 
likely to impact semi-natural grasslands that occur in such locations 
rather than the more intensely managed grasslands within urban loca-
tions that are often of limited biodiversity value (Norton et al., 2019; 
Round & Gardner, 2008). 

Densification is more likely to occur in urban grid cells with rela-
tively large amount of vegetation cover, as such locations have more 
space for infill development. Despite this vegetation cover in the second 
time period (i.e. ~2018) was lower in cells with densification compared 
to other urbanised areas that did not experience densification. This 
confirms that a compact city approach to urban development that aims 
to reduce land consumption could profoundly adversely influence the 
amount and accessibility of urban green-spaces, leading to negative 
environmental consequences and implications for the quality of urban 
life (Haaland and van den Bosch, 2015; Pauleit, Ennos, & Golding, 
2005). 

Urban expansion resulted in the loss of approximately half the 
original cover of rice fields in these cells (equating to a loss of ~ 55.7 
km2), which is much greater than the loss arising from densification 
(~7.0 km2)—primarily because rice fields are extremely rare in urban 
areas. Adverse impacts on food production are likely to be relatively 
small, however, given that losses from expansion equate to just 4.7% of 
the total area of rice fields (~1,148.0 km2) within the study area at the 
start of our study period. Consequently, indirect effects of urbanisation 
on the conversion of natural forest to replace loss of agricultural land 
(Song et al., 2015; van Vliet, 2019) is rather limited within our study 
region, partly because much urban growth occurs through densification 
rather than expansion. 

Densification resulted in a decline of ~ 20.8 km2 of tree cover, yet 
tree cover increased in all other locations including those that experi-
enced urban expansion (~12.6 km2 increase). Our results contrast with 
previous suggestions that urban densification generates no net loss of 
tree cover as loss is balanced out by newly created tree cover (Kaspar, 
Kendal, Sore, & Livesley, 2017). The increases in tree cover that occur 
are likely to arise from growth of existing trees’ canopies (Fig. S4), 
woodland succession over vacant lands (Fig. S5), creation of urban 
wooded habitat such as woodland blocks in parks, and tree planting in 
agricultural land and streets trees (partially a consequence of tree 
planting campaigns in the 1990s; Thaiutsa, Puangchit, Kjelgren, & 
Arunpraparut, 2008; Fig. S6). 

4.2. Temporal shifts in vegetation dynamics along the urbanisation 
gradient 

Generally, we found no strong evidence for temporal shifts in the 
form of vegetation cover-urbanisation intensity relationships between 
our focal time periods. This suggests that landcover patterns along the 
spatial urbanisation gradient in Bangkok are broadly constant, indi-
cating the general ability of space-for-time substitution approaches 
(sensu Pickett, 1989) to predict future landcover change arising from 
urbanisation at least over the c. 15 year time period captured by out 
study. A slight shift in the form of grassland cover-urbanisation intensity 
relationships during our study period, arising from a substantial 
reduction in grassland cover, especially at the low levels of urbanisation 
intensity, suggest that the value of space-for-time substitution ap-
proaches may, however, vary between vegetation types. The predictive 
capacity of space-for-time substitution approaches can also be reduced 
by changes in urban planning or policy. As an example, whilst our data 
suggest that rice fields have been less impacted by urbanisation in recent 
decades in the Bangkok region, this seems likely to change due to a 
decision to construct a new airport and associated urban infrastructure 
in Bang Len district (the rural areas at the northwest corner of our study 
region; Hongtong, 2019) which is currently dominated by rice fields 
(Fig. S7). Further research that assesses spatial configuration of the 

Fig. 7. Relationships between estimated loss of vegetation cover arising from conversion to impervious surface (a) total vegetation, (b) trees, (c) grasslands, and (d) 
rice fields, and gain of vegetation cover arising from conversion of impervious surface to vegetation surface (e) total vegetation, (f) trees, (g) grasslands, and (h) rice 
fields from ~ 2004 to ~ 2018 as a function of proportion impervious surface cover in ~ 2004. Fitted lines illustrate predicted values and shading their 95% 
confidence intervals, from the best fitting spatial models (‘gls’ function in nlme package) reported in Table 5 (panels a-d) and Table 6 (panels e-h); no best fitted line is 
illustrated in panel h due to the lack of a significant relationship. 
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mosaic of green and grey spaces is required to address fully how changes 
in urban landscapes influence vegetation cover and associated ecolog-
ical features, for example spatial patterns depicted in Fig. 1 indicate that 
urban sprawl along some road networks is fragmenting some large 
blocks of green-space that were previously well connected to rural areas. 

4.3. Implications for ecosystem function and tropical biodiversity 

We find that space-for-time substitution approaches are likely to be 
valid for projecting future impacts on vegetation dynamics of the pro-
jected future increases in urbanisation within the Bangkok region (Song 
et al., 2021). The trend of increasing impervious surface cover and 
associated declines in vegetation cover are thus highly likely to 
continue, enhancing the urban heat islands (Morabito et al., 2021), 
which increased from 12.7 ◦C in 2005 to 16.2 ◦C in 2016 (Khamchiangta 
& Dhakal, 2020). Increased impervious surface cover and reduced 
vegetation cover will also increase surface water runoff (Ramamurthy & 
Bou-Zeid, 2014), which combined with the flat lowland geography of 
the Bangkok region (Thanvisitthpon, Shrestha, & Pal, 2018) and pro-
jected precipitation increase (Cooper, 2019) will substantially increase 
flood risk. Recent flooding events in Bangkok, especially the 2011 
floods, had major economic and human well-being impacts (Poa-
pongsakorn & Meethom, 2013). 

The notable increase in tree cover, contrasting with the loss of 
shorter vegetation in grasslands and rice fields, could potentially miti-
gate some of the adverse impacts on regulation of air temperature and 
flood risk (Lin et al., 2021). This mitigation potential will be enhanced 
by the fact that tree cover gain has been greatest in locations that were 
highly urbanised at the start of our study period. Despite this, newly 
created urban tree cover may not always provide equivalent ecosystem 
services and functions to the original vegetation (Wang, Zhou, Wang, & 
Qian, 2019), and urban densification resulted in significant loss of tree 
cover. There is thus likely to be significant fine scale spatial variation in 
how the land-cover dynamics we document influence ecosystem service 
provision, which requires further investigation. 

Biodiversity will also be significantly impacted by the land-cover 
changes that we document, with urbanisation and increasing imper-
vious surface cover associated with reduced avian, squirrel and tree 
species richness including in the Bangkok region (Thaweepworadej & 
Evans, 2022a; Thaweepworadej & Evans, 2022b; Thaweepworadej & 
Evans, 2022c). These adverse impacts can partially be mitigated by 
increasing urban tree-cover, at least for avian species (Thaweepworadej 
& Evans, 2022a). There will thus also be local scale variation in biodi-
versity responses to urban land-cover change, with avian biodiversity in 
areas experiencing urban densification being particularly adversely 
impacted via their greater loss of tree cover. Grassland specialists are 
typically particularly negatively influenced by urbanisation intensity 
(Lakatos, Chamberlain, Garamszegide, & Batáry, 2022) and subse-
quently are frequently rare in urban areas (Jones & Bock, 2002), except 
those that can tolerate frequently mown short grassland. The loss of 
grassland cover may further the already documented decline of these 
species in Bangkok (Round & Gardner, 2008). Seasonal flooded rice 
fields, whilst contributing largely to regional food production, can also 
support biodiversity depending on the magnitude of pesticide use (e.g. 
plants—Kamoshita, Arai, & Nguyen, 2014), birds—Angkaew et al., 
2022), fish—Cochard, Maneepitak, and Kumar, 2014, and arthro-
pods—Cochard, Maneepitak, and Kumar, 2014). Although areas of rice 
field loss reported in this study was relatively small—~94.3 km2, con-
version of such habitats, could substantially reduce freshwater 
biodiversity. 

4.4. Impacts of development policies 

Thailand’s land code allows the Department of Lands (Thailand) to 
file a petition to cancel the owner’s land right if land is unused for over 
five consecutive years (for lands under a certificate of utilisation) or over Ta
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ten years for lands under a title deed (Thailand. Ministerial Regulation, 
1954). Such regulation is likely to encourage land-use patterns that halt 
vegetation succession and promote conversion of semi-natural vegeta-
tion to alternative land-uses. There is thus considerable value in 
assessing the potential to redefine land-use under the act to include the 
provision of ecosystem services from green-space as a legitimate land- 
use. Perhaps more positively in 2022 the Bangkok governor launched 
the One-million-trees campaign aiming to plant an additional million 
trees in the Bangkok Metropolitan region (Sittipunt, 2022), which 
comprises approximately 25% of our study region. Our data provide a 
useful baseline to assess the impact of this policy on changes in urban 
tree-cover, which could mitigate impacts of densification on tree-cover, 
and the extent to which other forms of green-space are lost to accom-
modate intensive tree planting. 

5. Conclusions 

Using classification of high-resolution aerial imagery, our study 
documents that intensive urbanisation in the Bangkok region during the 
first part of the 21st century has generated a profound loss of vegetation 
cover, although there was considerable variation across vegetation 
types. Despite this, the form of spatial patterns of vegetation cover along 
the gradient of urbanisation intensity appears to largely be invariant in 
time, indicating the ability of space-for-time substitution approaches to 
predict future vegetation dynamics. At the scale of individual grid cells, 
changes in total vegetation and grassland cover arising from urban 
densification and expansion are similar, but expansion has generated 
much greater losses then densification as it has occurred across a much 
larger area. Loss of rice fields is relatively small but has primarily arisen 
from expansion. Conversely, densification has generated substantial loss 
of tree cover contrasting with gains in tree cover throughout the rest of 
the region. The loss of such trees is likely to be particularly important for 
biodiversity, and provision of ecosystem services as their provision 
typically scales with vegetation biomass, and demand for such services is 
often greatest in the most urbanised locations. There is potential to 
reduce environmental impacts of the continuing demand for additional 
urban land in the Bangkok region by promoting densification above 
expansion. Such an approach will, however, require active promotion of 
tree retention and planting schemes to avoid detrimental impacts on 
people and biodiversity. 
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