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Emphasis Sensitivity in Speech Representations

Shaun Rafael Cassini, Thomas Hain, Anton Ragni

University of Sheffield, Sheffield, UK
{srcassini1, t.hain, a.ragni}@sheffield.ac.uk

AbstractÐThis work investigates whether modern speech mod-
els are sensitive to prosodic emphasisÐwhether they encode
emphasized and neutral words in systematically different ways.
Prior work typically relies on isolated acoustic correlates (e.g.,
pitch, duration) or label prediction, both of whichwhich miss the
relational structure of emphasis. This paper proposes a residual-
based framework, defining emphasis as the difference between
paired neutral and emphasized word representations. Analysis on
self-supervised speech models shows that these residuals correlate
strongly with duration changes and perform poorly at word
identity prediction, indicating a structured, relational encoding of
prosodic emphasis. In ASR fine-tuned models, residuals occupy
a subspace up to 50% more compact than in pre-trained models,
further suggesting that emphasis is encoded as a consistent, low-
dimensional transformation that becomes more structured with
task-specific learning.

Index TermsÐemphasis, prosody, speech representations, self-
supervised speech, speech understanding, representation analysis

I. INTRODUCTION

Speech conveys much more than words, as it carries in-

formation about the speaker, their mood, and communicative

intent. In particular, speakers use emphasis to highlight specific

words or phrases, conveyed through a combination of prosodic

cues such as pitch, duration, and loudness. Prior studies

show that prosody in speech enables a listener to recover

cues that signal the communicative function of an utterance

[1]. Emphasis serves a range of communicative functions,

including marking contrast, highlighting information structure,

and resolving syntactic ambiguity which words alone may not

express [2]±[4]. Automatic speech processing systems that are

sensitive to emphasis cues are known to perform better on

tasks ranging from intent prediction [5], speech translation [6],

to text-to-speech synthesis (TTS) [7]. Yet it remains unclear

to what extent emphasis is implicitly learned by such systems.

Emphasis is expressed in several prosodic cues (acoustic

correlates) and is suprasegmental, spanning multiple speech

segments in an utterance [8], [9]. Its realization is known to

vary by speaker, utterance, language, and dialect [10], [11].

Cue-specific models which extract acoustic correlates such as

the fundamental frequency F0 can perform well when empha-

sis aligns with that cue [12]. However, they may miss instances

where emphasis is conveyed through under-modeled cues [13].

For instance, post-focal compression refers to a reduction in

prosodic cues on segments following an emphasized word.

This work was supported by the UKRI AI Centre for Doctoral Training in
Speech and Language Technologies (SLT) and their Applications, funded by
UK Research and Innovation [grant number EP/S023062/1], with additional
support from Huawei Research & Development (UK). We thank Nicola
Mendini and Mattias Cross for their proofreading and helpful discussions.

This representation of emphasis requires modeling context that

extends beyond the emphasized word itself [14]. Approaches

based on local acoustic correlates would be blind to such cues.

Given the limitations of cue-specific approaches and the

distributed nature of emphasis, recent work focuses on super-

vised models with trainable parameters that map the speech

signal to emphasis labels. Some approaches make direct use

of the waveform [15], [16], while others jointly learn acoustic

correlates like F0 or spectral energy [17], [18]. Such super-

vised approaches require emphasis labels, yet the occurrence

of emphasis in natural speech is scarce and labeling data is

highly subjectiveÐshaped by the same perceptual ambiguities

they aim to model [19]. This motivates the question: To what

extent do modern speech models, trained without supervision

for emphasis, implicitly encode it?

Prior work has examined acoustic correlates of emphasis

or trained classifier probes to predict emphasis labels on

individual words [15], [20]. Both strategies ignore the fact that

emphasis is inherently relational: a word sounds prominent

only relative to how it would sound without emphasis (neutral)

and to the prosodic context around it [21]. This work therefore

probes for emphasis sensitivity in the residual space between

representations of paired neutral-and-emphasized words. An

analysis is conducted to assess whether the residual space

encodes emphasis as a consistent, learnable relationship rather

than a property of isolated words.

In this work, a residual space is derived from representations

extracted from multiple self-supervised speech learning mod-

els (S3L models) [22] and their fine-tuned variants, specifically

those fine-tuned for automatic speech recognition (ASR) and

emphasis classification. Both model types capture prosodic

cues in their representations [23], [24], making them strong

candidates for investigating whether emphasis sensitivity arises

implicitly across distinct objectives. This also enables a di-

rect comparison between S3L models and their fine-tuned

counterparts to assess how training objectives shape their em-

phasis sensitivity. Experiments are conducted on 3,732 word

pairs derived from a synthetic dataset designed for emphasis

control [15], comprising contrastive pairs of utterances with

emphasized and neutral words. Representations are extracted

from multiple state-of-the-art S3L models and their fine-

tuned variants. Through analysis of residual vectors between

representations derived from neutral±emphasized word pairs,

this work finds that emphasis is encoded as a low-dimensional,

consistent transformation that becomes more pronounced in

fine-tuned models. The contributions of this work are as

follows:
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• A novel framework for quantifying emphasis sensitivity

in speech models as a structured relationship between

emphasized and neutral word pairs.

• A residual-based probing analysis to isolate and measure

prosodic variation in representation space.

• Experiments showing that S3L models exhibit struc-

tured, layer-dependent emphasis sensitivity, which be-

comes stronger and more consistent after ASR fine-

tuning.

• Evidence that residuals capture the shift from neutral

to emphasized words, occupy a significantly lower-

dimensional subspace, and correlate well with duration

change.

• A geometric interpretation of how emphasis is encoded

across architectures, offering insights for emphasis-aware

model development.

II. RELATED WORK

In practice, sensitivity to emphasis has been shown to ben-

efit a variety of downstream tasks, including intent prediction

[5], emotion recognition [25], [26], ASR [27], naturalistic

transcription [28], [29], voice conversion [30], speech seg-

mentation [12], [31], speech translation [6], [32]±[34], human-

machine dialogue [35]±[37], TTS [7], [38], [39], and assisting

with language learning [40]±[42]. For instance, modeling

pitch-based emphasis cues reduced the word error rate of an

HMM-based ASR system on the Boston News Corpus by 11%

relative to prosody-independent systems [27].

Explicit approaches to emphasis detection rely on super-

vised learning or acoustic cue extraction. These include clas-

sifiers trained on prosodic correlates such as pitch, duration,

and energy [17], [18] or on direct waveform inputs [15], [16].

Some also incorporate explicit theoretically grounded feature

engineering, e.g., F0 contours or post-focal compression ef-

fects [9], [12].

1) Representation Space Analysis: Recent studies have

shown that S3L models, such as wav2vec 2.0 [43], HuBERT

[44], and WavLM [45] encode information about prosodic

structure, which includes prominence and intonation [23], [24],

[46]. However, such findings often rely on supervised classifier

probes trained to map intermediate representations to prosodic

labels [20], [47]. Such probes introduce learnable parameters

that risk overstating or misattributing what is encoded versus

what is merely decodable [48].

2) Analysis of Residual Spaces: Since this work probes

for emphasis sensitivity in residual representation space, it is

useful to consider how residual analysis has been applied in

related domains. In anomaly detection, PCA-based residual

analysis is used under the assumption that structured data lie

in a low-dimensional subspace, while residuals represent devi-

ations or noise [49]. PCA separates signal components that are

compressible from those that are distributed or unstructured.

In contrast, this work does not treat residuals as anomalies,

but instead asks whether the residuals themselves reflect a

consistent transformation by exhibiting low-rank structure.

A related framework is residual component analysis (RCA)

[50], which models structure in the residual covariance after

accounting for known variation. RCA has been used to recover

latent dynamics such as skeletal motion from residuals in

motion capture data. While this work does not adopt RCA’s

probabilistic formulation, it shares the underlying view that

residuals can encode meaningful, interpretable structure; the

perspective applied to prosodic emphasis in speech in this

proposed analysis.

III. EXPERIMENTAL SETUP & METHODS

A. Data

1) Synthetic Emphasis Dataset: The dataset used in this

work is derived from the EmphAssess evaluation dataset, a

benchmark for evaluating emphasis preservation in speech-

to-speech models [15]. EmphAssess is comprised of variants

of 299 sentences, with each variant changing which word is

emphasized, as shown by the example in Figure 1. This yields

913 unique sentence variations. The sentences are synthesized

with four American TTS voices (2 male, 2 female), yielding

3,652 short utterances (2.42 hours).

1) ªThe dishonest politician who admits it?º

2) ªThe dishonest politician who admits it?º
3) ªThe dishonest politician who admits it?º

Fig. 1: Example sentence from the EmphAssess dataset, with

neutral words underlined and emphasized words in bold.

There are 546 unique neutral±emphasized word pairs. Of

the 13,108 total words instances across all speakers and

transcripts, 3,796 (0.52 hours) are emphasized and 9,312 (0.80

hours) are neutral. Analysis is conducted on representations of

these words, as explained in the following section.

2) Deriving Word-Level Representations: As this work

examines word±word comparisons, the following describes

the method used to obtain word-level representations. First,

model outputs are aligned to time-stamped word boundaries,

following the procedure described in [51]. Word-level time

boundaries are obtained using the Montreal Forced Aligner

(MFA) [52]. All frames associated with a specific word are

averaged to obtain a representation at each encoder layer,

denoted by z
(l)
i,j ∈ R

d, where l indexes the encoder layer, i the

utterance, j the word, and d the dimensionality of the layer’s

output (which is the same across all layers). The duration

values for each word, denoted di,j = tend
i,j − tstart

i,j , are also

retained for further analysis.

3) Neutral±Emphasized Contrastive Pairing: To assess the

emphasis sensitivity of representations while controlling for

contextual and speaker-dependent factors, a contrastive pairing

set is constructed in which each pair comprises one empha-

sized and one neutral word representation. Pairs are sampled

from the dataset such that speaker, word, and transcript identity

are matched, differing only in emphasis label. This yields

3,732 aligned neutral±emphasized pairings.



B. Representation Analysis

1) Sample-Wise Cosine Similarity: To evaluate how em-

phasis affects word representations, the distribution of cosine

similarities between samples is analyzed. For each pair of

aligned emphasized and neutral words, the cosine similar-

ity between their representations is computed. The neutral±

emphasized pairwise similarities are compared with neutral±

neutral similarity baselines. If the emphasized and neutral

variants of the same word are nearly identical (cos(θ) ≈ 1),

this suggests that emphasis has little effect. If they are con-

sistently less similar, this may indicate a systematic prosodic

shift. Analyzing the distribution of these similarities across the

dataset provides an interpretable measure of the sensitivity

of the model’s representations to emphasis. The means of

these distributions are reported as summary metrics, denoted

by θAA (neutral±neutral), θBB (emphasized±emphasized), and

θAB (neutral±emphasized).

In addition, the distribution of cosine similarities between

all unique residual pairs, R = B−A, is analyzed. Its mean,

denoted θRR, is equivalent to the metric defined in [53]:

θRR =
1

2N(N − 1)

∑

i<j

cos(ri, rj) (1)

where ri = bi−ai is the residual vector for the i-th pair. This

metric captures the second-order structure of the residuals,

quantifying whether emphasis transformations encoded by

the model are directionally consistent across different word

instances. However, because θRR involves comparisons over

all residuals, it averages over potentially diverse lexical and

speaker identities and may include variation uncorrelated with

emphasis.

To reduce the impact of such variance, a first-order di-

rectional consistency metric, denoted θR̂, is used, defined as

the cosine similarity between each residual ri and the mean

residual vector r̄:

θ
(i)

R̂
= cos(ri, r̄), r̄ =

1

N

∑

i

ri (2)

This reflects how well each individual transformation aligns

with the average emphasis direction.

2) Dimension-Wise Variance via PCA: To complement the

sample-wise analysis, the variance across representation di-

mensions is examined. For this, Principal Component Analysis

(PCA) [54] is applied to the following representation spaces:

• Neutral word representations A ∈ R
N×d

• emphasized word representations B ∈ R
N×d

• Concatenated representations C = [A | B] ∈ R
N×2d

• Residual vectors R = B−A ∈ R
N×d

With λi denoting the eigenvalue corresponding to the i-th

principal component (PC), the explained variance ratio is

defined as:

vi =
λi

∑d

j λj

(3)

The effective dimensionality, D95%, is defined as the number

of PCs needed to explain at least 95% of the total variance:

D95% = min

{

k :

k
∑

i=1

vi ≥ 0.95

}

(4)

A higher D95% in C than in either A or B suggests that

emphasis introduces additional structured variation in rep-

resentation space, potentially aligned with a prosodic axis.

Additionally, a low D95% in R implies that the transformation

from neutral to emphasized representations lies in a low-

dimensional subspace, indicating that emphasis is encoded

consistently across samples (generalized) rather than as a

unique variant of each sample (memorized).

3) Midpoint Centering: PCA typically involves mean-

centering the data, which removes any global offset in the

covariance estimate. However, when applied to residual vec-

tors ri = bi − ai, mean-centering alters the interpretation of

the resulting PCs. Let r̄ = 1
N

∑

i ri denote the mean residual

vector. The centered residual is then:

r̃i = ri − r̄ = (bi − b̄)− (ai − ā) (5)

This effectively centers each group (A and B) independently,

eliminating the global offset between the emphasized and

neutral representations. As a result, centering would remove

the very structure under investigation. Hence, the sets A and

B are midpoint-centered prior to analysis. For each sample,

âi = ai −m, b̂i = bi −m, (6)

where m = 1
2 (ā+ b̄).

4) Reconstructing Duration Change from Residual Geom-

etry: To test whether the residuals ri = bi − ai encode

interpretable prosodic transformations, a regression task is

used to reconstruct relative word-level duration change, as it

is a known acoustic correlate and proxy of emphasis [11].

The relative duration change between emphasized and neutral

instances of the same word is defined as:

δi =
d

emph
i − dneut

i

dneut
i

(7)

where dneut
i and d

emph
i are word durations obtained from forced

alignment (see Section III-A2). This ratio reflects how much

longer the emphasized word is relative to the neutral baseline.

A ridge regression model is then fit to predict δi from the

top-k PCs of the residuals ri, and R2 scores are reported.

The same regression task is repeated on the remaining

representation spaces (A,B,C). Fitting on concatenated rep-

resentations is expected to perform at least as well as A

and B, since the regressor has access to full information

about both domains. Higher predictive performance from the

residual space would support the hypothesis that emphasis

is encoded as a structured, low-dimensional transformation,

potentially making non-linear perceptual effects in speech

linearly accessible.



5) Word Identity Prediction: To assess whether lexical

information is accessible in representations, a simple word

identity prediction task is performed. Similar to above, a

logistic regression probing model is trained to predict word

identity from representations.

Applied to residual representations, this provides an ap-

proximate measure of disentanglement: if residuals capture

only emphasis transformations, they should contain little to

no information about the underlying word. Recent work has

shown that lexical or paralinguistic features can be explicitly

removed from speech representations via linear projection,

yielding disentangled representations [55]. In contrast, the

current experiment evaluates inherent disentanglement without

additional fine-tuning of the residuals.

The logistic regression model is trained using standard

cross-entropy loss and a fixed learning rate of 1 × 10−4.

The dataset contains 546 unique word classes. Training is

performed on 80% of the pairs (2985), with accuracy evaluated

on a 20% held-out test set (747). This simple probe setup

ensures that results reflect the information content of the

representations rather than the capacity of the classifier.

The effective dimensionality required to achieve 95% of

the task-specific performance is also computed. This is done

by incrementally including the top-k PCs and identifying the

smallest k for which cumulative performance reaches 95%

of the maximum, providing insight into how concentrated the

investigated information is within each representation space.

This is then summarized using the area under the curve (AUC)

over increasing k.

6) Layer- and Model-Wise Comparison: To investigate how

emphasis sensitivity develops across layer-depth and training

objectives, the duration change reconstruction and word iden-

tity prediction analyses are repeated across the following:

1) All encoder layers of each model,

2) A selection of pre-trained S3L models (e.g., wav2vec

2.0, HuBERT),

3) Fine-tuned variants, including: (a) ASR models, and

(b) a model fine-tuned for emphasis classification.

This setup enables comparison of how task-relevant infor-

mation is distributed across layers and whether fine-tuning

shifts the encoding of emphasis from an implicit, low-

dimensional transformation toward a more categorical or dis-

entangled structure.

IV. EXPERIMENTS

The analysis is demonstrated on layer 7 of wav2vec 2.0 as

a worked example. It is then extended to all layers. Finally,

different models and fine-tuning objectives are compared.

A. Cosine Similarity Distributions

The first experiment quantifies the extent to which em-

phasis alters word-level representations. Figure 2 suggests

that emphasis induces a subtle but structured representational

shift, with residual representations exhibiting both directional

alignment and spread.

TABLE I: Summary of encoding properties for each group

at a single layer. Effective dimensionality D95% is computed

from the explained variance. Top-k (k = 20) correlation is

the average absolute correlation with duration change. R2
AUC

and R2
95% is computed from regression onto duration change.

WIDAUC and WID95% show the performance and effective

dimension of the word reconstruction task

Space D95% Corr R2
AUC

R2
95%

WIDAUC WID95%

A 308 0.31 0.60 382 0.66 398
B 273 0.34 0.56 375 0.65 417
C 473 0.33 0.66 370 0.66 406
R 402 0.36 0.71 341 0.26 476

θAA θAB θR̂ θRR
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Fig. 2: Cosine similarity distributions across neutral and em-

phasized word representations on wav2vec 2.0, layer 7.

θAA: neutral±neutral word pairs; θAB : neutral±emphasized

word pairs; θR̂: residuals aligned to the mean residual vector;

θRR: pairwise cosine similarity between residuals.
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Fig. 3: Cumulative variance explained over PCs.

B. Dimensionality Analysis

Figure 3 shows the cumulative variance explained by PCs

in each representation space. The residual space R appears

more structured than the others in the early PCs, suggesting

consistent variance between B and A along a low-dimensional

subspace.

1) Correlations Between PCs and Duration: Figure 4 sug-

gests a stronger correlation with duration change, providing

evidence that these PCs best explain the emphasis transfor-

mation. Figure 5 illustrates the cumulative performance over
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Fig. 4: Top-20 ranked PCs correlated with neutral duration

(Dur A), emphasized duration (Dur B), and percentage dura-

tion change (Dur δ).
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Fig. 5: The residual vectors contain enough information to

reconstruct duration change (δ) but fail to predict word iden-

tity. Conversely, duration change is less well recovered by the

emphasized, neutral, or concatenated representations.

PCs for both duration change reconstruction and word identity

prediction. These results, summarized in Table I by taking the

AUC over PCs, show that the residual vectors retain enough

information to recover duration change but not word identity,

which remains accessible to the original representation spaces.

C. Layer-Wise Comparison

Figure 6 shows the cumulative R2 and accuracy scores for

duration change reconstruction (top) and word identity predic-

tion (bottom) across layers and PCs. The residual representa-

tions R achieve the highest reconstruction of duration change

using fewer PCs, indicating that emphasis manifests as a struc-

tured, low-dimensional shift. In contrast, the residual yields

near-zero performance on word identity prediction, indicating

that lexical content is effectively removed. Meanwhile, the

concatenated representations C matches R’s reconstruction
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(b) Word identity prediction accuracy across layers and PCs.

Fig. 6: Layer-wise reconstruction and identity analysis. Top:

regression-based reconstruction of emphasis variation. Bottom:

word identity prediction performance.



TABLE II: Performance summary across models, showing area under the curve (AUC), effective dimensionality (Dim), and

the corresponding layer of best performance for duration change (δ) reconstruction and word identity prediction

Model Residuals (R) Concatenated (C)

Duration δ Word ID Duration δ Word ID
AUC | Dim | Layer AUC | Dim | Layer AUC | Dim | Layer AUC | Dim | Layer

wav2vec 2.0 [43] 0.75 | 298 | 16 0.36 | 454 | 13 0.69 | 325 | 16 0.86 | 178 | 13
wav2vec 2.0 (ASR) 0.80 | 248 | 20 0.44 | 465 | 14 0.76 | 301 | 20 0.91 | 92 | 14

XLS-R [56] 0.76 | 309 | 32 0.26 | 476 | 32 0.70 | 341 | 35 0.84 | 206 | 28
XLS-R (ASR) 0.82 | 277 | 36 0.74 | 244 | 30 0.78 | 248 | 47 0.95 | 48 | 31

XLS-R (EC) [15] 0.76 | 293 | 23 0.74 | 207 | 23 0.69 | 358 | 23 0.93 | 63 | 21

HuBERT [44] 0.72 | 304 | 22 0.69 | 271 | 23 0.67 | 351 | 14 0.91 | 91 | 23
HuBERT (ASR) 0.81 | 263 | 23 0.69 | 295 | 22 0.73 | 337 | 22 0.94 | 59 | 22

data2Vec [57] 0.82 | 253 | 21 0.40 | 473 | 21 0.73 | 357 | 21 0.90 | 119 | 20
data2Vec (ASR) 0.83 | 240 | 20 0.39 | 457 | 21 0.75 | 296 | 20 0.90 | 117 | 21

WavLM-Base [45] 0.76 | 294 | 10 0.36 | 452 | 11 0.70 | 341 | 10 0.84 | 194 | 8
WavLM-Base (ASR) 0.77 | 293 | 10 0.34 | 499 | 7 0.72 | 330 | 11 0.87 | 132 | 8

performance, suggesting that the regressor can infer duration

change from the full representations; yet only the residuals

encode it directly and compactly.

Table II summarizes performance across models, comparing

residual representations and concatenated representations for

both duration change reconstruction and word identity predic-

tion. Each entry shows the layer of best observed performance

(AUC) and the number of PCs required to reach 95% of that

performance (Dim). Across all models, residual representa-

tions consistently yield higher duration change reconstruction

performance with lower effective dimensionality, indicating

that emphasis is encoded as a structured, low-dimensional

transformation. This effect is especially pronounced in fine-

tuned ASR models, where residuals outperform raw rep-

resentations while requiring fewer components. Conversely,

word identity prediction accuracy is substantially lower for

residuals than for concatenated representations, suggesting that

lexical content is largely absent, or at least obfuscated, in

the residual space. This supports the hypothesis that residual

representations primarily isolate prosodic variation rather than

word-specific features.

V. DISCUSSION

The results provide strong evidence that emphasis is en-

coded as a structured, low-dimensional transformation within

the internal representation spaces of the investigated speech

models. Residual vectors between aligned emphasized and

neutral word representations show strong directional consis-

tency and occupy significantly fewer dimensions than the full

embedding space. This supports the hypothesis that emphasis

is not memorized in a word-specific manner but instead

emerges as a reusable prosodic shift in representation space.

Fine-tuning for ASR amplifies this effect: residuals become

more predictive of duration change and less entangled with

word identity, suggesting that ASR objectives may reinforce

the accessibility of prosodic information. Word identity pre-

diction from residuals remains low across models, further

indicating that emphasis-related transformations are largely

orthogonal to lexical encoding.

Interestingly, in the model fine-tuned for emphasis classi-

fication (XLS-R EC), duration change reconstruction is no

longer dominated by the residual space. Emphasized words

outperform neutral words in word identity prediction, sug-

gesting the model may allocate more capacity on encoding

emphasized content, potentially due to their relative rarity.

These findings echo results in style transfer and NLP

analogy tasks, where residuals encode structured, interpretable

variation. Unlike prior work that fine-tunes representations

for disentanglement [55], this study shows that emphasis

sensitivity can emerge inherently, particularly in middle-to-

deep layers after fine-tuning.

A. Limitations

This work focuses on carefully controlled, aligned word

pairsÐmatched by speaker, word, and sentenceÐto isolate

the effect of emphasis. As a result, it does not explore how

emphasis sensitivity behaves under relaxed conditions, such

as varying speaker identity or contextual usage. In addition,

all experiments are conducted on a benchmark synthetic

dataset, which offers control over emphasis placement but may

not fully capture the variability of natural speech. Finally,

the analysis is limited to word-level emphasis, even though

prosodic emphasis can span larger discourse units [58]. In-

vestigating these broader and more variable conditions is left

for future work. Nonetheless, the present findings demonstrate

clear structure and interpretability under idealized settings,

providing a strong foundation for further study.

VI. CONCLUSION

This work investigates whether modern speech models

encode prosodic emphasis as a structured transformation in

representation space. Using a novel residual analysis frame-

work that combines parameter-free geometric metrics with

lightweight probing tasks, this study shows that S3L models

and ASR-tuned models exhibit clear emphasis sensitivity.

Residual vectors are directionally aligned, low-dimensional,

and predictive of changes in duration.

Fine-tuning for ASR enhances this effect, making emphasis

encoding more consistent and less entangled with lexical iden-

tity. These findings suggest that emphasis is not only accessible

but also implicitly structured in speech representations, offer-

ing implications for prosody-aware speech modeling, analysis,

and control.
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