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Highlights

Minerva 2 for speech and language tasks

Rhiannon Mogridge, Anton Ragni

e Minerva 2’s similarity to the attention mechanism found in the trans-
former architecture is leveraged to create a sequence-based version
of Minerva which shows promising performance on the TIMIT phone
recognition task.

e Minerva 2’s previously proposed echo-of-echoes process, an iterative in-
ference technique, is shown to be in general ineffective, but by relaxing
a single assumption, it becomes class-equivalent with deep equilibrium
models.

e The effect of memory size on Minerva 2’s performance is tested using
three different experimental speech and language tasks. In general,
performance improves with increasing exemplar set size, although with
diminishing returns and higher computational overhead.
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Abstract

Most artificial neural networks do not directly incorporate a memory of pre-
vious experiences, instead using training data to parameterise a model, and
then discarding the training data prior to inference. While some recent mod-
els have included a memory, this has typically been added to an already highly
parameterised model. An alternative option is to use a purely memory-based
model, and then add parameters. This has been shown to work for Minerva
2, a simple, non-parametric, memory-based model which has been widely
used in the field of human psychology. We revisit the use of Minerva 2
for speech and language tasks, drawing comparisons between Minerva 2 and
other architectures, and showing that an iterative process that Minerva 2
uses for inference is a close relative of deep equilibrium models. We assess
parameterised models based on Minerva 2, including a sequence model in-
spired by Minerva 2’s similarity to the transformer architecture, which shows
promising results.

Keywords: exemplars, Minerva 2, phone recognition, emotion
classification, speech intelligibility

1. Introduction

Computational models based on theories of human cognition are widely
used in machine learning, where neural networks currently provide state-
of-the-art performance in a wide variety of tasks. Humans still outperform
machines at many speech and language tasks, so there is clearly more that can
be learned from human cognition. One aspect of cognition that has not been
widely explored in machine learning is that of memory, and in particular,
memories of specific experiences. Modern deep learning models frequently
use previous examples for training, but these examples are rarely retained
for inference. Such examples are referred to as exemplars, and models that
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make use of them are exemplar models. Exemplar models can be contrasted
with prototype models, which use training data to parameterise a model. The
training data is then discarded, and only the parameterised model is used
for inference.

There are benefits to using exemplar models. They are usually inter-
pretable, since the contribution of specific exemplars can be easily traced.
They can also be used when data is scarce; theoretically, only a single exem-
plar for each class is required in order to perform classification, for example.
Exemplar approaches are not typically scalable, however, so while they may
be effective for small data sets, they are rarely used for large-scale data.
This inability to scale leads to poor performance compared with modern,
data-driven approaches.

The terms prototype and exemplar come from the field of human psy-
chology. Experiments suggest that humans may not exclusively use either
prototype or exemplar approaches. [I] suggest that human categorisation
is largely rule-based, but with specific exceptions (exemplars) also being re-
ferred to. [2] propose a more balanced approach, with transitions between
prototype and exemplar-based approaches. [3] concluded that humans use
an exemplar-based approach when the objects to be classified are clearly
distinct, but a prototype-based approach when they are easily confused, for
example, classifying lines as “long” or “short” is more likely to be prototype-
based, whereas classifying them as “red” or “yellow” is more likely to be
exemplar-based. [4] found that the choice of exemplar or prototype-based ap-
proach might vary depending on the person. More recently, researchers have
used techniques such as functional Magnetic Resonance Imaging (fMRI) to
determine which approach is used. [5] found evidence for a largely exemplar-
based approach; [6] found results consistent with a prototype approach. The
literature is therefore mixed with regard to when exemplar and prototype ap-
proaches are used, but there is evidence that humans use both prototype and
exemplar-based approaches at least some of the time. This is not reflected
in automated speech and language tasks, in which data-driven, parametric,
prototype-based deep learning approaches are currently overwhelmingly more
popular.

While Artificial Neural Networks (ANNs) are usually entirely prototype-
based, there are some exceptions. The use of memory, particularly for lan-
guage modelling, has been explored with some success [7, 8, [0]. In such
cases, the memory is typically added to an existing, highly-parameterised
architecture. In previous work, we explored an alternative: create a hybrid



model by taking an existing exemplar model, and parameterising it [10]. The
memory model in question is Minerva 2 [11, [12], which originated in the field
of human psychology, and has been used to test theories of human cogni-
tion [13], 14}, 15], as well as being used previously for vowel classification [16]
and limited vocabulary automatic speech recognition [17, [I§]. More recently,
new parameterised versions of Minerva 2, making use of modern machine
learning techniques, were proposed and tested on a range of speech and lan-
guage tasks, demonstrating that good feature representation is crucial to the
performance of this type of model [10].

While exemplar and prototype models use different approaches, parallels
can be drawn between Minerva 2 and existing architectures used in machine
learning. Firstly, the core process within Minerva 2 bears a strong resem-
blance to the attention mechanism found in modern transformers [19} 10} 20],
despite predating the term ‘attention’ by some years. Secondly, it has been
demonstrated that, when using a fixed memory, Minerva 2 is a special case
of Feed-Forward Neural Network (FFNN). Minerva 2’s use of ‘hidden nodes’
was first noted in 1990 [2I], and an argument for a biologically plausible
neural implementation of Minerva 2 is given in [I5]. An ANN interpretation
of Minerva 2 from a machine learning perspective is given in [10].

In this paper we explore the use of Minerva 2 for speech and language
tasks, both theoretically and empirically, and provide recommendations for
using it. Firstly, an iterative process, proposed to allow Minerva 2 to perform
inference on undefined classes [12], and referred to here as ‘echo-of-echoes’,
has been found to be ineffective for some practical applications [22], 16]. We
examine it mathematically and with examples in §3.1] Secondly, we consider
exemplar set size and activation power. Large datasets offer the opportunity
to use large exemplar sets, but this comes with a corresponding computa-
tional overhead. Minerva’s performance with randomly sampled exemplar
sets of increasing size has been previously explored on a single frame-based
phone recognition task [I0]. Here, the work is expanded to include two ad-
ditional tasks, including a regression task, in §5.1} Thirdly, we leverage the
similarities between Minerva 2 and transformers to propose a new sequence-
based Minerva model in §3.4] which is compared with previously proposed
Minerva-based models, other exemplar-based models, and a FFNN baseline

in §5.2



2. Minerva 2

Minerva 2 is a global memory model proposed by [I1], created to test the-
ories of human cognition. It has been widely used for comparison with human
experiments [13], 23], 24], 25| 26, 27]. Minerva 2 is an exemplar-based model
which uses previous experiences, or exemplars, to label new experiences. The
mechanism by which the new label is produced, shown in Figure|l] is a form
of attention, although Minerva 2 predates the term “attention” by several
decades.

2.1. Generating an echo
Let g be an input query, representing a new experience to be labelled,
shown in orange to the bottom left of Figure[l] Each exemplar is represented

by a feature vector and a label vector. Let K = [kl . kN] be a matrix
of column vectors, each of which represents an exemplar feature vector; in
Figure , this is shown in green, to the left. Let V = ['01 ’UN} be

matrix of column vectors representing the exemplar labels; in Figure [T, this
is shown in green to the mid-right. The vector g and the matrices K and V'
are similar to the query, keys and values used in attention.

exemplar features activations

K

k a ||V
cosllne I_l . C output
similarity (echo)
(@

activation exemplar

1nput power  classes
features 1%

Figure 1: Minerva 2.

The elements of the query and exemplar vectors are restricted to +1.
Minerva 2 also permits values of 0, where information is either irrelevant or
not available, but for this work we will assume that all the information is
available. In its original form, the exemplar feature and label elements are
in a single vector; for convenience they have been split into separate vectors
here. This is a notation change only, and does not affect the underlying
model. To label a new query, g, it is compared against each of the stored

exemplar feature vectors, using dot product similarity,
1

=_—_K' 1
s=K q (1)
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where F' is the dimension of the query and exemplar feature vectors, and
provides scaling so that each element of s falls in the range [—1,1]. The
activation, a, of the exemplars is a positively-accelerated function of the
similarities, with [11] suggesting raising each element in the vector to an odd
power, a; = sf . This differs from conventional attention, in which a soft-
max function is used. The activation function helps prevent exemplars that
are very similar to the probe from being drowned out by large numbers of
exemplars with only limited similarity. In principle, any positively acceler-
ated function that preserves the sign could be used. As with attention, the
new label, ¢, referred to as the echo, is generated as a weighted sum of the

exemplar labels, with the activations as weights,
c=Va. (2)

Finally, the echo is normalised by dividing by its largest absolute element
value, which is equivalent to the Loo norm,

(3)

Minerva 2 has mechanisms by which exemplars can be learned and forgotten,
but for this work we will be using a fixed exemplar set which is neither
added to nor degraded. Under these circumstances, it has been shown that
Minerva 2 is a form of FFNN with pre-determined parameters [10], and
as such, its performance is not expected to exceed that of an equivalently
sized FFNN trained on sufficient data. Instead, Minerva 2’s strengths lie in
the information contained in the exemplars, allowing it to function without
training. It can also serve as a template on which to base more flexible

models, discussed in and §3.4
2.2. Echo-of-echoes

Classes in machine learning are typically assumed to be discrete and are
represented by one-hot vectors. This is not assumed for Minerva 2; instead,
class representation can be any vector of length J with elements £1. This has
the benefit of allowing classes to be correlated with each other, but introduces
the problem of ambiguous recall. Ideally, the normalised echo (Equation
will closely resemble a known class, but this is not guaranteed. A class could
be identified using a similarity or distance-based measure, comparing the
normalised echo with some ‘true’ class representation, but [28] also offers
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Figure 2: Minerva 2’s echo-of-echoes process.

the option of iterating the process of echo generation to produce an ‘echo-of-
echoes’. This process is shown in Figure [2|

Let (c)E,g) be the initial echo, as described in Equation , and let the
notation X°? denote raising each element in the vector or matrix X to the
power 3. The ith echo-of-echoes is obtained from the previous echo,

) 1 .
s = SV Tl D), (@
) =va® where a® = s (5)
(@)
Wy — ¢ 6

There is a history of using iterative ‘deblurring’ techniques in psychologically-
motivated memory models to reduce or eliminate within-class variability in
class labels. The ‘brain-state-in-a box’ model [29] incorporates an iterative
feedback system, a version of which was also incorporated into the Theory
of Distributed Associative Memory (TODAM) [30] memory model [31]. The
model’s results were found to be inconsistent with previous data, however
[32], and the same can be said for Minerva 2’s echo-of-echoes process. While
the originator of Minerva 2 found that the results of iterating this process for
any initial echo rapidly converged to one of the exemplar classes [28], others
have had problems replicating the results. The echo-of-echoes process gave
no benefit on a phone classification task [16], and was found to cause active
deterioration in the output in an artificial grammar learning task [22].

The idea of an iterative approach to inference remains compelling, espe-
cially given the recent popularity of diffusion models in machine learning,
which iteratively refine on initial predictions [33]. There is therefore value in



exploring Minerva 2’s echo-of-echoes process in more detail, which we do in

931

2.8. Similarity with other approaches

As well as its similarity with the attention mechanism found in trans-
formers, Minerva 2 is related to exemplar-based Nearest Neighbour (NN)
approaches. In particular, in the limit as 5 — oo, Minerva 2 becomes equiv-
alent to 1-nearest neighbour. The activation power [ serves a broadly similar
purpose to the k in k-nearest neighbour: a high value of k, or a low value of 3,
means that a large number of exemplars have an influence on the output. A
low value of k, or a high value of 3, means that relatively few exemplars will
have a meaningful impact on the output. NN approaches have been widely
used for speech and language tasks, including phone classification [34], 35] [36],
voice recognition [37], speech emotion recognition [38] and voice conversion
[39].

Sparse Representation (SR) is another exemplar method that has been
used for phone recognition [40]. A key assumption of Minerva 2 is that any
input’s label can be represented as a linear combination of the exemplar
labels (see Equation [2). SR methods make a similar assumption that the
input features can be represented as a linear combination of the exemplar
features. In contrast to Minerva 2, however, SR techniques enforce sparsity
in the linear combination; that is, many of the exemplars’ weights are forced
to zero. This would be similar to forcing many of the weight in the vector s in
Equation [1| to be zero. This enforced sparsity reduces overfitting. Although
they are not equivalent, the degree of sparsity has a similar purpose to the
activation power (3, ensuring that irrelevant exemplars are excluded.

Unlike many exemplar approaches, such as k-NN, Minerva 2 is inherently
differentiable. This opens up the possibility of incorporating learned param-
eters, and training using backpropagation. This has been shown to substan-
tially improve the performance of Minerva on relatively small exemplar sets,
while reducing the computation required for inference [41] [10, 42], and is
explored further here. This is a hybrid exemplar/prototype approach, and
has some similarity to previous hyrbid approaches. In particular, memory
networks used for text-based question answering tasks [43] [44] incorporate a
memory of exemplars as well as ANNs to transform the input, update the
memory, and process and output the result. While the memory can be up-
dated during both training and inference, the parameters of the ANNs are
fixed once training is complete. Differentiable Neural Computers (DNCs)
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[45] similarly have an updatable memory with a ‘controller’” ANN, although
in this case the memory is not specifically composed of previous examples.

3. Theoretical framework

3.1. Echo-of-echoes

To solve the problem of ambiguous recall using echo-of-echoes, the ¢®
must converge to a recognisable class representation with little or no am-
biguity. The ith echo-of-echoes, ¢, can be written in terms of ¢~V by
combining Equations [ to [6]

i 1 i— oB
cV = ﬁV (V(c! 1))00) : (7)

In order to be useful, the sequence must converge,

lim ¢ = ¢*. (8)

1— 00

If the sequence converges, then ¢* must satisfy,

* 1 * o
c = ﬁV (V")) 9)
=aV (VTC*)O’B, where a = ;ﬁ (10)
J7 ([1e*l0)

We first consider the case where there are W unique, linearly independent
class representations, each of which is represented in the exemplar set once,
and denoting this restricted set of exemplars U = [uy, ..., uw]. According
to the echo-of-echoes process, each of these class representations must be a
fixed point,

W

{uw = a,U (UTuw)O’B} » (11)
These can be written in matrix form as,
o ... 0
U=UUTU)"A where A= |1 . :|. (12
0 aw



Since U has been defined to have full rank, it must have an inverse, so,

U'U=U"'UUU)’A (13)
Iy =(U'U)”A (14)
A = (UTU)”. (15)

where Iy is the W-dimensional identity matrix. Since A is diagonal, its
inverse is diagonal, so the matrix (UTU) ° must also be a diagonal matrix.
Since B acts element-wise, so too is U TU. This can only be the case if
the column vectors wq, ..., uy are orthogonal. Thus, class representations
that are linearly independent must also be orthogonal. The simplest way
to represent classes orthogonally is to use one-hot vectors. In this case,
the computationally intensive echo-of-echos process is unnecessary, since the
correct class can be identified by taking the argmax of the output. This
option is discussed in more detail in

The results above were derived by assuming linear independence between
the exemplars, but what if this is not the case? Equation [12]is then replaced
with,

V=V(VV)PAy. (16)

In this case, V is a W x N matrix, where N is the number of exemplars.
Since the exemplars have some linear dependence, it has rank » < N, and as
such has no left inverse. This means that there may be multiple solutions.
Equation is not true for every V', however; the exemplar labels would
need to be chosen to be suitable.

3.2. Equivalence to deep equilibrium models

Minerva 2 has been shown to be a form of FFNN [I0], and the same is
true for the echo-of-echoes process. Rewriting Equations [4] to [6] it can be
seen that,

a) = g@ (W(“)(c(i_l))m + b(a)) (17)
<c(i)>Oo — o (W(c)a(i) + b(c)) (18)
where
W@ — %VT b =0 o (x) =z (19)
we =v b =0 () = (x)o. (20)



Each iteration of the echo-of-echoes process is a 2-layer FFNN, with parame-
ters shared with previous iterations. As an infinite-depth FFNN in which the
layers share parameters, this is a form of Deep Equilibrium Model (DEM)
[46]. The echo-of-echoes process differs from a typical DEM in two ways,
however. Firstly, DEMs usually have a single layer repeated, rather than
two. More importantly, for the echo-of-echoes process, fixed points are ex-
pected to be the exemplar class representations: ¢* € {vy,...,vx}. This is
not assumed for DEMs. Relaxing this constraint by allowing the exemplar
labels and fixed points to be separate allows us to rewrite Equation [16]

C*=V(V'C*)PA, (21)

where C* = [cf e c*M} is a matrix of column vectors making up the fixed
points. The exemplar labels V' and the prediction labels C* have different
label spaces, as with conventional DEMs, meaning that the echo-of-echoes
process could in principal be trained using known fixed-point algorithms, and
making use of the efficient backpropagation of DEMs.

3.8. Previous adaptations of Minerva 2 to speech and language tasks

Figure |3| shows two variants of Minerva 2 with differing levels of pa-
rameterisation, first described in [10]. Both of these models use the cosine
similarity in place of Equation [T, so that the input and exemplar features
can take any real value, rather than being restricted to +1.

q k, = kn andK:[El kN] (22)

2k, =
lgll2" " [lkall2
For classification, the models make use of one-hot representation for the

classes, which is a common choice in machine learning. Under these condi-
tions, the predicted class label is given by,

s=K'"q, where §=

w = argmaz (cy) . (23)

For the simpler version of the model, referred to as Minerva-R, this is the
only difference from Minerva 2. Minerva-R has no learned parameters, and
the Loo norm in Equation [3]is not required for classification tasks using one-
hot representation and Equation 23] but for regression tasks, some form of
scaling or calibration will be required for the output echo.
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a. Minerva-R. b. Minerva-RPE.

Figure 3: Minerva variations.

Minerva-RPE, a parameterised version of Minerva 2 shown in Figure 3p.,
incorporates learned parameters in two ways: a linear transformation of the
input features; and learned class labels for the exemplars. Learning a linear
feature transformation allows the model to emphasise relevant information in
the features and discard irrelevant information, making the similarity mea-
sure between the input and the exemplars more meaningful. Equation (1] is
replaced with,

s =K, G, (24)

where q, = Wq and K,, = WK, and W is a learned transformation ma-
trix. Learning exemplar labels has multiple benefits. In the case of regression,
it can reduce the ‘noise’ associated with the exemplars. In the case of classi-
fication, it allows an exemplar to fall on a spectrum between classes. In both
cases, it also allows for correction of mislabelled data in the exemplars, and
increases modelling power.

Minerva-RPE has two different sets of parameters: learned and unlearned.
The learned parameters are the linear transformation and the exemplar class
labels, {W,V'}, and the unlearned parameters are the exemplar features,
{K}. The model can be used either for classification or regression. For
classification, a softmax is applied to the output echo, and cross-entropy loss
is used for training. For multi-class classification, where an input can be
a member of more than one class at once, the magnitude of the outputs is
adjusted by including learned scaling for each class, z; = a - ¢; + b, followed
by a sigmoid activation and binary cross-entropy loss across all classes. For
regression, as with Minerva-R, calibration is likely to be necessary, so a final
learned affine transformation is applied to the output, y = Ac—+b, and mean
squared error (MSE) loss is used for training.

The computational complexity of Minerva-R and Minerva-RPE scale lin-
early with exemplar set size N, and may become prohibitively expensive for
very large exemplar sets. One option for reducing the computation load is to
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reduce the size of the exemplar set, and the effect of this is explored in §5.1]
A further option is available for the Minerva-RPE model: reduce the size
of the feature transformation dimension, which is discussed in Section 4.5 of

[42].
3.4. Minerva-RPES

Given the parallels between Minerva and attention, the transformer ar-
chitecture can be used as inspiration for a sequence version of Minerva, which
we shall refer to as Minerva-RPES, and which is shown in Figure [dh. It is
composed of two Minerva modules: the first is Minerva-RPE, which assigns
initial labels to the input sequence. The second Minerva module can be
thought of as ‘self-Minerva’, in which the input sequence also forms the ex-
emplars. This allows the prediction for each frame to take into account the
rest of the utterance, making use of the initial labels produced by the first
Minerva module.

ﬁ
ke H e
: W}-1 Minerva Minerva :
T H =
¢ ) - _
g 1 WO}k ésitimﬁ\ o
di W,
o A W e 0
a. Minerva-RPES.
scaled FFNN scaled H FFNN HCC]
dot-product & dot-product & :
attention | |layer norm | |- attention | |layer norm| T

b. Stacked self-attention.

Figure 4: Comparison of Minerva-RPES with 2-layer stacked self-attention.

Let Q = [ql qT] be a sequence input of length 7. The first Min-
erva module, shown to the left in Figure [dh., is Minerva-RPE, which can be
represented in matrix form for the entire utterance by,

S = ROTH® (25)
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where Q) = Wq(b)Q and K® = Wk(b)K and where the superscript (b)
denotes the base module. The output of the first module is,

c® =vA® where A®) = S(b)oﬁ, (26)
where C") = [cgb) cgf) gives the base (non-sequence) predicted labels

of the input sequence. The Minerva process takes no account of the order of
an input, so we make use of a positional embedding such as Rotary Positional
Embeddings (RoPE) [47]. Let pos(@Q) be the input sequence with positional
embeddings. Combined with the estimated labels, C®) | we can use Minerva
with the now-labelled sequence as both input and exemplars:

S = KOTGE) (27)

where Q) = pos <Wq(S)Q> and K = pos (WﬁQ), and where the super-

script (s) denotes the sequence module. The model output is,
C=c®Ab where A®) = §6)°. (28)

The model can be trained for classification or regression using cross-entropy
loss or Mean Squared Error (MSE) loss respectively, with unlearned param-
eters { K} and learned parameters {Wq(b), Wk(b)7 Wq(s), Wk(s), V}.

Figure 4| shows Minerva-RPES in direct comparison with a 2-layer stacked
self-attention transformer-encoder. The most crucial difference between Min-
erva and scaled self-attention is the nature of the input to the first module:
in self-attention, the queries, keys and values are all derived from the same
sequence input; in Minerva, the query is derived from the sequence input, but
the keys and values are derived from the exemplars. Further, the similarity
measure employed is different: scaled dot-product attention produces pos-
itive weights that sum to one; Minerva produces weights that, individually,
fall in the range [—1,1]. And finally, although not a key feature, stacked self-
attention is typically supplemented with feed-forward layers and layer nor-
malisation [48]. These three traits, input, similarity measure and FF +
layer norm, can be mixed-and-matched to produce class-equivalent models
that fall on a spectrum between Minerva-RPES and stacked self-attention.

The computational complexity of the Minerva-RPES model scales with
NT, where N is the number of exemplars and 7" is the input sequence length.
The effect of reducing the length of the context used within the input se-
quence is explored in §5.2]
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4. Experiments

Experiments were conducted to test: the effect of exemplar set size and ac-
tivation power on a three different tasks; and the performance of the Minerva-
RPES model compared with previously published Minerva-based models and
a baseline FFNN. Three speech and language tasks were chosen:

1. Frame-based phone classification using the TIMIT dataset [49]. This
is a classification task, and allows testing of a sequence model. The de-
tailed phonetic labelling of this dataset allows exploration of a speech-
based classification model.

2. Emotion classification of text using the GoEmotions dataset [50]. This
task is a multiple-classification task, in which an input can be classified
into more than one class. It allows us to explore both the use of Minerva
for multi-label classification, and for a text-based task.

3. Speech intelligibility prediction using the Clarity Prediction Challenge
2 (CPC2) dataset [51]. Since Minerva is, by default, a regression model,
it is useful to test its regression capabilities.

Feature representation has been shown to be important to Minerva 2’s
performance [10], so three different feature representations of varying quality
were chosen for each task. The objective of this work is not to find the best
possible feature representation for the tasks, but rather to explore the effect
that feature representation has on the model outputs.

4.1. TIMIT frame-based phone recognition

TIMIT is a dataset composed of short, single-sentence sentence utter-
ances labelled with phonetic information as well as a text transcription. The
training set has 3696 utterances from 462 speakers (326 male, 136 female),
the development set has 311 utterances from 50 speakers (32 male, 18 fe-
male), and the test set has 192 utterances from 24 speakers (16 male, 8
female). There is no speaker overlap between training, development and test
sets. This work makes use of TIMIT’s phonetic labelling, using a reduced
set of 39 labels [52], rather than the 61 labels used in the original data, as
is common with this dataset. The classes are imbalanced, with the ‘silence’
label representing almost a quarter of the training data, while the least rep-
resented label is /g/, at 0.3%. The development and test sets are similarly
imbalanced. Three feature representations were used:
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Log mel spectrogram: 96-dimensional features were obtained from the
32 channel log mel spectrogram. The stride was 20 ms, chosen to match the
Wav2vec and HuBERT features (see next), and the window was 32 ms. Delta
(differential) and delta-delta (acceleration) features were also included.

Wav2vec: 768-dimensional features were obtained from the final layer of
a Wav2vec Self-Supervised Speech Representation (SSSR) model, pre-trained
on Librispeech, using 960 hours of unlabelled data [53].

HuBERT: 768-dimensional features were obtained from the final layer
of a HuBERT SSSR model, pre-trained on Librispeech, using 960 hours of
unlabelled data [54].

Better performance could likely be achieved by choosing a suitable layer
for feature extraction from the the Wav2vec and HuBERT models [55], but
using the final layer allows direct comparison with the Minerva models re-
ported in [10].

4.2. GoEmotions

GoEmotions [50] is dataset of reddit posts paired with annotated human
emotion labels: positive, negative, neutral and ambiguous. This is a multi-
classification task, with each utterance potentially belonging to more than
one class; for example, one post might be considered both neutral and positive
by different annotators. There are 58,009 annotated posts in total, divided
into defined training/development /test splits of size 43,410 / 5,426 / 5427
(80% / 10% / 10%). More detailed annotations are available, but initial work
on the models made use of the simple labels described here. Three feature
representations were used:

LSA: The LSA features are described in [56], and are pretrained on the
Touchstone Applied Science Associates (TASA) corpus. They are word-based
300-dimensional vectors, which were averaged over the words to produce a
single vector representation of each sentence. These features have previously
been used by [13] in conjunction with Minerva for comparison with human
studies.

Word2vec: The Word2vec features [57] were obtained from a model
pretrained on a part of the Google News dataset (around 100 billion words),
resulting in 1024-dimensional word vectors, which were averaged over words
/ tokens to produce a single vector representation of each sentence.

BERT: The BERT features were obtained using the sentence-transformers
python package [58], producing 768-dimensional vectors. The model is based

15



on MPNet [59], then further trained on a variety of datasets. The model
output is a single vector to represent the entire sentence.

4.8. Clarity prediction challenge 2

The CPC2 dataset [51] consists of utterances that have artificial noise
added, before being enhanced by an enhancement system (a simulated hear-
ing aid). The enhancement system is matched to a specific hearing-impaired
listener, who listens to the enhanced noisy utterance, and repeats it back.
The utterance is labelled with the ‘correctness’: the percentage of words the
listener was able to repeat back correctly. The correctness is used as a mea-
sure of intelligibility. The objective of this task is to predict the correctness
from the speech waveform. Additional information is available, such as the
clean audio and basic information abut the listener’s degree of hearing loss,
but this work made use of only the enhanced noisy speech waveform and the
correctness label.

The CPC2 data is divided into three training/evaluation pairs. The listen-
ers and enhancement systems present in each evaluation set are not present
in the corresponding training set, requiring models to generalise to unseen lis-
teners and enhancement systems. There is overlap between the three training
sets, however; the setup is effectively enforced 3-fold cross validation. There
are no defined development sets, so for each training/evaluation pair, two
listeners and two enhancement systems were selected at random to form a
disjoint development set. All data using these listeners and enhancement sys-
tems were removed from the training data. Of the remaining training data,
10% was separated into a non-disjoint development set. The original Split 1
has 8599/305 data pairs for training/evaluation; Split 2 has 8135/294; and
Split 3 has 7896/298. Following the creation of disjoint and non-disjoint de-
velopment sets, the training/non-disjoint/disjoint sizes were: 5190/577/170
for Split 1; 5087/566/169 for spit 2; and 5213/580/166 for Split 3. The
disjoint development sets were used for hyperparameter tuning and model
selection. The non-disjoint validation set was used to assess the difference
performance of models on previously-seen listeners and enhancement sys-
tems, which in turn gives information on how well the model generalises
to unseen listeners and enhancement systems. For further details on the
disjoint /non-disjoint development sets, see .

The 32 kHz CPC2 waveforms were downsampled to 16 kHz. Three dif-
ferent feature representations were used:
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Log Spectrogram: Fast Fourier transforms were used to compute 257-
dimensional log magnitude spectrogram features, with a window of 32 ms
and a stride of 16 ms.

XLSR: 1024-dimensional Cross-Lingual Representation Learning for Speech
Recognition (XLSR) features were obtained from a model pretrained on 436k
hours of multilingual data [60], which has been found to be effective for speech
intelligibility prediction [61].

Whisper: 768-dimensional features were taken from the 8th decoder
layer of a pretrained Whisper ASR model [62], which has been found to be
effective for speech intelligibility prediction [41].

Feature representations were averaged over the time-domain to provide
a single vector representation for each utterance. This simple method has
been shown to perform competitively [10].

4.4. Exemplar set size and activation power

For each of the nine task/feature combinations, Minerva-R models were
evaluated with a range of different exemplar set sizes and activation powers.
For the TIMIT models, exemplars were selected randomly from the training
set and stratified by phonetic class. This guarantees that all exemplar sets
include examples from all classes, despite the class imbalance in the train-
ing data. The exemplar set size started at 39 exemplars (1 per class), and
was doubled for progressive models until the size reached 79872 (2048 per
class). The TIMIT results are reported in terms of the classification ac-
curacy. Randomly selecting a class for each new input would result in an
accuracy of around 2.6%, whereas reporting ‘silence’ for all frames would
achieve around 24%, due to TIMIT’s class imbalance. Higher values show
better performance. Phone accuracy differs from Phone Error Rate (PER),
a metric that is commonly used for segment-level phonetic modelling, and
cannot be directly compared with it.

For the GoEmotions models, exemplars were selected randomly from the
training set. The exemplar set size started at 8 exemplars, and was dou-
bled for progressive models until the size reached 65536. This is a multi-
classification task, where an input can belong to multiple classes. Since the
model applies no scaling to the output, Area Under Receiver Operating Char-
acteristic Curve (AUC) was used as the performance metric, which does not
require class thresholds to be set. A value of 50% is equivalent to chance.
Higher values show better performance.
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For the CPC2 task, exemplars were selected randomly from the training
set. The exemplar set size started at 4 exemplars, and was doubled for
progressive models until the size reached 8192. Since the Minerva-R model
has no innate scaling, a calibration was performed on the model output: the
exemplar features were used as input to the model, and the resulting model
output was matched to the true exemplar labels using least-squares logistic
regression. The parameters for this regression were then used to scale model
output at inference. The results are reported in terms of Root Mean Squared
Error (RMSE) of the predicted correctness, with 0 RMSE indicating perfect
prediction. Predicting the mean correctness for every utterance in the CPC2
test set results in an RMSE of 40.0%. Values at or above this level show
performance no better than chance.

For the smallest model for each task/feature combination, the activation
power was set to 1, and then incremented by 2 (to ensure odd powers) to find
the optimal value. For subsequent models, the initial value of the activation
power was set to the optimal value of the previous model, and the activation
power was incremented and decremented by 2 until the optimal value was
found.

4.5. Sequence Minerva

Minerva-RPES models were trained on the TIMIT task using log mel
spectrogram and HuBERT features. Both models had an exemplar set of
size 14976 (384 exemplars per class) and a feature transformation dimension
of 64 on the non-sequence variants of Minerva. This is smaller than either the
log mel spectrogram or HuBERT feature representations (96 and 768 respec-
tively), but increasing the feature transformation dimension above 64 was
found to give no meaningful improvement on non-sequence Minerva models
(Section 4.5 of [42]), and the same dimension has been used here for com-
parability with previous models. The models were trained with categorical
cross-entropy loss. These models were designed to be comparable to previous
Minerva-based models reported by [10]. Training was conducted using a sin-
gle NVIDIA RTX 3080 GPU with 10 GB RAM, and Minerva-RPES models
took around 20 minutes to train.

Further Minerva-RPES / stacked self-attention models were trained to
explore the class equivalence between these models. The input, similarity
measure and FF + layer norm traits described in were mixed-and-
matched to produce 8 new models, which were each trained with log mel
spectrogram and HuBERT features. Since the self-attention models use the
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current input sequence in place of an exemplar set, the exemplar set size of
the Minerva-based models was set to be approximately equivalent in size to
an input utterance. TIMIT utterances are on average around 152 frames
(with stride 20 ms), so the exemplar sets used 4 exemplars per class, for 156
exemplars overall. The feature transformation dimension for all models was
64. Training was conducted using a single NVIDIA RTX 3080 GPU with
10 GB RAM, and Minerva-RPES models took around 14 minutes to train.
For all models described in this section, hyperparameters were tuned on the

development set, and hyperparameter values are given in [Appendix A]

5. Results and discussion
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5.1. Activation power and exemplar set size

Figures |p| to [7| show the performance and optimal activation power [
of the untrained Minerva-R model on the TIMIT, GoEmotions and CPC2
tasks respectively, for each feature representation, for increasing exemplar set
size. Note that the results for the TIMIT task using HuBERT features were
previously reported in [10]. The spectrogram features for the CPC2 tasks are

19



o BERT xWord2vec » LSA
80—”””” T T T T T \\\(\)HH(\) (\)\(\)\H(\)\\ O\ b\\\()\\\\ ]
O x X X X X X
SO 0o I 1
o X
<= 60 o ¢ -~ :
© X
507\)\(\\\\\\ Lol L] Lol Lol
T T T T T T T T T \x\\\x\\\\
g . 2| . .
4C—é <)
£2 10 I l
<QC) o o ©) o o
0*\@\\\%\ ®\ @\\@H‘® \®\\\éuu(\) (\)\HHH\ Lol
10* 102 103 104 10°

Number of exemplars

Figure 6: Performance and optimal /5 for different exemplar set sizes on GoEmotions.

o Whisper » XLSR
45* ‘(‘)““‘\ T T T T TTTT] T T T T T T ]
20 )
£ 400 ¢ o :
o m 8 5
g9 351 . 8
;62 o 1) X x X X X X
O/~ 30| | o © o o o o o o
T T T T T T T T T T T
— 4007 X % X 7
8 éj X X X %
2 E 200] . ) :
T &~ . x
< 07 \E\;\H(\)\\ O\ \O\\\O\H\O \O\ \(\)HH(\) (\) \(\)\\\\O\\ i
10* 102 103 104

Number of exemplars

Figure 7: Performance and optimal § for different exemplar set sizes on CPC2.

20



excluded, since they did not generalise effectively to the disjoint evaluation
set.

For the TIMIT and GoEmotions tasks, as the exemplar set size increases,
performance improves, although with diminishing returns. Furthermore, as
the exemplar set size increases, the optimal value of the activation power 3
increases, for both tasks and all feature representations This matches previ-
ous results [10].

For the CPC2 task, performance improved up to 64 exemplars for the
Whisper features, and up to 512 exemplars for the XLSR features. No per-
formance improvement was seen for exemplar sets larger than these. Unlike
the TIMIT and GoEmotions tasks, the optimal value for 3 appears to peak
and then fall with increasing exemplar set size. This may be due to CPC2
being a regression task, rather than classification. In regression, the scaling of
the output is crucial, and the value of § affects this scaling, since activations
close to +1 are relatively unaffected, while activations with lower magnitude
are reduced (see Equation . It is possible that the non-linearity added
by the activation power becomes detrimental to the calibration process with
large numbers of exemplars. It should be noted that, while the activation
power for the XLSR features falls for larger exemplar sets, it is still very high
at 105 for the maximum size of exemplar set tested, with 8192 exemplars.
This is still high enough to highly emphasise the most similar exemplars.

Alternative activation functions could be considered in future work. The
activation power used here preserves the sign of the similarities, meaning
that an exemplar may be considered an ‘opposite’ of the input. This may
be a useful trait if classes can be considered opposite to each other, for
example positive and negative classes in emotion classification. A softmax, by
comparison, assumes orthogonality between classes, and ensures consistent
scaling of the activation power. This might be more appropriate for the
CPC2 task, in which scaling is an important consideration.

5.2. Minerva-RPES

All statistical comparisons reported here are t-tests based on 5 repeats
with different random initialisations and (in the case of Minerva models)
different randomly selected exemplar sets. Table [1] shows results for the se-
quence Minerva-RPES model, compared with Minerva-R and Minerva-RPE
models reported in [10], which use the same size exemplar set. A FFNN base-
line model of approximately equivalent computational complexity, also previ-
ously reported in [10], is shown for comparison, as well as two exemplar-based
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models: a k-NN model from [35]; and a semi-supervised Measure Propaga-
tion (MP) model from [36]. The latter two are not directly comparable, since
they use different feature representation and substantially different exemplar
selection techniques, but they are useful for putting the Minerva models’
results into context.

Table 1: Frame-based phone classification on TIMIT.

Learned Feature Learned Accuracy (%)

Features  Model params trans. labels b Dev Test
k-NN* 0 - - - - 60.07

MFCC MP** 0 - - - - 58
R' 0 No No 135 41.51 40.65
Mel Spec RPEf 059 M  Yes Yes 7 6848 67.02
PECppNNT 119M - - - 69.64 68.19
RPES 0.61 M  Yes Yes 5 6829 66.95
RY 0 No No 15 73.13 73.02
RPE' 0.68 M  Yes Yes 5 8832 &7.50
HuBERT  ponNt 188 M - i _ 8836 87.60
RPES 0.78 M Yes Yes 5 88.73 87.88

*From [35]; **from [36]; Tfrom [10]

The k-NN model reported in [35] and MP model reported in [36], both
shown in Table I} outperform the Minerva-R model, despite also being non-
parameterised exemplar-based approaches. The reasons for this are likely
related to exemplar selection and feature representation. Both the k-NN
model and the MP model use Mel Frequency Cepstral Coefficients (MFCC)
features, rather than the log mel spectrogram used by Minerva-R, which is
likely to affect the results somewhat. Log mel spectrogram features are highly
correlated, which may have an impact given that Equation 24| determines the
similarity between the input and each exemplar based on their correlation.
Perhaps more importantly, the k-NN model uses the entire TIMIT training
set as exemplars, as does the MP model, although the MP model is semi-
supervised, with only 5% of the data being labelled. The Minerva-R model,
in contrast, uses less than 3% of the training data, and as previously noted,
increasing the exemplar set size leads to improved performance. Further, the
Minerva-R exemplar set is stratified by phonetic class. This ensures that
small exemplar sets contain representatives of all classes, but it has been
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shown that a randomly selected exemplar set (in which class imbalances are
preserved) results in better performance using Minerva-R. This is because it
increases the chance of predicting common classes such as silence, and reduces
the chance of predicting rare classes such as /g/. For a more detailed discus-
sion of exemplar set stratification, see section 4.4.2.2 of [42]. The stratified
exemplar set is used here for comparability with the parameterised Minerva
models.

The best performing model overall is the Minerva-RPES model with Hu-
BERT features. Although the gain over the baseline HuBERT FEFNN is
modest, it is statistically significant (p < 0.01). The log mel spectrogram
Minerva-RPES model, in contrast, performs substantially worse that the
FFNN model, and worse than the simpler Minerva-RPE model. This is
counter-intuitive: the HuBERT features include a lot of context information,
which means that gains are likely to be modest. The log mel spectrogram
features include little context information, so gains should be larger. Some
insight can be gained from Table [2| which shows the performance of models
that mix-and-match characteristics from Minerva-RPES and transformer ar-
chitectures. It can be seen that the log mel spectrogram models all benefit
from extra feedforward layers and layer normalisation, whereas the HuBERT
models in general do not. The best performing log mel spectrogram model
in Table [2| substantially outperforms all log mel spectrogram models in Ta-
ble [l with a test accuracy of 69.58 % (compared to 68.19 % for the FFNN),
despite having a much smaller exemplar set. Using Minerva input (i.e. exem-
plars) and the Minerva-style activation function yields the best performance
on this task for both feature representations, outperforming similar stacked
self-attention models. This form of model therefore shows promise.

Minerva-RPES uses the entire utterance by default, but further experi-
ments were performed with HuBERT features to determine how much con-
text is useful. Context is measured in frames, with a stride of 10 ms. The
measured contexts ranged from zero (effectively the same as Minerva-RPE)
to 1024, which is sufficient to give full context on the short utterances found
in TIMIT. Results for mid, backward and forward context are shown in Fig-
ure [§] Mid, backward and forward context are all useful, but mid-context is
the most useful. Performance plateaus at around 32 frames.

The Minerva-RPES results reported here show promise, but further work
comparing this model with alternative architectures on additional, ideally
larger, datasets would be a logical next step.
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Table 2: Performance of models on the Minerva-Transformer spectrum, using log mel

spectrogram and Hubert features.

Base Activations [T+ Learned params  Test accuracy (%)

model LN MelSpec/Hubert MelSpec  Hubert
Minerva None 31k /203 k 65.66 87.77

Minerv v Both 34 k / 206 k 69.58  87.52

Hmery scaled dot- None 31k /203 k 6465  87.72

product Both 34 k / 206 k 68.10 87.38
Minerva None 29k /158 k 53.50 86.03

Transformer Both 35k /164 k 69.24 87.10
scaled dot- None 29k / 158 k 48.78 86.45
product Both 35k /164 k 67.29 86.35
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Figure 8: Accuracy of Minerva-RPES on the TIMIT task with increasing mid, left and
right context.

6. Conclusions

We have shown that the iterative echo-of-echoes process proposed by its
creator is a close relative of DEMs, and that relaxing a single assumption
makes it a DEM. Since DEMs have shown excellent performance in a variety
of tasks, further work exploring this option is warranted.

Based on experimental work, increasing Minerva’s memory increases per-
formance, although with diminishing returns. The activation power has a
major effect on the quality of the model output, and should therefore ideally
be tuned as a hyperparameter.

Minerva 2 is closely related to the attention mechanism found in trans-
formers, and this similarity can be leveraged to convert Minerva to a sequence
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model, which shows promising experimental results.

Appendix A. Hyperparameter tuning

Appendiz A.1. CPC2 development set

Both TIMIT and GoEmotions have established development sets in their
references [49, [50]. CPC2 does not.

Table A.3: Listeners and enhancement systems used for the disjoint validation sets.
Training . Enhancement
Listeners

split systems
o1 T
T
TR

CPC2 is divided into three paired training and evaluation splits, but has
no established development sets for model selection / hyperparameter tun-
ing. The training sets have overlap with each other, but the evaluation sets
do not. For each of the three splits, two listeners and two systems were
randomly selected to form a disjoint development set. All data with these
listeners and systems were removed from the training set. A randomly se-
lected non-disjoint development set consisting of 10% of the remaining train-
ing data was also formed. This enabled assessment of model performance
both on previously seen and unseen listeners and enhancement systems. Hy-
perparameter tuning was performed using the disjoint development sets, to
ensure generalisation to unseen listeners and systems. The development set
results in Table 1 of the report are from the non-disjoint development set.
Table gives the listeners and enhancement systems selected to form the
disjoint development sets.

Appendiz A.2. Hyperparameters for best-performing models

Tables to give the hyperparameters for each of the models re-
ported.
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Table A.4: Tuned hyperparameter values for the TIMIT Minerva-RPES models (Table .
Learning Weight

Features rato decay Dropout
Mel Spec 1073 10~7 0.0
HuBERT 1073 1077 0.4

Table A.5: Tuned hyperparameter values for the TIMIT Minerva-RPES and transformer
models with log mel spectrogram features (Table .

Base Activations FF + Learning Weight Dropout
model layer norm rate  decay
Minerva None 1073 1073 0.0
Yes Both 1073 1077 0.0
scaled dot- None 1073 1077 0.0
product Both 1073 1076 0.0
Minerva None 1072 1077 0.0
No Both 1072 1077 0.0
scaled dot- None 10~* 1077 0.1
product Both 1073 107° 0.0
FFNN - No 1073 107° 0.0
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