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Abstract We study the cosmology of multi-field Dark

Energy, using a well-motivated axio-dilaton model that con-

tains the minimal number of fields to have the 2-derivative

sigma-model interactions that power-counting arguments

show naturally compete with General Relativity at low ener-

gies. Our analysis differs from earlier, related, studies by

treating the case where the dilaton’s couplings to matter

are large enough to require screening to avoid unacceptable

dilaton-mediated forces in the solar system. We use a recently

proposed screening mechanism that exploits the interplay

between stronger-than-gravitational axion-matter couplings

with the 2-derivative axion-dilaton interactions to suppress

the couplings of the dilaton to bulk matter. The required

axion-matter couplings also modify cosmology, with the

axion’s background energy density turning out to resem-

ble early dark energy. We compute the properties of the

axion fluid describing the rapid oscillations of the axion field

around the time-dependent minimum of its matter-dependent

effective potential, extending the usual formalism to include

nontrivial kinetic sigma-model interactions. We explore the

implications of these models for the Cosmic Microwave

Background and the growth of structure and find that for

dilaton potentials of the Albrecht–Skordis form (itself well-

motivated by UV physics), successful screening can be con-

sistent with the early dark energy temporarily comprising as

much as 10% of the total density in the past. We find that

increasing the dilaton-matter coupling decreases the growth

of structure due to enhanced Hubble friction, an effect that
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dominates the usual fifth-force effects that amplify structure

growth.

1 Introduction

For the past twenty five years both observations and Ock-

ham’s razor have suggested regarding the late-time acceler-

ation of the Universe’s expansion as being due to a nonzero

cosmological constant – see [1–4] for overviews and [5] for

a historical review with references. A longstanding problem

with this interpretation is the small size of the result, which

is not technically natural [6,7] given the much larger scales

associated with most of the masses of the known particles

(with the tantalizing exception of neutrinos).

This could now be changing with, for example, the new

results by the DESI experiment [8–10] seeming to point

towards a Universe with dynamical dark energy. Of course

the jury remains out and new observations over the next

few years might yet send these preliminary hints for physics

beyond the standard models to join others in the realm of

Hades. If they survive, we learn something important: there

are very likely new very light (probably scalar) fields whose

dynamics generate the late time acceleration.

The scalars must be essentially massless on solar-system

scales in order to evolve on cosmological time scales. If so

then two issues deserve great scrutiny.

• Why so light? Why are the scalars nearly massless in the

first place? It is not generic to have scalars be much lighter

than the intrinsic scales of microscopic physics,1 unless

1 To use a condensed-matter analogy: light scalar degrees of freedom

are generic at a system’s critical points, which occur at pressures and
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there is a symmetry mechanism that makes it so [11].

This is actually a special case of a more general issue:

non-derivative interactions generically amplify quantum

effects when working within a semiclassical approxi-

mation with gravity, often invalidating purely classical

reasoning [12]. In essence for gravity the semiclassical

approximation is at heart a low-energy expansion [13–

15], where weak/strong quantum effects are assessed rel-

ative to interactions involving exactly two derivatives.2

So scalar fields typically only compete at all with gravity

at low energies if their scalar potential is unusually very

small. One well-motivated way to obtain light scalars

(and suppress the interactions in their scalar potential)

is as Goldstone (or pseudo-Goldstone) bosons for the

spontaneous breaking of an exact (or approximate) global

symmetry [16]. Once this is achieved the two-derivative

interactions of scalars become crucial for any low-energy

applications – such as in cosmology or when testing Gen-

eral Relativity (GR). This observation is easily missed

in the special (and most-explored) case of single-scalar

models because for these models minimal coupling to

gravity exhausts the possible types of two-derivative

interactions.

• Why not elsewhere? The second important observation

is that any scalar light enough to be cosmologically inter-

esting mediates a long-range force that potentially com-

petes with gravity. The absence of observed deviations

from Newton’s law in gravitational tests in the solar sys-

tem and in laboratory experiments therefore tells us that

couplings to any new long range forces must be sup-

pressed to below the strength of gravity [17–19]. There

are two well-explored ways to suppress the coupling of

a very light scalar in solar system tests. The simplest

arranges for the scalar to couple weakly to ordinary mat-

ter at an atom-by-atom level (that is, to have a small cou-

pling constant in the underlying fundamental lagrangian).

The second way posits nonlinearities in the interactions

that make the effective coupling of the field to a macro-

scopic source containing N elementary particles much

smaller than simply N times the field’s coupling to each

of those elementary particles separately.3 This resembles

Footnote 1 continued

temperatures that are characteristic of the underlying microscopic inter-

actions of the constituents. What is surprising – and can happen, but

needs explanation when it does – is the appearance of a quantum crit-

ical point at extremely low temperature and pressure relative to these

microscopic underlying scales.

2 As all of the interactions in the Einstein-Hilbert action involve two

derivatives, the nonlinearities of General Relativity cannot in general

be neglected at low energies.

3 A variety of screening mechanisms of this sort have been devised

for single-field models, built on properties of the scalar potential and

zero-derivative matter couplings (as in the chameleon or symmetron

how electromagnetic forces between electrically neu-

tral macroscopic objects built from charged constituents

can be much weaker than the forces between the con-

stituents themselves. This second option is widely known

as ‘screening.’ Which of these two mechanisms arises

in specific examples is model-dependent though screen-

ing mechanisms are crucial when it is difficult to have a

fundamental force couple to elementary particles weaker

than does gravity.

The observation that two-derivative interactions dominate

at low energies (once zero-derivative interactions have been

suppressed enough to allow light scalars in the first place)

makes models involving two or more scalars particularly

interesting because they allow non-minimal two-derivative

interactions like

L2d = −
1

2

√
−g Gi j (φ) ∂μφi∂μφ j (1)

where gμν(x) is the spacetime metric and Gi j (φ) is a dimen-

sionless positive-definite symmetric tensor that defines a met-

ric ds2 = Gi j (φ) dφi dφ j on the target space.4 These inter-

actions can compete with GR at low energies without under-

mining the entire semiclassical approximation (unlike the

higher-derivative models often studied for single-field mod-

els, to which one is driven becauseG can always be eliminated

by transforming to canonically normalized variables).

Axio-dilaton models contain two scalar fields, φ and a,

that are pseudo-Goldstone bosons respectively for rigid scale

transformations and for an internal shift symmetry, for which

the leading target-space metric

ds2 = dφ2 + W 2(φ) da
2 (2)

is characterized by a single function. The phenomenology

of these models have recently been explored in late-time

cosmology and within the solar system [36–38], with four

main motivations. First, they involve two scalar fields and

so contain the bare minimum number needed to explore the

implications of two-derivative interactions that compete opti-

mally at low energies with the two-derivative interactions of

GR. Second, they arise frequently within well-motivated UV

completions of gravity (such as string vacua compactified to 4

dimensions) because of the accidental scaling and shift sym-

metries that are ubiquitous in these theories [39]. Thirdly,

Footnote 3 continued

mechanisms [20–24]) or large higher-order terms in field derivatives (as

in K-mouflage [25] or the Vainshtein [26] mechanism). For reviews see

[27–29].

4 Nonlinear sigma-model interactions like these were studied since the

60 s as effective theories for low-energy pion scattering [30,31] and for

Goldstone-boson interactions more generally [32,33], and have been

more widely considered in cosmology for inflationary applications (for

reviews see [34,35]).
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they allow new relaxation mechanisms for suppressing the

size of the scalar potential [40] and so make some headway

on the cosmological constant problem. Lastly, axio-dilaton

models also allow new screening mechanisms [41] that rely

on the properties of the function W (φ) (rather than higher-

derivative terms, say) and so compete with gravity more eas-

ily at low energies without threatening the underlying clas-

sical approximation.

Remarkably, the minimal two fields φ and a can in them-

selves provide a viable minimal picture for both Dark Matter

and dynamical Dark Energy, with the ‘dilaton’ φ playing the

role of a quintessence-style Dark Energy and the ‘axion’ a

being the Dark Matter. In the simplest way of doing so [42]

solar system tests of gravity are evaded simply by assigning

both sufficiently small couplings to ordinary matter. How-

ever, many of the most novel and interesting features of this

class of models – such as the versions explicitly produced

in UV completions and potential progress on the cosmo-

logical constant problem – predict gravitational-strength (or

stronger) couplings of the scalars to ordinary matter,5 so in

this paper we focus on the viability of late-time cosmology

when couplings to matter are not small and so when screen-

ing mechanisms are important. Exploring the implications of

screening for cosmology is the main difference between the

analysis we present here and the studies done in [38].

For concreteness’ sake we adopt the screening mechanism

of [41], which explores two forms for the function W 2(φ):

exponential and quadratic. The exponential case captures a

generic runaway to large fields and embeds naturally into

string-inspired models [35] (for recent examples see e.g. [43–

46]). The quadratic case captures the generic situation near a

local minimum of W . The basic screening occurs because the

axion-matter couplings are chosen to ensure that the axion

takes a value inside ordinary matter that differs from its value

in the vacuum, with the resulting axion gradients driving

changes in the dilaton – due to the interaction implied by

W (φ) – that act to suppress the dilaton gradient exterior to the

source (and so reduce the source’s effective dilaton ‘charge’).

We find that these same scalar-matter couplings can

change cosmology in interesting ways, with the energetics

of the matter-dependent part of the axion potential effec-

5 It is known from fundamental theories that the dilaton field couples

to all non-relativistic matter species. However, the same cannot be said

about the axion, whose couplings depend on the specific details of the

fundamental theory. The constraints on axion-matter couplings are dis-

cussed in detail in [41] where it is noted that non-negligible axion-

baryon couplings can be consistent with observations, depending on the

specific shape of the axion profile inside and outside of matter sources.

To produce the axion-dilaton screening screening mechanism as simply

as possibly while automatically being consistent with astrophysical con-

straints it is sufficient to restrict the axion coupling to electrons, which

is what we consider in this paper. More work is required to consider

additional couplings, in particular with simulations with a non trivial

profile. However, this is beyond the scope of the current paper.

tively introducing a Dark-Energy type equation of state in

early epochs where the matter density is comparatively large.

This makes it resemble early dark energy (EDE), though with

important differences from the usual formulations [47–51].

At late times the axion energy density decays like a subdomi-

nant matter component and the axion dynamics is not simply

driven by the behaviour of its effective potential. Indeed,

the axion field performs decaying oscillations towards its

matter-dependent minimum in a manner reminiscent of fuzzy

dark matter in axion-like-particle models [52]. But for axio-

dilatons the situation is technically more intricate as both the

vacuum expectation value of the axion field and its mass are

time dependent. We provide a full description of the result-

ing axion fluid dynamics coupled to the baryons, CDM and

the dilaton. The fluid description is justified by the very fast

axion oscillation evolution compared to the Hubble rate.

When performing this analysis we make two simple

choices for the potential energy for φ and a in addition to

the two choices (exponential or quadratic) for the form of

W . We follow [38,42] and choose the dilaton potential to

be either exponential [53] or of the Albrecht–Skordis/Yoga

type [40,54–56] (i.e. the product of an exponential and a

quadratic function, whose minimum serves as an attractor

that traps the dilaton so that the dark energy approaches a

cosmological constant at late times). The axion dynamics is

driven by its scalar potential – taken to be quadratic near its

minimum – including its coupling to matter.

We find four very different possibilities whose physics

is itself constrained by screening. The simplest possibil-

ity combines an exponential dark energy potential with a

quadratic form for W and nicely displays the possible inter-

play between screening and cosmology. Indeed, if screening

is not required one can find parameter values such that the

early dark energy is fairly large, temporarily making up of the

order of ten percent of the Universe abundance, with a transi-

tion to decaying matter around the matter-radiation equality

that ensure only small deviations of the Cosmic Microwave

Background (CMB) from the predictions of �CDM. The

growth of structure (e.g. on6 f σ8) increases when the cou-

pling of the dilaton to matter increases (as is the standard

expectation for scalar-tensor theories).

But restricting the parameters to ensure sufficient screen-

ing in the late universe changes this picture significantly. First

the fraction of early dark energy is bounded to be well below

one percent and the kinetic energy in the axion field prevents

early dark energy from playing a significant role during the

epoch of matter-radiation equality. This limit on the amount

of early dark energy arises because larger dark-energy den-

sities lead to a tachyonic instability (with associated large

deviations from �CDM).

6 Here f is the growth factor and σ8 is the variance of the mass fluctu-

ations within a sphere of radius R = 8h−1Mpc.
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Larger contributions of early dark energy arise when com-

bining the Yoga-style (Albrecht–Skordis) potential for the

dilaton with the quadratic form for W . In this case the dilaton

potential has a local minimum that attracts the dilaton at late

times, leading to a cosmological-constant style equation of

state. This local minimum helps tame the tachyonic instabil-

ity in the screened case by preventing large field excursions

around matter-radiation equality. This allows the early dark

energy fraction to be as large as one percent. As the axion

coupling and the coupling to matter of the dilaton pushes it

away from the minimum in the absence of matter, the Hubble

rate is slightly increased at redshifts when structures form.

This implies that the growth of structure is hampered and we

observe a decrease of f σ8 for increasing dilaton coupling to

matter. This is the opposite of what is usually expected in

scalar-tensor theories and could have appealing phenomeno-

logical consequences.

We also consider the case of an exponential W whilst

keeping the Yoga potential. In this case, there is no tachyonic

instability at all and so the early dark energy fraction can be

increased to several percent whilst the growth of structure is

still depleted for larger dilaton couplings to matter.

The rest of this paper is arranged as follows. In Sect. 2

we recap how screening works for the axio-dilaton models

using the mechanism described in [41]. Then we discuss the

cosmological background dynamics in Sect. 3. The axion

fluid is described in Sect. 4 and the treatment of cosmological

perturbations in Sect. 5. Numerical evolution of the resulting

equations are presented in Sect. 6. Several appendices contain

more technical details.

2 Model definition and criteria for screening

This section defines the two-field axio-dilaton model to be

studied and briefly recaps the discussion of [41] in order to

determine the parameter regime required to screen scalar-

matter interactions sufficiently to evade late-time solar-

system tests of gravity.

2.1 Action and field equations

As stated in the introduction, we focus on two-field mod-

els whose kinetic terms are determined by the target-space

metric7

ds2 = dφ̃2 + W 2(φ̃) dã
2, (3)

and call φ̃ the dilaton and ã the axion. This is the most gen-

eral two-dimensional metric consistent with a shift symmetry

7 We denote dimensionless fields with tilde’s, as in φ̃, reserving φ =
Mpφ̃ for the dimensionful version. Notice that this convention differs

from the one used in [38,42].

ã → ã + constant. As also mentioned in the introduction,

motivation for this class of theories is discussed in [38,42]

and is partially inspired by UV extensions of the standard

models of particle physics and cosmology.

The low-energy action for the scalar fields and ordinary

matter is given by

S =
∫

d4x
√

−g

{

M2
p

2

[

R − (∂φ̃)2 − W 2(φ̃) (∂ ã)2
]

− V (φ̃, ã)

}

+ Sm [g̃μν , ã, ψ], (4)

where R is the metric’s Ricci scalar and the Planck mass

is related to Newton’s constant by M2
p = (8πG N )−1. Sm

describes the action of the matter sector, whose fields are

collectively denoted ψ and the dilaton only appears in this

action through the Jordan-frame metric g̃μν := A2(φ) gμν .

The model is specified once the axion-dependence of the

matter action is given, together with explicit forms for the

functions V (φ, ã), A(φ) and W (φ).

It is convenient when interpreting this lagrangian to shift

the axion and dilaton fields so that their ambient homoge-

neous values during the present epoch are a = φ = 0. For

instance, if cosmological evolution leads at late times to φ

and a sitting at the minimum of V (φ, a) then after shifting

the field appropriately there is no loss in choosing the vac-

uum potential, V (φ, a), to be minimized at a = φ = 0. It is

also convenient to rescale the metric so that A(0) = 1 since

this ensures Jordan frame and Einstein frame share the same

units of length in the current epoch. Finally, we rescale φ and

a so that both scalars are canonically normalized during the

current epoch, which means φ = Mp φ̃ and a = W (0)Mp ã.

After these choices the lagrangian is

S =
∫

d4x
√

−g

{

M2
p

2
R − 1

2

[

(∂φ)2 + W 2(φ) (∂a)2
]

−V (φ, a)

}

+ Sm [A2(φ) gμν , a, ψ], (5)

and there is no loss of generality in assuming that the min-

imum of V (if this exists) is at a = φ = 0 and also that

A(0) = W (0) = 1 there.

For the dilaton-matter coupling function A we take

A = e−βφ/Mp , (6)

where β > 0 and we use the above-mentioned rescalings

to ensure A(0) = 1. This is motivated by the role played

by φ as a pseudo-Goldstone boson for scaling symmetry

(which is why this form arises so frequently from micro-

scopic physics). This form of coupling to matter is what

would arise for a Brans–Dicke scalar written in Einstein

frame. When present the scalar mediates a Yukawa-type force

whose coupling strength is proportional to β/Mp. When the

φ Compton wavelength is solar-system sized or larger (as is
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the case if it is currently cosmologically active) the agree-

ment of GR with observations requires β <∼ 10−3 [18]. It is

because many microscopic theories – and in particular the

natural relaxation (Yoga) models of [40] – predict β ∼ O(1)

[35,57] that screening mechanisms are often required.

There are two different choices for the kinetic coupling

function W that are known to allow the screening described

in [41] and we explore them both here. The first possibil-

ity assumes W has the scaling form often predicted by UV

physics,

W 2(φ) = e−ξφ/Mp = e−φ/�φ , (7)

where we again rescale fields to ensure W (0) = 1 and �φ –

or equivalently ξ = Mp/�φ – is a new coupling parameter.

The other possibility assumes W to be near a minimum

W 2(φ) ≃ W 2
⋆ +

(φ − φ⋆)
2

2�2
φ

= 1 +
φ(φ − 2φ⋆)

2�2
φ

, (8)

and so is characterized by choices for the parameters φ⋆ and

�φ . As usual, using a strictly quadratic expression typically

assumes |φ − φ⋆| is small relative to �φ .

It remains to specify the scalar potential in the vacuum,

which we take to be additive

V (φ, ã) = Vdil(φ) + Vax(a) (9)

with the dilaton contribution having the form

Vdil = U (φ) e−λφ/Mp , (10)

where two choices are made for the prefactor U (φ). Taking

U (φ) = V0 to be a constant8 gives a runaway dilaton model

[53] for which slow roll can produce the accelerated expan-

sion required of Dark Energy9 if λ <
√

2 [59]. Alternatively

we also explore an Albrecht–Skordis potential [54,55] for

which the function U (φ) has a local minimum whose value

sets the size of the late-time dark energy scale. In practice

U (φ) is taken for simplicity to be quadratic in φ near the

minimum, and once φ is shifted to ensure the minimum is at

φ = 0 becomes

U (φ) = 1
2

m2
φφ2 + V0

[

1
2

(

λφ

Mp

)2

+
λφ

Mp

+ 1

]

, (11)

8 When U (φ) = V0 the dilaton potential has no minimum and so we

instead use the freedom to shift the origin of φ to set its initial condition

to a value that arranges that φ = 0 at or near the current epoch.

9 We remark in passing that the de Sitter conjecture states that λ should

be larger than
√

2 in order not to fall within the swampland [58]. If

regarded as an important prior consideration this would preclude the

existence of dynamical dark energy through classical evolution using

exponential potentials. In [40] λ is taken from comparing to micro-

scopic arguments and turns out larger than
√

2, though the presence of

a minimum due to the function U also means that acceleration does not

rely on slow-roll evolution in an exponential potential. In what follows

we do not worry about hypothetical swampland issues.

where V0 = Vdil(0) ∼ O(H2 M2
p) > 0 and m2

φ := V ′′
dil(0) ∼

O(H2) > 0. The motivations for making this choice are sum-

marized in [40,56], and are driven by the desire to understand

naturally the small size taken for V0 (which sets the Dark

Energy density). Other potentials leading to a quintessence

behaviour for φ could also be considered though we do not

do so.

The axion potential in vacuum is assumed to be large

enough that during the recent universe the field a does not

stray too far from one of its minima, and we shift the axion

field to arrange that this occurs at a = 0. We assume the

potential energy vanishes10 at this minimum, V (0) = 0, and

so11

Vax ≃ 1
2

m2
a

a
2. (12)

The physical mass of the axion in the vacuum is then given

by max = ma/W where W is evaluated at the background

value for φ (and so max → ma at late times when φ → 0 and

W → 1). It is well-known that a scalar field oscillating near

the minimum of its potential behaves like non-relativistic

matter, but in our analysis we do not assume the axion to be

Dark Matter (and so assume the Dark Matter is part of the

matter lagrangian).

For axion-matter couplings we assume a coupling to a

matter field ψi to be proportional to the number density of

matter particles, which in Jordan frame has the form Lma ∝
−
√

g̃
∑

i Ui (a)ψ∗
i ψi , where g̃μν is the Jordan-frame metric

and the sum runs over the various species of matter fields, ψi .

This amounts to giving the matter field an axion-dependent

Jordan-frame mass of the form

mi = mi0

[

1 + Ui (a)
]

, (13)

where the function Ui are to be specified. For definiteness

we assume the axion only couples to electrons and to the

particle species that makes up the cold dark matter (these

choices help in evading strong bounds on the variation of

masses for nuclei inside stars [41]).

We furthermore assume the field a lies close to a local

minimum of Ue(a) and Um(a) and Vax(a) so they can all be

approximated as being quadratic in a. Here we use the sub-

script m to refer to Dark Matter and e to refer to electrons.

This type of quadratic form is useful (as opposed to linear,

10 We do so here purely by tuning, though ultimately one hopes this

could also be arranged using the relaxation mechanism of [40], although

at face value this would not produce a potential Vdil(φ) + Vax(a) of the

simple additive form chosen here. Further exploration of this point is a

work in progress.

11 For axions arising from internal rephasing symmetries the poten-

tial is trigonometric in ã and so choosing a quadratic form assumes

ã ≪ 1. The reasoning is slightly different for axions arising as the

dual of a two-form Kalb–Ramond potential Bμν , however, since in this

case a quadratic potential follows as the leading term in the low-energy

derivative expansion [60].
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say) because it allows many constraints on axion-matter cou-

plings to be evaded. Higher powers of a−ai can be neglected

by assuming a − ai is always small, and if so consistency

requires we also drop higher powers of Ui when these arise

within the field equations (more about which below). We do

not assume the minima of the coupling functions coincide

with one another or with the minimum of Vax. This leads to

the representation

Um(a) ≃
(a − am)2

2�2
m

(14)

and

Ue(a) =
(a − ae)

2

2�2
e

+ · · · , (15)

where �i is a characteristic scale of the microscopic theory.

In cosmology and the solar system the matter sector is

described by an effective fluid, with components whose

(Einstein-frame) energy density, ρi , and pressure, pi , are

subject to an equation of state. In a regime where the matter

to which the scalars are coupled is nonrelativistic the field

equations for φ and a are obtained by substituting ρi →
ρi (φ, a) = m(φ, a)ni for each species of particle, where ni

is the particle density and the field-dependent Einstein-frame

mass is given by mi (φ, a) = A(φ)[1 + Ui (a)]mi0 (see [42]

for a detailed derivation).

The result for the scalar field equations is

�φ = (W W ′)(∂a)2 + ∂φVeff , (16)

(where the prime denotes differentiation with respect to φ)

and
1

√−g
∂μ

[√
−gW 2(φ)∂μ

a

]

= ∂aVeff . (17)

In these expressions the matter-dependent effective potential

seen by the scalars is

Veff(φ, a) = V (φ, a) +
∑

i

mi (φ, a) ni

= V (φ, a) + ρnr(φ, a), (18)

where ρnr =
∑

i ρi is the total energy density of the non-

relativistic fluid to which the scalars couple. It follows that

∂φVeff = V ′
dil(φ) +

(

A′

A

)

∑

i

ρi (φ, a)

= V ′
dil(φ) −

βρnr

Mp

, (19)

and

∂aVeff = V ′
ax(a) +

∑

i

(

U ′
i

1 + Ui

)

ρi (φ, a)

≃ V ′
ax(a) +

∑

i

U
′
i ρi (φ, a), (20)

where the final, approximate, equality drops subdominant

powers of Ui , for the reasons described above Eq. (14). With

the above choices the model is fully specified.

For future purposes two things are noteworthy about

Eqs. (16) through (18). First, notice that in the presence of

matter the axion field is displaced from its vacuum value

a = 0, moving towards the value ae or am depending on

whether the electron or Dark Matter density dominates. Sec-

ond, notice that in the presence of an axion gradient the W -

dependent terms of (16) themselves contribute as if the dila-

ton sees a gradient-dependent additional potential energy

δVW = 1
2

W 2(φ)(∂a)2. (21)

These are key features for the screening mechanism

described below since (if large enough) the matter-dependence

of the axion potential generates an axion gradient inside suf-

ficiently large and dense macroscopic objects. But then the

axion gradient makes δVW nonzero, causing the dilaton to dif-

fer outside the source relative to the naive sum over the dilaton

couplings of the source’s constituents. But once the param-

eters for these interactions are adjusted to ensure screening

occurs the same terms also change the evolution of a and φ in

the early universe, due to the presence there of large densities

of matter.

2.2 Criteria for screening and constraints

We next summarize the screening mechanism of [41] (those

already familiar with this story can safely skip ahead to Sect.

3). To this end we assume the axion field is heavy enough

not to mediate a long-range force, with a range much smaller

than an AU ensured if max >∼ 10−16 eV. The dilation, on

the other hand, is instead assumed light enough to evolve

on cosmological times and so can mediate dangerous long-

range forces. The idea is to choose axion-matter couplings so

that macroscopic sources generate axion gradients and then

to exploit the dilaton response to these gradients to reduce

(i.e. ‘screen’) the source’s effective ‘dilaton charge’. Screen-

ing occurs once two ingredients are in place: appropriate

axion-matter couplings (to generate an axion gradient within

or near the source) and derivative axion-dilaton couplings (so

the axion gradient can modify the dilaton profile).

2.2.1 The Brans–Dicke problem

In regions where the vacuum dilaton potential and gradients

of the axion field are both negligible the dilaton equation (16)

becomes

�φ ≃ ∂φVeff(φ) ≃ −
βρ

Mp

, (22)

where β is defined in (6) and the last equality uses (19). If

this equation holds both inside and outside a nonrelativistic
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matter source (e.g. a star) then the field is unscreened and the

static spherically symmetric solution for the field outside the

source becomes

φ(r) = φ∞ −
βM

4π Mpr
. (23)

Such a solution describing the field outside the Sun can be

ruled out within the solar system if β >∼ O(10−3) [18]. The

goal is to exploit the axion-dilaton and axion-matter cou-

plings to reduce the size of the coefficient of 1/r in (23) to

acceptable levels without reducing β.

A remark about the quantity φ∞ proves useful later. In

the naive telling of the story φ∞ is an integration constant

obtained by demanding continuity with any spatially homo-

geneous asymptotic value taken at infinity. More generally,

φ∞(t) can be be a function of time chosen to satisfy the

asymptotic field equation far from the source, such as a cos-

mological solution. But in truth the approximation of spher-

ical symmetry usually breaks down at a finite distance from

the source because the residual fields from other nearby

sources start to contribute appreciably. In this case φ∞ would

be chosen by matching to the value of the field at a radius

close enough to be dominated by the spherically symmetric

field of the nearest source, rather than further away.

The precise value of φ∞ often does not really matter, how-

ever, since any accidental shift ‘symmetry’ of the equations

of the form φ → φ + c (for constant c) can make φ∞
drop out of observable quantities. In the screening mecha-

nism described here, however, the axion-dilaton interaction

breaks the dilaton shift symmetry and so ensures the energy

of the field depends on φ∞ and because of this its value in

the ground state is instead determined by minimizing the

energy. Agreement with ambient fields far from the source

is then obtained at the cost of gradient energy, which can be

much less expensive if the sources are more widely separated

from one another compared to their size (see [41] for more

details).

2.2.2 The screening mechanism

As described above, for axion-matter couplings we assume

that it assigns an axion-dependence to particle masses in the

Jordan frame, with mi = mi0[1 + Ui (a)] and the functions

Ui and the axion potential approximated by

Ui (a) ≃
(a − ai )

2

2�2
i

, (24)

where i = e, m respectively denotes electrons and Dark Mat-

ter. The axion potential in vacuum, Vax, is as given in (12).

Inside a macroscopic object (like the Sun) whose electron

density dominates the ambient Dark Matter density this type

of interaction implies the axion ‘sees’ an effective matter-

dependent scalar potential of the form

Vax eff(a) ≃ Vax(a) + me0 Ue(a) ne

≃ Vax(a) + me0

m N
U(a) ρB, (25)

where electrical neutrality implies the electron and baryon

number densities are equal and so we write ne = nB =
ρB/m N , where nB and ρB are the local baryon-number and

baryon-mass densities and mN is the nucleon mass. We

choose parameters such that the matter-dependent part of this

potential dominates the vacuum contribution for the kinds of

matter densities found in the Sun. Under these circumstances

we expect to find a ≃ ae deep inside matter, with fluc-

tuations about this value having a density-dependent mass

max(ρB, φ) = ma(ρB)/W (φ) where

m2
a
(ρB) ≃

me0 ne

�2
e

≃
ρe

�2
e

≃
(

me0

m N

)

ρB

�2
e

, (26)

and ρe is the energy density in electrons.

If the axion Compton wavelength inside matter is much

smaller than the distance over which ne changes appreciably

then the background axion profile, aad(x), can be approxi-

mated by the adiabatic result that satisfies ∂aVax eff |a = 0. If

it is also true that the axion mass in vacuum is much smaller

than its matter-dependent one then it can be shown that the

solution for aad(r) robustly tends to jump from 0 to ae within

a narrow width ℓ ∼ max(ne)
−1 near the source’s surface (see

[41] for details). In these circumstances the background axion

profile is well-approximated by a step function:

a = a(r) ≃ ae �(R − r), (27)

where R is the source radius and � is the Heaviside step-

function. Although these conditions are not strictly required

for screening, they do make its analysis particularly simple.

With these choices, the step in the axion profile generates

an axion gradient that is localized near r = R, and this in

turn – by virtue of (21) – generates a delta-function contri-

bution to the potential for the dilaton, localized near r = R.

As usual, the presence of a delta-function potential induces a

jump discontinuity in the derivative of the dilaton at r = R,

and this is how the axion gradient modifies the dilaton pro-

file. In particular, although the value of the radial derivative

∂rφ just inside the discontinuity is the usual one expected

in the absence of screening, the jump discontinuity implies

the derivative just outside is different, and if it is smaller the

effective dilaton ‘charge’ of the source has been reduced.

To quantify this, if the dilaton profile for r > R is written

as

φ = φloc −
L Mp

r
, (28)

where φloc and L are integration constants, then (as discussed

above) matching at the surface of the source would give L =
L0 := 2βG N M in the absence of screening. But keeping
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track of the jump discontinuity in ∂r φ when matching implies

L for the exterior solution is instead given by

L

R
=

L0

R
+

(

W W ′
)

r=R

(

R

2ℓ

)

ae
2

Mp

, (29)

where quantities like W W ′(φ) are evaluated at φ(R). The

effective dilaton charge of the source, including screening,

can be defined by writing L = 2βeff G N M , and if so it is

βeff and not β that must satisfy solar system constraints. The

dilaton charge is screened when L is smaller than L0, as is

the case when W ′ is negative.

2.2.3 Energetics

A complication to the above screening story is that βeff

depends on the value taken by φloc, because this appears in

the value φ(R) of the field where the axion gradient occurs.

As argued earlier, the way to determine the value for φloc

is by minimizing the energy of the fields generated by the

source.

There are two important φloc-dependent contributions to

the energy of the fields surrounding the source. The first of

these comes from the gradient energy of the dilaton field

exterior to the source,

Eext = 4π

∫ ∞

R

dr r2 φ′2

2
=

2π M2
p L2

R
, (30)

in which φloc enters through L due to the condition (29) and

for weakly gravitating sources we can compute the energy in

flat space. If this were the entire story then minimizing would

set L = 0, and thereby set the dilaton charge to zero (and

so perfectly screen the source from the dilaton). This is not

quite what happens because there is another φloc-dependent

contribution to the energy, given by the axion and dilaton gra-

dients interior to the source. For weakly gravitating sources

these contribute

Ein = 2π

∫ R

0

dr r2
[

W 2(φ)(a′)2 + (φ′)2
]

≃
π R2

ae
2

ℓ

(

W 2
)

r=R
, (31)

where the approximate equality evaluates the integral using

the narrow-width profile (27). Any other contributions to the

energy that are independent of φloc do not participate in the

minimization with respect to φloc and so can be dropped.

Further progress requires specifying the function W , so we

consider two representative cases. In the case of an exponen-

tial dependence of (7) we have W 2(φ) = exp[−ξφ/Mp] =
exp[−φ/�φ] and ref. [41] finds the effective dilaton charge

evaluated at the field that minimizes the energy is

βeff ≃
R

2ξG N M
(exponential W 2(φ) ). (32)

On the other hand, when W 2 has a minimum, as in (8), we

have W 2 = W 2
⋆ + 1

2
(φ −φ⋆)

2/�2
φ and the resulting effective

dilaton coupling turns out in this case to be

βeff ≃
β

1 + (R/ℓ) ae
2

4�2
φ

(quadratic W 2(φ)). (33)

This can also be much smaller than β if the denominator is

large, as can happen if ae
2/�2

φ ≫ 1 and/or the width ℓ of

the axion profile is sufficiently narrow relative to the source

radius R.

2.2.4 Benchmark values

This section establishes benchmark parameters that satisfy

the above simplifying assumptions. When making these esti-

mates we use the convention described below Eqs. (6) and (7)

that the present-day value for A and W is A(0) = W (0) = 1.

For applications to screening we assume the present-day

axion mass in matter for typical solar densities, ne ∼ n⊙, to

be (c.f. Eq. (26))

max(n⊙) ∼
(

men⊙
�2

e

)1/2

∼ 2 × 10−12 eV, (34)

so that its Compton wavelength is of order ℓ ∼ 100 km

(much smaller than the solar radius). For a representative

solar electron density of n⊙ ∼ 1024/cm3 ∼ 1010 eV3 – and

so ρe⊙ ∼ men⊙ ∼ 1016 eV4 – this size of an axion mass

in matter determines the coupling scale to be �e ∼ 1011

GeV. We take the vacuum axion mass to be a thousand times

smaller (to ensure the step occurs near the solar surface), and

so take

max = ma ∼ 2 × 10−15 eV. (35)

This choice also ensures the axion does not mediate a long-

range force in the solar system and that its mass is larger than

the Hubble scale during post nucleosynthesis cosmology.

The electron-axion coupling also implies a field-dependence

to the electron mass and so one must also check that the gra-

dients in the axion field required by screening are not ruled

out by what we know about electron properties on Earth and

in the Sun. This could show up in precision measurements

of atomic properties, such as through a position-dependence

it predicts for the electron/nucleon mass ratio (see [61] for

recent constraints). To evade these bounds we require that

δme/me = Ue remain smaller than 10−15, which given the

form (24) implies we require

ae
2

�2
e

<∼ 10−15. (36)

For �e ∼ 1011 GeV this implies |ae| <∼ 3 × 103 GeV.

Next we ask for sufficient screening in the solar system:

βeff/β <∼ 10−3 as suggested by the Cassini bound [18] if
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β ∼ O(1). For exponential W 2 Eq. (32) shows this is a

condition on �φ alone. Using that G N M/R ∼ 10−6 for the

Sun shows sufficient screening implies

ξ >∼ 109, (37)

and so

�φ <∼ 109 GeV (exponential W ). (38)

The screening criterion in the case of quadratic W 2 requires

(R/ℓ)[ae
2/4�2

φ] >∼ 103β. Taking the radius of the sun to be

7 × 105 km, the above choice for max(n⊙) implies R/ℓ ∼
7 × 103 and so

�φ <∼
ae√
β

(quadratic W ). (39)

Combined with the above upper bound on W |ae| this implies

W⋆�φ <∼ 3 × 103 GeV. We remark in passing that the con-

straint on βeff(n⊙) can be slightly stronger (∼ 10−4) if for

the parameters chosen the sourcing of the dilaton by plan-

ets is not also screened, since in this case the constraints –

such as coming from the precession of perihelia – involve the

product βeff(n⊙) βeff(nP) rather than β2
eff(n⊙). It is also true

that partial screening erodes the protection that Brans–Dicke

models otherwise have against tests of the equivalence princi-

ple, making these more dangerous than they might otherwise

have been (see [41] for more details).

A final concern comes from general bounds on axion

decay constants, coming from energy loss from supernovae

and massive stars [62]. Because these involve axion emis-

sion they are very sensitive to couplings to matter that are

linear in the axion field. This makes them less constraining

for quadratic couplings (see for example [63,64]) like the

ones considered here, because for these radiation must occur

by emitting two particles simultaneously whenever the back-

ground axion sits at the minimum a = ae. There can be lin-

ear emission from regions where aad deviates from ae but in

our case these regions are restricted to the surface of the star,

where temperatures and densities are much smaller. Although

these constraints have not yet been worked out in detail for

the specific models of interest here, the preliminary estimates

in [41] suggest that the above choices for W�e remain viable.

3 Axion evolution and early dark energy

We now turn to the cosmological implications of the screen-

ing mechanism discussed above. It is known that the axion-

dilaton interaction plays a central role in the cosmological

dynamics of axio-dilaton models [38,40,42], and the axion-

matter interactions required for screening can change things

even more because of the matter-dependent axion poten-

tial they generate. In particular, we show here how these

axion-matter interactions can provide a robust new produc-

tion mechanism for a form of early dark energy.12

We start with the study of background evolution for the

coupled matter/axio-dilaton system, deferring the discussion

of their cosmological perturbations to the next sections. For

the axion the background evolution also splits up into two

types of motion: slow evolution on timescales similar to the

Hubble scale superimposed on rapid oscillations about the

slower evolution. This section describes each of these in turn.

3.1 Adiabatic axion evolution

Much of the background axion dynamics can be simply

understood using the time-dependent effective scalar poten-

tial (18) seen by the axion (including matter-dependent

terms). This potential is time-dependent because it depends

on both φ and the particle densities ni of the nonrelativis-

tic matter to which the axion couples. When the evolution

is adiabatic the axion’s central value simply traces out the

time-dependent minimum of this potential.

3.1.1 Matter-dependent axion potential

With the choices outlined in the previous sections the effec-

tive potential experienced by the scalars is given by

Veff(φ, ni , a) = Vdil(φ) + 1
2

m2
a
a

2

+ A(φ) me0 ne

[

1 +
(a − ae)

2

2�2
e

]

+ A(φ) mm0 nm

[

1 +
(a − am)2

2�2
m

]

, (40)

of which the axion-dependent part can be written

Va eff(φ, ni , a) = 1
2

m2
a

[

a
2 + Ce(a − ae)

2

+ Cm(a − am)2
]

, (41)

which defines

Ci (t) :=
A(φ) mi0 ni (t)

m2
a
�2

i

=
ρi0(t)

ρi th
, (42)

where ρi0 := A(φ) mi0ni differs from the corresponding

(Einstein-frame) matter energy density, ρi , by the difference

between mi0 and the full mass mi = mi0[1 + Ui (a)] given

in (13). This difference is not important in practice in the

regime where Ui (a) ≪ 1, as is required for the approximate

equality in the axion equation in (19) to be valid.

12 We highlight this as a novel production and removal mechanism for

early epochs of Dark Energy, with no claim that the result resolves the

Hubble tension (as was Early Dark Energy’s initial motivation [48]).
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The threshold value

ρi th := m2
a
�2

i = (100 eV)4
( ma

10−15 eV

)2
(

�i

1010 GeV

)2

,

(43)

denotes the density above which the matter-dependent terms

dominate the vacuum term, and the above representative val-

ues are chosen motivated by the benchmarks used when

discussing screening (see the discussion surrounding (35)).

Notice that these give threshold densities that are achieved

by the Hot Big Bang plasma during the interval after nucle-

osynthesis and before recombination.

Taking two derivatives defines the density-dependent

axion mass parameter

m2
a eff := ∂2

a
Veff = m2

a

(

1 + Ce + Cm

)

. (44)

Notice that this implies the axion mass asymptotes to

ma eff → ma in the future (once ρi0 ≪ ρi th) but falls with

the matter density, ma eff ∝ a−3/2, in the remote past (when

ρi0 ≫ ρi th).

Denoting the minimum of the potential (41) by aad(t), one

finds

aad(t) =
m2

a

m2
a eff

(

Ce ae + Cm am

)

=
Ce ae + Cm am

1 + Ce + Cm

. (45)

This is a function of time in a cosmological context because

φ, ne and nm are time-dependent, with both particle densities

falling monotonically ni ∝ a−3 where a(t) is the metric’s

scale factor. At sufficiently late times the vacuum contribu-

tion dominates Veff and so eventually aad → 0 , as in simpler

axion cosmologies. At sufficiently early times, on the other

hand, it is the matter contributions that dominate. Assuming

the electron contribution is much smaller than the Dark Mat-

ter contribution – as is very likely given the strong constraint

(36) – then aad(t) → am at very early times.

The axion part of the potential evaluated at its minimum

is

V a eff(φ, ni ) := Va eff [φ, ni , aad(φ, ni )]

= 1
2

m2
a

1 + Ce + Cm

[

Ceae
2 + Cmam

2

+ CeCm(ae − am)2
]

, (46)

which depends on time as well as φ because of the appearance

of ni (t) within the Ci ’s. Notice that although the potential

Va eff(φ, ni , a) given in (41) satisfies

Va eff(φ, ni , a) = Va eff (φ, n̄i , a)

+
∑

i=e,m

A(φ) mi0

2�2
i

(ni − ni )(a − ai )
2,

(47)

the same is not true of (46) due to the change in aad that a

shift ni → ni generates.

At very late times V a eff → 0 – and so V eff → Vdil(φ)

– because ni → 0 implies Ce, Cm → 0 and so aad → 0.

For Ce ≪ Cm ≪ 1 Eq. (46) implies V a eff ≃ 1
2

m2
a
Cma

2
m and

so falls with the universal expansion proportional to a−3.

At very early times, however, the matter-dependent terms

dominate and we instead have Ci ≫ 1 and so V a eff →
V a in(φ) – implying V eff → Vdil(φ)+ρe0 +ρm0 + V a in(φ)

– with a large-C expansion of (46) giving

V a in = 1
2

m2
a

[

CeCm

(Ce + Cm)
(am − ae)

2

+
(Ceae + Cmam)2

(Ce + Cm)2
+ · · ·

]

= 1
2

m2
a

{(

ρe0

ρe th

)

(am − ae)
2

1 + R
+

(am + Rae)
2

(1 + R)2
+ · · ·

}

(48)

where the second line defines the time-independent ratio

R :=
Ce

Cm

=
(

me0

mm0

)(

ne

nm

)(

�m

�e

)2

. (49)

Notice that the leading term in (48) is proportional to ne

and so falls like 1/a3, but it also vanishes in the limit either

Ce or Cm vanish (or if am = ae). This makes it in practice

very small because of mass-variation contraints like (36) that

require Ce to be small. This allows the first subleading term

to dominate,

Va in ≃
m2

a
(am + Rae)

2

2(1 + R)2
, (50)

which is time-independent because it depends on φ and ni

only through the small time-independent ratio13 R. Va in

becomes 1
2

m2
a

am
2 if R is negligible, as is intuitive because

in this limit the dominance of the Dark Matter contribution in

(45) pulls aad → am and this nulls out the Dark Matter part of

Va eff , allowing the vacuum contribution 1
2

m2
a
a

2
m dominate.

For later purposes it is useful to isolate the evolution of

the vacuum part of the axion potential, evaluated using the

solution (45):

V a ax(φ, ni ) := 1
2

m2
a
a

2
ad(t) ≃ 1

2
m2

a

(

Cmam

1 + Cm

)2

, (51)

where the approximate equality again drops the contributions

involving Ce. As described above, this is what dominates

V a eff at early times, leading in the Cm ≫ 1 limit to the

constant V a eff ≃ V a ax ≃ 1
2

m2
a
a

2
m . By contrast, once Cm

13 Notice that R can depend on position once inhomogeneities are

included to the extent that the Dark Matter and electron distributions

differ from one another.
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becomes much smaller than unity – i.e. once ρm0 ≪ ρm th –

we instead have

V a ax(φ, ni ) ≃ 1
2

m2
a
C

2
ma

2
m ∝

1

a6
. (52)

It is the vacuum axion potential V a ax that is plotted with the

label ‘axion’ in e.g. Fig. 1.

3.1.2 Interpretation as early dark energy

The above arguments show how the background axion energy

behaves like a novel form of Early Dark Energy (EDE) inas-

much as it remains approximately constant until eventually

falling off to zero once ρm0 <∼ ρm th (or Cm <∼ 1). Unlike

standard EDE models this energy turns itself off without any

need for vacuum phase transitions, because this is automati-

cally accomplished by the changing matter density once ρm0

falls below ρm th.

Equations (45) and (46) show that the maximal fraction of

energy associated with this type of early dark energy occurs

at the epoch t⋆ defined by ρm0(t⋆) = ρm th (as may also be

seen in our later numerical evaluation, such as shown in the

first panel of Fig. 1). Denoting the total energy at this time

by ρtot ⋆ = ρtot(t⋆), we find the maximum fraction of EDE

(i.e. in the background axion) is given by

fEDE =
V a eff(φ, ni )

ρtot

∣

∣

∣

∣

∣

ρm0=ρm th

≃
m2

a
a

2
m

4ρtot ⋆
, (53)

where the last approximate equality comes from evaluating

(46) at Ce ≃ 0 and Cm = 1.

In the normal telling of the EDE story, to have the desired

effect on recombination physics requires this maximal frac-

tion to arise around the era of matter-radiation equality,

t⋆ ≃ teq. The value of �m required to ensure this is true

is found by remarking that t ≃ teq implies ρm + ρb ≃ ρr

(where ρr and ρb are the energy density of radiation and

baryons respectively) and so ρm + ρb ≃ 1
2
ρtot. Neglecting

ρb relative to ρm and choosing t⋆ ≃ teq then implies

ρtot ⋆ ≃ 2ρm = 2ρm0 [1 + Um(aad)] ≃ 2ρm th, (54)

where the last equality uses the definition of t⋆ as well as

Um(aad) ≪ 1. Plugging this into (53), we therefore evaluate

the axion’s maximum EDE fraction as

fEDE ≃
m2

a
a

2
m

8ρm th
≃

a
2
m

8�2
m

= 1
4

Um(a = 0). (55)

3.1.3 Criteria for adiabatic evolution

The minimum configurationaad(t)matters to the extent that it

provides an accurate solution to the axion equation of motion

in a cosmological context, which is true within the adiabatic

approximation. To see why, notice that in a cosmological

setting the field equation satisfied by homogeneous configu-

rations, φ(t), a(t) and ni (t), becomes

ä + 3Haȧ +
m2

a eff

W
2

[

a − aad(t)
]

= 0, (56)

which uses the notation W := W (φ) and ma eff :=
ma eff(φ, ni ) and

Ha := 1
3
∂t ln W

2 + H, (57)

where H = ȧ/a is the Hubble scale. In (56) aad(t) is

the configuration introduced above that is defined to satisfy

∂aVeff = 0. So long as φ also only varies significantly over

Hubble times, we have Ha = O(H). The adiabatic solution

to (56) assumes the hierarchy

max eff(t) =
ma eff

W
≫ Ha, (58)

since in this case the axion follows the minimum of the effec-

tive potential, a(t) ≃ aad. The growth of the axion mass as

a → 0 in the regime where ρi0 ≫ ρi th makes the adiabatic

approximation better and better the earlier in the universe’s

history we go. In what follows we work in a regime where

this is a good approximation in all post-BBN epochs. This

assumption is also consistent with the choices for ma that

allow the screening of the dilaton in the solar system.

The properties of aad explored in Sect. 3.1.1 imply that an

adiabatically evolving axion at the background level interpo-

lates between a cosmological constant early in the Universe

and an extra component of Dark Matter at late times. As noted

earlier, no phase transitions are required to have the EDE turn

off and not dominate the universe perpetually since the tran-

sition is instead achieved through the matter-dependence of

the effective scalar potential.

There is considerable latitude in precisely how large Va in

can be in such a scenario because this depends on the rela-

tive size of the vacuum and matter-dependent parts of Veff .

The larger the vacuum component, Vax, the earlier Va in tran-

sitions from constant to something falling proportional14 to

ni . The maximum total fraction of the universal energy den-

sity invested in EDE occurs at this transition given by (53)

with �m controlling when ρm0 ∼ ρm th. To get an idea of

what is involved, if we choose this to occur at the epoch

14 An interesting possibility is to have the axion itself be Dark Matter.

This can be achieved by placing the EDE transition at or before nucle-

osynthesis, since in this case the axion will have already transitioned

to the minimum of its vacuum potential by nucleosynthesis, recover-

ing the model described in [38] (with an additional coupling between

the axion-as-CDM and electrons). As will be shown below, imposing

screening in this case however causes there to be an extremely strong

interaction between the axion and dilaton, as seen in (160). This cou-

pling destabilises the dynamics of the dilaton if the axion CDM is ever

a dominant component so we do not pursue this option further here.
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of radiation-matter equality (as discussed above) then we

find that taking ρm th = m2
a
�2

m ≃ 1 eV4 in (43) implies

�m ∼ 106 GeV if we use the benchmark value ma ∼ 10−15

eV discussed above, in the screening section. Notice that this

choice together with those made for the screening bench-

marks around Eq. (35) imply that all of the factors appearing

in (49) are small, justifying the choice R ≪ 1.

3.2 Beyond adiabatic evolution

The speed of convergence of nonadiabatic homogeneous evo-

lution a(t) towards the adiabatic solution aad can be studied

by defining δa = a − aad and rewriting the axion field equa-

tion as

∂t

[

W
2
a3∂tδa

]

+ a3m2
a effδa = −∂t

[

W
2
a3

ȧad

]

, (59)

where ȧad = ∂taad. A particular integral of this equation is

δap = −
1

a3m2
a eff

∂t

[

W
2
a3

ȧad

]

, (60)

in the approximation ma eff ≫ H – assuming all the back-

ground quantities satisfy ḟ / f ∼ O(H) – because the first

term on the left-hand side of (59) is subdominant in this limit.

This particular solution is suppressed relative to aad itself by

powers of H/ma eff and so becomes a negligible correction

in the strict adiabatic limit.

To understand fully the approach to aad we require the

general solution to (59), which is obtained by adding to (60) a

general solution to the homogeneous equation with no source

term: δa = δap + δah . The homogeneous solution is given

at leading order in ma eff/H by

δah ∼
√

2C
√

a3W ma eff

cos

[∫

m(t) dt − S0

]

, (61)

where C and S0 are integration constants and m(t) :=
max eff(t) = ma eff/W is the physical matter-dependent mass

first seen in (58) that approaches the vacuum mass max –

defined below (12) – as ni → 0. This solution describes the

well-known damped oscillations whose amplitude decreases

with time as the axion reverts to the adiabatic solution aad.

The adiabatic solution is an attractor for nearby solutions

within a finite basin of attraction.

The energy density of these homogeneous oscillations is

ρ̄osc = 1
2

W
2
(δȧ)2 + 1

2
m2

a effδa
2, (62)

which for ma eff ≫ H evaluates to

ρ̄osc =
Cm(t)

a3
=

Cma eff

Wa3
, (63)

and so mimics the background matter density of a fluid com-

prised of particles of mass m(t) and conserved number den-

sity

na(t) :=
ρ̄osc

m(t)
=

C

a3
. (64)

The existence of rapid oscillations with frequency much

larger than the Hubble scale complicates the numerical gen-

eration of cosmological solutions to the field equations, since

reliably calculating in the regime ma eff ≫ H requires sim-

ulations with an enormous dynamic range. We deal with this

issue below by integrating out the fast oscillations to obtain

an effective fluid description of the much slower transfer

of energy over Hubble timescales (for both background and

fluctuations). These techniques were developed long ago in

[65–67] (and revived more recently [52,68–71]) and our pur-

pose in the next sections is to extend these to include the

multifield axio-dilaton case.

3.3 Axion-driven dilaton instability

Before treating the axion fluid, we first digress to discuss one

consequence of axion evolution for the dilaton that provides

a useful guide when interpreting our later numerical calcu-

lations. Axion evolution affects how the dilaton evolves due

to the presence of the derivative dilaton-axion interaction.

This is much like in the screening mechanism, though there

is an important change of sign for time-dependent axions

compared with spatially varying axion profiles.

To see why, recall that the equation for a homogeneous

dilaton, φ̄, in a cosmological background spacetime is

¨̄φ + 3H ˙̄φ − ȧ
2
adW (φ̄)W

′
(φ̄) = −∂φVeff(φ̄), (65)

where W
′ := ∂φW (φ̄) and we assume the axion field is

homogeneous and evolves adiabatically: a = aad. (Fluctu-

ations are described more fully in later sections.) For the

present purposes the important term is the last one on the

left-hand side, which for given aad has the effect of adding a

new term to the effective potential seen by the dilaton, of the

form (see e.g. Eq. (21))

δVW (φ) = − 1
2

ȧ
2
adW 2(φ). (66)

What is important about this contribution is that it is neg-

ative definite15 and so it favours φ seeking out regions that

maximize the size of W (which in turn tends to suppress axion

interactions). Whether this is a catastrophe or not depends

on what other forces are pushing on φ and whether they can

successfully compete. We find below, for example, that for

W ∝ e−ξφ/Mp – as in (7) for instance – the tendency for this

term to drive φ to smaller values is countered by the tendency

of the potential (10) to push it to larger values.

15 The unusual sign is required to properly capture motion along target-

space geodesics (in the absence of other forces) [72] and has been rec-

ognized to allow unusual cosmologies as these models started being

explored in more detail [40,42,73].
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In the case of quadratic kinetic coupling W 2(φ) Eq. (65)

becomes

¨̄φ + 3H ˙̄φ −
ȧ

2
ad(ρ)

2�2
φ

(φ̄ − φ⋆) = −∂φVeff(φ̄), (67)

showing how axion evolution induces a tachyon-like mass

term for φ, which competes with the dynamics driven by

the effective potential. Using (44) in (45) and differentiating

gives in the limit

ȧad = −
(

βφ̇ + 3H
)

(

ρe0

ρe th
ae + ρm0

ρm th
am

)

(

1 + ρe0

ρe th
+ ρm0

ρm th

)2

≃ −
(

βφ̇ + 3H
)

am

ρm0/ρm th

(1 + ρm0/ρm th)2

(when ρe0/ρe th is negligible). (68)

we see that the tachyonic term has the largest effect when

ρm0 ∼ ρm th; i.e. at the axion’s transition between the early

dark energy to the late matter-like behaviour.

In this transition regime we have ρm0 ∼ ρm th and so

ȧ
2
ad

�2
φ

≃
(

βφ̇ + 3H
)2 am

2

16�2
φ

. (69)

Instabilities can be important if this dominates other contribu-

tions to the dilaton equation, which for cosmological evolu-

tion are typically O(H2) in size. This indicates that problems

with runaway solutions need not be an issue if |am | ≪ �φ ,

but could become problems otherwise. We return to this

observation in Sect. 6 below, where we present numerical

analyses of models with various choices for W and V .

4 Sigma-model interactions and the axion fluid

This section describes more fully how to handle the slow evo-

lution in the energy of the fast oscillations around aad. This

can be done cleanly in the limit max eff ≫ H because then

the oscillations are much faster than the time scale govern-

ing the evolution of the other cosmologically evolving fields.

Our purpose is to extend the techniques of [52,65–71] to

include the multifield axio-dilaton case. We do so in enough

generality that the results of this section can also be used for

non-cosmological applications, such as when testing GR in

the solar system.

We have seen that the amplitude of homogeneous oscil-

lations around the background decreases with the Univer-

sal expansion leading to an energy density that behaves like

Dark Matter. Once inhomogeneous fluctuations are consid-

ered axion oscillations behave like a fluid with its own back-

ground and perturbations. The dynamics of this axion fluid

are obtained by integrating out the fast modes (i.e. the oscil-

lations) to obtain the effective description of the much slower

evolution (i.e. the slow variation of the oscillation amplitude

and the initial phase).

We here set up the fluid description that is evolved numer-

ically in later sections, doing so fairly explicitly because pre-

vious treatments did not have the two-derivative scalar-scalar

interactions (and because the behaviour of axio-dilaton sys-

tems can be of wider interest than just cosmology).

4.1 Integrating out rapid oscillations

The decoupling process averages over the fast oscillations

[67], leaving a low-frequency effective field theory. From

the point of view of averaging over fast axion motion we

can regard the quantities gμν(x), φ(x) and ni (x) as specified

background configurations that vary only slowly in space and

time. At a later point we specialize these to small fluctuations

about a homogeneous background, φ = φ(t) + δφ(x), ni =
ni (t) + δni (x) and so on, but we need not do so yet here

with the exception of the frequency of the rapid background

oscillations.

To this end we change variables from a to ψ where

a(x) = a(x) +
1

√
2 m(t)

[

e−i
∫ t

0 dt ′ m(t ′)ψ(x)

+ ei
∫ t

0 dt ′ m(t ′)ψ⋆(x)
]

, (70)

where – as in (61) – for brevity of notation we define the

physical mass evaluated at the background dilaton and matter

densities,

m2(t) :=
m2

a eff(φ, ni )

W 2(φ)
=

m2
a eff

W
2

as opposed to

m2
ax eff(x) =

m2
a eff(φ, ni )

W 2(φ)
. (71)

Notice we do not (yet) similarly refer a to the homogeneous

background, and so it remains the local minimum of the

potential even as φ and ni vary in position.

The evolution of the slowly varying fields a and ψ are

found by inserting this ansatz into the axionic action and

coarse-graining the result by performing the integration over

a region M of spacetime much larger than the oscillation

frequency and wavelength, but much smaller than the scales

over which gμν , φ and ni vary in cosmology. This leads to

the effective lagrangian density for ‘slow’ evolution of the

form

〈

Lax

〉

:= −
1

VM

∫

M

d4x
√

−g
[

1
2

W 2(φ)gμν∂μa ∂νa

+ Va eff(a)
]

, (72)
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where VM is the volume of M and the effective potential is

given by (41), which for the present purposes we write as

Va eff(a) = V a eff(φ, ni ) + 1
2

m2
a eff(φ, ni ) (a − aad)

2, (73)

at each spacetime point x . Here ma eff and aad are as defined

in Eqs. (44) and (45) and V a eff(φ, t) = Va eff(a = aad), as

defined in Eq. (46).

We evaluate the action using the derivatives

ȧ = −
i

√
2

[

e−i
∫ t

0 dt ′ m(t ′)ψ(x) − ei
∫ t

0 dt ′ m(t ′)ψ⋆(x)
]

+ ˙̄a +
1

√
2m

[

e−i
∫ t

0 dt ′ m(t ′)
(

ψ̇ −
ṁ

m
ψ

)

+ ei
∫ t

0 dt ′ m(t ′)
(

ψ̇⋆ −
ṁ

m
ψ⋆

)]

, (74)

where in the regime of interest the first line is systematically

larger than the second line. Spatial derivatives are all para-

metrically small and are given by

∇a = ∇ā +
1

√
2m

[

e−i
∫ t

0 dt ′ m(t ′)∇ψ + ei
∫ t

0 dt ′ m(t ′)∇ψ⋆
]

.

(75)

Performing the coarse graining eliminates terms with

unequal powers of ψ and ψ⋆ and so gives

〈

Va eff

〉

= V a eff(φ, ni ) + 1
2

m2
a eff(φ, ni ) (a − aad)

2

+ 1
2

(

m2
a eff

m2

)

ψ⋆ψ

= V a eff(φ, ni ) + 1
2

m2
a eff(φ, ni ) (a − aad)

2

+ 1
2

W
2

(

m2
a eff

m2
a eff

)

ψ⋆ψ, (76)

and16

〈

gμν∂μa ∂νa

〉

= gμν∂μa ∂νa + gt tψ⋆ψ

+
gt t

m

(

iψ⋆ψ̇ − iψ̇⋆ψ
)

+
gi j

m2
∂iψ

⋆ ∂ jψ + · · · (77)

and so we arrive at the action given by (78).

〈

Lax

〉

= −
√

−g
[

1
2

W 2
〈

gμν∂μa ∂νa

〉

+
〈

Va eff

〉]

= −
√

−g

[

1
2

W 2gμν∂μa ∂νa + V a eff(φ, ni )

16 We drop mixed time and space derivatives because in later sections

we study metrics for which gti = 0.

+ 1
2

m2
a eff(φ, ni ) (a − aad)

2

+ 1
2

(

W 2gt t +
W

2
m2

a eff

m2
a eff

)

ψ⋆ψ +
W 2

2m
gt t

×
(

iψ⋆ψ̇ − iψ̇⋆ψ
)

+
W 2

2m2
gi j∂iψ

⋆ ∂ jψ + · · ·
]

(78)

The a-dependent terms of this action describe the correc-

tions to the adiabatic approximation, a = aad + δa, such

as (60) in the full theory before coarse-graining. The ψ-

dependent terms describe the slow evolution of the oscillating

part of the field.

The action Sa eff =
∫

d4x〈Lax〉 built from this lagrangian

can be varied with respect to gμν , φ and ψ to give the contri-

bution of axions to the metric, dilaton and background axion

evolution once the fast axion oscillations are integrated out.

For instance

T
μν
a eff = W 2(φ)

〈

∂μ
a ∂ν

a − 1
2

gμν (∂a)2
〉

− gμν
〈

Va eff(a)
〉

=
2

√−g

δSa eff

δgμν

, (79)

captures the axion-dependence of the Einstein equations,

including the axion-dependence of the masses on the cos-

mological nonrelativistic fluids. Differentiating (78) with

respect to φ similarly reproduces the coarse-grained version

of the right-hand side of the dilaton equation (16):

(W W ′)
〈

(∂a)2
〉

+
〈

∂φVeff

〉

= −
1

√−g

δSa eff

δφ
. (80)

Inhomogeneous fields are then described by expanding the

resulting field equations about their homogeneous solutions,

as for any other fluid, and (at leading order) dropping terms

that do not contribute to the evolution of linear fluctuations.

Before doing so, however, it is useful to re-express the axion

evolution in terms of an approximate conservation law since

this is convenient when deriving the evolution equations for

the cosmological fluid. It also suggests recasting the variable

ψ in a more directly physical way.

4.1.1 Axion dynamics and Madelung variables

Since averaging over fast oscillations removes all terms

involving unequal powers of ψ and ψ⋆ the lagrangian (78)

enjoys an emergent approximate global symmetry, ψ →
eiαψ . Part of the information in the field equation for ψ can

be traded for the conservation of the corresponding Noether

current, in much the same way as the field equation for a can

be regarded as expressing Noether’s theorem for the current

for the underlying axionic shift symmetry.

123



Eur. Phys. J. C          (2025) 85:1062 Page 15 of 33  1062 

The conserved current density for this symmetry is Jμ =
i
[

ψ⋆(δS/δ∂μψ⋆) − (δS/δ∂μψ)ψ
]

and so the charge and

spatial current densities

J t = −
√

−g gt t W 2

m
ψ⋆ψ, (81)

and

J i =
√

−g gi j W 2

2m2

[

i(∂ jψ
⋆)ψ − iψ⋆(∂ jψ)

]

, (82)

satisfy

∂t J t + ∂i J i = 0. (83)

This suggests defining the fluid-like Madelung variables [65]

ψ(x) :=
√

̺a(x) ei S(x), (84)

where ̺a parameterizes the axion fluid density and spatial

gradients of S will turn out to define the fluid velocity. With

these definitions the current components become

J t = −
√

−g gt t W 2

m
̺a, (85)

and

J i =
√

−g gi j W 2̺a

m2
∂ j S. (86)

In terms of the new variables the lagrangian density (78)

becomes 87

〈

Lax

〉

= −
√

−g

[

1
2

W 2gμν∂μa ∂νa + V a eff(φ, ni )

+ 1
2

m2
a eff(φ, ni ) (a − aad)

2 −
W 2̺a

m
gt t Ṡ

+ 1
2

(

W 2gt t +
W

2
m2

a eff

m2
a eff

)

̺a

+
W 2

2m2
gi j

(

̺a∂i S ∂ j S +
∂i̺a ∂ j̺a

4̺a

)

+ · · ·
]

(87)

so the field equation obtained by varying S is just the con-

servation law (83) once (85) and (85) are used. The equa-

tion obtained by varying ̺a on the other hand gives the

‘Hamilton–Jacobi’ equation

W 2

m
gt t Ṡ = 1

2

(

W 2gt t +
W

2
m2

a eff

m2
a eff

)

+
W 2

2m2
gi j∂i S ∂ j S −

W 2

8m2̺2
a

gi j∂i̺a ∂ j̺a

− Di

(

W 2

4m2
gi j ∂ j̺a

̺a

)

(88)

from which the evolution of the axion fluid velocity va is

obtained below. Here Di denotes the covariant derivative

built using the Christoffel symbols of the spatial metric gi j .

4.2 A useful class of metrics

For practical applications – such as to cosmology and to the

solar system – we now restrict to a special class of metrics.

In later sections we specialize further to small perturbations

around cosmological spacetimes. Consider therefore a metric

of the following form:

ds2 = −dt2
[

1 + 2�(x)
]

+ a2(t)
[

1 − 2�(x)
]

δi j dx i dx j , (89)

In our later applications we take �, � ≪ 1 and explore

perturbations about a spatially flat FRW metric, but we do

not do so immediately. For solar-system applications we take

a = 1.

4.2.1 Current conservation

For these choices the current (85) and (86) becomes

J t =
a3(1 + � − 3�)W 2̺a

m(1 + 2�)
, (90)

and

J =
a(1 + � − 3�)W 2̺a

m2(1 − 2�)
∇S, (91)

where spatial indices are now raised, lowered and contracted

using the flat metric δi j . Current conservation then implies

the axion ‘number density’ and fluid velocity

na :=
W 2̺a

m
and va :=

∇S

am
, (92)

satisfy

∂t

[(

1 + � − 3�

1 + 2�

)

na

]

+ 3H

(

1 + � − 3�

1 + 2�

)

na

+
1

a
∇ ·

[(

1 + � − 3�

1 − 2�

)

nava

]

= 0, (93)

where (as usual) H = ȧ/a and we use the expressions for Jμ

implied by Eqs. (85), (86) and (92). The definitions (92) are

motivated by the observation that they make Eq. (93) resem-

ble the conservation equation for a fluid with a conserved

number density na and velocity va .

Specialized to a homogeneous configuration � = � =
0 and na = ma(t) the conservation law (93) implies the

background density satisfies

na =
C

a3
, (94)
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for constant C . In the next section we compute the energy

density for this axion fluid and show that its evolution agrees

with the behaviour derived microscopically in (61) for the

energy density in homogeneous oscillations, showing how

these are captured in the fluid language by the background

evolution.

For weak gravitational fields Eq. (90) can be linearized in

� and � to become

J t ≃ a3(1 − � − 3�) na (95)

and

J ≃ a2(1 + � − �) nava (weak gravity) (96)

where the metric perturbations contribute to a small change

in current and density.

4.2.2 Euler equation

Using the metric (89) in (88) (after multiplying through by

mgt t/W 2) gives the evolution equation

Ṡ = − m

[

� + 1
2
(1 + 2�)

(

W
2
m2

a eff

W 2m2
a eff

− 1

)]

−
1

2ma2

(

1 + 2�

1 − 2�

){

∇S · ∇S

−
∇ ·

[

W 2
√

(1 + 2�)(1 − 2�)(∇√
̺a)

]

W 2√̺a

√
(1 + 2�)(1 − 2�)

}

, (97)

where we recall the definition m = ma eff/W made in

Eq. (71). Equation (97) allows Ṡ to be eliminated in future

expressions. The explicit expression for m2
a eff/m2

a eff appear-

ing here is

m2
a eff

m2
a eff

=
1 + (ρe0/ρe th) + (ρm0/ρm th)

1 + (ρe0/ρe th) + (ρm0/ρm th)
, (98)

with ρi0 := A(φ) mi0ni as defined just below Eq. (41) and

we recall ρi th = m2
a
�2

i . In Appendix A we use this to show

the relationship between the phase of the axion field and the

energy of axion particles recovers the standard expression

expected for particles in a galactic halo.

Taking the gradient of (97) gives the Euler equation gov-

erning the evolution of the axion fluid velocity, va. Written

in terms of the fluid momentum

pa = m(t) va, (99)

this reads

∂t pa + H pa = −
m

a
∇
{

� + 1
2
v2
a

(

1 + 2�

1 − 2�

)

+ �Q

+ 1
2
(1 + 2�)

[(

W
2
m2

a eff

W 2m2
a eff

)

− 1

]

}

,

(100)

where va is the modulus of va and we define the ‘quantum

pressure’ �Q by

�Q := −
1

2m2a2

(

1 + 2�

1 − 2�

)

×
∇ ·

[

W 2
√

(1 + 2�)(1 − 2�) (∇√
̺a)

]

W 2√̺a

√
(1 + 2�)(1 − 2�)

. (101)

4.2.3 Axion stress-energy

We next collect expressions for the axion fluid’s stress energy

– c.f. (79) — in terms of the fluid variables. Writing (as above)

〈Lax〉 = √−g P and specializing (87) to a homogeneous

background a(t) and to the metric (89) gives (102),

P =
W 2

ȧ
2

2(1 + 2�)
−

W 2(∇a)2

2(1 − 2�)
− V a eff(φ, ni )

− 1
2

m2
a eff(φ, ni ) (a − aad)

2 −
W 2̺a

m(1 + 2�)
Ṡ

+ 1
2
̺a

(

W 2

1 + 2�
−

W
2
m2

a eff

m2
a eff

)

−
W 2

2m2a2(1 − 2�)

(

̺a∇S · ∇S +
∇̺a · ∇̺a

4̺a

)

=
W 2

ȧ
2

2(1 + 2�)
−

W 2(∇a)2

2(1 − 2�)

− V a eff (φ, ni ) − 1
2

m2
a eff(φ, ni ) (a − aad)

2

−
∇ ·

[

W 2
√

(1 + 2�)(1 − 2�) ∇̺a

]

4m2a2
√

(1 + 2�)(1 − 2�)3
(102)

where the second equality eliminates Ṡ using (97) and

V a eff (φ, ni ) is given by (46).

This expression is useful when evaluating the energy den-

sity, ρax := −T t
t a(eff) = −gt t T

t t
a(eff), of the axion fluid.

Using (79) this becomes (103).

ρax = −gt t
{

W 2 ˙̄a2 + W 2ψ⋆ψ

+
W 2

2m

[

iψ⋆

(

ψ̇ −
ṁ

m
ψ

)

+ h.c.

]}

− P

=
1

1 + 2�

{

W 2 ˙̄a2 + W 2̺a −
W 2̺a

m
Ṡ

}

− P

=
W 2

ȧ
2

2(1 + 2�)
+

W 2(∇a)2

2(1 − 2�)
+ V a eff(φ, ni )

+ 1
2

m2
a eff(φ, ni ) (a − aad)

2 +
W 2̺av2

a

2(1 − 2�)
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+
̺aW 2(1 + �)

(1 + 2�)
+ 1

2
̺aW 2

[(

W
2
m2

a eff

W 2m2
a eff

)

− 1

]

+
W 2∇̺a · ∇̺a

8m2a2̺a(1 − 2�)
(103)

The first four terms of this expression describe the energy

of the background evolution a while the rest capture the

energy of the fluid describing fast axion oscillations. Notice

in particular that for homogeneous backgrounds (for which

gradients and va vanish) in the absence of a gravitational

field the fluid part of the energy becomes

ρ f = ̺
a

W
2 = m(t) na =

Cm(t)

a3
, (104)

where the second equality uses (92) for na and the last equal-

ity uses current conservation in the form given in (94). As

advertised, this precisely captures the energy of the underly-

ing homogeneous oscillation given in (64). Notice also that

(104) implies the usual matter-like dependence ρ f ∝ a−3 in

the late universe when the axion mass is time-independent,

but instead implies ρ f ∝ a−9/2 in the earlier universe when

m ∝ √
ρm0 ∝ a−3/2.

The other components of the energy momentum-tensor are

obtained in a similar way. Equation (79) reveals the energy

flux/momentum density is given by

U i
ax := T ti

a(eff) = W 2gt t gi j
〈

ȧ ∂ ja

〉

= W 2gt t gi j

[

ȧ ∂ ja +
1

2m

(

iψ⋆∂ jψ + h.c.
)

]

. (105)

The fluid part of this expression takes a familiar form once

expressed in terms of the potentials � and � and the fluid

variables:

Uax =
W 2

a2(1 + 2�)(1 − 2�)

(

̺a∇S

m

)

=
W 2̺ava

a(1 + 2�)(1 − 2�)
. (106)

The shear tensor similarly becomes

T
i j
a eff = W 2gik g jl

[

∂ka ∂la +
1

2m2

(

∂kψ⋆ ∂lψ + h.c.
)

]

+ gi j
P

=
W 2

a4(1 − 2�)2

[

∂ i
a ∂ j

a +
1

m2

(

̺a ∂ i S ∂ j S

+
∂ i ̺a ∂ j ̺a

4̺2
a

)]

+
Pδi j

a2(1 − 2�)

=
W 2

a4(1 − 2�)2

[

∂ i
a ∂ j

a + a2̺avi
a
v

j
a

+
∂ i ̺a ∂ j ̺a

4m2̺2
a

]

+
Pδi j

a2(1 − 2�)
, (107)

with its characteristic dependence on ̺avi
a
v

j
a when the fluid

is incompressible.

4.3 Linear perturbations

We next delve into the wonderous world of cosmological

perturbations by linearizing the above expressions about a

homogeneous cosmological background solution. To this end

we regard both gravitational potentials � and � to be small

and restrict to dilaton and matter configurations that are sim-

ilarly linearized around homogeneous backgrounds

φ = φ(t) + δφ(x) and ni = ni (t) + δni (x). (108)

We perform a similar split for the slowly evolving axion

oscillations, ψ = ψ + δψ , by choosing

na = na + δna and so ̺a = ̺
a
(t)

[

1 + δa(x)
]

(109)

and assuming the axion fluid velocity va vanishes in the back-

ground. If interested in post-Newtonian solar-system appli-

cations a natural choice for the size of the fluid speed is

v2
a

∼ � but in cosmology we instead drop v2
a

terms relative

to linearized fluctuations. (In the remainder of this section we

keep the v2
a

terms to keep our discussion general, but drop

them in our later numerical evolution.)

We assume that the background evolution is well-described

by adiabatic evolution – as is justified because subdominant

terms in H/max are negligible – and so a = aad everywhere.

This implies that a inherits the fluctuation structure (108) of

the fields φ and ni , with equation (110).

a(x) = aad(x) = aad(t)

+
δρe0
ρe th

[

ae + ρm0
ρm th

(ae − am)
]

+ δρm0
ρm th

[

am + ρe0
ρe th

(am − ae)
]

(

1 + ρe0
ρe th

+ ρm0
ρm th

)2

≃ aad(t) +

(

δρm0
ρm th

)

am

(

1 + ρm0
ρm th

)2

(when ρe0/ρe th is negligible), (110)

where we recall ρi th = m2
a
�2

i and note that δρi0 is given in

terms of δφ and δni by

δρi0 =
(

−βδφ +
δni

ni

)

ρi0. (111)

The same is also true for the axion mass, which becomes

m2
a eff

m2
a eff

=
1 + (ρe0/ρe th) + (ρm0/ρm th)

1 + (ρe0/ρe th) + (ρm0/ρm th)

≃ 1 +
δρe0

ρe th
+

δρm0

ρm th
+ · · ·

≃ 1 +
δρm0

ρm th
(when ρe0/ρe th is negligible), (112)
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The expansion of the current (90) then is Jμ = J
μ + δ Jμ

with

J
t = a3na, δ J t = a3

[

δna − na(� + 3�)
]

, (113)

and

J
i = 0, δ J i = a2 navi

a
, (114)

to linear order in the fluctuations. Current conservation there-

fore implies both na ∝ a−3 and

∂t

{

a3
[

δna − na(� + 3�)
]}

+ a2na∇ · va = 0. (115)

Keeping lowest nontrivial order in the fluctuations in the

Hamilton–Jacobi equation (97) gives

Ṡ ≃ −m(t)
[

1
2
v2
a

+ � + �φ + �ρ + �Q

]

, (116)

where the time-dependent mass appearing here is

m(t) =
ma eff

W
=

ma

W

(

1 +
ρe0

ρe th
+

ρm0

ρm th

)

, (117)

and we define the generalized potentials

�φ := −
W ′

W
δφ, �ρ := 1

2

(

δρe0

ρe th
+

δρm0

ρm th

)

, (118)

and the quantum pressure �Q defined in (101) linearizes to:

�Q ≃ −
1

2m2a2

[

∇2√̺a√
̺a

]

=
1

4m2a2

[

−
∇2̺a

̺a

+
(∇̺a)2

2̺2
a

]

. (119)

In terms of these potentials the relationship between δna

and δa obtained from (92) is

δna = na

(

δa +
δW 2

W
2

)

= na

(

δa − 2�φ

)

(120)

and the evolution of the axion fluid velocity is given by the

linearized Euler equation (100), which states

∂t pa + H pa = −
m

a
∇
[

� + 1
2
v2
a

+ �φ + �ρ + �Q

]

,

(121)

for pa = m(t) va.

The quantities relevant to the Einstein equations are the

linearized energy density and stress energy, given explicitly

in Eqs. (103) and (107). For the homogeneous background

these give the background pressure

Pax = 1
2

W
2
ȧ

2 − V a eff(φ, ni )

− 1
2

m2
a eff(φ, ni ) (a − aad)

2 ≃ −V a eff(φ, ni ), (122)

which only receives contributions from a and not from the

oscillatory fluid (as expected for a matter-type equation of

state). The approximate equality here uses the adiabatic

approximation that drops subdominant powers of H/m and

for which a ≃ aad.

The background energy density similarly is

ρax = 1
2

W
2
ȧ

2 + 1
2

m2
a eff(φ, ni ) (a − aad)

2

+ V a eff(φ, ni ) + ̺
a

W
2

≃ V a eff(φ, ni ) + ̺
a

W
2
, (123)

with the approximate equality again assuming adiabatic evo-

lution for a. The last term of this expression can be recognized

as the background fluid energy density ρ f = ̺
a

W
2

given in

(104).

The fluctuation in energy density in a and in the oscillatory

fluid is obtained by linearizing (103) about the background.

In the adiabatic approximation the contribution from the fluc-

tuations in a = aad inherited from fluctuations in φ and ni

are

δρad ≃ ∂φV a eff δφ + ∂ni
V a eff δni , (124)

The fluctuation in the fluid energy density is similarly

δ f :=
δρ f

ρ f

= 1
2
v2
a

+ δa − � − �φ + �ρ . (125)

We can now work at the level of linear perturbations and

obtain the Euler equation in terms of the effective energy

density of the axion. Using (93) the conservation equation is

δ̇ f − 3�̇ = �̇φ + �̇ρ −
1

a
�a, (126)

where �a := ∇ · va is the axion fluid’s velocity expansion

and the two terms �̇φ + �̇ρ on the right-hand side have their

origins in the perturbations of the axion mass: ∂t

(

δm
m

)

. This

reproduces the usual result in the traditional case when the

potentials �φ and �ρ are absent.

We now turn to the Euler equation which reads

v̇a +
(

H +
ṁ

m

)

va = −
1

a
∇(� + �φ + �Q + �ρ), (127)

the divergence of which then gives

�̇a +
(

H +
ṁ

m

)

�a = −
1

a
∇2(� + �φ + �Q + �ρ).

(128)

This, together with the conservation equation, gives the

growth equation for δ f in the quasi static approximation

δ̈ f +
(

H +
ṁ

m

)

δ̇ f −
1

a
∇2(� + �φ + �Q + �ρ) = 0,

(129)
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which can be expanded once the Poisson equation and the

Klein–Gordon equation have been used. Notice in partic-

ular that the Hubble friction is enhanced when the axion

mass varies. Moreover gravity is modified, with the three

new potentials �ρ , �φ and �Q supplementing the gravita-

tional potential �.

5 Cosmological perturbations

In the previous section the focus was mainly on the axion

fluid, but we now collect all the components of the Universe

and their interactions within the axio-dilaton models. The

full description of the cosmology is in particular obtained by

specifying the coupling between the different universal flu-

ids. In particular, since dark matter and the baryons couple to

the axion fluid we wish to investigate their mutual exchange

of energy and momentum.

The exchange of energy-momentum between the compo-

nents of the cosmological fluid means each component is not

separately conserved on its own. But for the fluids we do not

have an action formulation for the equations of motion and

so cannot as easily read off how their energy density changes

as a function of what the scalar fields are doing. This is most

simply derived by computing the rate with which the scalar

sector loses or emits energy as a function of the fluids and

then using the overall conservation of stress energy, as guar-

anteed by the Bianchi identities as applied to the Einstein

equation

Gμν = 8πG(T φ
μν + T a

μν + T tot
μν ), (130)

to infer how much the fluid sector absorbs or emits, as we

now argue in detail.

The right-hand side of (130) separates out the parts of

the slowly moving scalar energy-momentum tensors that are

independent of the presence of matter, with

T φ
μν = ∂μφ ∂νφ − gμν

[

1
2

(∂φ)2 + Vdil(φ)
]

, (131)

and

T a

μν =W 2(φ)∂μa ∂νa

− gμν

[

1
2

W 2(φ) (∂a)2 + Vax(a)
]

, (132)

where Vdil and Vax are as defined in and below Eq. (9). The

quantity T tot
μν denotes the rest of the total stress energy includ-

ing both the axion fluid and the matter-dependent couplings

with the axion and dilaton. Because the scalar stress energies

exclude the scalar couplings to matter they are not covari-

antly conserved when evaluated at the solutions to the equa-

tions of motion: neither DμT
φ
μν or DμT a

μν vanish in general,

though their nonzero values are easily computed using the

scalar field equations. But the Bianchi identity DμGμν = 0

ensures the total stress energy is covariantly conserved and

so DμT tot
μν = −DμT

φ
μν − DμT a

μν , and this allows the fluid

response to the scalar fields to be computed.

5.1 Einstein equations

We start by writing down the background and perturbed Ein-

stein equations in the presence of the coupled axion fluid,

starting from (130).

The background Einstein equation is the Friedmann equa-

tion for the background metric,

3H2 M2
p =

1

2

[ ˙̄φ2 + W 2(φ̄) ˙̄a2
]

+ Vdil(φ̄) + Vax(ā)

+ 1
2
ρ̄ f 0 + ρ̄tot, (133)

where Vdil and Vax are respectively defined in (10) and (12),

repeated here for convenience:

Vax(ā) = 1
2

m2
a
ā

2, and Vdil(φ̄) = U (φ̄) e−λφ̄/Mp , (134)

and ρ̄tot = ρ̄m + ρ̄b + ρ̄r is the sum of the energy density

of dark matter, baryonic matter, and additional relativistic

species also present during the late time cosmology, respec-

tively.

The quantity ρ f 0 appearing in (133) is not quite the same

as the axion fluid density ρ f given in (104), differing because

here we do not include the matter coupling in the axion energy

momentum tensor (lumping it instead into the energy density

of matter). As a result it involves the mass ma rather than the

matter-dependent mass ma eff(t):

ρ f 0 :=
〈

1
2

W
2
ȧ

2 + 1
2

m2
a
a

2
〉

. (135)

By contrast ρ f contains the energy density of the rapid axion

oscillations, with

〈

1
2

W
2
ȧ

2
〉

=
〈

1
2

m2
a eff(t) a

2
〉

= 1
2

ρ f = 1
2

W
2
̺

a

= 1
2

m(t) na, (136)

and so

ρ f 0 = 1
2

ρ f

[

1 +
m2

a

m2
a eff(t)

]

= 1
2

ρ f

(

1 +
1

1 + Ce + Cm

)

, (137)

where the last equality uses (44) to evaluate m2
a
/m2

a eff(t).

At the level of linear perturbations the 00-component of

the Einstein equations is given by Eq. (138),

[

k2

a2
� + 3H�̇

]

M2
p + 1

2
˙̄φ δφ̇
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+ 1
2

{

2�

[

V (φ)+V (ā)+
(

W 2 +
m2

a

m2(t)

)

̺a

2

]

+V,φ δφ

}

+ 1
2 W W,φ δφ ˙̄a2 + 1

4 a2W 2δ̺a

×
[

1 +
k2

2m2(t)a2
+

m2
a

m2
a eff (ρm)

]

= − 1
2

(

δρtot + 2�ρ̄tot +
W 2δρm

2m2(t)�2
m

¯̺a

)

(138)

and the 0i-component reads

k2(H� + �̇)M2
p = 1

2
k2 ˙̄φ δφ + 1

2
aW 2 ¯̺a�a

+ 1
2

aρ̄tot�tot. (139)

These agree with the result obtained by starting from the per-

turbed axio-dilaton equations in [38,40,42] and averaging

terms. Here �tot = ∂iv
i
tot is the divergence of the total veloc-

ity field, vtot , of all other fluids. These equations are used to

solve for the evolution of cosmological perturbations.

5.2 Coupled axion-matter dynamics

As mentioned earlier, the Bianchi identity DμGμν = 0

allows us to derive the non-conservation equations for each

fluid (with details of the calculations given in appendix 1).

For nonrelativistic matter we can neglect the pressure and so

write

T b
μν = ρbub

μub
ν and T m

μν = ρmum
μum

ν , (140)

where b and m respectively denote ordinary matter (the

combined baryon/electron fluid) and CDM. The fluid 4-

velocities separately satisfy u2
b = u2

m = −1 and so also

u
μ
b Dνuμ,b = u

μ
m Dνuμ,m = 0.

For Dark Matter the arguments of the appendix teach us

that the Dark Matter fluid satisfies

ρ̇mum
ν + 3hmρmum

ν + ρm u̇m
ν

=
(

−
β

Mp

∂νφ +
〈

∂Um(a)

∂a

∂νa

〉)

T m , (141)

where T m := gμνT m
μν and we drop the axion-electron cou-

pling Ue in comparison to the axion-CDM coupling Um .

Here the overdot denotes ρ̇a = u
μ
a Dμρa and lower-case ha

denotes the local Hubble rate 3ha = Dμu
μ
a for a = m or b,

emphasizing that each fluid has an individualized time deriva-

tive and experiences its own Hubble flow. The brackets 〈 · · · 〉
denote the average over fast axion oscillations.

Because we work in an approximation where the baryon

fluid moves in lock-step with the electron fluid, the baryons

satisfy an equation identical to (141) but with um
μ → ub

μ,

ρm → ρb, hm → hb and T m → T b but Um →

me Ue/m N (see Eq. (25) for why the electron/nucleon mass

ratio appears).

Contracting (141) with uν
m gives the rate of energy change

due to the Dark Matter fluid’s interaction with the scalars. For

Dark matter this becomes

ρ̇m + 3hmρm = −
β

Mp

ρm φ̇ + uν
m

〈

∂Um(a)

∂a

∂νa

〉

aρm .

(142)

Projecting (141) onto the directions orthogonal to the fluid

evolution can be done with the tensor

hm
μν = gμν + um

μum
ν (143)

leading to the Euler equations

u̇μ
m −

βφ̇

Mp

uμ + uν
m

〈

∂Um(a)

∂a

∂νa

〉

uμ
m

=
β

Mp

∂μφ −
〈

∂Um(a)

∂a

∂μ
a

〉

. (144)

The average over the rapid oscillations in these equations

gives the following expression in terms of the slow axion

fluid variables
〈

∂Um(a)

∂a

∂μa

〉

=
ā − am

�2
m

∂μā +
1

2�2
m

∂μ

(

ρa

m2(t)

)

, (145)

where the total density is involved through the axion adiabatic

solution’s dependence on ρm and ρe.

Again an almost identical line of argument goes through

for the baryon fluid, with the counterparts to (142) and (144)

obtained by making the substitutions um
μ → ub

μ, hm → hb,

ρm → ρb and Um → me Ue/m N . Once this is done the

analogue of (145) then is
〈

∂Ue(a)

∂a

∂μa

〉

=
ā − am

�2
e

∂μā +
1

2�2
e

∂μ

(

ρa

m2(t)

)

. (146)

The above equations – together with the Einstein and

scalar-field equations – are the fully relativistic equations

of the baryon-CDM-axion fluid system.

5.3 Linear perturbations

We next linearize these equations to compute the evolution

of small inhomogeneous fluctuations around a homogeneous

background. At the background level both hb and hm are

simply given by the background Hubble scale H and time

derivatives for the two fluids coincide with the cosmic time

derivatives, leading to

˙̄ρm + 3H ρ̄m =
[

−
β

Mp

˙̄φ +
ā − am

�2
m

˙̄a +
1

2�2
m

∂t

(

¯̺a
m2(t)

)]

ρ̄m ,

(147)
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and

˙̄ρb + 3H ρ̄b =
{

−
β

Mp

˙̄φ +
me

m N

[

ā − am

�2
e

˙̄a

+
1

2�2
e

∂t

(

¯̺a

m2(t)

)]}

ρ̄b, (148)

where we assume me/m N ≪ 1. We note in passing that

these equations are unusual inasmuch as they depend on

ā(t) = ā(ρ̄m, ρ̄e), that depends only on the cold dark mat-

ter density and the electron density since the axion does not

couple directly to protons and neutrons. In principle there

are three conservation equations, one each for CDM, for the

electrons and for the baryons, but in practice – and in the

numerical work – we work in the limit where the baryons

and electrons are strongly coupled to one another and so do

not distinguish between the electrons and the nuclei. The

Boltzmann code we use below also does not separate the

different components of the baryons.

At the perturbative level, the increased number of terms

makes for more work. But nothing can stop us now! So using

hb,m = H − H�−�̇+ �b,m

a
where �b,m = ∂iv

i
b,m and writ-

ing the 4-velocity u
μ
b,m as {u0

b,m, ui
b,m} = {1−�, a−1vi

b,m} in

Newtonian gauge, we find that the Dark Matter conservation

equation reads

δ̇ρm + 3Hδρm − 3�̇ρ̄m +
1

a
∂iv

i
m ρ̄m

= −
β

Mp

ρ̄m
˙δφ +

[

−
β

Mp

˙̄φ +
ā − am

�2
m

˙̄a

+
1

2�2
m

∂t

(

¯̺a

m2(t)

)]

δρm + Fm, (149)

while conservation of the baryon fluid is

δ̇ρb + 3Hδρb − 3�̇ρ̄b +
1

a
∂iv

i
bρ̄b

= −
β

Mp

ρ̄b
˙δφ +

[

−
β

Mp

˙̄φ +
me

m N

(

ā − am

�2
e

˙̄a(ρ̄)

+
1

2�2
e

∂t

(

¯̺a

m2(t)

))]

δρb + Fb,

(150)

where the F terms involve the variation of the axion source

term with respect to the total density

Fm =
1

2�2
m

∂t

(

δρa

m2(t)

)

ρ̄m, (151)

and

Fb =
me

2m N�2
e

∂t

(

δρa

m2(t)

)

ρ̄b. (152)

Now when we define δb,m = δρb,m/ρ̄b,m , we find that the

source terms almost cancel and we get

δ̇m − 3�̇ +
�m

a
= −

β

Mp

˙δφ + ∂t

(

δ̺a

2�2
mm2(t)

)

, (153)

and

δ̇b − 3�̇ +
�b

a
= −

β

Mp

˙δφ + ∂t

(

meδ̺a

2m N�2
em2(t)

)

. (154)

Notice the new term from the exchange of energy between

matter and the axion fluid. This term mimics a similar term

in −∂0�ρ appearing in (126). This confirms that the matter

and axion fluids exchange energy and interact via a term in

ρmρa/2m2(t)�2
m . Notice too that in the axion fluid equation

an extra term in ∂0�φ implies that some of the energy flows

into the dilaton perturbations too.

Finally using the time derivative along the fluid flow

u̇i
b,m = v̇i

b,m + ∂ i� + H
vi

b,m

a
, (155)

we find the Euler equations for the matter fluids

v̇i
m +

[

H −
β ˙̄φ
Mp

+
ā − am

�2
m

˙̄a(ρ̄)

+
1

2�2
m

∂t

(

¯̺a

m2(t)

)]

vi
m

=
1

a

[

−∂ i� +
β

Mp

∂ iφ −
1

2�2
m

∂ i

(

̺a

m2(t)

)]

, (156)

and

v̇i
b +

{

H −
β ˙̄φ
Mp

+
[

ā − am

�2
e

˙̄a(ρ̄) +
1

2�2
e

∂t

(

¯̺a
m2(t)

)]

me

mN

}

vi
b

=
1

a

[

−∂ i � +
β

Mp
∂ i φ −

1

2�2
e

∂ i

(

̺a

m2(t)

)

me

mN

]

. (157)

Taking the divergence of the Euler equations we have

�̇m +
[

H −
βφ̇

Mp

+
ā − am

�2
m

˙̄a +
1

2�2
m

∂t

(

¯̺a

m2(t)

)]

�m

= −
��

a
+

β

Mp

�φ

a
−

1

2a�2
m

�

(

̺a

m2(t)

)

, (158)

and

�̇b +
[

H −
βφ̇

Mp

+
[

ā − am

�2
e

˙̄a +
1

2�2
e

∂t

(

¯̺a

m2(t)

)]

me

m N

]

�b

= −
��

a
+

β

Mp

�φ

a
−

1

2a�2
e

�

(

̺a

m2(t)

)

me

m N

. (159)

The last term in both of these equations is a quantum pres-

sure term from the axion fluid in the evolution of matter.
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This parallels the quantum pressure term in the axion fluid

equations.

5.4 Dilaton evolution

The final ingredient is the dilaton equation in the presence of

the coupled axion fluid, which reads

¨̄φ + 3H ˙̄φ − W W,φ

(

˙̄a2 + ¯̺a

)

= −∂φVeff(φ̄). (160)

at the background level whilst its perturbed counterpart is

given by equation (161).

¨δφ + 3H ˙δφ +
[

k2

a2
−

(

W,2
φ +W,φφ W

)

˙̄a2

+
(

W,2
φ −W,φφ W

)

¯̺a + V,φφ

]

δφ

− ˙̄φ
(

�̇ + 3�̇
)

− W W,φ

(

1 −
k2

2m2(t)

)

δρa

+ 2�
(

V,φ −W W,φ ρ̄a

)

= βρ̄m(δm + 2�) + βρ̄b(δb + 2�)

+ W W,φ
δρm

m2�2
m

ρ̄a (161)

We next turn to integrating these background and pertur-

bation equations, specializing to the choices mentioned at the

beginning of this paper for both W (φ) and V (φ).

6 Numerical case studies

In this section, we will apply the results of the previous

sections to two different choices for the coupling functions

W 2(φ) and dilaton potential, Vdil(φ). We choose W 2 either

to be exponential – as in Eq. (7) – or near a minimum (and

so quadratic) – as in Eq. (8). For the dilaton potential we

make two similar choices for the prefactor U (φ) appearing

in (10): it is either a constant – leading to a pure exponen-

tial form for Vdil – or quadratic – making Vdil an Albrecht–

Skordis potential [54,55], such as arises in the RG stabi-

lization mechanism [56] used in Yoga models [40]. For the

matter-axion couplings we take the form (14), and in all cases

we fix �e = 1011 GeV.

The phenomenology is sufficiently varied that we will

devote separate subsections to the four possible cases.

Numerical implementation

The effects of the axio-dilaton on the background cosmol-

ogy and the linear perturbations are derived using the for-

malism derived above as implemented in a modified version

of CLASS [74]. This includes

• The dynamics of multiple interacting scalar fields, spe-

cialised to the case of the coupled axio-dilatons studied

in this paper.

• The interactions between such scalar fields and ordinary

matter species, baryons and CDM.

• The modifications to cosmological perturbations and

structure growth arising from such couplings.

• The dynamics of additional fluid species and their possi-

ble interactions with other species, such as the effects of

the axion fluid.

We begin by exploring the cosmological implications of the

presence of early dark energy as described above and the

effects caused by imposing solar system constraints. Finally

we explore the Yoga models and show how their features

enable the axion to act as non-negligible early dark energy.

In all cases we choose parameters to ensure H0 =
100h km/s Mpc−1 with h = 0.6756, �bh2 = 0.022, and

�CDMh2 = 0.12. For the perturbations, we assume adiabatic

Gaussian initial conditions for the power spectrum from the

2018 Planck LCDM best fit [75], and set the spectral index

ns = 0.966, the pivot scale kpiv = 0.05 M−1
pc and scalar

amplitude As = 2.10 × 10−9.

For the background densities we plot the non-conserved

CDM and baryon energy density ρm,b(χ, a, x) with the

axion and dilaton couplings included, along with the matter-

independent axion energy density. For the density parame-

ters, we show both the axion-dependent and axion indepen-

dent density fractions, along with the corresponding matter-

independent axion potential, Va, and matter-dependent effec-

tive potential, Va eff, to properly account for interaction ener-

gies. The axion dependent and independent matter density

parameters are denoted by �i and �0 i respectively.

For the sake of comparison between the different sce-

narios, in all cases we choose parameters to ensure the

axion’s transition between the minimum of Um(a) and Va(a)

occurs just before the onset of matter-radiation equality, at

ρm th ≈ 1 eV4.

A key limiting factor on the amount of early dark energy

present in the cosmology is the model building bound on the

axion-matter coupling, Um(a) ≪ 1, which also forces us to

consider fEDE ≪ 1 through the relation (53). This means that

while in principle one could push the axion transition back

further than matter radiation equality to keep the effects on

the matter and angular power spectra minimal, this would

correspond to the matter coupled to the axion making up a

smaller percentage of the total energy density, causing the

total fraction of early dark energy to be reduced, as seen in

(53). In order to raise the fraction of the total matter content

taken up by early dark energy again one would need to con-

sider larger and larger fEDE as the axion transition is pushed
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further and further back, which would require Um(a) > 1

and so we do not pursue such a scenario further here.

6.1 Constraints

We next describe the main constraints these models face,

starting with those coming from cosmology and continuing

to combine them with constraints coming from solar-system

tests.

6.1.1 Cosmological constraints

The most stringent cosmological constraints on early time

solutions to the Hubble tension come from their effects on

the extremely well-constrained second and third peaks of the

angular power spectrum. With the view of understanding the

effects caused by the axionic early dark energy on these fea-

tures, we begin by ignoring the constraints required by solar

system screening and focus on the simplest cosmological

scenario (but return to these issues below).

Here we take

V (φ) = V0e−λφ/Mp , (162)

and

W 2(φ) = W 2
∗ +

(φ − φ∗)2

2�2
φ

. (163)

For the first two cases considered here we use the freedom to

rescale the value of the dilaton due to its exponential potential

to set φ∗ = 0 and φini ≈ 0 with V0 phenomenologically re-

scaled to give the present day dark energy density. We also

take λ = 0.1 unless stated otherwise.

The results for this scenario are shown in Fig. 1. The top

row depicts the background evolution of the relevant fluids

and fields where the axion’s vacuum potential contributes

an early dark energy fraction of approximately 3% and 5%.

As argued in Sect. 4.2.3, placing the transition of the axion

from the minimum of the matter coupling to the minimum of

its bare potential at around matter-radiation equality ensures

the axion fluid dilutes away between initial conditions set at

BBN and this epoch, leading to it playing a negligible role

on the background dynamics.

As the axion transitions just before recombination, its evo-

lution induces changes in the masses of the coupled baryons

and CDM, which can be seen as a jump in the density of both

species before recombination. As we raise the value of am ,

in turn raising the dark energy fraction, the axion must cover

a greater distance in the field space within the same tran-

sition window, inducing greater axion velocities and hence

greater variations in particle masses. This in turn has effects

on the angular and matter power spectra, causing deviations

away from the �CDM best fit at large ℓ for a dark energy

fraction greater than fEDE ∼ 5%. We see that as the early

dark energy fraction is raised, correspondingly raising the

coupling between the axion and matter through the relation

(53), there is a net reduction in power for small scales in the

matter power spectrum and a shifting of power in the first

peak of the angular power spectrum into the higher peaks.

This is caused by the couplings between the axion early dark

energy and matter fields leading to matter-radiation equality

occurring later and later as the coupling strength is raised.

The net reduction in small scale power in the matter power

spectrum leads a net reduction in clustering at late times. As

can be seen in the bottom plot of Fig. 1. Here we plot the

observable parameter f σ8 as a function of redshift. Where

fi is the linear growth rate of each matter species

fi (z, k) :=
1

H

δ′
i (z, k)

δi (z, k)
, (164)

and σ8 is the variance of the mass fluctuations within a sphere

of radius R = 8h−1Mpc, defined by

σ 2
8 =

∫

dk

k
|W(k R)|2�2(k), (165)

where W(k R) denotes the Fourier transform of the real–

space top-hat window function and �2(k) is the dimension-

less power spectrum defined by �2(k) = k3 P(k)/2π2.

The product of these two parameters is a direct observable

associated with redshift space distortions [76]. It is given by

f σ8 =
σ8(z, kσ8)

H

δ′
matter(z, kσ8)

δmatter(z, kσ8)
, (166)

where kσ8 = 0.125h Mpc−1 and δmatter = (δρB +
δρm)/(ρB + ρm). The coupling of the dilaton to matter how-

ever has the opposite effect. As the dilaton’s Brans–Dicke

coupling is raised f σ8 goes back up due to the additional

fifth forces mediated by the dilaton, re-accelerating structure

growth.

In view of the DESI results [8,9] Fig. 1 also shows the

effective dilaton equation of state ωφ eff one would infer from

this model if one were to try to describe its predictions in

terms of vanilla Dark Matter (falling like 1/a3) and a single-

field quintessence model with equation-of-state parameter

ωφ eff , doing so for several different coupling strengths to

matter. Following [77–80], it is given by

ωφ eff =
ωφ(φ)

1 +
[

eβ(φ0−φ) − 1
] ρm,tod+ρb,tod

a3ρφ

, (167)

where ωφ(φ) = [φ̇2 − 2V (φ)]/[φ̇2 + 2V (φ)] is the actual

equation of state parameter for the dilaton field and φ0,

ρm,tod and ρb,tod are respectively the values of the dilaton,

the dark matter density and the baryon energy density today.
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The point of this comparison is that this analysis is effec-

tively what DESI does when interpreting its data using a

w0waCDM model, and that this kind of analysis can easily

give ωφ eff < −1 (in the phantom regime) even though the

actual evolution always satisfies −1 < ωφ < 1 (as required

by energy constraints). From this point of view finding a

phantom equation of state can be seen as evidence both for

time-dependent Dark Energy and a coupling between Dark

Energy and Dark Matter that ruins the Dark Matter’s naive

1/a3 evolution.

In the distant past the mean value of the dilaton is smaller

than at present as it sits further up its exponential poten-

tial causing the denominator of (167) to be larger, and this

causes the effective equation of state for the dilaton to be

significantly greater than −1, and the figure shows how the

precise value depends on choices made for the dilaton-matter

coupling parameter β.

The gradual nature of the axion transition necessitates a

full data analysis to understand if such a period of early dark

energy can play a role in reducing the Hubble tension. The

variation of particle masses expected around the axion tran-

sition also has visible effects on the background dilaton evo-

lution, whose coupling to matter is proportional to the total

matter energy density. The dangerous tachyonic instability

discussed in Sect. 3.3 when imposing solar system screening

constraints is avoided here by ensuring a hierarchy between

the axion and dilaton cutoff scales, �φ ≫ �a = �m making

the dilaton less sensitive to axionic evolution.

6.1.2 When β satisfies solar system constraints

We next focus on the additional effects arising from requir-

ing the matter-dilaton coupling to be small enough to evade

constraints coming from tests of GR within the solar system,

which we impose by choosing β = 10−3. We explore the

cosmology of this choice while continuing to use the case

where W 2 is quadratic.

Restating our parameter choices from Sect. 2.2 here for

convenience, this means our parameter choices are

�φ �
ae√
β

, (168)

which enforces �φ � 104 GeV for
√

β ∼ 10−2 as we impose

|ae| <∼ 3 × 103 GeV to adhere to constraints on the variation

of the electron mass on Earth, as discussed in Sect. 2.2.4. We

also take

ma ∼ 10−3ma(ρ⊙) ∼ 2 × 10−15 eV, (169)

so that the axion field varies over scales much smaller than

the radius of the Sun for efficient screening, which enforces

�m ∼ 5×105 GeV to keep the axion transition at around the

correct redshift, when ρm th = m2
a
�2

m ∼ 1 eV4 from (43).

These parameter constraints on the local screening therefore

kill any chance of a hierarchy between �m and �φ to keep

the dilaton’s tachyonic instability at bay.

The effects are shown in Fig. 2, where the tachyonic insta-

bility induces a large increase in dilaton velocity around the

transition, shown in the bottom panel. This in turn leads to

an increase in the axionic kinetic energy which would then

dominate the total axion energy density, caused by a rapid

increase in the W function as the dilaton evolves, as depicted

as an extra bump in axion energy density in the top left panel

around the axion’s transition. This produces an axion equa-

tion of state with ωa > −1 during its transition, ruining its

ability to act as early dark energy.

6.2 Yoga-type quadratic well

To illustrate one possible route to take to stop the tendency of

a dilaton runaway and so be able to have the axion be inter-

pretable as early dark energy we next add additional structure

to the dilaton’s potential, using the Albrecht–Skordis form

with a mild quadratic potential well parameterized as

V (φ) = V0

(

1 − u1φ + 1
2

u2φ
2
)

e−4ζφ/Mp (170)

and

W 2(φ) = W 2
∗ +

(φ − φ∗)2

2�2
φ

. (171)

For concreteness, here we take the dilaton potential used in

the Yoga mechanism [40,42], which chooses ζ =
√

2
3

and

V0 ≈
(

1
500

)4
M4

p. The parameters u1 and u2 are chosen to

ensure the dilaton’s potential has a minimum around φ ∼
74 Mp, which in turn ensures that the dark energy scale and

the electroweak hierarchy are well described. We then start

the dilaton’s evolution off at φini ≈ 74 Mp, and hence take

the local asymptotic value of the dilaton to be φ∗ = 74 Mp.

The results of this are shown in Fig. 3. Although the tachy-

onic instability does not completely disappear – as can be

seen in the top left panel – it is reduced by the presence

of the quadratic well holding the dilaton in place. However,

increasing the early dark energy fraction results in larger and

larger excursions of the dilaton within its potential well, as

shown in the bottom right panel, increasing the dark energy

density during this excursion and in turn increasing the effec-

tive Hubble friction acting on structure growth. This causes a

reduction in f σ8 as can be seen in the bottom left panel, but

also also means that increasing the early dark energy fraction

beyond 0.25% results in larger and larger dilaton excursions

increasing the axion equation of state greater than ωa > −1

around the transition, ruining the early dark energy effect.

Such dilaton excursions can also be triggered around the

start of matter domination by stronger dilaton-matter cou-

plings brought on by increased β, as studied in [42], meaning

β needs to be kept small to allow for a non-negligible early
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Fig. 1 The case of an exponential dilaton potential and quadratic cou-

pling W 2(φ). Top row shows background evolution for ma = 2 ×
10−15 eV, �φ = 1010 GeV, �m = 5×105 GeV, am = 5.5×1014 GeV,

and 4.5×1014 GeV in solid and dashed respectively. Middle row shows

matter and angular power spectra for am = 5.5 × 105 GeV, 4.5 ×
105 GeV, and 3.2 × 105 GeV in orange, green and red respectively.

Bottom left shows f σ8 for the corresponding early dark energy frac-

tions with β = 10−2 and 4 × 10−2 in solid and dashed respectively,

while bottom right shows the evolution of the effective dark energy

equation of state for am = 5.5 × 105 GeV and for various coupling

strengths. In all other plots β = 10−2. The axion fluid has decayed

away so fast that it is not visible in the background plots. In all cases

�e = 1011GeV
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Fig. 2 The case of an exponential dilaton potential V and a quadratic W

which satisfies screening. The top row shows the background evolution

for ma = 2×10−15 eV,�m = 5×105 GeV,�φ = 3.2×103 GeV, β =

10−2, am = 1.7 × 104 GeV. The bottom plot shows the dilaton field

evolution for the same parameters. Finally, in all cases �e = 1011GeV

dark energy fraction. Achieving a dark energy fraction of

around ∼ 0.25% requires β � 10−2 to keep the dilaton from

being drawn too far from the minimum of its well, which

corresponds to the screening bound. These excursions can

otherwise be reduced by increasing the depth/steepness of

the well beyond the mild quadratic we are considering here,

possibly leading to much larger dark energy fraction being

viable cosmologically.

Keeping the dark energy fraction below ∼ 1% also results

in almost negligible effects on the angular and matter power

spectra, as can be seen in the middle panels. Here the

small deviations in the peaks of the angular power spec-

trum arise because of the dilaton evolution due to the axion-

dilaton coupling inducing a change in the electron mass pre-

recombination. Similar effects are observed in [81].

6.3 Yoga models

Saving the best till last, our final case is to consider an axio-

dilaton setup with an exponential W (φ) to illustrate how such

a scenario can arise as the best of both worlds, allowing for

a significant phase of early dark energy while still satisfying

solar system screening constraints. Here we take (recall (11))

V (φ) = V0

[

1 − u1φ + u2φ
2/2

]

e−4ζφ/Mp , (172)

and

W (φ) = e−φ/(2�φ), (173)

with ζ =
√

2/3, and �φ = 2×108GeV to satisfy screening.

The results are shown in Fig. 4, where as predicted in Sect. 3.3

we can see the exponential W causing the dilaton’s tachyonic

instability disappearing even for a significant fraction of early

dark energy present in the background evolution.

The absence of this tachyonic instability means that the

dilaton does not receive large kicks from its axion coupling,

removing the reduced f σ8 effect occurring in the previous

case due to dilaton evolution. We however see reduced struc-

ture growth due to two different effects in this case. The first

being the same reduction in power in the matter power spec-

trum on small scales caused by the axion’s transition caus-

ing matter-radiation equality to occur later that we observed

in Sect. 6.1.1. The second effect comes from larger Brans–
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Fig. 3 The case of a Yoga potential V for the dilaton and a quadratic

W which satisfies screening. Top row shows the background evolution

for ma = 2 × 10−15 eV, am = 1.4 × 104 GeV, �m = 5 × 105 GeV,

�φ = 3.2 × 103 GeV. Middle row shows the angular and matter power

spectra and bottom row shows f σ8 and the evolution of the dilaton

field for am = 1.4 × 104 GeV and 1.0 × 104 GeV in orange and green

respectively. In all plots β = 10−2. Finally, in all cases �e = 1011GeV
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Fig. 4 The case of a Yoga potential V and an exponential W which sat-

isfies screening. Top row shows the background evolution for ma = 2×
10−15eV, �m = 5×105GeV, �φ = 2×108GeV, am = 5.5×105GeV

and 4.5 × 105GeV in dashed and solid respectively. Middle row shows

the angular and matter power spectra and bottom row shows f σ8, the

evolution of the dilaton field and the effective dark energy equation of

state for am = 5.5 × 105GeV, 4.5 × 105GeV and 3.2 × 105GeV in

red, green and orange respectively. The dashed lines in the bottom plots

correspond to the same parameters except for β = 2×10−2. In all other

cases, β = 10−2. Finally, in all cases �e = 1011GeV

Dicke coupling between the dilaton and matter species caus-

ing a dilaton excursion during matter domination, as can be

seen in the bottom right panel.

In Sect. 6.1.1 this second effect caused an increased struc-

ture growth due to the larger fifth forces associated with

a larger Brans–Dicke coupling strength, but here we see a

reduction due to the presence of the dilaton’s local minimum.
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This difference arises because the local minimum ensures

that when the dilaton goes on its temporary excursion its

potential energy goes up, and this in turn raises the Hub-

ble rate, dampening structure growth. This suggests that we

should therefore expect reduced f σ8 as the dilaton-matter

coupling strength is increased, as is indeed shown by the

dashed lines in the bottom left panel, which doubles β to

β = 2 × 10−2. We also observe the same shifting of power

from the first peak of the angular power spectrum to higher

peaks discussed in Sect. 6.1.1 for this case.

This shows that in the case best motivated by fundamental

physics, where we choose the functional form of the dilaton’s

potential V (φ) and axion coupling W (φ) to correspond to

those expected from extra-dimensional physics, it is possible

to achieve simultaneously a significant fraction of early dark

energy and reduced structure growth generically, while still

satisfying solar system constraints on matter couplings.

Another interesting feature of the dilaton’s local mini-

mum is the resulting behaviour of the effective equation of

state plotted in the bottom right panel. Given that this fea-

ture allows for the dilaton to travel to larger values during

matter domination before returning to smaller values at later

times, as shown in the bottom-middle panel, the denomina-

tor of (167) will be < 1 during matter domination, causing

the effective equation of state to generically cross the phan-

tom divide line. At later times we then observe an oscillating

equation of state as the dilaton oscillates around its local

minimum.

7 Conclusion

Dynamical dark energy requires the existence of very light

fields since it is only scalars with masses smaller than the

Hubble scale H that move over cosmological timescales, as

would be required to be responsible for the time-dependence.

On the other hand, it is also generic that a dimensionless

scalar field that is gravitationally coupled to a scalar potential

of size V = v4
u(φ) – where u(φ) is a generic order-unity

function – acquires a mass of order m ∼ v2/Mp ∼ H . So

given the fact that the Dark Energy density is so small, it

perhaps might not be a surprse to find very light scalars at

play in the recent history of the universe.17

Of theories with light scalar fields those with only one

scalar are special because only for these is it impossi-

ble to have two-derivative sigma-model interactions. Two-

derivative interactions are special because they scale with

energy in the same way as do the two-derivative interactions

of GR and this allows them to compete with GR without also

17 Why the Dark Energy density is so small in the first place is another

question, though the hope is that Yoga models [40] are a step in the right

direction for understanding this.

jeopardizing the low-energy expansion that justifies work-

ing within the semiclassical approximation. The axio-dilaton

models we study here provide a minimal, well-motivated

example of what the dynamics of such fields can look like.

If such scalars couple to matter with gravitational strength,

they generically lead to large deviations from GR in the solar

system and so would be ruled out by observations. This can

be prevented either by having the scalars couple more weakly

or by invoking screening mechanisms whereby the effective

coupling of the light fields to matter is dynamically reduced

for the macroscopic objects like the Sun or the Earth. A

screening mechanism of this sort is known to exist for the

kinds of axio-dilaton models we consider [41], that uses the

same kinetic sigma-model couplings between axion and dila-

ton that make the models interesting in the first place. Screen-

ing proceeds by coupling matter to the axion so that the axion

field shifts from its vacuum value in the presence of matter.

This implies that the axion field necessarily has gradients

when going from outside to inside dense bodies, and it is the

interaction of the dilaton with this axion gradient that drives

the effective coupling of the dilaton to matter to small values.

In this paper we explore what the cosmology of these

models looks like in a scenario where the dilaton of an

axio-dilaton pair is both responsible for dark energy and is

screened locally. Although the axion has a scalar potential

and couples to ordinary matter it is not itself the Dark Mat-

ter, which we assume also couples to the axion. As might

be expected. the presence of matter-axion and Dark Matter-

axion couplings can change cosmology fairly dramatically

because of axion interactions with the ambient matter and

Dark Matter environments encountered in the early universe.

We find in particular that an unexpected bonus of the axion-

matter couplings is that the axion energy density behaves

like a temporary cosmological constant at high redshift, but

one that naturally evaporates once the local matter and Dark

Matter density become sufficiently small.

The fact that axion cosmology with a matter-dependent

potential can resemble Early Dark Energy (EDE) is interest-

ing because early dark energy has been proposed as a pos-

sible alleviation mechanism for the Hubble tension [46,82].

Although it is not completely clear if this tension needs solv-

ing (i.e. whether it is physical or due to some uncontrolled

astrophysical error), the possibility of linking screening of

the light dark energy field – here the dilaton – to the exis-

tence of early dark energy generated by its partner the axion

seems worthy of note. We find the amount of EDE produced

in this way cannot be very large, being limited for some

choices of model parameters by a tachyonic instability in the

dilaton sector triggered by the kinetic coupling to the axion,

or by possible indirect imprints on the CMB or the growth

of structure through the specific matter couplings generating

the EDE.
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Of the options we explore it is Dark Energy potentials

of the Albrecht–Skordis type that allow the largest contribu-

tions of EDE as a fraction of the total energy of the cosmic

fluids, of order 5%. For these kinds of potentials we find that

the growth of structure can be reduced when increasing the

coupling to matter of the dilaton. This follows from the fact

that the coupling to matter displaces the dilaton field from

the vicinity of the minimum of its potential, in the process

increasing the Hubble rate during structure formation and

therefore the friction term in the growth equation. This is

a background effect which counterbalances the natural ten-

dency of scalar-tensor models to increase the growth by the

presence of an attractive scalar interaction between CDM

particles, as observed in e.g. [73,83]. This also could have

interesting phenomenological consequences (though we here

leave these for future work).

We do not here try to match the hints for a time-dependent

equation of state ω0 and its time drift ωa described by

the DESI collaboration [8], though we do observe that the

dilaton-DM interactions these models have can easily appear

to give a ‘phantom’ equation of state parameter, ω0 < −1, if

its dynamics are interpreted as being due to vanilla Dark Mat-

ter plus a single-field quintessence model.18 Trying to obtain

the parameters ω0 and ωa would require modifications to

the dilaton potential without tampering with the axio-dilaton

screening mechanism. If such a model could be built, some

of the features of the model presented here such as the exis-

tence of early dark energy would remain. On the other hand,

features such as a decrease in structure growth would depend

on the dilaton potential which could for instance be taken of

the thawing type instead of the frozen kind. Again, this is left

for future work.

The key constraint on the size of early dark energy frac-

tions shown in Sect. 6 is not a physical constraint but calcu-

lational issue that limits us to only considering small axion-

matter coupling potentials, Um ≪ 1. A consideration of the

full form of the axion’s effective potential in (19) that does

not rely on this limit would also be of great interest to see if

the effects of larger early dark energy fractions on the cos-

mology.

Finally although the choices made for the functional forms

of potentials and couplings are inspired by string construc-

tions,19 we have not attempted to embed our model into a

UV completion from first principles, such as from an extra-

dimensional or string point of view. Of course this would be a

step forward towards a better physical understanding of dark

energy and its sensitivity to ultra-violet physics, and from

18 The same is true for the more minimal model of [38] in which the

axion of the axio-dilaton combination is itself regarded as the Dark

Matter.

19 The cases considered in Sects. 6.2 and 6.3 are the same as those

derived in [40] however with different parameter ranges.

this point of view its natural roots as the low-energy limit of

models with supersymmetric large extra dimensions [37] is

suggestive, given the progress such models allow on under-

standing the UV side of the cosmological constant problem

[84,85] (see [7] for a brief review). Much here is also left for

future work.
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A The phase of the axion field

Let us come back to the axion field and its variation in the

presence of perturbations. At the background level we have

Ṡ = 0. (174)

This implies that at leading order we can write

ā(t) = ā(ρ) +
√

2ρ̄a

m̄(t)
cos

(∫

dt m̄(t) − S0

)

, (175)

up to an irrelevant constant S0. We have emphasized the

dependence on the background cosmology by putting a bar

on the mass for instance.
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When including linear perturbations and neglecting grav-

ity first, the phase of the axion field becomes

∫

m̄(t)dt −
∫

Ṡdt =
∫ (

m̄(t) +
1

2

δm2

m̄2

)

dt

=
∫

mdt, (176)

where m2 = m̄2 + δm2 and we have emphasized that we

expand around the background axion field determined by its

background mass m̄, i.e. the behaviour of Ṡ given by the

Hamilton–Jacobi equation transforms the phase of the axion

field from the background one to the full phase including

the perturbation of the mass. When including gravity and the

effect of the axion velocity field in (97) we have a phase
∫

m̄(t)dt −
∫

Ṡdt =
∫

Eaxiondt, (177)

i.e. the phase depends on the energy of the axion particles

along the fluid lines where

Eaxion = m(t)

(

1 +
v2
a

2
+ �

)

, (178)

as well known from the axion behaviour in the galactic halo

where velocities follow a Maxwell–Boltzmann distribution.

B The Bianchi identity

The Bianchi identity implies the non-conservation equation

DμT tot
μν = −Dμ(T φ

μν + T a

μν). (179)

Explicitly we have

DμT φ
μν =

(

β

Mp

T m +
1

2

∂W 2(φ)

∂φ
(∂a)2

)

∂νφ, (180)

and

DμT a

μν = −
∂U (a)

∂a

∂νaT m −
1

2

∂W 2(φ)

∂φ
(∂a)2∂νφ, (181)

from which we obtain

DμT tot
μν = −

β

Mp
T tot∂νφ +

∂Um(a)

∂a

∂νaT m +
∂Ub(a)

∂a

∂νaT b.

(182)

Notice the absence of the mixing term W 2(φ). Indeed, the

kinetic mixing leads to the exchange of energy between the

axion and the dilaton. When considering the total energy

momentun tensor the two scalars, this exchange cancels out.

We now average over the fast axion oscillations and get
〈

∂μa

∂Ui (a)

∂a

〉

=
(ā(ρ) − am)

�2
i

∂μā +
1

2�2
i

∂μ|ψ |2. (183)

Using the fluid description for the axion fluctuations we have

〈

∂μa

∂Ui (a)

∂a

〉

=
(ā(ρ̄) − am)

�2
i

∂μā +
1

2�2
i

∂μ

(

ρa

m2(t)

)

,

(184)

We can split the non-conservation equation into the CDM

and the baryonic equations as DμT tot
μν = DμT m

μν + DμT b
μν

where

DμT m
μν = −

β

Mp

T m∂νφ +
∂Um(a)

∂a

∂νaT m, (185)

and

DμT b
μν = −

β

Mp

T b∂νφ +
∂Ub(a)

∂a

∂νaT b. (186)

These equations will give us the non-conservation of matter

and the geodesic equations leading to the Euler equation for

the baryon and CDM fluids as determined in the main text.
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