
This is a repository copy of Elastic waves in bearing raceways: the forward and inverse 
problem.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232322/

Version: Published Version

Article:

Kent, J.J. orcid.org/0000-0003-0484-7578, Loures, M.D.C. and Gower, A.L. 
orcid.org/0000-0002-3229-5451 (2025) Elastic waves in bearing raceways: the forward 
and inverse problem. Proceedings of the Royal Society A: Mathematical, Physical and 
Engineering Sciences, 481 (2322). 20240972. ISSN: 1364-5021

https://doi.org/10.1098/rspa.2024.0972

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1098/rspa.2024.0972
https://eprints.whiterose.ac.uk/id/eprint/232322/
https://eprints.whiterose.ac.uk/


royalsocietypublishing.org/journal/rspa

Research

Cite this article: Kent JJ, Loures MC, Gower

AL. 2025 Elastic waves in bearing raceways: the

forward and inverse problem. Proc. R. Soc. A

481: 20240972.

https://doi.org/10.1098/rspa.2024.0972

Received: 6 January 2025

Accepted: 8 August 2025

Subject Areas:

applied mathematics, mechanical

engineering, wave motion

Keywords:

Elastic waves, ultrasonics, bearings,

inverse problems

Authors for correspondence:

Jessica J. Kent

e-mail: jessicajkent1998@gmail.com

Art L. Gower

e-mail: arturgower@gmail.com

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.8012798.

Elastic waves in bearing
raceways: the forward
and inverse problem
Jessica J. Kent, Matheus de C. Loures and Art L. Gower

Department of Mechanical, Aerospace and Civil Engineering,

The University of Sheffield, Sheffield, UK

JJK, 0000-0003-0484-7578; ALG, 0000-0002-3229-5451

Turbines are crucial to our energy infrastructure,

and ensuring their bearings function with minimal

friction while often supporting heavy loads is vital.

Vibrations within a bearing can signal the presence

of defects, friction or misalignment. However, current

detection methods are neither robust nor easy to

automate. We propose a more quantitative approach

by modelling the elastic waves within bearing

raceways. By approximating the raceway as a hollow

cylinder, we derive straightforward 4 × 4 systems for

its vibrational modes, enabling both forward and

inverse problem solving. We also demonstrate how to

significantly reduce the number of required sensors

by using a simple prior: the known number of

rollers and their angular speed. We present numerical

examples showcasing the full recovery of contact

traction between bearings and the raceway, as well as

the detection of elastic emissions.

1. Introduction
Bearings are essential parts of modern industrial

machinery; found everywhere from bicycles to wind

turbines to jet engines [1]. Their main purpose is to

reduce friction and constrain the motion of rotating

components; as such, their maintenance and efficiency is

an important industrial problem [2].

Current methods. The most successful methods to

monitor the condition of roller bearings are based on

vibration analysis: analysing the frequency components

of how the raceway, or mounting, vibrates in time

[3–5]. To give context to our work, we briefly discuss

below current methods in three categories: signal process

methods, bearing dynamics and elasticity in bearings.

2025 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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Signal processing methods. Bearing signal models aim to calculate the frequency signature of

different defects without using differential equations and needing to solve the full dynamics. In

essence, these methods make a series of assumptions to reach simpler analytic results. See [6] for

a summary. Bearing signal models have been very useful, specially for roller bearings where they

use the rotation speed of the bearings, and assumptions on how rollers react to defects, to estimate

which frequencies are sensitive to which defects. These models typically work best for localized

defects, and are among the simplest to understand and provide guidance on the signal processing

even when used together with other methods.

In the past years, many papers have appeared that use machine learning to detect defects in

bearings. In the correct circumstance, they can recognize the signal of defects from vibrations

without explicitly accounting for the physics or details of the bearing design. One very significant

issue with many machine learning methods is that they require a large amount of data on

damaged bearings, which is costly and time-consuming to obtain, and has to be repeated for every

bearing. Alternatively, there are unsupervised methods to detect anomalies or defects. These are

very promising to identify issues, but are not able to determine what caused the anomaly such

as a change in the environment, material degradation, changes in excitation patterns (such as the

case for wind turbines) or any number of defects.

Bearing dynamics. The first step to include more physics to describe vibration is to identify the

most flexible elements in a bearing rotor system, which are usually the movement of the rollers

themselves, the flexing of the rotor and the connections between the different rigid components

used. These flexible elements make the largest contribution to the vibrations, and are typically

modelling as a series of springs, and the other components, such as the raceway, are assumed

to be rigid bodies [7]. For each moving part, there is only a finite degree of freedom, i.e. not a

continuum model, and requires some parameters that need to be fitted to the data. Problems

arise when trying to automate these methods for many machines, and in the face of other sources

of vibrations. For example, when fitting the parameters to one machine, the models still do not

readily apply to even nominally identical structures [8], which implies that the uncertainty in the

parameters and predictions is too large. Possible reasons identified for this are due to differences

in the foundations and connections.

Elasticity in bearings. By elasticity we mean models that consider the raceway or rollers to be

elastic materials, and not just rigid bodies. Based on the previous discussion, these elastic effects

do not usually make a major contribution to the vibration energy, outside of resonant frequencies

of the raceway. However, as show in this paper, modelling these elastic effects is necessary to

develop a method to predict the internal stress from ultrasonic measurements. Previous work

considering elasticity is scarce. There has been some experimental work using elastic waves such

as: monitoring lubrication regime using surface waves for vibrations [9,10], and active ultrasonic

sensing [11,12]. However, none of these develop models of the elastic waves, and none take an

approach of accounting for all modes which is needed to predict the contact stresses. Another

approach is to use finite element method, but so far these are far too computationally intensive

and opaque for inverse problems [13]. In this paper, we show how elastic waves can be very

efficiently described for the raceway, and how these can lead to a method to monitor stress.

Too few sensors. It is likely that robust diagnostics are not possible for a small number of sensors.

Typically, sensors measure displacement or acceleration at one or two positions, and rotation

speed on each large bearing [14]. That is, there are often too many unknowns for the number of

sensors typically used. Further, acceleration sensors are often placed on the housing, in which

case the transfer path of the signal is unknown and can significantly distort the signal. We call the

transfer path the route an elastic wave takes from its source to a sensor.

Be more quantitative. In this work we suggest that to a robust and automatic form of contact

stress we can measure ultrasonic waves and model how elastic waves are created in the bearing

raceway. After all, these elastics waves are what carry the information of the forces inside the

bearing to the sensors.

Nonlinear dynamics at interfaces. For roller and journal bearings the way that forces are

transmitted through the bearing and the shaft at interfaces are nonlinear [15–17]. For example,
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Figure 1. True pressure on the left-hand panel for one snapshot in time. The right-hand panel shows the predicted stress for

the same time when using four sensors shown as orange spots. The sensors measure displacement, and the outer boundary is

stress free,which iswhy the stress tends to zerowhen it reaches theouter boundary.However, thedisplacements or accelerations

caused by the stress are not zero on this boundary and can bemeasured. The recovery is not perfect as there is a 20%error added

to the boundary data. More details are given in §7c.

a roller rattling is a nonlinear dynamic event. Nonlinearities at the interfaces make it challenging

to accurately solve for the dynamics of an entire system, which typically includes components

like shafts, rotors, bearings and varying foundations [8]. Over the past 40 years there has been

significant work to model the entire system [14,18–21].

Linear elastic waves. While the interface conditions between machine components are often

nonlinear, the elastic waves within each component are primarily governed by linear elasticity.

This allows us to break the problem into manageable parts: by measuring the vibrations at one

boundary, we can confidently predict the forces or vibrations at another boundary of the same

component.

We demonstrate that it is possible to predict the stresses on a bearing raceway. See figure 1 for

a motivational example which predicts the stresses between the rollers and the raceway with just

four sensors. There is currently no such method to predict these forces which are important for

lifetime analysis and to understand the causes of defects [22].

Acoustic emission and localization. One method to detect defects is to measure the

sound they emit [23–25]. These methods rely on measuring only pressure waves in

solid components and are almost exclusively based in the time domain, where the first

signal that arrives is (probably) the bulk pressure mode. Current methods typically only

use the first measured signal, as the next signals will be a mix of acoustic and shear

waves due to mode convertion at the boundaries. However, extracting the first signal

requires a high sampling rate and can be difficult when its amplitude is less than the

other wave modes [26]. The high volumes of data for these methods are difficult to

process and is considered one of the main drawbacks of these current acoustic emissions

methods [3].

Alternatively, instead of assuming that there are only acoustics waves, one could just measure

the signal in time, with a far lower sampling rate, and accept that there are pressure and shear

wave modes that have reflected many times from the boundary. From these measurements it

should be possible to determine the source by modelling elastic waves in raceways. This paper is

the first step to an elastic emission method in bearing raceways that does not require extracting

the first arrival time, and could continually measure and identify sources.

Paper contents. In this paper, we show theoretical and numerical results on how to predict

the stress on the raceway and between rollers and the raceway. The methods developed can be

specialized to other bearings, though we focus on roller bearings here.
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In §2, we discuss how, at high enough frequencies, elastic waves are mostly confined to the

bearing raceway; this allows us to model the waves in a raceway as vibrations of a hollow

cylinder, as opposed to modelling the full bearing system. In §3, we develop a modal method

to quickly calculate elastic waves in the raceway from boundary conditions.

In §4, we show how assumptions about the boundary conditions, which we call priors, can

greatly reduce the number of sensors required. As an example, in §5, we show how to deduce

and use priors for rollers rotating at a constant speed.

From the elastic wave models we learn what is, and is not, measurable, which we summarize

in §6. In §7, we show several numerical examples both for validation and to illustrate the main

results.

2. Elastic waves in raceways
Bearings are mounted in many different ways, one example is shown in figure 2. However, the

raceway is usually a hollow cylinder and is fabricated as one solid piece, see figure 3 for some

examples. The raceway is then tightly fitted into the mounting, or if there is also an inner raceway

then it is fitted over a shaft.

When the rollers press on the track, they emit elastic waves, which for high enough frequencies

(greater than 10 kHz) are mostly trapped within the track [29] due to the air gap that remains

between the raceway and the mounting (or shaft). However, for convenience, sensors are usually

placed on the bearing mounting, rather than the raceway itself, which does not always get a good

signal for bearing defects, or other features. In many cases, the waves originally emitted into the

raceway can take a long (transmission) path until reaching a sensor on the mounting. During this

journey, the wave is highly distorted; this can make it difficult to recognize defects signals [30].

There are methods which attempt to undo the effects of this path [3] for impulsive signals, e.g.

minimum entropy deconvolution [30]. However, these can not be generalized to non-impulsive

signals, can enhance noise that is impulsive and have some difficulties in parameter choice such

as window length [31].

What if we could mount sensors on, or near, the raceway as shown in figure 2? In this paper,

we show that these sensors would lead to many benefits such as: a direct prediction of the stresses

in bearings, and clear signals on extended or localized defects. We can also answer exactly what

is possible to predict, what frequencies to use and where to place the sensors just by modelling

the raceway as a hollow cylinder, as we do in the next section.

(a) Modal solution

Below, we show the simplest way to calculate elastic waves in the raceway, see figure 4 for an

illustration of the boundaries and domain where we calculate elastic waves.

Steel is well approximated as an isotropic material. Further, as even very high stresses of

1000 MPa only change elastic wave speeds by a few per cent [32], the elastic waves within

the raceway are well approximated by the linearized equations of elasticity in a homogeneous

and isotropic solid [33]. We also assume that stresses applied to the raceway boundaries are

approximately axially symmetric, at least after averaging over some time period, which implies

that the elastic waves are axially symmetric.

The above allows us to write the small elastic displacement, for a harmonic angular frequency

of ω in terms of the Helmholtz potentials in the form

u = ∇φ + ∇ × (ψ ẑ), (2.1)

where φ and ψ are the pressure and shear potentials, respectively; note that the vector shear

potential automatically satisfies the divergence free condition ∇ · (ψ ẑ) = 0 when ψ does not

depend on z. The displacement in time can be calculated by taking an inverse Fourier transform,

which is the same as integrating ue−iωt over ω in the convention used here.
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Figure 2. A cross-section illustration of a bearing in a mounting. Showing a wave for a fixed frequency (greater than 10 kHz)

showing waves trapped in the raceway. Further shown, are sensors mounted on the raceway as we propose.

Figure 3. The left-hand panel shows a Schaeffler roller bearing for the main shaft of a wind turbine [27] while the right-hand

panel shows an example of a Miba tilting pad journal bearing used in turbines [28]. In both examples sensors could be placed

on the outside of the casing before putting the bearing in its mounting.

Figure 4. Panel (a) on the left-hand side shows the general boundary conditionswe consider. That is, we describe elastic waves

in the domainΩ , andwill use some combination of the boundary datau1,u2,τ 1,τ 2 on the boundaries∂Ω1 and∂Ω2 which

are defined by r = r1 and r = r2 respectively. Panel (b) on the right-hand side illustrates the geometry of one type of roller

bearing, where the radii of the outer raceway are shown as an example. The methods of this paper could be used to predict the

stresses between either the rollers and outer raceway or the rollers and the inner raceway.
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The advantage of using the Helmholtz decomposition (equation (2.1)) is that both potentials

satisfy a Helmholtz equation:

∇2φ + k2
pφ = 0 and ∇2ψ + k2

s ψ = 0, (2.2)

where kp = ω/cp and ks = ω/cs are the wavenumbers of the P- and S-waves, respectively, while

cp and cs are the wave speeds which are related to the Lamé parameters λ and µ, respectively,

through

ρc2
p = λ + 2µ and ρc2

s = µ, (2.3)

where ρ is the mass density.

As we consider the raceway to be a thick-walled circular cylinder, we can reach simple

solutions by using cylindrical coordinates (r, θ ), which leads to solutions of equation (2.2) in the

form

φ(r, θ ) =
∞
∑

n=−∞
(anJn(kpr) + bnH

(1)
n (kpr))einθ

and ψ(r, θ ) =
∞
∑

n=−∞
(cnJn(ksr) + dnH

(1)
n (ksr))einθ ,

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(2.4)

where Jn and H
(1)
n are Bessel and Hankel functions of the first kind, respectively. To deduce

the above one can use separation of variables [34,35], and the coefficients an, bn, cn, dn can be

determined from boundary conditions. Note that if the cylinder had no hole, then bn = dn = 0 and

there would also be one fewer boundary to prescribe boundary conditions.

We note that one way to extend solutions of the form of equation (2.4) to more complex

geometries would be to use the method of fundamental solutions [36,37]. However, for just an

annulus, as we study here, solutions of the form of equation (2.4) are simpler.

Uniqueness. For a bounded domain with no holes (simply connected) the interior solution for

the Helmholtz equation is not unique, at least not for transmission boundary conditions [38]. This

result also applies to our scenario for solutions within an annulus, in that there do exist isolated

frequencies at which the solution is not unique. In practice, these are resonant frequencies, and

they can be avoided if needed.

To prescribe boundary conditions we need the traction on the boundary in polar coordinates.

In general the Cauchy stress tensor is given by

σ = λtr(ε)I + 2µε, (2.5)

where ε = 1
2 (∇u + ∇uT). The traction τ on the outer boundary of a cylinder is given by

τ = σ · r̂ = σrrr̂ + σrθ θ̂ , (2.6)

where r̂ and θ̂ are unit vectors along the directions that the radius and polar angle increase. The

traction on the inner boundary is given by τ = −σ · r̂ as the outward normal vector in this case is

−r̂. See [39] for more details on stress tensors in polar coordinates.

Substituting equation (2.1) into equation (2.5) leads to

σrr = (2c2
s k2

p − ω2)ρφ + 2ρc2
s

[

∂2φ

∂r2
+ ∂

∂r

(

1

r

∂ψ

∂θ

)

]

(2.7)

and

σrθ = −ρω2ψ − 2ρc2
s

[

∂2ψ

∂r2
− ∂

∂r

(

1

r

∂φ

∂θ

)

]

. (2.8)

See the supplementary material for this derivation.
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3. Boundary conditions
How much boundary data are needed to determine the potentials in equation (2.4)? To answer this

question, consider the simpler case of how much data are needed to determine just the coefficients

an in a series f (θ ) =
∑

n aneinθ ; representing any square integrable periodic function f (θ ) (almost

everywhere). To determine an we need to supply a function f (θ ). Therefore, to determine an, bn, cn

and dn we must supply four functions.

For example, let us turn to figure 4 and consider the outer raceway. To determine all the

coefficients, it would be sufficient to have the boundary data of the displacement u and traction τ

on just one boundary, say at r = r1, because

u(r1, θ ) = ur(r1, θ )r̂ + uθ (r1, θ )θ̂ ,

which is composed of two scalar functions in θ , and similarly for τ . So in total these are sufficient

boundary data to determine the coefficients.

Below, we consider different combinations of boundary data and show how to determine the

coefficients an, bn, cn and dn. In this work we do not discuss uniqueness of the solution, and simply

verify that the solution is indeed well-posed where we expect it to be. That is, we expect the

solution to become ill-posed for low enough frequencies, and to be ill-posed when approaching

the diffraction limit.

We call the forward problem the case where the traction τ on the inside and outside of the

raceway are given. The name is just for convenience, and because knowing the traction on both

boundaries often implies we know the source of the waves. However, this is still a boundary

value, and could equally be considered an inverse problem. We consider this case first and then

turn to more general boundary conditions, such as the case where the displacement u and traction

τ on the outer boundary are known, which we call the inverse problem. Finally, we look at some

example with stresses inspired by an operating bearing.

The inverse problem is of more practical importance, as it is possible to place sensors on the

outside of the raceway for the case shown in figure 4. In §3c we discuss the details on taking

boundary data from a, possibly small, finite number of measurements at specific points on the

boundary.

(a) Traction boundary conditions: the forward problem

Here we consider prescribing only traction boundary conditions on both the boundaries of the

raceway, see figure 4 for an illustration. This is also known as a boundary value problem, and

there exist frequencies at which the solution is probably not unique.

Let the traction on the boundary r = r1 be τ
1(θ ), and the traction on the boundary r = r2 be

τ
2(θ ), be given by

τ
1(θ ) = −p1(θ )r̂ − s1(θ )θ̂ and τ

2(θ ) = p2(θ )r̂ + s2(θ )θ̂ , (3.1)

where the negative sign in the top equation is due to the unit normal being −r̂.

To solve the problem now we need the Fourier series representation:

pj(θ ) =
∞
∑

n=−∞
p

j
neinθ and sj(θ ) =

∞
∑

n=−∞
s

j
neinθ , for j = 1, 2, (3.2)

then substitute the potentials of equation (2.4) into equations (2.7) and equations (2.8) and then

substitute the result into equation (3.1). Using that the einθ in the Fourier series are orthonormal

leads to the matrix equation

M
for
n an = f n (3.3)

for the mode n; where,

an = [an, bn, cn, dn]T and f n = [p1
n, s1

n, p2
n, s2

n]T.
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The expressions for the components of the 4 × 4 matrix M
for
n involve known special functions

and can be found in the supplementary material. If the matrix is well conditioned, then we can

solve equation (3.3) for the coefficients an. In practice, we numerically check whether M
for
n is well

conditioned for n = 0, and then increase |n| = 1, 2, . . . until M
for
n is not well conditioned. Further

details on when this problem is ill-posed can be found in §6.

(b) Data on only one boundary: the inverse problem

In practice, it is not possible to know the traction on both boundaries. For example in the image

on the right-hand side of figure 4 it is clearly not feasible to have sensors on the boundary

r = r1; however, the boundary r = r2 is often approximately traction free, due to the small air gap

between the raceway and mounting. If we place ultrasonic sensors on the boundary r = r2 then

we would also know the displacement u2. See figure 12 for an illustration. This problem is also

known as a Cauchy problem, and given conditions of regularity of the boundary data there exists

a unique solution [40]. In the next section we discuss using a finite number of sensors, but for this

section we consider that both the traction and displacement are known on the boundary r = r2.

Analogous to the previous section, we write the displacement on the outer-boundary as a

Fourier series:

u(r2, θ ) = u2(θ ) =
∑

n

u
(r)
n r̂einθ +

∑

n

u
(θ)
n θ̂einθ ,

then by substituting the potentials (2.8) and (2.7) into the expression for u in equation (2.1), and

then substituting the result into the above leads to two separate equations. Combining these two

equations with the two equations for the traction boundary data τ
2 from the previous section,

and again using that the modes of the Fourier series are orthogonal leads to another 4×4 matrix

equation:

M
inv
n an = un. (3.4)

If M
inv
n is well conditioned, then we can solve for an, and this solution will also solve the forward

problem equation (3.3). An example of solving a transient point force is given in §7a.

(c) Measured points on the boundary

Let us start by summarizing our results so far. In §3, we showed how to form a system

Mnan = f n, (3.5)

for some given choice of boundary conditions, where the vector f n contains the Fourier modes

from measurements on the boundaries, i.e. the measured displacement and/or traction, and Mn

is a known 4 × 4 matrix that depends on the type of boundary conditions. In practice, we do not

have direct access to the Fourier modes of the boundary data f n, but instead measure the elastic

wave displacement at specific points on the boundary. That is, by summing the Fourier modes on

both sides of the modal system equation (3.5) we obtain:

∑

n

einθ
Mnan =

∑

n

einθ f n, (3.6)

where y(θ ) :=
∑

n einθ f n represents all the boundary data as a function of θ . In practice we may

measure y(θ ) at specific angles θ and from this want to obtain an.

A sophisticated approach would consider that y(θ ) is some statistical distribution that is

estimated from measured data. However, in this work we want to keep the presentation as simple

as possible. So instead, we show how to rewrite the system equation (3.6) in terms of a finite

number of deterministic measurements on the boundaries.
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First note that y(θ ) covers two different boundaries, each of which could be sampled at

different angles θ . To accommodate this we rewrite equation (3.6) sampled at discrete angles:

∑

n

[

e
inθ1

m1 M
1
n

e
inθ2

m2 M
2
n

]

an =
[

y1
inv(θ1

m1
)

y2
inv(θ2

m2
)

]

, (3.7)

where we evaluate m1 = 1, 2, . . . , M1 to iterate over M1 measured points θ1
1 , θ2

1 , . . . , θM1

1 . Similarly,

we evaluate m2 = 1, 2, . . . , M2. However, to facilitate implementation, we want to iterate over just

one index m, rather than m1 and m2, which leads us to rewrite the left-hand side of equation (3.7)

in the form

∑

n

Emnan =
[

χ1
my1

inv(θ1
m)

χ2
my2

inv(θ2
m)

]

with Emn :=
[

χ1
meinθ1

m M
1
n

χ2
meinθ2

m M
2
n

]

, (3.8)

where χ1
m = 1 if 1 ≤ m ≤ M1, and otherwise χ1

m = 0, and χ2
m has the analogous definition. We note

the technicality that θ
j
m is not defined if χ

j
m = 0, which we can remedy by setting θ

j
m = 0 when

χ
j
m = 0.

To solve equation (3.8) it is best to rewrite it in the block matrix form:

Ea = y, (3.9)

where E is a block matrix with the matrix block components Emn, a is a block vector from vertically

stacking the vectors an and similarly y is a block vector which results from vertically stacking the

vectors on the right-hand side of equation (3.8).

Finally, for equation (3.9) to have a unique solution for a then the number of modes N

considered for an has to satisfy N ≤ M1 and N ≤ M2.

4. Priors and recovering the load from the rollers
The methods shown in §3 make no assumptions about the boundary conditions. If we make no

assumptions about the internal geometry, or sources of the elastic waves, then we may need a lot

of sensors to obtained detailed prediction of the boundary data, as shown in §7b. To use a small

number of sensors we need to provide some information, which we call priors.

For example, using a tachometer (a revolution counter), together with the design specifications

of the roller bearing, we would know the approximate speed of the rollers and their contact points.

We show later that this in itself is a powerful prior.

(a) Linear priors

Any prior information about the source of waves, such as a known number of roller bearings, will

allow us to parameterize a in some way. For instance, a linear parameterization:

a = Bx + c, (4.1)

where the matrix B, and bias vector c, are known from the prior information, while x is now the

unknown. We assume that B is full-column rank. For the above to be a restriction on a the matrix

B has to have more rows than columns. We show later how a linear relationship between a and x

covers many important cases.

Substituting equation (4.1) into the block modal equation (3.9) then leads to

EBx + Ec = y, (4.2)

where we use a pseudo inverse to obtain a solution

x⋆=(EB)+(y − Ec). (4.3)
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For the above to give a unique solution, we have also assumed that E is full rank. Substituting the

above into equation (4.1) leads to

a⋆=B(EB)+(y − Ec) + c. (4.4)

The solution a⋆ would be equal to a when EB is a square matrix, otherwise a⋆ is a least-squares

approximation to a. We give an example for roller bearings in §7c.

Note that while the inverse of E could be ill defined, the pseudo inverse of EB could be well

defined, as we expect the dimension of x to be much smaller than the dimension of a.

(b) Prior due to boundary conditions

One of the most general ways to have a linear prior, as shown in §4a, is to have a linear basis

for the boundary conditions. For example, the boundary where the rollers make contact with the

raceway leads to a basis as shown in §5.

In this section we use M
for
n and E

for to represent the modal matrix and block matrix in

equations (3.5) and (3.9) for the boundary conditions for which we have prior knowledge. The

‘for’ in M
for stands for forward problem.1 We use M

inv
n and E

inv for problems which are ill-posed,

where ‘inv’ represents inverse problem.

To completely determine the elastic waves within the bearing would require the boundary

data y1
for(θ ) and y2

for(θ ), each of which can be written in terms of scalar functions in the form

y1
for(θ ) =

[

p1(θ )

s1(θ )

]

and y2
for(θ ) =

[

p2(θ )

s2(θ )

]

. (4.5)

For example, if the boundary data y1
for(θ ) represents the traction (see figure 4), then p1(θ ) and s1(θ )

would represent the pressure and shear force as a function of the angle θ .

To reach a linear prior equation (4.1), we assume there is a known basis for the boundary data:

y1
for(θ ) =

L1
∑

ℓ=0

x1
ℓy1

ℓ(θ ) + b1(θ ) and y2
for(θ ) =

L2
∑

ℓ=0

x2
ℓy2

ℓ(θ ) + b2(θ ), (4.6)

where y
j
ℓ(θ ) and bj(θ ) are known, and x

j
ℓ are, for now, unknown. Each of these functions can be

decomposed in Fourier modes:

y
j
ℓ(θ ) =

∑

n

f
j
ℓneinθ and bj(θ ) =

∑

n

b
j
neinθ , for j = 1, 2. (4.7)

Using the above, we can write the boundary conditions for one mode in the form

M
for
n an =

[

F
1
nx1

F
2
nx2

]

+
[

b1
n

b2
n

]

, (4.8)

where we define

F
j
n =

[

f
j
1n f

j
2n · · · f

j
Ljn

]

, (4.9)

so that F
j
nxj =

∑

ℓ f
j
ℓnx

j
ℓ. To write the above in a block matrix form we define

bn =
[

b1
n

b2
n

]

, x =
[

x1

x2

]

and Fn =
[

F
1
n 0

0 F
2
n

]

, so that Fnx =
[

F
1
nx1

F
2
nx2

]

, (4.10)

1Although it is debatable what a forward or inverse problem is here.
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and then rewrite equation (4.8) in a block form to obtain

M
fora = F

forx + bfor, with F
for =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

...

F−1

F0

F1

...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and bfor =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

...

b−1

b0

b1

...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4.11)

where M
for is a block diagonal matrix with M

for
n on the diagonals. Note that if we knew the

boundary data of the forward problem we would have f for = F
forx + bfor. Finally, we take the

inverse of M
for on both sides of equation (4.11) to obtain

a = (Mfor)−1
F

forx + (Mfor)−1bfor, (4.12)

where we have assumed that the type of boundary conditions that lead to M
for lead to a well

conditioned problem so that calculating the inverse (Mfor)−1 is stable and well defined.

The restriction equation (4.12) on a now matches the abstract form given by equation (4.15),

where by comparison we obtain

B
for = (Mfor)−1

F
for and cfor = (Mfor)−1bfor. (4.13)

We can use the above restriction to solve for a even when given incomplete boundary data. Let

us write this out in full for clarity.

Let E = E
inv and y = yinv in equation (3.9) to indicate that calculating (Einv)−1 is either ill-posed

or that the measured yinv is incomplete boundary data. Our aim is now to solve

E
inva = yinv. (4.14)

Using the result equation (4.4) together with the substitutions equation (4.13) leads to the solution

a⋆=B
for(Einv

B
for)+(yinv − E

inv
c

for) + cfor. (4.15)

It is probably easier to understand this result, and its consequences, with a concrete example

which we provide for roller bearings in §5. Nonetheless, let us consider here some important

features of this solution.

To simplify the discussion, let us assume that the number of boundary measurements yinv is

equal to the number of unknowns in x so that a⋆ = a and E
inv

B
for is a square matrix. So if we have

a representation for a that uses a small number of basis elements L1 and L2 in equation (4.6), then

we need only a small number of measurements in yinv to obtain the unique solution a. In §5 we

show how assuming a smooth loading of a roller bearing leads to small values for L1 and L2. To

further emphasize this point, note that the resolution of the solution is governed by the number

of modes N in a. That is, the block vector a is formed of the vectors an with n having N possible

values. For a fixed number of bases L1 and L2 in equation (4.6) we can increase N and still obtain

the unique solution a as long as M
for in equation (4.12) continues to be well conditioned. This is

why the images in figure 1 have such high resolution, despite having only three sensors.

(c) One traction free boundary

Here we give an example which is typical for bearings: the traction on one boundary is known,

and the boundary in contact with the roller bearings has a basis function. For example the outside

boundary in figure 4 could be traction free.

For this case, we need to make a small adjustment to the prior method shown in the previous

section. Here the boundary data are of the form

y1
for(θ ) =

L1
∑

ℓ=0

x1
ℓy1

ℓ(θ ), y2
for(θ ) = b2, (4.16)

so that b1(θ ) = 0 and x2 = 0.
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Figure 5. The graph on the left-hand side shows the stress on the raceway boundary y(θ , t). Each blue spike is the result of

one roller being in contact with the raceway. As the rollers move in time, the blue spikes in this graph also move, but they all

trace the same curve L(θ ), where we assume the load supported by the bearing does not change in time. The image on the

right-hand side illustrates how load is transmitted through the rollers.

Following the same steps shown in the previous section, we would need to make a small

adjustment by redefining

x = x1, and Fn =
[

F
1
n

0

]

. (4.17)

5. Roller bearings and the loading profile
Here we develop an application for roller bearings that shows the great potential of describing

the elastic waves in the raceway in more detail.

Consider a roller bearing as shown on the left-hand side of figure 3 and on the right-hand side

of figure 4. Any load applied to the shaft in the middle of the bearing, or applied to the outer

raceway, will be transmitted through the rollers themselves with each roller in contact with only

a small region of the raceway, as illustrated in figure 5. We do not need to know the exact shape of

this small contact region if the goal is just to measure the overall load passed through the bearing;

as long as the contact region is small compared to the bearing geometry. Below we show how

knowing the rotation speed of the bearing, number of bearings and their contact points, can lead

us to predict the load transmitted through each bearing with very few sensors.

We make a number of simplifying assumptions, which can be improved on in future

work. First, in practice, rollers slip as they go around [3], making their contact points better

described as a random variable. Further, the contact points of the bearings with the raceway are

more accurately modelled as Hertzian contacts [41]. However, here we show only how to use

deterministic priors both for simplicity but because it is necessary to develop the deterministic

version first before developing more precise models with random variables. Second, we assume

the bearing is rotating at a constant speed Ω . The framework we present can accommodate any

change in rotation speed, but the conclusions shown below would need to be adjusted.

(a) Static Loading profile

Imagine that the bearings are loaded just due to gravity, or some other static forces on the shaft,

mounting or casing. We use the function L(θ ) to denote the stress transmitted through a roller

when it is in contact with the raceway at an angle θ . We call L(θ ) the loading profile and in this

section assume it is independent of time. So this excludes environment effects, for example.
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Assume that L(θ ) represents the radial stress for simplicity, and that the contact region of the

roller is small, then we can write the radial stress on the boundary y(θ , t) of the raceway in the

form

y(θ , t) = L(θ )d(θ , t), where d(θ , t) =
∞
∑

s=−∞
δ((θ − Ωt)Z + 2πs), (5.1)

where Z is the number of roller bearings, Ω their angular speed, t is time and the function δ(θ )

represents the stress distribution due to one roller. See figure 5 for an illustration. A form similar

to equation (5.1) for the stress on the boundary was introduced in [18,19].

The function d(θ , t) moves the contact points of the bearing as time passes, and assumes that the

Z bearings have the same distance between each other. We assume that each δ((θ − Ωt)Z + 2πs)

when integrated over θ is equal to 1, so that the magnitude of the load transmitted is always L(θ ),

no matter the shape of the function δ(θ ). We could, for example have the function δ be a scaled

Dirac delta function. However to avoid Gibbs phenomena it is best to use a Gaussian function:

δ(x) = Z

σ
e−πx2/σ 2

, (5.2)

where σ is the standard deviation of the contact spread. In the limit of σ → 0 the above δ would

become a scaled Dirac delta. Naturally, we could use other type of contact points, but when the

aim is to measure L(θ ) we do not need to model precisely the contact region.

The function d(θ , t) is periodic in time with period T = 2π/(ZΩ), which means we can write

d(θ , t) in terms of its Fourier series in time, which (after some calculations) is given by

d(θ , t) = Z

2π

∞
∑

m=−∞
e−πσ 2m2

cos(mZ[θ − Ωt]), where ωm = mZΩ . (5.3)

The loading profile L(θ ) is also 2π periodic in θ , so we use a Fourier series representation:

L(θ ) =
∑

n

cneinθ , (5.4)

which, substituted into equation (5.1) together with equation (5.3), and after some calculations,

leads to

y(θ , t) =
∑

n,m

fn(ωm)einθ e−iωmt, with fn(ωm) = Z

2π
cn−mZe−πσ 2m2

, (5.5)

which matches the notation from the previous sections.

Using the above, together with the prior method shown in §4b,c, we can recover the coefficients

of the loading profile cn by measuring the displacement on the boundary of the raceway that is

traction free. To do so, we first identify the unknowns xℓ = cℓ, then the matrix F
1
n would be full of

zeros except for the column number ℓ = n − mZ which would be

f 1
ℓ,n = Z

2π

[

e−πσ 2
P m2

µSe−πσ 2
S m2

]

,

where we assume the contact force distribution for the pressure σP is potentially different from

the contact force for the shear σS, and we also assume that if the pressure is known, then the shear

is known as consequence.

In the examples section, we show that four different sensors are needed to recover the load

accurately, in steel, if the loading profile is smooth, as shown in §7c. This is because a smooth

loading profile implies that the series equation (5.4) needs few terms to converge.
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(b) Quasi-Static Loading profile

The most general force due to the rollers bearings on the raceway is given by

y(θ , t) = L(θ , t)d(θ , t), (5.6)

instead of equation (5.1). By taking the Fourier transform of both sides and using equation (5.3)

with the convolution theorem we obtain

ŷ(θ , ω) = Z

2π

∑

m

e−πσ 2m2
(L̂(θ , ω − ωm)eimZθ + L̂(θ , ω + ωm)e−imZθ ), (5.7)

where ŷ(θ , ω) and L̂(θ , ω) are the Fourier transforms of y(θ , t) and L(θ , t) respectively.

The form equation (5.7) would not be a useful prior if we knew nothing about L̂. However,

there is a useful and practical assumption that the loading is quasi-static, i.e. does not change

rapidly. The simplest scenario being that L̂(θ , ω) ≈ 0 for |ω| > ZΩ , in which case the sum in

equation (5.7) reduces to just one value for m, leading to

ŷ(θ , ω) = Z

2π
e−πσ 2m2

(L̂(θ , ω − ωm)eimZθ + L̂(θ , ω + ωm)e−imZθ ), (5.8)

where m = ⌊ω/ZΩ⌉, with ⌊x⌉ being equal to x rounded to the nearest integer.

Analogous to the previous section, we decompose ŷ and L̂ in their Fourier modes:

fn(ω) = Z

2π
e−πσ 2m2

cn−mZ(ω − ωm). (5.9)

6. What is measurable
It is not always possible to robustly estimate the stresses between the rollers, or other elements

with elastic waves. There are two main phenomena that cause this: (i) resonance and (2) the

diffraction limit. Numerically, we observe a relationship between the stability of the inverse

problem and the frequency ω. In particular, we find that the numerical stability of the inverse

problem increases as we increase the frequency, see figure 6. This relationship between numerical

stability and frequency is a well-established phenomenon in inverse problems for Helmholtz

equations with Cauchy boundary conditions [42–44]. In particular [43,44] show that for problems

such as ours, the numerical stability of the inverse problem increases with the wavenumber k.

When hitting a resonance, the field inside equation (2.4) the raceway varies significantly with

small changes of the boundary data. This occurs for the forward problem and interferes in using

the prior method. To determine this precisely, we can turn to the modal system equation (3.3) or

equation (3.4) and check if the matrix Mn is well conditioned, with one example shown in figure 6.

Due to the diffraction limit [45], for any fixed frequency there is a limited amount of

information, or resolution that can be extracted. The maximum spatial resolution that can be

recovered from the boundary is given by the largest mode number n used in the expansions

equation (2.4). When fixing ω, the problem becomes more ill-posed as n grows larger.

The condition number of Mn depends on the material parameters and geometry. For instance,

for the raceway listed in table 1 we can see from figure 6 that both M
for
n and M

inv
n can only be well

conditioned if, approximately:

|kp|r1 > |n|, (6.1)

although there are many frequencies and modes n that are ill-posed for M
for
n inside this region.

Specifically, the condition number cond M
for
n shows dark lines where the condition number is

high. These indicate that the system is close to resonance, as small values of the boundary data

lead to large values of the field. These dark lines depend on both r2 and r1; however, we note that:

when the ratio r2/r1 gets closer to 1 the lines move to higher frequencies but get thicker, and when

r2/r1 gets larger, more and more lines move from high frequencies to lower frequencies, but get

thinner and thinner.
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Figure 6. The above heatmaps show the condition number cond Mfor
n on the left-hand side and cond Minv

n on the right-hand

side, after non-dimensionalization. In the dark regions the errors in the boundary data can be amplified 20 times. Note that

for any fixed kpr1 if we keep increasing n the system will at some point become ill-conditioned. The dark cross and lines on the

forward problem are resonant modes. The parameters used are listed in table 1.

Table 1. The parameter values that approximate a steel raceway. These parameters are used for most numerical examples.

parameter value description

r1 1.0 m inner radius
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r2 1.1 m outer radius
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cp 5000 m s−1 pressure speed
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cs 3500 m s−1 shear speed
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ 7000 kg m−3 mass density
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When the modal system is well conditioned, then the mode number n can be measured when

using 2n sensors, as illustrated in the example in §7a. This is a rather high demand on sensors to

reach a reasonable resolution. The number of sensors needed for roller bearings, developed in §5,

is very different as we discuss below.

(a) Roller bearings at constant speed

Here our focus is to learn the Fourier coefficients of the loading profile cn, shown in equation (5.4).

In this section we explain an important lesson from the mathematics: the higher the rotation speed

of the rollers Ω , the better conditioned the modal system becomes, and the more coefficients

cn it is possible to measure. Specifically, the lowest order coefficients c0, c−1, c1, c−2, . . ., become

inaccessible if the speed Ω is too low.

Let us consider an example of a steel raceway with the properties listed in table 1. To use the

prior method, we need to invert the matrices M
for
n as shown in equation (4.12). This inversion

is only stable when equation (6.1) holds. If we substitute the angular frequency ωm = mZΩ from

equation (5.3) into equation (6.1) we obtain

Z|m|C > |n|, where C = Ωr1

α
.

Note that the ωm are the only frequencies available for constant rotation speed. Now the

goal is to obtain the coefficients cn−mZ from equation (5.9). For clarity we define ℓ = n − mZ and
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substitute n = ℓ + mZ in the above; with some manipulation we reach the restriction

− Z(|m|C + m) < ℓ < Z(|m|C − m). (6.2)

We can measure different frequencies ωm, which in turn implies we can choose different values

for m. For each value m, the restriction equation (6.2) determines which values for ℓ are possible

to measure. Despite this liberty, if C is small, then equation (6.2) will still significantly restrict all

possible values for ℓ. For an example, assume that C < 1. For the raceway listed in table 1 we have

that C < 1 when Ω < 10 rev/min.

Let us consider the cases

− Z(C + 1) < ℓ < −Z(1 − C), for m = 1 (6.3)

and

Z(1 − C) < ℓ < Z(1 + C), for m = −1. (6.4)

If C = 0.5 then the first and second inequality above would read −1.5Z < ℓ < −0.5Z and 0.5Z <

ℓ < 1.5Z respectively, which together imply that |ℓ| > 0.5Z. Larger values for |m| would lead

to restrictions where |ℓ| has to be larger. The number of rollers Z can be anything larger

than 10, so that |ℓ| > 0.5Z would become |ℓ| > 5. In other words, the loading coefficients cℓ for

ℓ = −4, −3, . . . , 4 could not be reliably measured.

The parameter C can only increase, for one fixed raceway, when the speed of rotation Ω

increases. With this increased speed, more modes of the loading become available to measure

by measuring elastic waves. One way to interpret this is in terms of the static limit.

(b) Static vs dynamic regimes

In the previous section, we learned that if the rollers spin too slowly then the lowest-order modes

of the loading |ℓ| can be not be robustly measured. This is because as Ω slows down, we approach

the static limit. A simple way to check if we are approaching the static limit is to compare the

elastic wave speed with the speed of rotation of the rollers. That is, the ratio

Ωr1

cp
= the roller to wave speed ratio. (6.5)

If the above is very small, then the rollers are almost stationary relative to the wave speed, and

therefore the solution could be calculated by using a static stress balance, which is known to be ill-

posed [46–48], and the equations for the potentials equation (2.4) tend to Laplace equations which

are also ill-posed [43,49]. As discussed in the previous section, for the steel bearing in table 1,

having c = 1 implies that Ω ≈ 1.05 rad/s, which when substituted into the ratio above leads to

2 × 10−4. In conclusion, to predict the complete load due to the rollers (rotating at a constant

speed) becomes well-posed if the rotation speed Ω is large enough. In practice, there are several

ways around this limitation, as we explain next.

Localized defects and forces. Some important goals do not require a complete measurement of

the loading through the rollers. An example of this is to detect a localized defect on, or near, the

boundary in contact with the rollers. In this case, the Fourier coefficients cℓ, of the loading profile,

for larger ℓ will be significant. These can be measured as shown in §7d. Here we explain why this

is possible in terms of algebra.

Suppose we are using low frequencies ωm which, due to the diffraction limit, implies that we

can only measure small values of n of the boundary conditions fn. Turning to equation (5.9), and

setting as an example n = 0, we could measure the coefficients c−mZ of the loading profile, where

mZ are high modes (as Z > 10) which are related to locating defects, as shown in §7d.
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7. Examples
A large number of scenarios are rigorously tested in the folder test of the package

ElasticWaves.jl [50] where MultipleScattering.jl [51] was also used. Below we show

a few examples of methods developed in this paper to both validate and illustrate our method.

In §7a, we show the modes for both the forward and inverse problem and explain where they

are ill-posed. Section 7b shows an example of generating, and predicting, a localized ‘for’ on the

inner raceway. There we learn that many sensors are needed to accurately predict a localized

mode if we make no assumptions about the forces. If we assume there are rollers travelling at a

constant speed, then as shown in §7c we can greatly reduce the number of sensors. Finally, §7d

shows an example where vibrations are due to rollers hitting a localized defect, and what can be

recovered using the inverse system.

(a) The forward and inverse modal systems

In the first sections of the paper we introduced the forward and inverse modal systems which

are shown in equations (3.3) and (3.4). Figure 6 shows where these systems probably lead to

stable solutions. Here we provide examples that the inverse problem truly recovers the boundary

conditions of the forward problem. We start with a sweep over all modes and frequencies.

Boundary conditions. For every mode n and frequency ω we choose

f n = [1, 1, 0, 0]T

for the forward problem to immitate some forcing on the inner face of the raceway. We then add

a uniform random 2% error and solve M
for
n an = f n for an. Then, to set up the inverse problem,

we substitute an in equation (2.4) and from these calculate the boundary data un, the traction and

displacement on the outer boundary. We then add 2% error to un and solve M
inv
n an = un for an,

and finally use this an to predict τ 1, the traction for r = r1.

The heatmap of error. The error is given by

error = |τ 1 − [1, 1]T|√
2

, (7.1)

and is shown as a heatmap over all modes and frequencies in figure 7 (the image on the left-hand

side). We can see that most of the heatmap has an error of approximately 2%, meaning that most

modes and frequencies lead to a well-posed problem.

Visualizing the modes. As explained in §6, the main causes that increase the error are (i) the

diffraction limit and (ii) resonant modes. To help visualize, we plot some modes in figure 8, with

the mode number n and wavenumber kpr1 of these modes shown by the orange spots in the

heatmap on the right-hand side of figure 7. We have chosen to use a thicker raceway with r1 = 1.0

and r2 = 1.3, but with the same material properties listed in table 1, to better visualize the modes.

The condition numbers of the forward problem for the thicker raceway are similar to the thinner

raceway and are shown on the right-hand side of figure 7.

The diffraction limit modes. The top and bottom left-hand side modes in figure 1 are close to the

diffraction limit, meaning that the potentials approximately obey Laplace’s equation. Notably,

solutions to Laplace’s equation are also solutions to a diffusion equation, where any source

smoothly dissipates as it moves away from its origin. Solutions to the Laplacian are known to

be ill-posed and are essentially the same as the diffraction limit [43,49].

Near resonant modes. The two images in the middle column of figure 8 illustrate near resonant

modes. That is, the pressure on both boundaries is near zero, while the pressure away from the

boundaries grows. This is why small errors in the boundaries lead to large errors in the fields for

these modes.

Well-posed modes. The top and bottom right-hand side modes shown in figure 8 are well-posed,

as phase information is still present, and the pressure is not small on all boundaries.
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Figure 7. On the left-hand side is the error in the tractionτ 1, shownby equation (7.1), withτ 1 predicted by the inverse problem

after adding 2% error to all boundary data. Table 1 lists the parameters used. The right-hand side shows the condition number

of Mfor
n but for a thicker raceway: r1 = 1.0 and r2 = 1.3, which is easier to visualize the modes, where the modes are shown in

figure 8 for the parameters with orange spots.

Figure 8. Above shows the real part of the pressure field from solving the forward system equation (3.3) for the modes n= 2

or 6, and kpr1 = 2.5, 10.5 or 18.5. Red (blue) is positive (negative) pressure, while white indicates no pressure. The colour scaling

is different for eachmode, but the outer boundary is always traction-free so it is shownwhite. The outer radius r2 = 1.3 which is

easier to visualize than r1 = 1.1. The chosenmodes are shown as an orange scatter on figure 7. Themiddle plots show resonance

so large field inside for small boundary data.

(b) A localized force on the boundary

In the previous section we saw that the inverse problem works in general, for no resonance or at

the low-frequency limit. Here, we show an example where although the inverse problem is well-

posed one requires many Fourier modes to converge, and therefore many sensors. The material
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Figure 9. The left-hand side graph shows the convergence of solving the inverse problem, with 1% error added to its boundary

conditions, to recover the force shown on the right-hand side. As the number of sensors increases so does the number of Fourier

modes n that can be recovered. The right-hand side plot shows the forcing f (θ ) given by equation (7.2) comparedwith themean

predicted force from the inverse problem for kpr1 = 65, using 25 sensors, and with a 10 standard deviation ribbon to show the

uncertainty.

parameters and dimensions of the bearing used here are listed in table 1. This section acts as

motivation for using the prior method developed in §4.

Boundary conditions and method. Consider a sharp Gaussian force applied to the inner boundary

given by

f (θ ) = 1

σ
√

2π
e−(θ−π)2/2σ 2

, (7.2)

where σ = 0.1. For the forward model we use the boundary conditions

τ
1 = f (θ )r̂ and τ

2 = 0,

which for one fixed frequency ω leads to the modal system

M
for
n an = [fn, 0, 0, 0]T, (7.3)

where fn is the nth coefficient of the Fourier series expansion of the forcing equation (7.2). A large

number of coefficients fn are needed to accurately represent f (θ ), which is why this example will

need many sensors to obtain a good resolution. Solving equation (7.3) for each mode n gives a

solution to the forward problem.

Just as before, to set up the inverse problem, we use the forward problem to predict the

displacement un on the outer boundary r = r2, and then add 1% error to un and then solve the

inverse modal problem equation (3.4) for an. With an we then predict the traction τ 1 and compare

it with the true traction. The results for the frequency kpr1 = 65 are shown in figure 9 with a 10

standard deviation ribbon resulting from solving this problem many times each with a different

error added.

Results. From the thickness of the ribbon in the plot on the right-hand side of figure 9 we

can see that the problem is well-posed for kpr1 = 65. This relatively high frequency avoids most

resonances, and allows us to recover very high Fourier modes by avoiding the diffraction limit.

However, the number of sensors needed to reach a relative error less than 20% is approximately

25, as can be seen from the graph on the left-hand side of figure 9.

Clearly a Fourier series representation f (θ ) =
∑

n fneinθ is not the best choice for a localized

force. However, by making assumptions about what led to the force, or more generally the

boundary conditions, we can use many other representations. For example, we can assume the

traction is due to contact with rollers bearings rotating at a constant speed, as we do in the next

section.
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Table 2. Parameter values used for numerical simulations in §7c.

parameter value description

r1 2.5 m inner radius
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r2 3.5 m outer radius
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cp 5000 m s−1 pressure speed
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cs 3500 m s−1 shear speed
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ 7800 kg m−3 mass density
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω 2000 rpm rotation speed
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Recovering the loading profile for rollers

Here, we show an example of predicting the loading on the bearings by using the methods

developed in §5a that assume the rollers are rotating at a constant speed.

Stribeck boundary condition. To create a realistic boundary conditions for the inverse problem

we use the Stribeck equation for the loading profile of roller bearings [1], it is given by

L(θ ) = L0

(

1 − 1

2ǫ
(1 − cos θ )

)10/9

, (7.4)

where ǫ is called the load distribution factor. This parameter determines the loading zone, that is,

the region where the load is being applied. For a radial loading, it is related to the loading region

through

ǫ = 1

2

(

1 − cos
(ϕ

2

))

, (7.5)

where ϕ is the angular extent of the loading zone.

For the numerical simulations, we used L0 = 1 and ǫ = 0.5, which implies a loading zone of

angular length ϕ = π . Figure 1 shows this Stribeck loading profile. The other parameters used for

this section are listed in table 2, where we use a thicker raceway with thickness 1 m to make the

plots below easier to see.

Data from the forward problem. Like the previous sections, we create the boundary data for

the inverse problem, represented by yinv in equation (4.14), by solving the forward problem.

In this section, for the forward problem we used the loading equation (7.4), from which the cn

coefficients in equation (5.4) can be calculated, which then lead to the Fourier modes fn shown

in equation (5.5) which we use for the boundary conditions of the forward problem. Again we

assume the outer boundary r = r2 is traction free with τ 1 = 0.

After solving the forward problem, we can then calculate yinv from equation (3.9) for a chosen

number of sensors, where a is given by solving the forward problem, and E is composed of the

modal matrices for the inverse problem.

Results. To solve the inverse problem using the prior method we can follow the steps shown

at the end of §5a. The result is that at least four sensors are needed to recover the loading profile,

when adding 4% noise, as shown by the figure 1 in the introduction, which shows the predicted

pressure distribution, and figure 10 which shows the predicted displacement. Figure 11 shows a

more quantitative view with just the predicted loading profile L(θ ) when using four and seven

sensors, shown against the exact loading profile used. When using four or seven sensor we are

only trying to recover the Fourier coefficients c−2, c−1, c0, c1 and c2. When using four sensors

there is a reasonably large error because the higher Fourier coefficients, which are ignored, make

a substantial contribution to the Stribeck equation shown in figure 11. With only four sensors, the

ignored higher Fourier coefficients are treated like an add error (20%), which explains the error

in recovering the coefficients c−2, c−1, c0, c1 and c2. When using seven sensors, we are able to

differentiate the modes associate with c−3, c3 from the lower modes.
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Figure 10. True radial displacement on the left-hand side for one snapshot in time when using the Stribeck equation (7.4)

and the properties in table 2. The snapshot in time is a result of taking a Fourier transform over all frequencies. The right-hand

image shows the predicted radial displacement when using only four sensors shown as orange spots. The sensors measure

displacement, and the outer boundary is stress free. We can see that despite being stress free on the boundary r = r2, the

displacement is not zero there. The recovery is not perfect as 4% noise is added, and limit sensors imply limited Fourier modes

are recovered.

Figure 11. The blue curve shows the Stribeck equation for the loading of rollers given in equation (7.4), the orange is prior

method with four sensors and modes−2:2 and 4% added error to boundary data, other than 20% error caused from lacking

Fourier mode. Also added 4% white noise error on top. Green is also modes−2:2 and 4% added error, but with seven sensors

able to resolve and ignore higher Fourier modes.

(d) Localized defect in a roller bearing

As our final example, we consider a a localized defect on, or near, the boundary in contact with

the rollers. A schematic is shown on the right-hand side of figure 12.

Defects and slow rotation. In the previous example we showed how a smooth loading profile can

be predicted with only a few sensors by using the prior method, together with a Fourier series

expansion of the loading profile, as shown in §5a. To predict the loading profile, the rollers need

to rotate fast enough, as discussed in §6b. If the rollers are rotating more slowly, then we can only

predict the higher Fourier coefficients cℓ for larger ℓ, which are associated to localized defects, as

we illustrate in this example.
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Figure 12. The right-hand side is an illustration of elastic waves being emitted when a roller hits a defect on the raceway. The

left-hand side shows the loading profile (orange and dashed) with two sharp drops in pressure due to the presence of two

defects on the inner boundary. The blue curves show the absolute value of the predicted loading profile when measuring the

Fourier coefficients of the boundary data un for n= −6,−5, . . . , 6 where 2% error was added. The rollers are rotating at a

rate ofΩ = 120 rpm and the properties used for the raceway are listed in table 1.

Use the inverse modal system. Consider the inside raceway with two localized defects which

we assume leads to a loading profile shown by the orange dashed curve on the left-hand side

of figure 12. This time, rewriting the loading profile in terms of a Fourier series, as done in §5a,

does not help because the Fourier series will converge very slowly. So instead, just to illustrate,

we just directly solve the system equation (3.9) using the inverse modal system equation (3.4) and

boundary data yinv solely from the outer boundary.

We return to using the parameters in table 1, as these more closely match real applications, but

use now a slower rotation speed of the rollers Ω = 120 rpm. As discussed in §6a, for slow rotation

speeds there are restrictions on which of the Fourier coefficients cℓ, of the loading profile, can be

measured.

What can be measured? Each frequency ωm gives access to a range of values for ℓ. For this

example we use the frequencies m = 1, 2, . . . 5 and for each solve equation (3.9) for a, and then

predict the inner traction τ 1. From τ 1, and depending on the choice of m, we then estimate some

of the coefficients cℓ of the loading profile by using equation (5.5). By combining all the predicted

coefficients cℓ from all five frequencies ωm we then predict the absolute value loading profile

shown by the blue curve in figure 12. We have shown the absolute value for visual clarity, as we

can more clearly see, the blue and orange spikes match up perfectly.

Clearly, figure 12 shows that we can locate the defects, and determine their magnitude, at least

in terms of the pressure difference, by directly solving the inverse problem.

Envelope analysis. There is a method commonly used to detect localized defects called envelope

analysis [52]. Here we only make a brief comment on how this method is connected to the work

in this paper.

For the example, in this section, we are not able to recover the first modes c0, c−1 or c1 of the

loading profile. However, these modes are not small, and therefore do make a contribution to

our boundary data. They in fact act like an error term. For example, for the frequency ωm, the

coefficient c0 contributes to fmZ(ωm) of the boundary data as shown in equation (5.5). If we have

fewer than m × Z sensors, and attempt to calculate a Fourier series of the loading data y(θ , ωm),

then the mode of fmZ(ωm) will be mixed in with the other modes fn(ωm), for |n| < m × Z, and lead

to errors for these modes. This error could be avoided if the function y(θ , ωm) was first smoothed

in θ before calculating the Fourier modes, as the smoothing would remove the higher modes such
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as fmZ(ωm). We believe this can be linked with the smoothening in time used in envelope analysis,

though this deserves a more lengthy analysis elsewhere.

8. Conclusions
In this paper we have shown how to model elastic waves confined within a hollow thick walled

cylinder with symmetry along the axis. As discussed in §2, the dynamics of these waves captures

the dominant vibrations within a raceway. By deriving simple systems for the modes, we provide

tools to better understand and quickly solve for these elastic waves. A detailed outline of the

paper’s content is given at the end of §1.

Results. The main results are how to: (i) model waves, (ii) use prior assumptions about the

boundary conditions, and (iii) determine what it is, and is not, possible to predict the traction

or displacement within the raceway. Notably, in §6, we show that solving for the elastic waves

becomes ill-posed when hitting a resonant frequency or near the diffraction limit. These results

hold for any transfer path of the signal. For roller bearings we demonstrate that if the rotation

speed is slow, then it is only possible to predict localized contact forces. Extended, or smooth,

contact forces lead to ill-posed problems for elastic waves.

Modelling—raceways. Our models lay the foundation for many future avenues. For instance,

instead of considering waves which are just confined in the raceway, as shown by figure 8, the

boundary conditions can be adjusted to let waves leak out towards the rollers or the oil. In

addition, the raceway’s bolted supports can be incorporated into the boundary conditions by

assuming that waves dissipate through these bolts and do not return.

Modelling—bearings. It is also possible to extend the models to consider bearings that do not

have axial symmetry, such as ball bearings or steeply inclined tapered roller bearings. Further

extensions could account for the slip and slide of roller bearings [29] which lead to transient

waves with a high-frequency content. Incorporating these phenomena into the models as more

elaborate priors would lead to more accurate predictions.

Inverse problem—uncertainty. To develop robust predictions, and methods to determine defects,

uncertainty needs to be accounted for [25]. A first step in this direction is to consider the boundary

data to be samples of a distribution, and also to consider that priors, as discussed in §4a, are also

distributions. This would help properly account for roller bearings slipping, or fluid interaction

in journal bearings.

Detect localized defects. In industrial applications, there are only a few sensors per bearing, so

defect detection needs to relies on monitoring the amplitude of specific frequencies, such as the

ball pass frequencies. Can we rely on these methods? The models in this paper provide a clear

path to address this question: imagine continually measuring the vibration of a bearing. When a

change occurs, we can assume it is due to a localized defect with an unknown position and size.

By adopting a Bayesian approach, we can then estimate the defect size by marginalizing over its

possible positions. This approach would clarify how robust current methods are and lead to more

reliable physics-based diagnostics.
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