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ABSTRACT

Vibration signal analysis plays a vital role in the condition‐based preventive maintenance of induction motor by identifying

early signs of motor issues, avoiding costly breakdowns and optimising the motor's maintenance schedule. It provides detailed

information very useful for extending the motor's life cycle with proactive, condition‐specific maintenance. Furthermore, the

vibration signal analysis offers the advantage of identifying the health status of rotating machinery as a whole, as well as its

individual components. This paper presents an innovative solution for the automated health assessment of a critical induction

motor component: the bearing. Our approach uses the matrix pencil method for signal processing and health signature gen-

eration, combined with a multilayer perceptron neural network to detect health conditions from the resulting health signature

characteristics. Initially, the matrix pencil is applied to the vibration signal to identify the mean frequency characteristics. This

vector provides a holistic view of the signal’s inherent features and transforms its frequency characteristics into a visual

spectrum, resulting in improved induction motor bearing fault condition monitoring. Subsequently, the output from the matrix

pencil mean frequency analysis is processed by a multilayer perceptron neural classifier, chosen for its low computational cost

and high classification accuracy. Experimental validation demonstrates a 100% fault classification rate and automatic identi-

fication of defective components. Comprehensive validation further confirms the method’s robustness and feasibility for in-

duction motor bearing fault detection compared to other recently methods.

Abbreviations: ANN, Artificial Neural Network; DWT, Discrete Wavelet Transform; EA, Envelope Analysis; EMD, Empirical Mode Decomposition; FFT, Fast Fourier Transform; MLP, Multi‐Layer
Perceptron; MPM, Matrix Pencil Method; MPMF, Matrix Pencil Mean Frequency; SSA, Singular Spectrum Analysis; SVD, Singular Value Decomposition.
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1 | Introduction

Induction motors are essential components in industrial pro-

cesses, particularly in heavy industry [1], because of their

numerous advantages, notably high dependability, low cost,

limited maintenance requirements and dynamic performance.

Nevertheless, adverse operational environments, such as abra-

sion, unbalanced loads, or overload can make these motors

prone to damage that can disrupt the stator components, rotor

and bearing parts. Existing literature show that bearing failure

accounts for about 41% of all failures [2] resulting from elec-

trical erosion, inadequate lubrication, vibration damage etc. As

such, identifying the bearing failure through condition moni-

toring is of great importance in ensuring reliable operation of

industrial processes.

The development of a predictive approach for fault diagnosis

based on precise monitoring can lead to a significant decrease in

maintenance costs and machine failure rates [3]. Stator current,

noise, temperature, speed, pressure and vibration analysis are

some of the physical parameters that can be studied to track

failure signs [4–6]. One of the most common ways to detect a

bearing problem is through vibration analysis [7]. According to

multiple studies, the raw data does not provide anything on the

condition of the bearing element, which makes the identifica-

tion or classification very difficult [8]. Common fault diagnostic

techniques have been used in many research, yet they have

significant limitations when it comes to complex feature ex-

tractions [9, 10]. Intelligent diagnostic techniques can be

regarded as a component of knowledge‐based approaches and

have the ability to automatically learn when combined with

artificial intelligence and fault identification methods [11, 12].

In the case of vibration signal analysis, numerous signal pro-

cessing techniques have been considered for fault identification.

The Fast Fourier Transform (FFT) is one of the old techniques

that calculates the spectrum of a signal across a wide range of

frequencies. However, this approach is not efficient when only a

few specific frequencies are considered [13]. The Discrete

Wavelet Transform (DWT) and Envelope Analysis (EA) are

established methods employed for fault identification, especially

in the context of nonstationary signals [14]. The DWT de-

composes the original signal, yielding approximations and de-

tails that are rich in fault information. The primary limitation of

wavelet analysis is its resolution issue, which restricts wavelets

to identifying transient signals. The EA provides only the

essential information regarding the existence of faults in terms

of frequency series. Another extensively studied signal pro-

cessing technique, the Empirical Mode Decomposition (EMD),

is an adaptive tool for signal decomposition and noise reduction,

and it can operate on the signal adaptively without requiring

prior knowledge about the signal itself. In spite of this, the EMD

algorithm has some restrictions, including mode mixing and

noise sensitivity. Matrix Pencil Method (MPM), when combined

with noise filtering techniques such as Wavelet De‐noising and

Wiener filtering, has been shown to improve fault detection in

noisy environments, as demonstrated in ref. [15]. However,

additional comparative analysis with alternative signal pro-

cessing methods is needed to fully establish its superiority.

In practical cases, the efficacy of the results obtained from the

use of the signal processing techniques can only be analysed and

evaluated only after the fault occurrence [16]. Additionally,

interpreting the results, defining the proper thresholds, using

the obtained metrics in the diagnostic process, and regularly

monitoring these metrics, all require specialised knowledge

[17]. This kind of method adds a human element, which lowers

the system’s overall fault tolerance. Therefore, efforts are being

made to automate the detection process and remove the human

element through the use of artificial intelligence [17]. Moreover,

accurate fault identification through enhanced feature extrac-

tion ultimately improves the system classification performance

and reliability.

In view of the literature, many researchers have focused their

studies on developing approaches and methods for improving

automated bearing faults diagnosis process. In ref. [18], authors

have developed an automated diagnosis method for bearing

fault identification based on characteristics frequency ratio.

Even if this method is automatic, it also requires human

involvement for interpreting the obtained results. On the other

hand, to improve the efficacy of an intelligent fault diagnosis

technique, authors in ref. [19] have used the vibration signals

collected in noisy environment conditions as inputs. Then, the

authors diagnosed the fault separately by random forest, artifi-

cial neural network and autoencoder methods. Results show

that autoencoders achieve higher efficiency compared to the

other methods. Authors in ref. [20] proposed a condition

monitoring process for fault diagnosis of induction motors based

on DWT and Artificial Neural Network (ANN) exploiting a

current signal. The results show the effectiveness of the pro-

posed method when using the processed signal in the ANN

classifier. In summary, utilising raw data without prior signal

processing is impractical for big data and fails to yield accurate

defect information. Dimensionality reduction is essential,

employing various signal processing tools to maintain infor-

mation integrity.

The key limitations of the existing vibration‐based diagnostic

approaches identified in the literature can be summarised as

follows:

� Limitations of Raw Data: Raw vibration data often lacks the

necessary detail for accurately identifying and classifying

bearing conditions, which complicates the fault diagnosis

process. This inadequacy can lead to misinterpretations and

missed detections, ultimately hindering effective mainte-

nance strategies.

� Limitations in Feature Extraction and Signal Processing:

Existing vibration‐based diagnostic techniques face chal-

lenges in complex feature extraction and exhibit in-

efficiencies, particularly with traditional methods such as

FFT and DWT, which struggle with specific frequencies

and resolution issues. Additionally, envelope analysis pro-

vides only basic frequency information, lacking compre-

hensive diagnostic insights.

� Challenges in Automation and Data Processing: Current

approaches to fault diagnosis face significant challenges,

including a reliance on human expertise for interpreting

results despite ongoing automation efforts. Additionally,

using raw data without prior signal processing proves

impractical for large datasets, often leading to inaccurate
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defect identification. Effective fault diagnosis necessitates

dimensionality reduction and the application of diverse

signal processing tools to maintain information integrity.

For this reason, the present paper aims to develop a novel

approach that integrates two methodologies to enhance the

fault detection and condition monitoring of machinery,

particularly focusing on induction motors. Our proposed so-

lution combines signal processing utilising the pencil matrix

method with machine learning techniques employing a

multilayer perceptron (MLP) neural network. In the first

methodology, we introduce the Pencil Matrix method, which

separates the machinery vibration signal into frequency vec-

tors, named as Matrix Pencil Mean Frequency (MPMF),

enabling the capture of dynamic spectral components. Through

careful aggregation, the MPMF emerges as a singular repre-

sentation, summarising collective frequency characteristics.

The resulting MPMF vector not only provides a comprehensive

view of the signal's features but also introduces a novel spec-

trum method, enabling a clearer representation of machinery

faults. This approach aims to enhance fault detection and

condition monitoring by offering a deeper understanding of the

signal's behaviour. Subsequently, a MLP classifier is applied to

validate the efficacy of the MPMF as novel features for bearing

fault detection. The experiments indicate a high fault classifi-

cation rate, highlighting the capacity for automatic identifica-

tion of defective components. The experimental validation

conducted with a specialised test rig, alongside comparisons to

recent literature, highlights the robustness and practical

applicability of the proposed method in real‐world scenarios.

Our approach advances machinery condition monitoring and

fault detection, promising to enhance the reliability and effi-

ciency of industrial systems.

The proposed approach offers several key advantages that

address the limitations of existing vibration‐based diagnostic

techniques:

� Enhanced Signal Representation: By employing the Matrix

Pencil method, the approach effectively separates machin-

ery vibration signals into frequency vectors, capturing dy-

namic spectral components. This careful aggregation

results in a robust Matrix Pencil Mean Frequency vector

that encapsulates collective frequency characteristics,

providing a comprehensive view of the signal's features and

a clearer representation of machinery faults.

� Improved Fault Detection and Condition Monitoring: The

integration of the Matrix Pencil method with machine

learning techniques enhances fault detection and condition

monitoring capabilities, offering a deeper understanding of

the signal's behaviour. This holistic analysis enables the

identification of potential issues at an earlier stage, thereby

improving maintenance strategies.

� Automatic Fault Classification: The use of a Multilayer

Perceptron classifier validates the effectiveness of the

MPMF as novel features for bearing fault detection,

demonstrating a high classification rate. This automatic

identification of defective components reduces reliance

on human expertise and minimises the potential for

misinterpretation.

� Robustness and Practical Applicability: Experimental vali-

dation conducted with a specialised test rig, along with

comparisons to recent literature, showcases the robustness

and practicality of the proposed method in real‐world sce-

narios. This highlights its potential for effective deployment

in industrial settings.

� Addressing Limitations of Existing Techniques: The

approach effectively overcomes the challenges associated

with raw data limitations, inefficient feature extraction, and

the need for dimensionality reduction. By integrating

advanced signal processing with machine learning, it pro-

vides a more reliable and efficient solution for fault diag-

nosis in induction motors and other machinery.

The structure of the paper is as follows: Section 2 presents an

analysis of Matrix Pencil Mean Frequency through the exami-

nation of Spectrum Shape. Section 3 provides experimental re-

sults and discussions. Section 4 discusses the localisation of the

defective component utilising multilayer perceptron neural

networks. Section 5 presents a comparative analysis of the

proposed method against existing literature. Finally, Section 6

provides a conclusion to the study.

2 | Methodology

2.1 | Matrix Pencil Mean Frequency Analysis via
Spectrum Shape

The matrix pencil (MP) method uses a sum of complex expo-

nential to approximate a given dataset, which can be useful to

extract different frequency components present in that dataset.

Unlike conventional counterparts, MP technique distinguishes

itself with its fast computations, precise energy calculations, and

its adeptness at extracting various features from the signals. This

approach has attracted considerable attention, notably in con-

texts marked by significant frequency fluctuations, such as

shipboard power systems [21, 22]. Here, it proves invaluable for

detecting frequency faults, as shown in ref. [23], where the MP

is integrated with DWT for detecting frequency‐bearing faults

during the nonstationary operation of induction motors. Note

that Gantmacher introduced the term ‘Pencil’ in 1960 [24] in the

context of matrix‐values polynomial function.

In our case, the objective is to decompose the measured stator

current signal into different frequency components. In this

context, the analogue signal y(t) can be approximated as a

summation of M damped complex exponential terms, given by

the following [25]:

y(t) ≈ ∑M
i=1

Aie
jθie(αi+jωi)t

, (1)

where the subscript i indicates the ith component and A, θ,α

and ω represent the amplitude, phase, damping factor and

angular frequency, respectively. The above continuous‐time

system can be represented in the discrete‐time by using

t = nTs where n is the sampling instant and Ts is the sampling

period. In discrete‐time, Equation (1) can be rewritten as

follows:
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y(nTs) = y(n) ≈ ∑M
i=1

Aie
jθie(αi+jωi)nTs

=∑M
i=1

Ai e
jθizni ,n = 0, 1,…,N − 1,

(2)

where zi = e(αi + jωi)Ts and N is the total number of samples

available. In the MP method, the unknown parameters of the ith

signal component A, θ and z are estimated from y(n) using a

two‐step process. In the first‐step, the unknown parameter z is

estimated using the matrix pencil through solving the general-

ised eigenvalue problem. As a recap, the generalised eigenvalue

problem seeks nontrivial (i.e., nonzero) solutions to Ax = λBx,

where A and B are matrices, x is a vector and λ is a scalar

representing the generalised eigenvalue. In the second‐step,

using the obtained z, the other unknown parameters A and θ are

obtained by solving a least‐square problem.

As explained previously, in the first‐step, the unknown

parameter z is estimated using a mathematical identity known

as the matrix pencil and denoted as X , which is a combina-

tion of two matrices. From y(n) with length N, the MP is

formulated via two matrices, each having a dimension of

(N − L) × L, with positive integer L being a tunable MP

parameter, as given below:

X = Y2 − λY1, (3)

where the matrices Y1 and Y2 are given by the following

equation:

Y1 =

⎡⎢⎢⎢⎣
y(0) y(1) ⋯ y(L − 1)
y(1) y(2) ⋯ y(L)

⋮ ⋮ ⋱ ⋮

y(N − L − 1) y(N − L) ⋯ y(N − 2)

⎤⎥⎥⎥⎦, (4)

Y2 =

⎡⎢⎢⎢⎣
y(1) y(2) ⋯ y(L)
y(2) y(3) ⋯ y(L + 1)

⋮ ⋮ ⋱ ⋮

y(N − L) y(N − L + 1) ⋯ y(N − 1)

⎤⎥⎥⎥⎦. (5)

Note that L determines the sensitivity of the MP method. As

such, L has to be selected as a trade‐off between memory

requirement, computational complexity and selectivity of the

MP method to measurement noise. Using the expression of

y(n) from Equation (1), the matrices Y1 and Y2 can be

rewritten as a function of z and the complex amplitude

Ri = Aie
jθi as follows:

Y1 = Z1RZ2, (6)

Y2 = Z1RZ0Z2, (7)

where the matrices R (M × M), Z0 (M × M), Z1 ((N − L) ×
M) and Z2 (M × L) are given by the following equation:

R =

⎡⎢⎢⎢⎣
R1 0 ⋯ 0
0 R2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ RM

⎤⎥⎥⎥⎦, (8)

Z0 =

⎡⎢⎢⎢⎣
z1 0 ⋯ 0
0 z2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ zM

⎤⎥⎥⎥⎦, (9)

Z1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1

z1 z2 ⋯ zM

⋮ ⋮ ⋱ ⋮

zN−L−1
1 zN−L−1

2 ⋯ zN−L−1
M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

Z2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 z1 ⋯ zL−1
1

1 z2 ⋯ zL−1
2

⋮ ⋮ ⋱ ⋮

1 zM ⋯ zL−1
M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Note that in the above formulation, the order of the MP is

denoted by M. By substituting the Equations (6) and (7) with

into the MP definition in Equation (3), the MP can be rewritten

as a function of the matrices R, Z0, Z1 and Z2 as follows:

X = Z1RZ0Z2 − λZ1RZ2,

Y2 − λY1 = Z1R(Z0 − λI)Z2,
(12)

where I is the identity matrix of dimension M × M. As shown

in refs. [24, 26], if the MP tunable parameter L satisfies the

condition M ≤ L ≤ N − M, then the MP X with eigenvalue λ

has rank M. To show the relationship between zi (the unknown

parameter) and the eigenvalue λ, the equivalence presented in

Equation (12) will be very useful. In this regard, let us consider

the term Z0 − λI , which can be written in the expanded form

as follows:

Z0 − λI = Z0 =

⎡⎢⎢⎢⎣
z1 − λ 0 ⋯ 0

0 z2 − λ ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ zM − λ

⎤⎥⎥⎥⎦. (13)

If we consider that λ = zi, i = 1,M, then the i‐th row of the

matrix Z0 − λI will become zero, therefore, reducing the

rank of the matrix from M to M − 1. As a result, the rank

of the matrix pencil X = Y2 − λY1 will also reduce to

M − 1 due to the equivalence established by the Equa-

tion (13), which implies that zi becomes generalised eigen-

value of the matrix pair {Y2,Y1} as opposed to ordinary

eigenvalues problem. This can be re‐casted as an ordinary

eigenvalue problem as well if we consider pseudo‐inverse of

the matrix Y1. In this case, the eigenvalue problem to esti-

mate zi can be written as follows:

Y
†
1Y2 − λI = 0,Y†

1 = (YH
1 Y1)−1

YH
1 , (14)

where Moore–Penrose pseudo‐inverse is given by Y
†
1 and the

superscript H indicates the complex‐conjugate transpose. Once

the zi’s are obtained, then, the Ri’s can be obtained by solving

the following least‐square problem:
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⎡⎢⎢⎢⎣
y(0)
y(1)

⋮

y(N − 1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1

z1 z2 ⋯ zM

⋮ ⋮ ⋱ ⋮

zN−1
1 zN−1

2 ⋯ zN−1
M

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
R1

R2

⋮

RM

⎤⎥⎥⎥⎦. (15)

Note that the matrix pencil method (MPM) and singular spec-

trum analysis (SSA) [27–32] are both techniques used in signal

processing and time series analysis, but they differ significantly

in their approach, applications and underlying principles. The

MPM is primarily used for estimating the parameters, such as

frequencies and damping factors, of exponential signals in the

presence of noise and is often applied in areas like modal

analysis, system identification, and signal decomposition. MPM

models a signal as a sum of damped or undamped exponentials

by constructing a Hankel or Toeplitz matrix from the signal,

then performing an eigen decomposition of the matrix pencil to

estimate the signal’s parameters. As a parametric method, MPM

assumes a model structure for the signal, involves solving an

eigenvalue problem to extract signal parameters, and is

commonly applied in scenarios where the signal can be

modelled as a sum of exponentials, such as in radar, sonar and

vibration analysis.

On the other hand, the SSA is a nonparametric method used for

time series decomposition, trend extraction, noise reduction, and

identifying underlying structures in data, widely used in fields

such as climatology, economics and bioinformatics. SSA involves

embedding the time series into a high‐dimensional space by

constructing a trajectory matrix, which is then subjected to sin-

gular value decomposition (SVD), with the resulting components

interpreted as trends, oscillatory modes and noise. SSA does not

assume any specific model structure for the data, decomposes the

time series into components that can be individually analysed,

and is useful for exploratory data analysis, signal smoothing, and

feature extraction in various time series applications.

In summary, MPM is a parametric method focused on esti-

mating the parameters of exponential components within a

signal, often used in structured signal models, while SSA is a

nonparametric method aimed at decomposing a time series into

interpretable components such as trends and cycles, making it

useful for a wide range of exploratory analyses. The choice be-

tween these methods depends on the nature of data and the

specific goals of analysis.

2.2 | Proposed Approach in Machinery Vibration
Signal Analysis for Bearing Faults Identification

The MPM method described above will be used in this Section

for analysing vibratory signals of electric machine. The proposed

method relies on a six‐step approach, as illustrated in Figure 1,

to calculate the mean frequency of the vibration signal denoted

as matrix pencil mean frequency (MPMF). These steps are as

follows:

FIGURE 1 | Proposed approach for machinery vibration signal analysis.
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� Step 1: Segmentation Precision

It involves the careful segmentation of the machinery vi-

bration signal into several equal length segments. This

partitioning serves to focus on specific time intervals and

lays the foundation for subsequent in‐depth analyses.

� Step 2: Matrix Pencil Method Selection

This step involves the construction of the MP directly from

time‐domain segments, presenting a departure from con-

ventional frequency‐domain transformations like FFT. The

essence of this method lies in its recognition that the time‐

domain can effectively capture unique signal characteristics

inherent in machinery vibrations. By leveraging the MP

technique, we intricately capture the temporal dynamics,

including transient features and nonstationaries, which are

often pivotal in machinery health assessments. The careful

selection of the MP technique reflects our commitment to a

sophisticated analysis that extends beyond conventional

approaches.

� Step 3: Matrix Pencil Method Application

Subsequently, each segmented signal (S) undergoes the MP

method. This meticulous application yields vectors of fre-

quency for each respective segment, providing a detailed

and precise representation of the signal’s frequency com-

ponents. The adaptability of the MP technique to the

unique characteristics of machinery vibrations ensures that

we capture not only steady‐state behaviour but also tran-

sient events, enabling a more comprehensive understand-

ing of the machinery’s dynamic response.

� Step 4: Eigenvalue Decomposition:

Through eigenvalue decomposition, the MP undergoes a

transformation into eigenvalues and eigenvectors. This

critical step reveals intrinsic modal frequencies and cor-

responding vibration modes, offering detailed insights into

the complex dynamics of machinery. By incorporating this

level of detail, our methodology extends beyond tradi-

tional frequency‐domain analyses, providing a nuanced

understanding of the spatial distribution of vibrational

modes.

� Step 5: Eigenvalue Spectrum Analysis

The eigenvalue spectrum serves as a key indicator of ma-

chine vibration. Peaks in this spectrum act as pinpointed

indicators of dominant frequencies crucial for effective

machinery health monitoring.

� Step 6: Matrix Pencil‐based High Precision Mean Frequency

Estimation

In this final phase, the implementation of the MP method

results in a series of frequency vectors, each representing

the dynamic spectral components within individual seg-

ments of the machinery vibration signal. These vectors

offer a detailed portrayal of the signal’s frequency dy-

namics, capturing the nuances of each isolated time frame.

To achieve a comprehensive representation of the entire

machinery vibration signal, a careful aggregation process

takes place. Mean vectors are computed by summing the

individual frequency vectors ( f ) across all segments and

dividing the result by the total number of segments. The

outcome is a singular frequency vector known as the ma-

trix pencil mean frequency. This vector encapsulates the

collective frequency characteristics using the MP approach.

This careful averaging technique ensures a balanced

consideration of each segment’s influence, effectively

capturing the underlying characteristics of the entire

signal. The resulting MPMF vector provides a holistic view

of the machinery vibration signal’s inherent features,

significantly enhancing the accuracy and resolution of the

overall analysis. This aggregation methodology not only

synthesises nuanced frequency information across

different time intervals but also fosters a more robust un-

derstanding of the signal’s behaviour. Consequently, it el-

evates the efficacy of our approach in machinery condition

monitoring, fault detection, and predictive maintenance

applications.

2.3 | Bearing Fault Frequency Signature

Bearings are critical mechanical components that convert

sliding friction into rolling friction to minimise losses and

consist of an inner ring (ir), outer ring (or), rolling elements (re)

and a cage (c) (cf. Figure 2a,b). The inner ring rotates with the

shaft, while the outer ring supports the assembly, and the cage

distributes the rolling elements. Note that in Figure 2a, the

diameter of the rolling element is denoted by d, while the

diameter of the bearing pitch is denoted by D and α is the

operating angle of the bearing (0° for ball bearing). Additionally,

nb denotes the total number of rolling elements (spheres).

Common faults can occur on the inner race, outer race, cage

and rolling elements. Frequencies related to these faults are

denoted as f ir, f or, f c and f re, respectively while the motor

rotational frequency is denoted by f r and given by f r = n/60
with n being the motor rotational speed. Theoretical fault fre-

quencies for these components [33, 34] are given below.

� Inner ring defect characteristic frequency: the distinctive

vibration frequency caused by faults in the inner, also

known as ‘bearing pass frequency of inner race’ is calcu-

lated using the following formula:

fir =
nb

2
fr(1 + d

D
cos α). (16)

� Cage defect characteristic frequency: the cage is attached

between the inner ring and the outer ring; this attachment

generates defects that can be expressed by the following

equation:

fc =
1

2
fr(1 ± d

D
cos α). (17)

� Rolling element defect characteristic frequency: the ball

makes contact between the inner and outer rings, resulting

in a fault at the contact point, as represented by the

following equation:
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fre =
D

d
fr(1 − ( d

D
cos α)2). (18)

� Outer ring defect characteristic frequency: the outer ring is

immobile, so the fault can occur through the passage of a

ball, which is known as ‘the bearing pass frequency of outer

race’ and is calculated using the following formula:

for =
nb

2
fr(1 −

d

D
cos α). (19)

2.4 | Bearing Element Dynamics: Experimental
Setup

The data sets that were utilised in the present work include the

vibration signals generated from the bearings and gathered from

the test rig of the Case Western Reserve University (CWRU)

[35]. The test rig, as illustrated in Figure 3, consists of a 1.5 kW

asynchronous motor that transfers a load via a shaft that is

connected to the motor. On this shaft, an encoder and torque

transducer are mounted to ensure precise data collection for

speed and torque. Following this, accelerometers are connected

to the motor housing through its magnetic base to gather vi-

bration signals at a sampling frequency of 12 kHz.

Motor loads can be controlled via variable frequency drives in

direct correlation to torque delivered, all thanks to the control

unit. Thus, a rise in torque and a fall in shaft speed are the

outcomes of increasing the motor load. The experiments are

carried out with four different loads used to generate the

vibratory signals: 0, 1, 2 and 3 Nm, and under four different

motor speeds, which correspond to 1797, 1772, 1750 and

1730 revolutions per minute, respectively. Although the test

bearings were being subjected to the creation of single‐point

flaws by the application of electro‐discharge machining, the

bearings were also being damaged. The flaws were distin-

guished by their varied sizes, especially 0.007, 0.014, 0.021 and

0.028 inch (corresponding to 0.1778, 0.3556, 0.5334 and

0.7112 mm) based on their dimensions.

About 64 cases of bearings that were fitted in the drive end were

found to be normal and faulty, according to the data sets that

included vibration signals. Four of these cases are issued under

normal conditions, while the remaining data sets are acquired

from defective bearings, comprising 28 faulty cases in the outer

race. Among these, 12 cases of them are associated with a fault

diameter of 0.007 inches, 4 with a fault diameter of 0.014 inches,

FIGURE 3 | Experimental test rig for the operation of CWRU bearings [35].

FIGURE 2 | (a) Overall rolling bearing structure. (b) Geometric properties of the bearing.
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and 12 with a fault diameter of 0.021 inches. Therefore, a

defective bearing with a rolling element comprises 16 faulty

cases, with each 4 of them corresponding to fault diameters of

0.007, 0.014, 0.021 and 0.028 inches, respectively. Additionally, a

defective bearing with a Haut du formulaire inner race fault

includes 16 faulty cases, divided into 4 cases corresponding to

fault diameters of 0.007, 0.014, 0.021 and 0.028 inches, in which

each bearing condition’s bearing data is provided in a unique

Matlab file. Table 1 provides a listing of the characteristics of the

bearings that were utilised in this study.

3 | Experimental Results and Discussions

3.1 | Enhancing Reconstitution Machinery
Vibration Signals Through Matrix Pencil Analysis

Figures 4–7 present a comprehensive analysis of vibratory sig-

natures and reconstituted signals utilising the pencil matrix

method across diverse scenarios: a healthy bearing, a bearing

with a rolling element fault, a bearing with an inner race fault,

and a bearing with an outer race fault. The study focuses on a

no‐load motor example with a fault diameter of 0.1778 mm. In

detail, Figure 4 showcases the faithfully reproduced vibratory

signatures of a healthy bearing using the MP method with

M = 100 poles and SL = 250.

Figure 5 captures the reconstituted vibratory signatures of a

bearing with a rolling element fault (Ball), also employing MP

with M = 100 poles and SL = 250. Likewise, Figure 6 depicts the

reproduced vibratory signatures of a bearing with an inner race

fault, and Figure 7 illustrates the reproduced vibratory signa-

tures of a bearing with an outer race fault, both utilising MP

with M = 100 poles and SL = 250. These findings, consistently

derived with a minimal number of poles (M = 100) and a

segment length (SL = 250), underscore the method’s reliability

in faithfully reproducing original vibratory signatures across

diverse conditions, including healthy bearings, and those with

outer race faults, rolling element faults and inner race faults.

3.2 | The Matrix Pencil Mean Frequency
Reconstitution Results

Implementing the MP method reveals dynamic spectral com-

ponents in machinery vibration signals, offering detailed fre-

quency dynamics within individual segments. Through

meticulous aggregation and mean vectors form the MPMF, it

provides a holistic view of the signal’s inherent characteristics.

This refined methodology enhances accuracy, resolution, and

understanding of machinery behaviour, contributing to

improved condition monitoring, fault detection and predictive

maintenance.

In this study, we utilised the CWRU bearing dataset, which

provides standardised vibration signals for fault diagnosis. The

faults in the dataset were artificially induced using electrical

discharge machining to ensure high precision and consistency

in both location and shape across different fault types. This

controlled fault induction process minimises variations that

could otherwise introduce inconsistencies in the extracted

features.

FIGURE 4 | Reproduced vibratory signatures of healthy bearing using MP with M = 100 poles and SL = 250.

TABLE 1 | SKF ball bearings specifications for 6205‐2RS JEM.

Bearing elements Dimensions

Inside diameter 25 mm

Outside diameter 52 mm

Intermediate diameter 39 mm

Thickness 15 mm

Rolling element diameter 8 mm

Rolling element number 9

Contact angle rad
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The dataset includes bearing defects in three distinct locations:

rolling elements, inner race and outer race, with predefined

fault diameters of 0.007, 0.014, 0.021 and 0.028 inches. Because

all faults of a given type and size were introduced under the

same conditions, the vibrational response primarily reflects the

mechanical behaviour of the faults rather than uncontrolled

variations in flaw geometry or placement.

Additionally, the CWRU test rig maintains controlled operating

conditions, such as rotational speed and load, ensuring that the

recorded vibration signals are not influenced by external vari-

ations. This consistency allows us to analyse the effectiveness of

the MPMF method in differentiating fault severities based on

intrinsic signal characteristics rather than uncontrolled experi-

mental factors. By leveraging this standardised dataset, our

study ensures that fault classification is based on robust spectral

differences captured by the MPMF approach, rather than arte-

facts introduced by inconsistent flaw placement or shape

variations.

The approach marks a substantial advancement in compre-

hending machinery health and performance. Figure 8 presents

the results of MPMFs for a healthy bearing state. The original

database consists of four distinct healthy bearing vibration

FIGURE 5 | Reproduced vibratory signatures of bearing with a rolling element fault (ball) using MP with M = 100 poles and SL = 250.

FIGURE 6 | Reproduced vibratory signatures of bearing with an inner race fault using MP with M = 100 poles and SL = 250.
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signals, each reconstructed using our proposed approach based

on MP with a minimal number of poles (M = 100) and a

segment length (SL = 250). Each MPMF encapsulates the

inherent characteristics of each healthy bearing vibration signal.

The colour spectrum, transitioning from blue to red, represents

the frequencies of the 100 poles, ranging from 1 to 100 poles.

Notably, a clear similarity in MPMF forms emerges, high-

lighting the consistency across these signals.

Figure 9 illustrates the second case of MPMFs for bearings

exhibiting faults in the rolling elements. The original database

comprises 16 distinct vibration signals from bearings exhibiting

faults in the rolling elements, each reconstructed using our

proposed MP approach with a minimal number of poles

(M = 100) and a segment length (SL = 250). Each MPMF

captures the intrinsic characteristics of the vibration signal

associated with a bearing exhibiting rolling element faults. The

colour spectrum, transitioning from blue to red, represents the

frequencies of the 100 poles, ranging from 1 to 100 poles.

Notably, a pronounced resemblance in the forms of the first 4

MPMFs emerges, emphasising the consistency across these

signals, exemplified by bearings with a rolling element fault

diameter of 0.007 inches. This pattern of similarity extends to

MPMFs 5–8, which correspond to bearings with rolling

element faults measuring 0.014 inches and persists in the

subsequent MPMFs (9–12 and 13–16) corresponding to bear-

ings with rolling element faults of 0.021 and 0.028, respec-

tively. A closer examination of the MPMF structures reveals

clear differences in the higher‐order poles (represented by red

colours) between the 0.007 and 0.014‐inch faults. Specifically,

MPMFs 1–4 correspond to the 0.007‐inch fault, while MPMFs

5–8 represent the 0.014‐inch fault. These variations indicate

the more pronounced mechanical impact of larger defects on

the rolling elements, leading to stronger fault‐related frequency

components in the vibration signal. The consistent differenti-

ation observed across fault diameters in Figure 9 further re-

inforces the effectiveness of MPMF in capturing and

distinguishing fault severity. The MPMF shapes effectively

capture and differentiate the vibrational characteristics associ-

ated with fault diameter for bearings with a rolling element

fault.

Figure 10 depicts the third scenario of Matrix Pencil Mean

Frequency (MPMFs) for bearings with an inner race fault. The

original dataset consists of 16 distinct vibration signals from

bearings with an inner race fault, each reconstructed using the

FIGURE 7 | Reproduced vibratory signatures of bearing with an outer race fault using MP with M = 100 poles and SL = 250.

FIGURE 8 | Matrix pencil mean frequency of healthy bearing.
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proposed Matrix Pencil approach with a minimal number of

poles (M = 100) and a segment length (SL = 250). Each MPMF

captures the inherent characteristics of the corresponding

bearing with an inner race fault vibration signal. The colour

spectrum, transitioning from blue to red, represents the fre-

quencies of the 100 poles, ranging from 1 to 100 poles. Signifi-

cantly, a distinct resemblance in the forms of the first four

MPMFs emerges, highlighting the consistency across these sig-

nals, illustrated by bearings with an inner race fault diameter of

0.007″. This consistent pattern extends to MPMFs 5–8, reflecting

bearings with an inner race fault of 0.028″, and persists in the

subsequent MPMFs (9–12 and 13–16), corresponding to bear-

ings with inner race faults of 0.014 and 0.021, respectively. The

MPMF shapes successfully capture and distinguish the vibra-

tional characteristics associated with fault diameter for from

bearings with an inner race fault.

Figure 11 illustrates the fourth scenario of MPMFs for bearings

showing an outer race fault. The original dataset comprises 28

distinct vibration signals from bearings with an outer race fault,

each reconstructed using the Matrix Pencil approach with a

minimal number of poles (M = 100) and a segment length

(SL = 250). Each MPMF encapsulates the unique characteristics

of the corresponding bearing with an outer race fault vibration

signal. The colour spectrum, transitioning from blue to red,

represents the frequencies of the 100 poles, ranging from 1 to

100 poles. A noticeable distinction in the forms of the first four

MPMFs emerges, emphasising the consistency across these

signals, exemplified by bearings with an outer race fault diam-

eter of 0.014″. This distinctive pattern extends to MPMFs 5–8,

9–12, 13–16, reflecting bearings with an outer race fault of 0.07

under different accelerometer positions (centred for MPMFs

5–8, opposite for MPMFs 9–12, orthogonal for MPMFs 19–16),

FIGURE 9 | Matrix pencil mean frequency of bearing with a rolling element fault (ball).

FIGURE 10 | Matrix pencil mean frequency of bearing with an inner race fault.

FIGURE 11 | Matrix pencil mean frequency of bearing with an outer race fault.
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and persists in the subsequent MPMFs (17–20, 21–24, 25–28),

corresponding to bearings with outer race faults of 0.021″ under

different accelerometer positions (centred for MPMFs 17–20,

opposite for MPMFs 21–24, orthogonal for MPMFs 25–28). The

MPMF shapes efficaciously capture and discriminate the

vibrational characteristics linked with fault diameter for bear-

ings with an outer race fault.

Figure 12 illustrates examples of the MPMF shapes corre-

sponding to different bearing conditions: the first depicts the

MPMF spectrum shape of a healthy bearing, the second portrays

a bearing with an inner race fault, the third displays a bearing

with an outer race fault, and the fourth represents a bearing

with a rolling element fault. Each type of fault exhibits a distinct

format, serving as a unique representation of its fault type.

These MPMF profiles adeptly capture and distinguish the

vibrational characteristics associated with various bearing

conditions.

3.3 | Exploring the Impact of Number of Poles on
the Forms of MPMF

3.3.1 | For Bearing Inner Race

Figure 13 clearly illustrates the impact of varying the number

of poles (M) on the formats of MPMFs for bearings exhibiting

an inner race fault. The dataset comprises 16 distinct vibration

signals from bearings with an inner race fault, each recon-

structed using the proposed MP approach with different

numbers of poles: M = 70, M = 50, and M = 30. The colour

spectrum, transitioning from blue to red, represents the fre-

quencies of the poles for each case (M = 70, M = 50, M = 30).

The effect of the variation in the number of poles is evident as

the format of MPMF changes for each case. Notably, the

variation in bearings with an inner race fault diameter of

0.007″ is most pronounced in the first four MPMFs. This

consistent pattern extends to MPMFs 5–8, reflecting bearings

with an inner race fault of 0.028″, and persists in the subse-

quent MPMFs (9–12 and 13–16), corresponding to bearings

with inner race faults of 0.014″ and 0.021″, respectively. These

distinct resemblances in the forms of the MPMFs highlight the

consistency across these signals. The shapes of the MPMFs

effectively capture and distinguish the vibrational characteris-

tics associated with different numbers of poles for bearings

with an inner race fault.

3.3.2 | Bearings With a Rolling Element Fault (Ball)

Figure 14 highlights the influence of varying the number of

poles (M) on the MPMFs formats for bearings exhibiting a

rolling element fault. The dataset consists of 16 distinct vibra-

tion signals from bearings exhibiting rolling element faults, each

reconstructed using the proposed MP approach with different

numbers of poles as M = 70, M = 50 and M = 30. The colour

spectrum, transitioning from blue to red, represents the fre-

quencies of the poles for each case (M = 70, M = 50, M = 30).

The impact of the variation in the number of poles is apparent

as the MPMF format changes for each case. Significantly, aFIGURE 12 | Examples of all MPMF formats.

FIGURE 13 | Impact of the number of poles (M) on MPMF formats in the inner race case (M = 70, M = 50, M = 30).
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distinct resemblance in the forms of the first 4 MPMFs becomes

evident, underscoring the consistency across these signals,

particularly in bearings with a rolling element fault diameter of

0.007″.

This consistent pattern extends to MPMFs 5–8, representing

bearings exhibiting a rolling element fault of 0.014″, and persists

in the subsequent MPMFs (9–12 and 13–16) corresponding to

bearings exhibiting a rolling element fault of 0.021″ and 0.028″,

respectively. These notable resemblances in the MPMF forms

emphasise the consistency across these signals. The shapes of

the MPMFs adeptly capture and differentiate the vibrational

characteristics associated with different numbers of poles for

bearings with a rolling element fault.

3.3.3 | For a Healthy Bearing

Figure 15 shows the impact of varying the number of poles (M)

on the MPMFs formats for a healthy bearing. The original

database comprises four distinct vibration signals from healthy

bearings, each reconstructed using the proposed MP approach

with different numbers of poles: M = 70, M = 50 and M = 30.

The colour spectrum, transitioning from blue to red, represents

the frequencies of the poles for each case (M = 70, M = 50,

M = 30). The influence of the variation in the number of poles is

evident as the MPMF format changes for each case with a

segment length (SL = 250). Each MPMF encapsulates the

inherent characteristics of the corresponding healthy bearing

vibration signal. Remarkably, a clear similarity in MPMF forms

emerges, emphasising the consistency across these signals. This

uniformity in the MPMF shapes highlights the robustness of the

proposed approach, ensuring reliability and accuracy in

capturing the vibrational characteristics of healthy bearings

across different pole configurations.

3.3.4 | For Bearings With an Outer Race Fault

Figure 16 visualises the impact of varying the number of poles

(M) on the formats of MPMFs for bearings with an Outer race

fault. The original dataset comprises 28 distinct vibration signals

from bearings with an outer race fault, each reconstructed using

the proposed PM approach with different numbers of poles:

M = 70, M = 50 and M = 30, along with a segment length

(SL = 250). The colour spectrum, transitioning from blue to red,

represents the frequencies of the poles for each case (M = 70,

M = 50, M = 30). A noticeable distinction in the forms of the

first four MPMFs emerges, emphasising the consistency across

these signals, exemplified by bearings with an outer race fault

diameter of 0.014″. This distinctive pattern extends to MPMFs

5–8, 9–12, 13–16, reflecting bearings with an outer race fault of

0.007″ under different accelerometer positions (centred for

MPMFs 5–8, opposite for MPMFs 9–12, orthogonal for MPMFs

19–16), and persists in the subsequent MPMFs (17–20, 21–24,

25–28), corresponding to bearings with outer race faults of

0.021″ under different accelerometer positions (centred for

MPMFs 17–20, opposite for MPMFs 21–24, orthogonal for

MPMFs 25–28). These distinct resemblances in the forms of the

MPMFs underscore the consistency across these signals. The

shapes of the MPMFs effectively capture and distinguish the

vibrational characteristics associated with different numbers of

poles for bearings with an outer race fault, providing a reliable

and comprehensive analysis.

3.4 | Exploring the Impact of Window Size on the
Forms of MPMF

3.4.1 | Healthy Bearing

Figure 17 illustrates the impact of varying segment length (SL)

on the MPMF formats for a healthy bearing. The original

FIGURE 14 | Impact of the number of poles (M) on MPMF Formats in the bearings exhibiting a rolling element fault case (M = 70,

M = 50, M = 30).
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database comprises four distinct vibration signals from healthy

bearings, each reconstructed using the proposed PM approach

with M = 100 poles, and the scenario includes cases with two

segment lengths (SL = 300, SL = 400).

The colour spectrum, transitioning from blue to red, represents

the frequencies of the poles ranging from 1 to 100 poles. The

influence of the variation in segment length is evident as the

MPMF format changes for each case. Each MPMF encapsulates

the inherent characteristics of the corresponding healthy

bearing vibration signal. Remarkably, a clear similarity in

MPMF forms emerges, emphasising the consistency across these

signals. This uniformity in the MPMF shapes highlights the

robustness of the proposed approach, ensuring reliability and

accuracy in capturing the vibrational characteristics of healthy

bearings across different segment lengths.

FIGURE 15 | Impact of the number of poles (M) on MPMF formats in healthy bearing case (M = 70, M = 50, M = 30).

FIGURE 16 | Impact of the number of poles (M) on MPMF formats in the outer race case (M = 70, M = 50, M = 30).
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3.4.2 | For Bearings With an Inner Race

Figure 18 demonstrates the impact of varying segment length on

the MPMFs formats for bearings exhibiting an inner race fault.

The dataset comprises 16 distinct vibration signals from bear-

ings with an inner race fault, each reconstructed using the

proposed Matrix Pencil approach with a constant number of

poles M = 100, and the scenario includes cases with two

segment lengths (SL = 300, SL = 400). The colour spectrum,

transitioning from blue to red, represents the frequencies of the

poles ranging from 1 to 100 poles. The effect of the varying

segment length is evident as the format of MPMF changes for

each case. Notably, the variation in bearings with an inner race

fault diameter of 0.007″ is most noticeable in the first four

MPMFs. This consistent pattern prolongs to MPMFs 5–8,

reflecting bearings with an inner race fault of 0.028″, and

continues in the subsequent MPMFs (9–12 and 13–16), corre-

sponding to bearings with inner race faults of 0.014″ and 0.021″,

respectively. These distinct resemblances in the forms of the

MPMFs highlight the consistency across these signals. The

shapes of the MPMFs effectively capture and distinguish the

vibrational characteristics associated with different segment

lengths for bearings with an inner race fault.

3.4.3 | For Bearings With an Outer Race

Figure 19 showcases the influence of varying segment length

on the MPMFs formats for bearings with an outer race fault.

The dataset comprises 28 unique vibration signals from bear-

ings with an outer race fault. Each signal is reconstructed

FIGURE 17 | Impact of the window size on the forms of MPMF in the healthy bearing case (SL = 300, SL = 400).

FIGURE 18 | Impact of the window size on the forms of MPMF in the inner race case (SL = 300, SL = 400).
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using the Matrix Pencil approach to maintain a constant

number of poles (M = 100) and explore two segment lengths

(SL = 300, SL = 400). The colour spectrum, shifting from blue

to red, corresponds to the frequencies of the poles ranging

from 1 to 100 poles. The impact of the changing segment

length is evident as the format of MPMF adjusts for each case.

Clear distinctions emerge in the forms of the initial four

MPMFs, underlining the consistency across these signals,

particularly notable in bearings with an outer race fault

diameter of 0.014″. This characteristic pattern extends through

MPMFs 5–8, 9–12 and 13–16, representing bearings with an

outer race fault of 0.007″ in various accelerometer positions

(centred for MPMFs 5–8, opposite for MPMFs 9–12, orthogonal

for MPMFs 19–16). This consistency persists in subsequent

MPMFs (17–20, 21–24, 25–28), corresponding to bearings with

outer race faults of 0.021″ in different accelerometer positions

(centred for MPMFs 17–20, opposite for MPMFs 21–24,

orthogonal for MPMFs 25–28). The distinct resemblances in

the MPMFs underscore the consistency across these signals,

effectively capturing and differentiating the vibrational

characteristics associated with varying segment lengths for

bearings with an outer race fault.

3.4.4 | Bearings With a Rolling Element Fault (Ball)

Figure 20 depicts the influence of varying segment length on the

MPMFs formats for bearings exhibiting a fault in the rolling

element. The dataset comprises 16 unique vibration signals from

bearings with an inner race fault, each reconstructed using the

proposed MP approach, maintaining a constant number of poles

(M = 100) and exploring two segment lengths (SL = 300,

SL = 400). The colour spectrum, transitioning from blue to red,

corresponds to the frequencies of the poles ranging from 1 to

100 poles. The impact of the changing segment length is evident

as the MPMF format adapts for each case. Notably, variations in

bearings with an inner race fault diameter of 0.007″ are most

pronounced in the initial four MPMFs. This consistent pattern

extends to MPMFs 5–8, portraying bearings with an inner race

fault of 0.028″, and persists in the subsequent MPMFs (9–12 and

FIGURE 19 | Impact of the window size on the forms of MPMF in the outer race case (SL = 300, SL = 400).

FIGURE 20 | Impact of the window size on the forms of MPMF in the bearings with a rolling element fault case (SL = 300, SL = 400).
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13–16), representing bearings with inner race faults of 0.014″

and 0.021″, respectively. These distinct resemblances in the

forms of the MPMFs emphasise the consistency across these

signals. The shapes of the MPMFs proficiently capture and

differentiate the vibrational characteristics associated with

different segment lengths for bearings with a rolling element

fault.

Envelope Analysis was applied solely for signal interpretation

and fault characterisation (see Figure 21). The resulting enve-

lope spectra for the healthy bearing, inner race fault, outer race

fault, and ball fault cases enabled the identification of charac-

teristic fault frequencies and validated the vibratory behaviour

of the raw signals. Furthermore, this method requires manual

selection of filter bands tailored to known fault frequencies,

which reduces its level of automation and limits its general-

isability to varying machines or operating conditions.

In contrast, the proposed MPMF approach is fully data‐driven

and does not rely on predefined fault frequencies. It extracts

dominant spectral features directly from the vibration signal

using the Matrix Pencil Method, enabling consistent and auto-

mated feature generation. This distinction is visually supported

in Figure 12, which presents examples of MPMF shapes asso-

ciated with different bearing conditions. These spectral repre-

sentations reveal clear structural differences between classes

details that are not as easily distinguishable through traditional

envelope spectra alone.

4 | Localisation of the Defected Component Based
on Multilayer Perceptron Neural Networks

In the last few decades, artificial intelligence approaches have

been the focus of most studies aiming to automate defect di-

agnostics in rotating machinery. These can be used as defect

detectors and fault classifiers to aid in diagnosis and reduce the

need for human intervention [36]. In the course of our research,

the classification of bearing faults was investigated using

multilayer perceptron neural networks. Although the MPMF

profiles effectively capture and differentiate the vibrational

characteristics associated with different bearing conditions and

have demonstrated their effectiveness in enhancing the impact

of a localisation of the defective component, facilitating easier

detection and localisation, they may not furnish comprehensive

details about the fault. Understanding fault classes is crucial for

assessing the severity of bearing faults, and an inverse problem

approach using a Multilayer Perceptron is proposed to address

this. Neural networks, particularly MLPs [37, 38], have shown

versatility across various engineering applications, and their

integration with reliability analysis methods, such as the PINN‐

FORM approach, tackles the challenges posed by partial dif-

ferential equations [39]. MLPs are effective in approximating

relationships in nonlinear systems, serving as surrogate models

for capturing fundamental input‐output correlations. By

training the MLP on input‐output pairs, it can predict input

causes based on observed outputs, a valuable approach for

complex systems where traditional techniques struggle. The

FIGURE 21 | Envelope spectrum of a vibration signal for (healthy, inner race, outer race, ball).

17 of 25

 1
7

5
1

8
6

7
9

, 2
0

2
5

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ietresearch
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

4
9

/elp
2

.7
0

1
0

3
 b

y
 U

N
IV

E
R

S
IT

Y
 O

F
 S

H
E

F
F

IE
L

D
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

9
/0

9
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



network's architecture, including the number of layers and

neurons, alongside data quality, is critical for accuracy. The

MLP used in this study employs the Levenberg–Marquardt

optimisation technique to adjust its weights and biases. Previ-

ous research [40–42] confirms the effectiveness of MLPs in fault

detection and localisation. The MLP architecture utilised here

comprises an input layer with 75 neurons, a hidden layer of 25

neurons, and a single‐neuron output layer as illustrated in

Figure 22. The dataset links MPMF features to fault types,

including healthy bearings, outer and inner race faults, and

rolling element faults. From the 64 available examples, 85%

were used for training and 15% for testing. Root Mean Square

(RMS) error was used to assess the model's generalisation. Eight

databases with Matrix Pencil Mean Frequencies generated un-

der different segment lengths (SL = 250 to SL = 300) and poles

(M = 100 to M = 30) were employed to evaluate fault classifi-

cation performance, measured in terms of accuracy, sensitivity,

specificity, precision and G‐mean, which are defined below.

The classification accuracy is defined as follows:

Acc = TP + TN

TP + TN + FP + FN
. (20)

Sensitivity indicates the ability to identify a positive result when

a fault exists and is defined as follows:

Sens = TP

TP + FN
. (21)

Specificity reflects the capacity to achieve a negative result when

no fault is present and is defined as follows:

Spec = TN

TN + FP
. (22)

Precision represents the proportion of predicted positive cases

that are actually positive and is defined as follows:

Prec = TP

TP + FP
. (23)

The G‐mean is the geometric mean of sensitivity and specificity

and is defined as follows:

Gmean =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sens ∗ Prec

√
. (24)

In the above formula's TP denotes True Positive, TN represents

True Negative, FP stands for False Positive and FN indicates

False Negative. These metrics collectively offer insights into the

efficacy of fault classification algorithms. Table 2 illustrates

various outcomes obtained from the Multilayer Perceptron

classifier across eight distinct databases. Although the database

is constrained in all utilised datasets (1–8), a notable pattern

emerges in databases 3 (SL = 250, M = 50) and 7 (SL = 300,

M = 50), where sensitivity demonstrates an exceptional rate of

100%. This signifies a remarkable capacity to accurately detect

positive instances of bearing faults. Furthermore, specificity

tends towards an impressive rate of 100%, indicating a high

likelihood of correctly identifying negative instances when the

bearing is in good condition. Additionally, the classifier exhibits

precision levels of 100%, underscoring its ability to predict

positive instances with remarkable accuracy. The G‐Mean rate

serves as a pivotal metric in assessing the classifier’s perfor-

mance, particularly in discerning the classification efficacy of

positive cases, notwithstanding the correct identification of

negative cases. Remarkably, the G‐Mean value attains a robust

rate of 100%, indicative of well‐classified positive instances.

Conversely, in the remaining databases (1, 2, 4, 5, 8), although

sensitivity varies between 66% and 100%, it consistently

FIGURE 22 | Schematic diagram of a fault classifier grounded on MLP network with diverse input of MPMF.

TABLE 2 | Performance evaluation criteria results of MLP classifier across 8 databases.

Databases (SL, M)

Evaluation criteria

Accuracy Sensitivity Specificity Precision G‐mean

Databases1 (SL = 250, M = 100) 66.66 100 57.14 40 63.24

Databases2 (SL = 250, M = 70) 77.77 66.66 83.333 66.66 66.66

Databases3 (SL = 250, M = 50) 100 100 100 100 100

Databases4 (SL = 250, M = 30) 88.88 100 85.71 66.66 81.65

Databases5 (SL = 300, M = 100) 88.88 66.66 100 100 81.65

Databases6 (SL = 300, M = 70) 88.9 66.66 100 100 0.8165

Databases7 (SL = 300, M = 50) 100 100 100 100 100

Databases8 (SL = 300, M = 30) 77.8 100 71.42 50 70.71
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demonstrates a notable capacity to capture positive instances of

bearing faults. Similarly, specificity fluctuates between 57.14%

and 100%, denoting varying degrees of accuracy in identifying

negative instances. The classifier's precision spans between 40%

and 100%, indicating a moderate ability to predict positive in-

stances. The G‐Mean rate fluctuates between 63.42% and 100%

in these databases, highlighting moderate performance in clas-

sifying positive instances. Finally, the accuracy, representing the

proportion of correctly classified cases, ranges between 63.24%

and 81.65%, demonstrating the classifier's efficacy across these

datasets. These performance measurements underscore the

classifier's robustness and effectiveness, particularly evident in

databases 3 and 7. Despite limitations in dataset size, the clas-

sifier consistently demonstrates notable capabilities in fault

detection and classification accuracy.

In the context of evaluating the confusion matrix for four classes

attained by the MLP neural network classifier, the classifier

underwent rigorous training and testing procedures using eight

distinct databases. Notably, the third database corresponds to

conditions characterised by a segment length of 250 and a

number of poles (M) set to 50, while the seventh database re-

flects conditions with SL = 300 and M = 50. The comprehensive

analysis of the obtained results, as depicted in Figures 23 and 24,

showcases the confusion matrices for the third and seventh

databases, respectively. Each cell within these matrices corre-

sponds to a specific combination of predicted and true class

labels. Attaining 100% accuracy indicates the absence of mis-

classifications across all classes. The diagonal elements of the

confusion matrices denote the true positive counts for each

class. In this context, these values are maximised, underscoring

the classifier’s precise identification of instances within each

class. Conversely, the absence of off‐diagonal elements signifies

the absence of misclassifications, highlighting the classifier’s

remarkable capability to accurately assign instances to their

respective classes. This exceptional performance underscores

the MLP neural network’s robustness in discerning intricate

patterns and features within the dataset, facilitating precise

classification across all classes. In the remaining databases (1, 2,

4, 5, 8), the confusion matrix results are as duplicated in

Figure 25.

To simulate real‐world operating conditions, Additive White

Gaussian Noise (AWGN) was added to the MPMF features in

the datasets, specifically Databases 3 (SL = 250, M = 50) and

Databases 7 (SL = 300, M = 50). The results are given in Table 3.

The power of the noise (Pn) was calculated relative to the power

of the MPMF features (Ps) according to Equation (25):

SNR = 10 log
PS

Pn
(25)

These results demonstrate the strong noise resilience of the

proposed MPMF‐MLP approach. Both datasets maintained

100% classification accuracy at SNR levels down to 0 dB and

þ3 dB, indicating robust performance under mild to moderate

noise conditions. However, as the SNR decreased further into

negative values (e.g., −1 dB and −5 dB), a reduction in accuracy

was observed, in both Databases7, and Databases3 where ac-

curacy dropped to 77.7% at −1 dB. Despite this degradation, the

method still achieved notable accuracy even at −5 dB, which

reflects realistic industrial noise scenarios. Overall, these find-

ings confirm that the proposed approach remains effective even

in challenging noisy environments, supporting its potential

applicability in practical bearing fault detection systems where

ambient and structural noise can significantly mask fault

signatures.

The effectiveness of the MPMF method depends on key pa-

rameters such as the number of poles (M) and segment length

(SL), which influence the resolution and robustness of extracted

features. A higher M improves spectral resolution but increases

noise sensitivity, whereas a lower M may result in information

loss. Similarly, a shorter SL enhances time localisation but

FIGURE 23 | Confusion matrix for MLP classifier (case of

SL = 250, M = 50).

FIGURE 24 | Confusion matrix for MLP classifier (case of

SL = 300, M = 50).
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reduces frequency resolution, while a longer SL provides greater

spectral precision at the cost of potentially averaging out tran-

sient fault features. To optimise these parameters, a grid search

was conducted, and classification accuracy was analysed across

different settings. As shown in Figures 23 and 24, the third

database (SL = 250, M = 50) and the seventh database (SL = 300,

M = 50) achieved 100% classification accuracy, with confusion

matrices demonstrating zero misclassifications. This confirms

that the selected values effectively capture fault characteristics

while ensuring model stability. The comparison of accuracy

between the proposed MPMF‐MLP method and other recent

works highlights the diversity of methodologies utilised in

bearing fault diagnosis. For instance, methods such as Linear

Discriminant Analysis combined with Neural Networks

achieved an accuracy of 98.7% [43], while Multi‐domain En-

tropy paired with Random Forest yielded an accuracy of 94.4%

[44]. Principal Component Analysis integrated with Long Short‐

Term Memory and Random Forest achieved an accuracy of

96.04% [45], and Multigrained Scanning with Cascade Forest

resulted in a range of 96.99%–98.54% [46]. Additionally, Genetic

Algorithm with Random Forest and DWT‐ENV‐Random Forest

reached impressive accuracies of 99.5% [47] and 99.53% [48],

respectively.

In contrast, the novel MPMF‐MLP approach, which combines

Matrix Pencil Mean Frequency analysis with a Multilayer Per-

ceptron neural network, stands out by achieving perfect accu-

racy at 100%. This integration not only outperforms existing

FIGURE 25 | Confusion matrix for MLP classifier (case of SL = 300, M = 50).

TABLE 3 | Presents the classification accuracies achieved under various SNR levels, ranging from þ3 dB to −5 dB.

Databases (SL, M)

Accuracy

0 dB 1 dB 2 dB 3 dB −1 dB −5 dB

Databases3 (SL = 250, M = 50) 100 100 100 100 77.77 88.9

Databases7 (SL = 300, M = 50) 100 100 100 100 77.8 88.9
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methodologies but also signifies a breakthrough in the field of

fault diagnosis in bearing systems. Recent work by Alonso‐

González et al. [49] applied Envelope Analysis on the CWRU

dataset and combined it with machine learning classifiers to

diagnose bearing faults. Their study achieved 100% accuracy

with Decision Tree (Fine Tree) and k‐NN (Fine k‐NN) also

94.4% accuracy with the Kernel Naïve Bayes classifier. Although

Envelope Analysis has proven effective, it requires careful se-

lection of frequency bands and pre‐processing using techniques

like the Fast Kurtogram. In contrast, MPMF extracts spectral

information directly from vibration signals without requiring

additional band selection, making it more adaptable across

different conditions.

The practical advantages of the proposed MPMF‐MLP method

over traditional approaches such as Wavelet Transform (WT)

and Empirical Mode Decomposition (EMD) lie in its ability to

extract frequency components directly from the vibration signal

based on the system's dynamic behaviour, without relying on

predefined basis functions. In contrast, WT operates by

decomposing the signal into sub bands, which may limit its

adaptability to varying signal characteristics. Similarly, while

EMD adaptively decomposes signals into intrinsic mode func-

tions (IMFs), it often suffers from mode mixing and a lack of

mathematical rigour, which can affect the consistency and

interpretability of the extracted features. Although this study

does not include a direct experimental comparison, previous

works ([50, 51]) have evaluated WT and EMD on the CWRU

bearing dataset. The classification accuracies, reproduced in

Figure 26, serve as benchmarks. Despite achieving similar ac-

curacy to WPT þ LDA, the proposed MPMF‐MLP approach

provides a more physically meaningful representation of the

signal, offering greater generalisation capability for real‐world

applications. To further evaluate the trade‐off between classifi-

cation performance and computational efficiency, a comparative

study was conducted using the same MPMF feature vectors

across three classifiers: Multilayer Perceptron (MLP), Support

Vector Machine (SVM) and k‐Nearest Neighbours (k‐NN).

Seven datasets with varying signal lengths (SL) and numbers of

poles (M) were constructed, and each model was implemented

in MATLAB 2013b using identical training and testing splits.

For each case, both classification accuracy and average infer-

ence time per sample were measured. The results, summarised

in Table 4, show that the MLP consistently achieved the highest

or equal accuracy, reaching 100% in Databases 3 and 7, while

the maximum accuracies obtained by SVM and k‐NN were

81.25% and 87.50%, respectively. However, the MLP required

slightly more computational time, with inference times ranging

from 0.01028 to 0.02198 s per sample, compared to 0.00193–

0.00638 s for SVM and 0.01474–0.05004 s for k‐NN. These

findings highlight the strength of the MLP model in terms of

accuracy, particularly for lower‐dimensional MPMF represen-

tations, while also demonstrating the advantage of SVM and k‐

NN in terms of computational speed. This analysis confirms that

the choice of model should be guided by the specific application

context whether prioritising accuracy, as in offline diagnostics,

or computational efficiency, as required in real‐time industrial

monitoring.

Also, we conducted a supplementary experiment using hidden

Markov models (HMMs) on the same MPMF feature vectors.

The resulting classification accuracy was approximately 6.25%,

which is significantly lower than that achieved by the proposed

MPMF‐MLP approach. This low performance is primarily due

to a mismatch between the nature of the features and the

modelling strengths of HMMs. Specifically, HMMs are

designed to model temporal sequences and state transitions,

such as in time‐series analysis, where the order and de-

pendency between observations are essential. In contrast,

MPMF features are compact, frequency‐based descriptors that

summarise the spectral content of signal segments without

encoding any temporal progression. As such, they do not

provide the sequential structure required by HMMs to

construct effective state‐transition models, thereby explaining

the poor classification results. On the other hand, the proposed

MPMF‐MLP method leverages the dominant spectral infor-

mation directly, without relying on assumptions about tem-

poral states or transitions. This makes it more suitable, flexible,

and accurate for bearing fault detection tasks, particularly

under noisy conditions.

FIGURE 26 | Classification accuracy of various methods on the CWRU dataset.
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5 | Discussion on Dataset Limitations and
Generalisation

Although the proposed approach has been validated using the

Case Western Reserve University bearing dataset, we acknowl-

edge that this dataset, although widely used in fault diagnosis

research, may not fully capture the diverse conditions encoun-

tered in real‐world industrial environments. Factors such as

variable load conditions, fluctuating rotational speeds, and

different bearing types can influence the vibration characteris-

tics and impact the generalisability of the model. Reference [15]

demonstrated that MPM performs effectively in noisy environ-

ments when used in conjunction with pre‐processing tech-

niques such as Wavelet De‐noising and Wiener Filtering. In this

work, we enhance the robustness of MPMF features under high

noise levels. Furthermore, the stability of MPMF features under

varying load conditions and external disturbances such as

temperature fluctuations and electromagnetic interference re-

mains insufficiently investigated and is addressed in this study.

Although MPMF effectively captures dominant spectral char-

acteristics, factors such as load‐induced frequency shifts or

signal distortions from electromagnetic interference may influ-

ence its robustness in real‐world applications. Because our

method is data‐driven and relies on spectral feature extraction

through MPMF, it is inherently adaptable to different datasets,

provided that the model is trained with representative data.

6 | Conclusion

In conclusion, the proposed approach addresses critical chal-

lenges in machinery condition monitoring and fault diagnosis,

particularly for induction motors, by leveraging the strengths of

advanced signal processing and machine learning techniques.

Vibration analysis remains an indispensable tool for predictive

maintenance, as it enables the detection, collection, and analysis

of vibration signals to assess machinery conditions accurately.

This paper introduces a novel technique for automatic bearing

condition assessment, integrating the Matrix Pencil method and

a Multilayer Perceptron (MLP) neural network. The first

methodology focuses on signal processing using the Matrix

Pencil method, which effectively decomposes machinery vibra-

tion signals into frequency vectors, capturing dynamic spectral

components. Through meticulous aggregation, the Matrix Pen-

cil Mean Frequency (MPMF) vector emerges as a robust rep-

resentation that encapsulates the collective frequency

characteristics of the signal. This novel feature offers a clearer

and more insightful spectrum for characterising machinery

faults, enhancing fault detection and condition monitoring by

providing a comprehensive view of the signal’s behaviour. The

second methodology involves the application of an MLP clas-

sifier, which validates the effectiveness of the MPMF vector as a

novel feature for bearing fault detection. Achieving a fault

classification rate of 100%, the classifier demonstrates a high

level of accuracy while autonomously identifying defective

components, reducing the dependency on human expertise and

minimising the potential for misinterpretation. Experimental

validation conducted using a specialised test rig, along with

comparisons to recent literature, underscores the robustness

and practical applicability of the proposed method. By

addressing limitations associated with raw data, inefficient

feature extraction, and the need for dimensionality reduction,

this approach provides a reliable and efficient solution for fault

diagnosis in industrial settings. The findings hold significant

potential for advancing the state of the art in machinery con-

dition monitoring, contributing to more reliable and efficient

industrial systems and reinforcing the importance of integrating

advanced signal processing with machine learning for predictive

maintenance. Future work can explore the integration of digital

modelling techniques, such as finite element simulations and

digital twin technology, to reduce reliance on extensive physical

experiments. These approaches can generate synthetic fault

signals, enabling rapid validation and refinement of fault diag-

nosis models before real‐world deployment. By leveraging

TABLE 4 | Comparison of classification accuracy and inference time for MLP, SVM and k‐NN classifiers using MPMF features across seven

datasets.

Databases (SL, M)

MLP SVM KNN

Accuracy
(%)

Inference
time(s)

Accuracy
(%)

Inference
time(s)

Accuracy
(%)

Inference
time(s)

Databases1 (SL = 250,

M = 100)

66.66 0.02198 56.25 0.00638 62.50 0.05004

Databases2

(SL = 250, M = 70)

77.77 0.01160 56.25 0.00198 68.75 0.01580

Databases3

(SL = 250, M = 50)

100 0.01080 62.5 0.00193 87.50 0.01474

Databases4

(SL = 250, M = 30)

88.88 0.01217 68.75 0.00208 81.25 0.01735

Databases5 (SL = 300,

M = 100)

88.88 0.01028 50 0.00202 50 0.01576

Databases6

(SL = 300, M = 70)

88.9 0.01059 81.25 0.00198 75.00 0.01707

Databases7

(SL = 300, M = 50)

100 0.01154 43.75 0.00223 75.00 0.01849
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digitisation, the proposed method can be further enhanced for

broader industrial applications. Additionally, predicting the

remaining useful life (RUL) of bearings is a critical aspect of

predictive maintenance. Although this study focuses on fault

detection, future research can extend the MPMF framework to

track fault progression over time. By integrating time‐series

degradation analysis and machine learning models (e.g.,

Recurrent Neural Networks [RNNs]), the method can be

adapted for data‐driven RUL estimation. This enhancement

would enable proactive maintenance strategies, reducing un-

planned downtime and optimising operational efficiency. By

incorporating these advancements, the proposed method has

the potential to evolve into a comprehensive predictive main-

tenance solution, bridging the gap between fault detection and

lifetime prognosis in industrial machinery.
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