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Abstract

This study develops an approximate semi-analytical framework for assessing

the toppling survival probability of a rigid block subject to stochastic seismic

excitation defined in accordance with modern aseismic codes provisions. The

rocking system incorporates a nonlinear flexible foundation model that allows for

uplifting and nonlinear damping, reflecting realistic soil-structure interaction ef-

fects. A nonlinear contact force of the Hunt and Crossley’s kind is employed.

Using a stochastic averaging approach, the proposed method accounts for the un-

bounded response behavior associated with toppling, paralleling challenges ob-

served in systems with negative stiffness. The nonstationary probability density

function (PDF) of the rocking amplitude is formulated to quantify the survival
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probability over time efficiently. This technique offers significant computational

advantages over traditional numerical simulations while capturing the effects of

time-dependent excitation intensity and frequency content. Numerical examples,

including rigid blocks rocking on various nonlinear flexible foundations under

evolutionary seismic excitations, validate the proposed framework. Comparisons

with Monte Carlo simulations confirm the accuracy and reliability of the method,

emphasizing its utility for probabilistic assessment in seismic engineering con-

texts.

Keywords: Rocking motion, Nonlinear flexible foundation, Random base

excitation, Stochastic averaging, Uplifting, Toppling probability

1. Introduction1

The rocking of rigid structures has long been a topic of critical interest in2

earthquake engineering, ever since the foundational work of Housner [1] demon-3

strated the unexpectedly stable dynamic behavior of free-standing, slender bodies4

under seismic loading. Two principal modeling approaches have historically un-5

derpinned the study of such systems: the Housner Model (HM), which represents6

a rigid block rocking on a rigid foundation, and the Winkler Foundation Model7

(WFM), which simulates the interaction with an elastic foundation using discrete8

spring elements [2±6]. These models have served as the analytical basis for cap-9

turing the inherently nonlinear and discontinuous dynamics of rocking responses.10

Rocking provides a natural mechanism for seismic energy dissipation through11

uplift and impact, effectively decoupling lateral inertial demands from internal12
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deformation and thus reducing the likelihood of structural damage. A major ben-13

efit of enabling uplift is the avoidance of cyclic degradation typically observed14

in conventional plastic hinge mechanisms. In this setting, energy is dissipated15

via repeated impacts, while the structure’s integrity is preserved. Uplift allows16

structural elements to temporarily detach from their base, resulting in large but17

recoverable displacements that reduce peak seismic demand, limit residual de-18

formation, and enable self-centering behavior. As such, rocking is increasingly19

adopted not only as a survival mechanism but also as a deliberate strategy in mod-20

ern resilience-oriented seismic design [7]. These advantages have fueled strong21

and growing interest from the engineering community in this field. Recent re-22

search has expanded this paradigm through the development of controlled rocking23

systems, including rocking shear walls and externally dissipative pinned braced24

frames, which promote uniform interstory drift, minimize residual displacements,25

and activate lower-hierarchy failure mechanisms, thus reducing the risk of soft-26

story collapse and improving seismic performance [8]. Additional fields of ap-27

plication include the seismic protection of small-scale or sensitive installations,28

such as museum exhibits, marble heritage monuments [9], and critical machin-29

ery [10, 11] in medical or military facilities, where both structural integrity and30

operational continuity are essential. Despite the advancements, block-like sys-31

tems rocking on nonlinear flexible foundations have received comparatively less32

attention, particularly under stochastic seismic excitation [12], although there is a33

body of research in the case of stationary excitation and pulse-like ground motion34

(e.g., [7, 13, 14]). To address this, the present study introduces a stochastic semi-35
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analytical framework that combines static condensation, statistical linearization,36

and stochastic averaging to evaluate the survival probability [15, 16]±defined as37

the probability of avoiding toppling±of a rigid block subjected to nonstationary,38

Eurocode 8 (EC8)-compatible excitation. The formulation captures the nonlin-39

earities of the block±foundation interaction, including uplift effects and negative40

stiffness phases, and fully incorporates the evolutionary nature of realistic seis-41

mic input [17], enabling a more accurate and analytically tractable representation42

of the problem. This approach is particularly well-suited for performance-based43

analysis and risk-informed decision-making [18, 19].44

The proposed framework offers a novel contribution by evaluating the sur-45

vival probability of rocking block systems under nonstationary seismic loading.46

Unlike prior approaches that neglect the possibility of unbounded responses when47

the foundation stiffness becomes negative, the present method accounts for this48

through a specially formulated nonstationary response amplitude probability den-49

sity function (PDF). A key advantage of the approach is its ability to accommo-50

date stochastic excitations that vary in both intensity and frequency contentÐthus51

reflecting the nonstationary and multi-scale nature of seismic ground motions.52

In the remainder of this paper, Sections 2.1 through 2.3 lay out the mathe-53

matical foundations that form the basis of the proposed semi-analytical frame-54

work. Section 2.4 delves into the mechanization of the proposed technique. Sub-55

sequently, Sections 3.1 to 3.3 present representative case studies that illustrate the56

application of the proposed stochastic dynamics framework to rigid blocks of dif-57

ferent geometries rocking on various nonlinear flexible foundations, subjected to58
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seismic excitations modeled through EC8 elastic design spectra. The accuracy and59

reliability of the proposed approach is rigorously evaluated through a comparative60

analysis against Monte Carlo simulation (MCS) data obtained from nonlinear re-61

sponse history analysis (RHA). Lastly, Section 4 synthesizes the key findings and62

offers concluding remarks on the broader implications of the study.63

2. Mathematical formulation64

This section articulates the mathematical formulation underlying the proposed65

methodology for efficiently assessing the survival probability of randomly excited66

rocking rigid blocks. Emphasis is placed on clearly delineating the key assump-67

tions and simplifications introduced to balance analytical rigor with computational68

tractability. To preserve coherence and enhance the manuscript’s readability, only69

the essential theoretical constructs related to the generation of response spectrum-70

compatible stochastic processes are presented herein, while a more detailed ex-71

position is deferred to the Appendix A. The specific EC8 elastic design spectra72

employed in the analysis are provided in the Appendix B.73

2.1. Block random rocking on nonlinear flexible foundation modeling74

In this section, the modeling of a rectangular rigid block on nonlinear flexible75

foundation is briefly reviewed following the foundational approaches presented in76

Refs. [20, 21]. The coupled equations governing the dynamics of a quiescent rect-77

angular rigid block rocking on nonlinear foundation subjected to base excitation78
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modeled as a nonstationary stochastic seismic acceleration process are given by79

mz̈zb +mh(θ̇2 cos θ + θ̈ sin θ) + Fcb −mg = mz̈g (1)80

and81

(Icm +mh2)θ̈ +Mcb +mh(z̈cb − g) sin θ = mh(ẍg cos θ − z̈g sin θ), (2)82

where m, 2h and Icm denote the mass, height, and polar moment of inertia around83

the center of mass of the rectangular rigid block, respectively; zcb(t) and θ(t) rep-84

resent the vertical displacement of the base center cb and the rotation angle of the85

block; and z̈x(t) and z̈g(t) are the horizontal and vertical induced accelerations86

of nonstationary stochastic processes, respectively. Note that z̈x(t) and z̈g(t) can87

be defined as possessing evolutionary power spectra (EPS) Gh(ω, ζ0, t; a
s
g) and88

Gv(ω, ζ0, t; a
s
g) compatible with a target pseudo-acceleration response spectrum89

S(ω, ζ0; a
s
g), where ζ0 denotes the damping ratio of the corresponding linear os-90

cillator, ω represents the frequency and as
g is the scaled images of the seismic91

excitation intensity.92

In the nonlinear, coupled and piecewise Eqs. (1) and (2), g denotes the gravity93

acceleration, while Fcb and Mcb are the vertical force and moment of the con-94

tact force with respect to the center of base, respectively. The latter are related95

to the nature of the impact force [3, 20, 22]. Considering Hunt and Crossley’s96

model [23], used in several studies [24±26], and accounting for the uplift of the97
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base corners above the ground level, Fcb and Mcb can be described as98

Fcb = 2bkzcb + 2bλzcbżcb +
2

3
b3λθ̇ sin θ cos θ (3)99

and100

Mcb =
2

3
b3k sin θ cos θ +

2

3
b3λżcb sin θ cos θ +

2

3
b3λzcbθ̇ cos2 θ, (4)101

for the case of no-uplifting and102

Fcb =
1

2
b2k sin θsgnθ + kzcb



b+
1

2

zcb

sin θ
sgnθ



+
1

2
b2λżcb sin θsgnθ

+ λzcbżcb



b+
1

2

zcb

sin θ
sgnθ



+
1

3
b3λθ̇ sin θ cos θ

+
1

2
λzcbθ̇ cos θ



b2 − 1

3

z2
cb

sin2 θ



sgnθ

(5)103

and104

Mcb =
1

3
b3k sin θ cos θ +

1

2
kzcb cos θ



b2 − 1

3

z2
cb

sin2 θ



sgnθ +
1

3
b3λżcb sin θ cos θ

+
1

4
b4λθ̇ sin θ cos2 θsgnθ +

1

2
λzcbżcb cos θ



b2 − 1

3

z2
cb

sin2 θ



sgnθ

+
1

3
λzcbθ̇ cos2 θ



b3 +
1

4

z3
cb

sin3 θ
sgnθ



(6)105

for the uplifting case. Accordingly, two distinct states are identified. The first106

corresponds to the no-uplift state, which prevails as long as the entire base of107

the block remains in full contact with the ground. In contrast, the uplift state108

arises when either of the pivot points lifts off the ground surface. The two distinct109
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states are illustrated in Figs. 1(a) and 1(b), respectively. In Eqs. (3) to (6), b110

represents half of the width of the rigid block, sgn(·) is the signum function, and111

k (force units per unit width of base per unit vertical deformation) and λ (force112

units per unit width of base per unit vertical deformation velocity and per unit113

vertical deformation) denote the stiffness and damping coefficients of the impact114

force model, respectively.115

Since θ and zcb are typically small in most practical applications (e.g., [3, 20]),116

reasonable approximations can be obtained by assuming sin θ ≈ 0 and cos θ ≈ 1.117

Further simplification can be introduced by neglecting combined derivative order118

terms of θ and zcb that are greater than one. Subsequently, considering the static119

condensation method yields [21]120

zcb = zst =
mg

2bk
(7)121

for the case of no-uplifting, and122

zcb = zst =
−bkθsgnθ +

√
2mgkθsgnθ

2k
(8)123

for the case of uplifting. Clearly, in this manner, the uplifting occurs when ♣θ♣ > θul124

with125

θul =
♣zst♣
b

=
mg

2b2k
. (9)126

Substituting Eqs. (3) to (8) into Eqs. (1) and (2), while accounting for the horizon-127

tal component of the induced excitation, i.e., z̈g = 0, the rocking motion of the128
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𝜃
𝑧(𝜂)

cb
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𝜂
Ground level𝑧 𝐵𝐴

𝑘 𝜆

h

b

ሷ𝑥𝑔ሷ𝑧𝑔
(a)

ሷ𝑥𝑔

cm𝜃
𝑧(𝜂)

cb 𝜂 Ground level𝑧 𝐵
𝐴 𝑧𝐵𝑠𝑖𝑛𝜃
𝑘 𝜆

cl

ሷ𝑧𝑔
(b)

Fig. 1. Block rocking on nonlinear flexible foundation: (a) no-uplifting with θ > 0; (b) uplifting

with θ > 0. Definition of the contact line (cl) for each case. The system exhibits an analogous

behavior in both states for θ < 0.
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rectangular rigid block can be cast into the form129

θ̈ +
C(θ)

msdof

θ̇ +
K(θ)

msdof

θ =
mh

msdof

ẍg, (10)130

where131

msdof = Icm +mh2, (11)132

133

C(θ) =



















b2

3
λ
mg

k
, ♣θ♣ ≤ θul

mgbλ

6k2

√
2mgkθsgnθ

θ
sgnθ, ♣θ♣ > θul

(12)134

and135

K(θ) =























2b3

3
k −mgh, ♣θ♣ ≤ θul

mg



bsgnθ

θ
−

√
2mgkθsgnθ

3kθ2
− h



, ♣θ♣ > θul

(13)136

2.2. Stochastic averaging and linearization treatment137

It is important to note that the stiffness coefficient K(θ) in Eq. (13) can be-138

come zero or even negative for certain combinations of system parameters. A139

negative stiffness promotes toppling behavior, whereas a positive stiffness tends140

to restore the system to its original position. Therefore, a special treatment com-141

bining stochastic averaging and linearization methods is adopted in this section to142

determine the rocking response of the rigid block under evolutionary nonstation-143

ary stochastic excitation [16, 27].144

In this context, considering that the stochastic excitation is slowly varying145

with respect to time and also that the system is lightly damped, it is assumed146

that the system exhibits a pseudo-harmonic behavior (e.g., [28]) under the non-147
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overturning condition. Therefore, the rotation angle satisfies148

θ(t) = a cos[ω(a)t+ ϕ(t)], (14)149

where a and ϕ denote the slowly time-varying amplitude and phase, respectively.150

To further simplify the ensuing analysis, Eq. (10) can be rewritten as151

θ̈ + β0θ + z(t, θ, θ̇) =
mh

msdof

ẍg, (15)152

where β0 is the damping coefficient of the corresponding linear system, and153

z(t, θ, θ̇) =
C(θ)

msdof

θ̇ +
K(θ)

msdof

θ − β0θ. (16)154

Applying next the statistical linearization method [29], an equivalent amplitude-155

dependent linear system is defined as156

θ̈ + β(a)θ̇ + ω2(a)θ =
mh

msdof

ẍg, (17)157

where β(a) and ω2(a) represent, respectively, the equivalent amplitude-dependent158

damping and stiffness elements. The latter are determined following a mean-159

square minimization of the difference between Eqs. (15) and (17) (e.g., [27, 29,160

30]), and are given by161

β(a) = β0 − 1

aω(a)π

∫ 2π

0
sinφ · z (t, a cosφ,−aω(a) sinφ) dφ (18)162
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and163

ω2(a) =
1

aπ

∫ 2π

0
cosφ · z(t, a cosφ,−aω(a) sinφ)dφ, (19)164

with φ = ω(a)t+ ϕ(t). Substituting Eq. (16) into Eqs. (18) and (19) yields165

β(a) =































































b2λmg

3kmsdof

, a ≤ θul

4mgbλ

3πk2msdof

√

2mgk

a
¶2F1([−0.5, 0.25]; 1.25; 1)

− √
cos y 2F1([−0.5, 0.25]; 1.25; cos2 y)♢

− 4b2λmg

3πkmsdof



π

4
− y

2
− sin 2y

4



, a > θul

(20)166

and167

ω2(a) =















































2b3k

3msdof

− mgh

msdof

, a ≤ θul

4

πmsdof

{

mgb sin y

a
− 2mg

3ka

√

2mgk

a
E


y

2
, 2


−mgh


y

2
+

sin 2y

4



+



2b2λ

3
−mgh





π

4
− y

2
− sin 2y

4



}

, a > θul

(21)168

where y = arccos



θul

a



. In Eq. (20), 2F1(·) denotes the generalized hypergeo-169

metric function, while in Eq. (21) E(·) represents the incomplete elliptic integral170

of the second kind. These are given by171

2F1([a1, a2]; b1; z) =
∞
∑

n=0



(a1)n(a2)n

(b1)n(a2)n





zn

n!



(22)172
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and173

E (λ, ρ) =
∫ λ

0

√

1 − ρ sin2 φdφ, (23)174

where (·)n is the Pochhammer symbol, defined as175

(a)n =
Γ(a+ n)

Γ(a)
, (24)176

and Γ(·) is the complete Gamma function provided as177

Γ(a) =
∫

∞

0
ta−1e−tdt. (25)178

To further simplify the analysis, the amplitude-dependent equivalent elements179

in Eq. (17) are approximated by corresponding time-dependent ones [27, 29, 31],180

defined as the nonstationary mean values of the former. Therefore, Eq. (17) be-181

comes182

θ̈ + βeq(t)θ + ω2
eq(t)θ =

mh

msdof

ẍg, (26)183

where the time-dependent damping βeq(t) and stiffness ω2
eq(t) elements are given184

by185

βeq(t) =
∫

∞

0
β(a)p(a, t)dt (27)186

and187

ω2
eq(t) =

∫

∞

0
ω2(a)p(a, t)dt. (28)188

Based on the nature of the nonstationary rocking response amplitude PDF p(a, t),189

the time-dependent stiffness element ω2
eq(t) comprises two parts: the bounded part190

13



ω2
eq,B(t) for a ∈ [0, acr], and the unbounded part for a ∈ (acr,∞), which may lead191

to toppling. In this context, the bounded equivalent damping element is expressed192

as193

βeq,B(t) =
∫ acr

0
β(a)p(a, t)dt, (29)194

while the corresponding bounded equivalent stiffness is given by195

ω2
eq,B(t) =

∫ acr

0
ω2(a)p(a, t)dt, (30)196

where p(a, t) denotes the nonstationary response amplitude PDF. Expanding on197

Eq. (21), it is clear that the equivalent stiffness element will become zero when198

the rocking amplitude reaches a critical value acr. In this context, considering199

that the system exhibits an unbounded response when a > acr, a special form of200

nonstationary rocking amplitude PDF is adopted [16]. Specifically, this is201

p(a, t) =
a

c(t)
exp



− a2

2c(t)



rect(a) + exp



− a2
cr

2c(t)



δ(a− a∞), (31)202

where rect(a) = u(a) − u(a− acr), with u(·) denoting the unit step function, c(t)203

is a coefficient to be determined, and δ(·) is the Dirac delta function. A detailed204

discussion about the proposed nonstationary response amplitude PDF p(a, t) in205

Eq. (31) can be found in [16, 32].206

Furthermore, for a ∈ [0, acr], the stochastic averaging method is employed207

14



[33, 34], resulting in the following Fokker-Planck (F-P) differential equation208

∂p(a, t♣a1, t1)

∂t
= − ∂

∂a



− 1

2
βeq,B(t)a+

πSh(ωeq,B(t), ζ0, t; a
s
g)

2aω2
eq,B(t)



p(a, t♣a1, t1)

]

+
1

2

∂2

∂a2



πSh(ωeq,B(t), ζ0, t; a
s
g)

ω2
eq,B(t)

p(a, t♣a1, t1)

]

,

(32)209

where Sh(ωeq,B(t), ζ0, t; a
s
g) =



mh

msdof

2

Gh(ωeq,B(t), ζ0, t; a
s
g). It is readily seen210

that the truncated Rayleigh PDF part of Eq. (31) satisfies the bounded F-P Eq. (32)211

when a1 = 0 and t1 = 0. Thus, substituting the truncated Rayleigh PDF into212

Eq. (32), the following nonlinear differential equation can be obtained213

ċ(t) = −βeq,B(t)c(t) +
πSh(ωeq,B(t), ζ0, t; a

s
g)

ω2
eq,B(t)

. (33)214

Moreover, the transitional amplitude PDF p(a, t♣a1, t1) can be derived in the form215

p(a, t♣a1, t1) =



















ptr(a, t♣a1, t1) +R(t, t1)δ(a− a∞), 0 ≤ a1 ≤ acr

δ(a− a∞), a1 > acr

(34)216

where217

ptr(a, t♣a1, t1) =
a

c(t, t1)
exp



− a2 + h2(t, t1)

2c(t, t1)

]

I0



ah(t, t1)

c(t, t1)

]

rect(a) (35)218

corresponds to the component for rocking amplitude lower than the critical value219

15



acr, and δ is the Dirac delta function. Further,220

R(t, t1) = 1 −
∫ acr

0
ptr(a, t♣a1, t1)da (36)221

and I0(·) denotes the modified Bessel function of the first kind and of zero order.222

In Eq. (35), c(t, t1) and h(t, t1) satisfy223

dc(t, t1)

dt
+ βeq,B(t)c(t, t1) − πSh(ωeq,B(t), ζ0, t; a

s
g)

ω2
eq,B(t)

= 0 (37)224

and225

dh(t, t1)

dt
+

1

2
βeq,B(t)h(t, t1) = 0, (38)226

subject to p(a, t♣a1, t1) = δ(a − a1). These are derived following a treatment227

similar to that in Ref. [35]; that is by substituting the bounded part of Eq. (35)228

into Eq. (32).229

2.3. Block random rocking reliability assessment over toppling230

In this section, the survival probability over toppling pertaining to a rigid block231

system rocking on nonlinear flexible foundation is considered. The survival prob-232

ability in this case is defined as the probability PB(t) that the rocking amplitude233

a is kept below the specified threshold acr over the time duration [0, T ]. By dis-234

cretizing the time duration as [0, T ] =
M
⋃

i=1
[ti−1, ti], with t0 = 0 and tM = T , the235

survival probability is computed by [30, 36]236

PB(T = tM) =
M
∏

i=1

(1 − Fi), (39)237
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where Fi denotes the probability that a crosses the barrier acr in the time interval238

[ti−1, ti], while no crossing has occured prior to the time instant ti−1. This is239

defined as240

Fi =
Prob[a(ti) ≥ acr ∩ a(ti−1) < acr]

Prob[a(ti−1) < acr]
=
Qi−1,i

Hi−1

, (40)241

where242

Hi−1 =
∫ acr

0
p(ai−1, ti−1)dai−1 (41)243

and244

Qi−1,i =
∫

∞

acr

dai

∫ acr

0
p(ai−1, ti−1; ai, ti)dai−1. (42)245

Substituting Eqs. (31) and (34) into Eqs. (41) and (42), and manipulating, yields246

[16, 30]247

Hi−1 = 1 − exp



− a2
cr

2c(ti−1)

]

(43)248

and249

Qi−1,i = Hi−1 −
∫ acr

0
dai

∫ acr

0
ptr(ai−1, ti−1; ai, ti)dai−1. (44)250

For the small time interval [ti−1, ti], assuming the EPS is slowly varying with251

respect to time and adopting a first-order Taylor expansion, Eqs. (37) and (38)252

become253

c(ti−1, ti) =
πSh(ωeq,B(t), ζ0, t; a

s
g)

ω2
eq,B(t)

(ti − ti−1) (45)254

and255

h(ti−1, ti) = ai−1

√

1 − βeq,B(t)(ti − ti−1), (46)256
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respectively. Further, considering Eqs. (45) and (46), Eq. (44) takes the form257

Qi−1,i = (1 − r2
i )

{

1 − exp



− a2
cr

2c(ti−1)(1 − r2
i )

]}

exp



a2
cr

2c(ti)(1 − r2
i )

]

+
N
∑

n=1

Dn,

(47)258

where259

Dn =
r2n

i (1 − r2
i )

(n!)2
Γ



1 + n,
a2

cr

2c(ti)(1 − r2
i )

]

×
{

Γ[1 + n, 0] − Γ



1 + n,
a2

cr

2c(ti−1)(1 − r2
i )

]}

.

(48)260

The parameter r2
i is given by261

r2
i =

c(ti−1)

c(ti)
(1 − βeq,B(ti−1)τi) (49)262

and can be interpreted as an indicator of the correlation between random variables263

ai−1 and ai, since r2
i → 0 as τi → ∞, and r2

i → 1 as τi → 0 [30].264

2.4. Mechanization of the proposed technique265

The implementation of the approximate stochastic dynamics technique devel-266

oped herein for assessing the survival probability over toppling of a rigid block267

rocking on a flexible nonlinear foundation, excited by an evolutionary stochas-268

tic process compatibly defined with contemporary seismic codes provisions (e.g.,269

[37, 38]), involves the following steps:270

i. Derive an excitation EPS characterizing the induced ground motion, fol-271

lowing the specifications provided in Appendix B for a given elastic design272
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spectrum; see Appendix A.273

ii. Use a standard integration scheme to numerically solve the first-order dif-274

ferential Eq. (33) to determine the time-dependent coefficient c(t).275

iii. Utilize c(t) in the previous step in conjunction with Eq. (31) and Eqs. (29)276

and (30) to compute the nonstationary response amplitude PDF p(a, t), and277

the bounded equivalent linear elements, βeq,B(t) and ω2
eq,B(t).278

iv. Discretize the time domain as discussed in Section 2.3. Specifically,279

[ti−1, ti], i = 1, 2, . . . ,M, ti = ti−1 + dTTeq,B(ti−1), (50)

where Teq is the equivalent natural period of the rocking block, Teq,B(t) =280

2π
ωeq,B(t)

, and dT is a selected constant in (0, 1].281

v. Employ Eqs. (43) and (47) for the computation of the Hi−1 and Qi−1, re-282

spectively.283

vi. Substitute Hi−1 and Qi−1 of the previous step into Eq. (39) to compute the284

survival probability PB over toppling.285

3. Numerical case studies286

In this section, the proposed framework is verified by considering the cases of287

rigid blocks rocking on various flexible nonlinear foundations excited by evolu-288

tionary stochastic processes compatible with contemporary aseismic codes (e.g.,289
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[37, 38]). The EC8 design spectrum for soil type B detailed in Appendix B is290

selected as the baseline spectrum S(ω, ζ0 = 0.05; as
g), while the EI Centro wave291

of SOOE (NS) component of the Imperial Valley earthquake on May 18, 1940 is292

utilized as the seismic record ẍR
g (t), shown in Fig. 2(a). Following the procedure293

outlined in Ref. [37] and summarized in Appendix A for completeness, the EC8294

compatible excitation EPS G(ω, ζ0, t; a
s
g) is derived and presented in Fig. 2(b).295

A joint time±frequency analysis of the recorded ground motion is carried out296

by means of the continuous wavelet transform (CWT), which is well suited for297

transient, nonstationary signals such as seismic excitations. The wavelet coeffi-298

cients obtained from the CWT serve as the basis for computing the non-separable299

GR(ω, ζ0, t; a
s
g) power spectrum component of the seismic record in Eq. (A.12).300

The resulting excitation EPSG(ω, ζ0, t; a
s
g), compatible with the EC8 design spec-301

trum, is shown in Fig. 2(b) and is employed as the input for the evaluation of302

bounded time-dependent equivalent linear elements using Eqs. (29) and (30), and303

subsequently the survival probability over toppling in Eq. (39).304

The selected marble blocks, as well as the configurations of the flexible nonlin-305

ear foundation models can be found in Refs. [20, 21]. Specifically, two different306

marble blocks with the following parameter sets were used: Block configuration307

1: 2h = 0.42 m, 2b = 0.07 m, andm = 8.67 kg; Block configuration 2: 2h = 0.28308

m, 2b = 0.07 m, and m = 5.84 kg. Three different foundation models were se-309

lected and are discussed in the following sections. To evaluate the accuracy of310

the proposed technique in estimating the survival probability, comparisons with311

relevant MCS data are also performed. In this context, an ensemble of 10, 000312
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(a)

(b)

(c)

Fig. 2. (a) Recorded acceleration time-history and associated Husid function of El Centro 1940

earthquake record. Excitation EC8 design spectrum S(ω, ζ0 = 0.05; as
g) compatible nonstationary

power spectrum for PGA 0.35g: (b) three-dimensional representation, and (c) corresponding top-

view projection.
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acceleration time histories is generated to align with the EC8 design spectrum,313

as specified in Eq. (A.11) of Appendix A. Furthermore, Eq. (10), which governs314

the system dynamics, is numerically integrated for this ensemble, and the sur-315

vival probability over toppling estimate is derived through statistical analysis of316

the block rocking response time-histories.317

3.1. Block configurations on nonlinear flexible foundation model of type A318

The coupled nonlinear equations governing the dynamics of the rocking block319

system in question are given by Eqs. (1) and (2). Following the static condensation320

method, the uncoupled equation of block rocking on nonlinear foundation, first,321

takes the form in Eq. (10). Then, applying the linearization scheme in Section 2.2,322

Eq. (17) and Eq. (26) are derived, where the bounded equivalent time-dependent323

damping and stiffness elements are found by Eqs. (29) and (30), respectively.324

The parameter values for the type A foundation model are k = 2.89 × 107 and325

λ = 8.95 × 108. Next, a standard integration scheme is used to solve numerically326

Eq. (33) for determining the coefficient c(t). This is used in conjunction with327

Eq. (31), and Eqs. (29) and (30) to compute the nonstationary response amplitude328

PDF and the bounded equivalent linear elements of the system. The latter are329

shown in Fig. 3 for Block configuration 1 with PGA = 0.45g, where a decreas-330

ing with time trend is noted. An analogous behavior is observed in the amplitude-331

dependent equivalent elements. Subsequently, discretizing the time domain as332

discussed in step (iv.) of Section 2.4, Eqs. (43) and (47) are used to compute333

Hi−1 and Qi−1. The latter are then substituted in Eq. (39) to compute the survival334
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probability over toppling PB. The results obtained for this Block configuration335

with respect to various values of PGA are shown in Fig. 4, where MCS data are336

also provided for comparison. Specifically, 10, 000 excitation samples compatible337

with the reference response spectrum of Eq. (A.12), corresponding to a given PGA338

level, were generated using the spectral representation method [39]. The govern-339

ing rocking dynamics, Eqs. (10-13), were then solved by means of a Runge-Kutta340

numerical integration scheme to obtain the response realizations. Similarly, the341

survival probabilities against toppling PB are plotted in Fig. 5 for Block configu-342

ration 2. The excitation levels considered for the second block configuration are343

0.55g, 0.65g, and 0.75g. These ground-motion levels were deliberately selected344

because Block configurations 1 and 2 share the same base width 2b, while the345

configuration 2 has a significantly lower height 2h. This geometric difference346

results in a higher slenderness ratio for configuration 1, making configuration 2347

inherently more stable and therefore requiring stronger excitations to overturn; the348

critical rocking angles are θcr,1 = 9.46◦ and θcr,2 = 14.00◦, respectively [20]. By349

subjecting configuration 2 to higher excitation levels, the analyses provide a bal-350

anced comparison of the survival probabilities and highlight the robustness of the351

proposed methodology across blocks with varying geometrical proportions. The352

proposed approximate technique shows a satisfactory degree of accuracy.353

3.2. Block configurations on nonlinear flexible foundation model of type B354

Considering next the foundation model of type B with parameter values355

k = 6.88 × 106 and λ = 1.3 × 108, the survival probabilities over toppling PB of356
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(a) (b)

(c) (d)

Fig. 3. Bounded time-dependent equivalent elements (Block configuration 1): (a) damping

βeq,B(t); (b) stiffness ω2

eq,B(t); and amplitude-dependent equivalent elements: (c) damping β(a);

(d) stiffness ω2(a) for the rigid block rocking on nonlinear flexible foundation of Type A under

evolutionary seismic excitation.

24



(a)

(b)

(c)

Fig. 4. Toppling survival probability estimates obtained via the proposed stochastic averaging-

based (SA) method and Monte Carlo simulation (MCS) for a rigid block (Block configuration 1)

rocking on a flexible foundation (Type A model), subjected to evolutionary nonstationary seismic

excitation compatible with EC8 specifications: (a) PGA = 0.45g; (b) PGA = 0.55g; (c) PGA =
0.65g.
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(a)

(b)

(c)

Fig. 5. Toppling survival probability estimates obtained via the proposed stochastic averaging-

based (SA) method and Monte Carlo simulation (MCS) for a rigid block (Block configuration 2)

rocking on a flexible foundation (Type A model), subjected to evolutionary nonstationary seismic

excitation compatible with EC8 specifications: (a) PGA = 0.55g; (b) PGA = 0.65g; (c) PGA =
0.75g.
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Block configurations 1 and 2 are efficiently determined following the presentation357

in Section 2.4, and plotted in Figs. 6 and 7, respectively, for the corresponding358

ranges of PGA values. Similar to Section 3.1, comparisons with pertinent MCS359

data, including 10, 000 samples, demonstrate a satisfactory degree of accuracy. At360

higher levels of ground motion excitation, the systems exhibit a rapid decline in361

survival probability, with overturning occurring at earlier time instances.362

3.3. Block configurations on nonlinear flexible foundation model of type C363

In this case, the foundation model of type C characterized by the parameters364

k = 6.42 × 106 and λ = 1.65 × 108 is considered. The survival probabilities365

over toppling PB of Block configurations 1 and 2 are computed as described in366

Section 2.4 and illustrated in Figs. 8 and 9, respectively, for the corresponding367

ranges of PGA values. In both figures, the results are compared with MCS data368

comprising 10, 000 samples, revealing a satisfactory level of accuracy.369

4. Concluding remarks370

A novel semi-analytical approximate framework is proposed in this paper371

to assess the toppling survival probability of rigid block systems rocking under372

stochastic ground motion. The proposed framework incorporates a nonlinear flex-373

ible foundation model that allows for uplifting and nonlinear damping, reflect-374

ing realistic soil-structure interaction effects. Formulating a special nonstationary375

probability density function for the rocking amplitude, the method demonstrates376

its capability to effectively manage nonstationary seismic excitation loading, accu-377

rately capturing the fluctuations in intensity and frequency content of real seismic378
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(a)

(b)

(c)

Fig. 6. Toppling survival probability estimates obtained via the proposed stochastic averaging-

based (SA) method and Monte Carlo simulation (MCS) for a rigid block (Block configuration 1)

rocking on a flexible foundation (Type B model), subjected to evolutionary nonstationary seismic

excitation compatible with EC8 specifications: (a) PGA = 0.45g; (b) PGA = 0.55g; (c) PGA =
0.65g.
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(a)

(b)

(c)

Fig. 7. Toppling survival probability estimates obtained via the proposed stochastic averaging-

based (SA) method and Monte Carlo simulation (MCS) for a rigid block (Block configuration 2)

rocking on a flexible foundation (Type B model), subjected to evolutionary nonstationary seismic

excitation compatible with EC8 specifications: (a) PGA = 0.55g; (b) PGA = 0.65g; (c) PGA =
0.75g.
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(a)

(b)

(c)

Fig. 8. Toppling survival probability estimates obtained via the proposed stochastic averaging-

based (SA) method and Monte Carlo simulation (MCS) for a rigid block (Block configuration 1)

rocking on a flexible foundation (Type C model), subjected to evolutionary nonstationary seismic

excitation compatible with EC8 specifications: (a) PGA = 0.45g; (b) PGA = 0.55g; (c) PGA =
0.65g.
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(a)

(b)

(c)

Fig. 9. Toppling survival probability estimates obtained via the proposed stochastic averaging-

based (SA) method and Monte Carlo simulation (MCS) for a rigid block (Block configuration 2)

rocking on a flexible foundation (Type C model), subjected to evolutionary nonstationary seismic

excitation compatible with EC8 specifications: (a) PGA = 0.55g; (b) PGA = 0.65g; (c) PGA =
0.75g.
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events. The proposed framework showcases considerable computational advan-379

tages compared to traditional approaches, facilitating the efficient quantification380

of survival probabilities over toppling. Additionally, a notable advancement per-381

tains to its capacity to incorporate unbounded response behaviors associated with382

negative values of stiffness, thus addressing a significant gap in the literature. The383

accuracy and reliability of the proposed framework are validated through relevant384

numerical examples, and comparisons with Monte Carlo simulation data reveal385

its applicability in evaluating the performance of rigid blocks rocking on non-386

linear foundations under non-white seismic loading. The proposed framework387

advances the theoretical understanding of nonlinear rocking block dynamics and388

holds practical significance for potential engineering applications aligned with389

modern resilience-oriented seismic perspectives.390
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Appendix A. Derivation of Design Spectrum-Compatible Nonstationary Power398

Spectra399

Based on the approach proposed by Cacciola in Ref. [37], the nonstationary400

stochastic ground acceleration ẍg(t) is expressed in the form401

ẍg(t) = αẍR
g (t) + ψ(t)ẍS

g (t), (A.1)

where ẍR
g (t) denotes a fully nonstationary segment extracted from an actual seis-402

mic record, α is a spectral scaling factor, and ẍS
g (t) represents a quasi-stationary403

Gaussian corrective process, modulated in time by ψ(t). The time-modulating404

function ψ(t) follows the formulation proposed by Jennings [40]405

ψ(t) =

































t
t1

2
, t < t1

1, t1 ≤ t ≤ t2

exp[−βm(t− t2)], t > t2

(A.2)

where t1 and t2 are defined such that the Husid function [41] attains 5% and 95%406

of its maximum, respectively, with Ts = t2 − t1 denoting the stationary phase407

duration. The parameter βm governs the decay rate.408

For a linear SDOF system subjected to ẍR
g (t) and ẍS

g (t) with respective re-409

sponse spectra SR(ω, ζ0; a
s
g) and SS(ω, ζ0; a

s
g), the combined target response spec-410

trum takes the form411

S(ω, ζ0; a
s
g) =

√

α2SR(ω, ζ0; as
g)2 + SS(ω, ζ0; as

g)2, (A.3)
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with α ∈ (0, 1] selected as412

α = min

{

S(ω, ζ0; a
s
g)

SR(ω, ζ0; as
g)

}

. (A.4)

To derive the spectral density that integrates first-passage approximations [42]413

and iterative refinement [43] is employed next. The pseudo-acceleration spectrum414

is linked to the spectral moments via415

SS(ω0, ζ0; a
s
g) = ηxSω2

0

√

λ0,xS (ω0, ζ0; as
g), (A.5)

where λn,xS denotes the nth-order spectral moment416

λn,xS (ω0, ζ0; a
s
g) =

∫

∞

0
ωn

GS(ω, ζ0; a
s
g)

(ω2
0 − ω2)2 + (2ζ0ω0ω)2

dω (A.6)

and ηxS accounts for the peak factor, given by [42]417

ηxS (Ts, p) =

√

2 ln


2µxS



1 − exp


−δ1.2
xS

√

π ln(2µxS )


, (A.7)

with418

µxS =
Ts

2π

√

√

√

√

λ2,xS

λ0,xS

(− ln p)−1, δxS =

√

√

√

√1 −
λ2

1,xS

λ0,xSλ2,xS

. (A.8)

Setting p = 0.5 and applying a closed-form approximation [42], Eq. (A.5)419
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becomes420

SS(ω0, ζ0; a
s
g) = η2

xSω0G
S(ω0, ζ0; a

s
g)



π − 4ζ0

4ζ0



+ η2
xS

∫ ω0

0
GS(ω, ζ0; a

s
g) dω.

(A.9)

Next, discretizing the frequency domain into N intervals with421

ωi = ωl + (i− 0.5)∆ω, i = 1, 2, ..., N , yields422

GS(ωi, ζ0; a
s
g) =







































0, ωi ≤ ωl

4ζ0

πωi−4ζ0ωi−1



SS(ωi,ζ0;as
g)2

η2

xS

−∆ω
∑i−1

k=1 G
S(ωk, ζ0; a

s
g)


, ωl < ωi < ωu

(A.10)

which is applied recursively. Once GS(ω, ζ0; a
s
g) is determined, the spectral rep-423

resentation method [39] is employed to generate realizations of the corrective ac-424

celeration process425

ẍ(j)
g (t) = αẍR

g (t) + ψ(t)
Na
∑

i=1

√

4GS(i∆ω, ζ0; as
g)∆ω cos(i∆ωt+ θ

(j)
i ), (A.11)

where θ
(j)
i are independent random phases uniformly distributed in [0, 2π).426

The resulting evolutionary power spectral density (EPSD) for ẍg(t) becomes427

G(ω, ζ0, t; a
s
g) = α2GR(ω, ζ0, t; a

s
g) + ψ(t)2GS(ω, ζ0; a

s
g), (A.12)

where GR(ω, ζ0, t; a
s
g) and GS(ω, ζ0; a

s
g) denote the non-separable and separable428

EPSD components, respectively [44±46].429
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Finally, to improve spectral matching, the iterative scheme430

GS(k)(ω, ζ0; a
s
g) = GS(k−1)(ω, ζ0; a

s
g)



S(ω, ζ0; a
s
g)2

S̃(k−1)(ω, ζ0; as
g)2

]

(A.13)

is used, where S̃(k)(ω, ζ0; a
s
g) denotes the mean response spectrum generated from431

the kth iteration.432

Appendix B. Eurocode 8 design spectrum433

The Eurocode 8 defines the elastic pseudo-acceleration response spectrum for434

linear oscillators with damping ratio ζ and natural period T = 2π/ω through the435

following relationships [47]436

S(T, ζ) = a0
g ×















































































S
[

1 + T
TB

(2.5η − 1)
]

, 0 ≤ T ≤ TB

2.5Sη, TB ≤ T ≤ TC

2.5Sη TC

T
, TC ≤ T ≤ TD

2.5Sη TCTD

T 2 , TD ≤ T ≤ TE

S TCTD

T 2

[

2.5η + T −TE

TF −TE
(1 − 2.5η)

]

, TE ≤ T ≤ TF

S TCTD

T 2 , TF ≤ T

, (B.1)437

where438

η =

√

10

5 + ζ
≥ 0.55, (B.2)439

with a0
g denoting the peak ground acceleration, S denoting a soil-dependent am-440

plification factor, and TB, TC , TD, TE and TF corresponding to soil-dependent441

corner periods. The set of parameter values used for soil type B are S = 1.20,442
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TB = 0.15, TC = 0.5, TD = 2.0, TE = 5.0, and TF = 10.443
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