UNIVERSITYW

This is a repository copy of Graphite: Automated Development of Hybrid Graphical-Textual
DSL Editors.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232301/

Version: Accepted Version

Proceedings Paper:

Predoaia, lonut orcid.org/0000-0002-2009-4054, KOLOVOS, DIMITRIS orcid.org/0000-
0002-1724-6563 and GARCIA-DOMINGUEZ, ANTONIO orcid.org/0000-0002-4744-9150
(2025) Graphite: Automated Development of Hybrid Graphical-Textual DSL Editors. In:
Proceedings of the ACM / IEEE 28th International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). 28th International
Conference on Model Driven Engineering Languages and Systems (MODELS), 05-10 Oct
2025 , USA.

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/232301/
https://eprints.whiterose.ac.uk/

Graphite: Automated Development of
Hybrid Graphical-Textual DSL Editors

Ionut Predoaia

University of York

United Kingdom
ionut.predoaia@york.ac.uk

Abstract—Hybrid graphical-textual domain-specific languages
can deliver the best of both worlds of graphical and textual
modelling, by providing a graphical syntax for some parts of the
language and a textual syntax for others. Graphite is a tool that
facilitates the automated development of hybrid graphical-textual
model editors for domain-specific languages. This paper outlines
the capabilities of the hybrid editors generated by Graphite:
smart textual editors, textual-graphical cross-referencing, inte-
grated refactoring, consistency enforcement, tolerance of tempo-
rary inconsistencies, integrated abstract syntax graph, uniform
error reporting, and conditional storage of derived model ele-
ments. Furthermore, the language engineering process employed
by Graphite is demonstrated.

Index Terms—Hybrid DSL Editor, Code Generation, EMF,
Graphical-Textual Modelling, Grammar, Graphite, Xtext, Sirius

I. INTRODUCTION

Hybrid graphical-textual domain-specific languages (DSLs)
are languages with a hybrid concrete syntax. The graphical
part of the hybrid syntax is commonly used for representing
high-level domain concepts, whereas the textual part typically
captures complex expressions and behaviour. In essence, they
are graphical DSLs containing embedded textual expressions.
Accordingly, hybrid graphical-textual DSLs can deliver the
best of both worlds of graphical and textual modelling, as
textual representations can reduce the number of clicks when
creating and editing models, whereas graphical representations
can reduce the time spent linking model elements together [1].

For brevity, the term hybrid will be used instead of the term
hybrid graphical-textual. Hybrid DSLs are effectively used
through hybrid model editors, alternatively called hybrid DSL
editors, as they enable editing a single domain model through
graphical and textual notations. When using a hybrid DSL,
some parts of the model are graphical, i.e., they are expressed
with a graphical syntax, whereas others are textual, i.e., they
are expressed with a textual syntax. The term graphical model
elements is used to refer to the graphical parts of the model,
whereas the term fextual model elements refers to textual parts
of the model that are expressed through textual expressions.

This paper presents Graphite!, an open-source tool that
facilitates the automated development of hybrid DSL editors.
The work in this paper extends our prior works [2]-[5] by

Thttps://github.com/epsilonlabs/graphite

Dimitris Kolovos
University of York
United Kingdom

dimitris.kolovos @york.ac.uk

Antonio Garcia-Dominguez
University of York
United Kingdom

a.garcia-dominguez @york.ac.uk

packaging Graphite into an installable tool with a user inter-
face, and by providing additional facilities such as metamodel
and grammar validation, automatic generation of grammars
and integrated refactoring. Hybrid DSL editors have been
developed using Graphite for the following DSLs: the Project
Scheduling DSL [3], the NetApp Cloud Services DSL [2], the
Fuzzing-based Testing DSL [6], and the Structurizr DSL [5].

The generated hybrid DSL editors are EMF-based, and rely
on the integration of the Sirius graphical modelling framework
and the Xtext textual modelling framework. For generating
a hybrid DSL editor, Graphite requires as input an Ecore
metamodel, an EMF generator model, a Sirius Viewpoint
Specification Model (VSM) [7], and one or more Xtext gram-
mars. The generated hybrid DSL editors provide the following
key features: smart textual editors, textual-graphical cross-
referencing, tolerance of temporary inconsistencies, uniform
error reporting, consistency enforcement and refactoring.

Graphite’s language engineering process is demonstrated
in this paper. The process can be outlined as follows: the
language engineer (1) defines the metamodel and then extends
it with string attributes and annotations, (2) changes a property
of the generator model and then launches the EMF code
generator, (3) defines the graphical and textual syntaxes using
Sirius and Xtext, and (4) executes the code generator of
Graphite to produce a hybrid DSL editor.

Paper structure. Section II presents related work. Section III
describes a running example. Section IV outlines the capabil-
ities of Graphite. Section V demonstrates Graphite’s language
engineering process. Finally, Section VI concludes the paper
and provides directions for future work.

II. RELATED WORK

In addition to Graphite, hybrid DSL editors could alterna-
tively be engineered using projectional editors such as Jet-
Brains MPS [8]. The works from [9]-[12] present techniques
for engineering hybrid DSLs and their supporting editors, how-
ever, unlike our work, they heavily rely on hand-written code.
Other related works are based on blended modelling [13],
which focuses on providing several graphical and textual
notations for the same concepts of the abstract syntax, while
keeping the different notations synchronised. However, in our
work we are concerned with DSLs that use graphical and
textual notations for different concepts of the abstract syntax,

https://orcid.org/0000-0002-2009-4054
https://orcid.org/0000-0002-1724-6563
https://orcid.org/0000-0002-4744-9150
https://github.com/epsilonlabs/graphite

v workload
v & MyViewpoint
v & Project diagram

_ Analysis Design

. Palette
RQAQAD -~

(= Tools

Implementation

v []Default
~ []person node

y = P4 T MEERT I SN Y
8|

% Workspace Image /workload.sirius_design/icons/person.png
v [}] Task node

£ Workspace Image /workload.sirius_design/icons/task.png

~ 3\ Task Dependencies Edge
v/ Edge Style solid >
7 Center Label Style 12
~ . Task Leader Edge Alice Bob
v /'Edge Style solid
7 Center Label Style 12
> @ Section Tools
8 workload.sirius_design. Services
& graphite graphical.SiriusServices
> [Z]Graphite Properties

\/

1 Problems X
1 error, 0 warnings, 0 others

Description 2 Alice

p e o 2
+ S I r I u S ~ @ Errors (1item) 2 Bob
) R Sharis
@ Property "effortsExpression’ form & Charlie

[=] Properties X
® Task Analysis

Main
Semantic
Style
Appearance

Efforts Expression:
o
Alice : 6
Bob: 3
“aCharles : ©

2 Node Person

& Node Task

\ Task Leader

"\ Task Dependencies

Charlie

Xtet

1 not be parsed grammar gEfforts

with org.eclipse.xtext.common.Terminals

1
2
3
4 import "ProjectWorkloadsDSL"

5 import "http://www.eclipse.org/emf/2002/Ecore”
6

7

8

Main returns Task:
{Task}
9 (efforts+=Effort (NEWLINE efforts+=Effort))?;

11 Effort returns Effort:
12 {Effort}

13 (person=[Person])? '
14
15
16

' months=INT;

terminal NEWLINE:

EULUPNE SR SXPTY TRRIE LR NN S

Fig. 1. Hybrid DSL Editor

while maintaining the consistency of the references between
the graphical and textual parts.

None of the prior works propose techniques and facilities for
integrated refactoring, consistency enforcement, tolerance of
temporary inconsistencies and conditional storage of derived
model elements. Furthermore, in contrast with our automated
approach, the prior solutions are realised via a considerable
amount of hand-written code. Moreover, a declarative specifi-
cation is used in prior works for specifying which parts of the
language’s syntax are graphical; however, no techniques have
been proposed for declaratively defining the textual parts of
the syntax.

III. RUNNING EXAMPLE

This section presents a minimal contrived example that will
be used to showcase the capabilities of Graphite. Listings 1
and 2 present the metamodel (initial and after extension)
of a DSL for modelling project plans that has been defined
in Emfatic [14], a textual syntax for Ecore metamodels. The
metamodel of the Project Scheduling DSL specifies that the
root of the domain is a Project containing lists of tasks and
people. A Task has a name and a list of efforts, where each
Effort is assigned to a person and has a number of months.

We assume for the purpose of this example that stakeholders
prefer a hybrid syntax for the DSL, where fasks and people
are modelled graphically, but the efforts are specified using
an embedded textual notation as shown in Figure 1. Fig-
ure 1 illustrates a hybrid DSL editor operating over a model
conforming to the Project Scheduling DSL’s metamodel. The
tasks and people are modelled graphically, and the efforts are
modelled through a dictionary-like textual syntax. The edges
mark the dependencies and leader of each task. The efforts are
defined on separate lines as key-value pairs having the form
{person}:{months}. Accordingly, the model elements of type
Task and Person represent the graphical parts of the model,
whereas those of type Effort represent the textual parts of the

model. Note that the graphical part of the syntax is specified
using a Sirius VSM, whereas the textual part is defined using
an Xtext grammar, as shown in Figure 1.

As the rask named Analysis is selected in the diagram,
its properties (i.e. name and efforts) are displayed in the
Properties view. Each line from the efforts textual expression
represents an effort model element. For example, the second
line is an effort that refers to the person named Alice and has
a value of 6 months.

IV. GRAPHITE

Hybrid DSL editors developed with Graphite are composed
of Sirius graphical diagram(s), Xtext textual editor(s), a Prop-
erties view for viewing and editing the properties of a selected
model element, a Palette view containing various symbols that
can be dragged and dropped on top of diagrams to create
various types of model elements, and a Problems view that
consistently reports errors in the model. In the following, we
describe the capabilities provided by Graphite.

A. Tolerance of Temporary Inconsistencies

To be able to tolerate temporary inconsistencies in the
hybrid DSL editor, Graphite requires the language engineer
to modify the metamodel by adding a string attribute for
each property that they desire to express through a textual
syntax. This decision and alternatives considered have been
discussed in detail in [2]. Therefore, one string attribute
(i.e., attr String effortsExpression) has been added
to the Task meta-class in the metamodel (see Listing 1),
to store the efforts in a textual format. The effortsExpres-
sion string attribute (i.e., the textual expression) represents
a textual representation of the efforts list (i.e., the textual
model elements). Note that the content of the embedded
textual editor is the value of effortsExpression. As shown in
Listing 1, an annotation must be added to the metamodel
to define a mapping between the added string attribute (i.e.,

class Task {

@syntax (feature="effortsExpression", derive="efforts", grammar="gEfforts", entryRule="Main")

attr String effortsExpression;
val Effort[*] efforts;

Listing 1. Annotated Metamodel obtained by extending the initial metamodel with a string attribute and an annotation

@namespace (uri="ProjectWorkloadsDSL")
package workload;

class Project {
val Task[x] tasks;
val Person[x] people;

}

class Task {
attr String name;
val Effort[*x] efforts;
ref Person leader;
ref Task[*] dependencies;

}

class Person {
attr String name;

}

class Effort {
ref Person person;
attr int months;

}

Listing 2. Initial Metamodel of the Project Scheduling DSL

effortsExpression), the property that it represents (i.e., efforts),
and the grammar that is used for parsing, along with its entry
rule. The effortsExpression is parsed according to the grammar
and the derived model elements resulting from the parsing
operation are then assigned to the efforts list. Note that the
extended metamodel containing the added string attribute and
annotation will be referred to as the annotated metamodel.

B. Integrated Abstract Syntax Graph

To be able to perform model management operations over
the entire model such as model-to-model and model-to-text
transformation, Graphite exposes the model over which the
hybrid DSL editor operates as a single unified abstract syntax
graph (ASG) that integrates elements from both its textual and
graphical parts. For instance, the underlying semantic model
from Figure 1 can be exposed to model management programs
as a unified ASG that integrates the textual parts of the model,
i.e., the efforts, and the graphical parts, i.e., the tasks and
the people. Consequently, the textual model elements (i.e., the
efforts list) are not exposed to model management programs
only as plain text, but also as a list of model elements of type
Effort that can be accessed, queried and manipulated as part
of a model management operation. For instance, one could
write a script using the Epsilon Object Language (EOL) [15]
to execute a for loop to iterate over the list of four efforts from
Figure 1 to then print the number of persons having an effort
higher than 6 months. It is worth noting that for ensuring an

integrated ASG, bidirectional synchronisation is carried out
between textual model elements (i.e., the efforts list) and their
textual expression (i.e., the effortsExpression string attribute),
to ensure the integrity of the ASG.

C. Smart Textual Editors

In the Properties view, the embedded textual editor used
for editing the effortsExpression is a smart textual editor. The
smart textual editor provides syntax-aware editing features,
such as syntax highlighting, auto-completion, and error de-
tection. In Figure 1, the user is editing the effort on the first
line: while they are typing the Person assigned to the effort, an
auto-completion menu is displayed, showing all people in the
diagram. In addition, the effort on the fourth line references
the Person named Charles, who does not exist in the diagram,
therefore, an error marker is displayed on the left side of the
smart textual editor to inform the user about the issue.

D. Textual-Graphical Cross-Referencing

To be able to define complex expressions and behaviour,
the textual expressions written in the smart textual editors
can reference graphical model elements that are defined in the
diagram. For instance, the efforts textual expression references
the people defined in the diagram, i.e., Alice and Bob (Charles
does not exist). The hybrid DSL editor provides navigation
from textual expressions to referenced model elements in
diagrams. Performing control-click in the smart textual editor
on Alice will trigger the navigation (selection) to the diagram
definition of the person named Alice.

E. Integrated Refactoring

The hybrid DSL editor provides integrated refactoring
through the smart textual editor. In the smart textual editor,
one can right-click a referenced graphical model element (e.g.,
the person named Bob) in the textual expression and then a
context menu is displayed, allowing the user to perform a
refactoring operation over the selected model element. Next,
the user enters a new value (e.g., Robert) for the identifier of
the model element (e.g., the name) in a pop-up dialog box,
and then the model element’s identifier is refactored in an
integrated manner across all diagrams and textual expressions.
Note that selecting a part of the textual expression that does not
represent an existing graphical model element (e.g., Charles)
will not allow the user to carry out any refactoring.

F. Consistency Enforcement

Consistency is automatically enforced within the hybrid
DSL editor when referenced model elements in diagrams are

renamed or deleted. This avoids unnecessary inconsistency in
the model by maintaining consistency between the graphical
and textual parts of the model. To this end, when a graphical
model element from the diagram is renamed or deleted, all
textual expressions that were previously referencing the re-
spective model element are updated accordingly. For instance,
when in the diagram, the person named Bob is renamed to
Robert, then in the smart textual editor, the third line from
the efforts textual expression will be updated accordingly by
replacing Bob with Robert. In addition, if Bob is deleted in the
diagram, then the reference from the third line of the textual
expression will be removed as well.

G. Uniform Error Reporting

Graphite stores in memory the diagnostics information, i.e.,
the errors that are produced when parsing a syntactically
incorrect textual expression and when reference resolution
fails. When a validation operation is triggered in the hybrid
DSL editor, these diagnostics are used to populate error
markers in the Problems view. The Problems view from the
running example reports an error message informing the user
that the efforts textual expression could not be parsed due to
the unresolved reference to Charles.

H. Conditional Storage of Derived Model Elements

When the model is loaded, all textual expressions are parsed
according to their associated grammars, and for each of them,
the derived model elements are assigned to their respective
properties specified by the annotations. For example, when the
model is loaded, effortsExpression is parsed and the derived
model elements are assigned to the efforts list. Graphite stores
on disk the derived model elements (i.e., the efforts list) when
the model resource is saved, but only in the case that the
textual expression (i.e., the effortsExpression string) is in an
invalid state, i.e., it cannot be parsed successfully or reference
resolution fails. Therefore, the derived model elements are
stored on disk if the textual expression is in an invalid state.
However, if it is in a valid state, the derived model elements are
not stored on disk, as they can be recovered when the model
resource is loaded. For example, the efforts list containing
four Effort model elements in Figure 1 is stored on disk, as
effortsExpression is in an invalid state.

1. Metamodel and Grammar Validation

The grammar from Figure 1 defines the textual syntax used
for modelling the efforts. The grammar specifies that whenever
the textual representation of the efforts is parsed, a Task that
contains a list of Effort model elements is derived. Grammars
must adhere to the structure of the annotated metamodel,
taking into account the annotation(s). Specifically, the entry
rule must derive a root model element that is an instance of
the meta-class (e.g., Task) that contains the property being
expressed through a textual syntax (e.g., efforts). Furthermore,
only the property being expressed through a textual syntax
needs to be populated by the grammar’s entry rule (e.g., only
the efforts property of Task).

To assist language engineers, Graphite includes a validation
mechanism that checks whether a given grammar is compliant
with the structure of the annotated metamodel. For validating
a grammar, Graphite carries out a model validation operation
that takes as input the grammar and the annotated metamodel.
Additionally, Graphite provides the capability to validate the
annotated metamodel, ensuring that the added annotations
are properly defined and that the annotation attributes match
existing properties within the metamodel (i.e., feature and
derive), the grammar’s name (grammar), and the grammar’s
entry rule (entryRule).

J. Grammar Generation

Graphite requires a grammar that conforms to the specific
structural constraints of the annotated metamodel, as outlined
in the previous subsection. To streamline and simplify the
language engineering process, Graphite offers functionality
for automatically generating the initial structure (the skeleton)
of grammars that are compliant with its constraints. These
generated grammars serve as a starting point for the lan-
guage engineer, who can further customise and refine them
as needed. This capability is realised through a model-to-text
transformation which takes the annotated metamodel as input
and produces one or more compliant grammars, based on the
grammars referenced by the annotations.

K. Generation of Hybrid DSL Editors

The principal capability provided by Graphite is the auto-
matic generation of hybrid DSL editors. Graphite carries out a
model-to-text transformation that takes as input the annotated
metamodel, the generator model (the . genmodel file), the Sirius
VSM, and the Xtext grammar(s). The transformation generates
implementation code for configuring hybrid DSL editors. The
generated hybrid DSL editors provide all capabilities discussed
in this section.

V. LANGUAGE ENGINEERING PROCESS: DEMONSTRATION

Figure 2 presents the language engineering process one
would have to follow using Graphite to develop a hybrid DSL
editor as the one in Figure 1. The process begins with the
language engineer defining the metamodel of the DSL, as in
Listing 2. Next, the language engineer decides which parts of
the metamodel should be expressed through a textual syntax.
In the context of the running example, it is preferred to capture
the efforts using an embedded textual notation. Accordingly,
in the second step, the metamodel is extended by adding a
string attribute (i.e., effortsExpression) that stores the textual
representation of the efforts, and an annotation that links the
added string attribute with the grammar (the grammar’s name)
to which it must conform. The output of the second step is the
annotated metamodel presented in Listings 1 and 2. Note that
for following the exact steps described in this paper, one has
to convert the initial metamodel into Emfatic format (right-
click in Eclipse and select “Generate Emfatic Source”), and
then convert the Emfatic representation back into an Ecore
metamodel (right-click and select “Generate Ecore Model”).

add string and annotation

—

@ ﬁ
workload.editor 2
Metamodel Annotated
Metamodel
— : AK
1]E E
workload.edit 5 =
<
m
< LI L LR LR LR CL LR L L i L
| H H
; R
9 6 + workload.sirius workload.xtext =
g workload . H .
< Engineer masssssssssssEEssssnnnnnnnnnnt
£
g N 2
0‘0\2' @
< 818
5 £
e Hybrid Editor
% 3 generate code (z S |
—— —-
import 9 ﬁ
Generator Graphite

Model
Fig. 2. Language Engineering Process with Graphite

In the third and fourth steps, Graphite is imported into the
project (i.e., the workload project) containing the generator
model; the language engineer modifies the generator model
by setting the “Root Extends Class” property to a custom
EObjectlmpl class [16] from Graphite. This will change the
superclass of the EObject classes (i.e., Effortlmpl, TaskImpl,
PersonImpl) that will be generated by the EMF code gener-
ator. Next, the EMF code generator is launched through the
generator model to generate the model code (i.e., the workload
project), edit code (i.e., the workload.edit project) and editor
code (i.e., the workload.editor project).

In the sixth step, the language engineer defines the graphical
part of the syntax in a Sirius VSM (i.e., the workload.sirius
project), as in the left side of Figure 1, to specify that Person
model elements should be represented using “person.png”,
Task model elements using “task.png” and the Dependencies
and Leader edges as a solid edge. Additionally, the language
engineer defines the textual part of the syntax through the
Xtext grammar (i.e., the workload.xtext project) presented on
the right side of Figure 1. The grammar specifies that each
Effort is separated by a newline, containing a person and
a number of months separated by a colon. In the seventh
step, both the Sirius VSM and the Xtext grammar import the
annotated metamodel, to be able to reference the parts of the
metamodel they operate over.

Finally, the language engineer triggers the code generation
facility provided by Graphite, to automatically generate the
code required for configuring a hybrid DSL editor. One must
select in the Eclipse Workspace the annotated metamodel
(.ecore), the generator model (.genmodel), the Sirius VSM
(.odesign) and the Xtext grammar (.xtext), then right-click
and select in the context menu “Graphite > Generate Hybrid
Editor”. Before performing code generation, Graphite first val-
idates the selected metamodel and grammar (see Section I'V-I),
and reports any errors or warnings in the Problems view.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented Graphite, a tool that aids the automated
development of hybrid DSL editors. For generating a hybrid
DSL editor, Graphite requires as input an Ecore metamodel, an
EMF generator model, a Sirius VSM, and one or more Xtext
grammars. The paper outlined the capabilities provided by
Graphite and demonstrated its language engineering process.

In future work, we plan to investigate unified capabilities
for searching and for finding all references across the textual
and graphical parts of the model.

ACKNOWLEDGMENTS

The work in this paper has been partially funded through
the SCHEME InnovateUK project (contract no. 10065634).

REFERENCES

[1] J. Cooper and D. Kolovos, “Engineering Hybrid Graphical-Textual
Languages with Sirius and Xtext: Requirements and Challenges,” in
ACM/IEEE 22nd International Conference on Model Driven Engineer-
ing Languages and Systems Companion (MODELS-C). IEEE, 2019,
pp. 322-325.

[2] I Predoaia, D. Kolovos, M. Lenk, and A. Garcia-Dominguez, “Stream-
lining the Development of Hybrid Graphical-Textual Model Editors for
Domain-Specific Languages,” Journal of Object Technology, vol. 22,
no. 2, 2023.

[3] L. Predoaia, “Towards Systematic Engineering of Hybrid Graphical-

Textual Domain-Specific Languages,” in 2023 ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems

Companion (MODELS-C). 1EEE, 2023, pp. 153-158.

1. Predoaia, D. Kolovos, and A. Garcia-Dominguez, “Hybrid Graphical-

Textual DSL Editors: Vision, Requirements and Challenges,” in Pro-

ceedings of the ACM/IEEE 27th International Conference on Model

Driven Engineering Languages and Systems, 2024, pp. 1156-1160.

I. Predoaia, D. Kolovos, and A. Garcia-Dominguez, “Reimplementing

the Structurizr Software Architecture Modelling Language as a Hybrid

DSL.” in 2025 IEEE 22nd International Conference on Software Archi-

tecture Companion (ICSA-C). IEEE, 2025, pp. 380-386.

1. Predoaia, J. Harbin, S. Gerasimou, C. Vasiliou, D. Kolovos, and

A. Garcia-Dominguez, “Tree-Based versus Hybrid Graphical-Textual

Model Editors: An Empirical Study of Testing Specifications,” in

Proceedings of the ACM/IEEE 27th International Conference on Model

Driven Engineering Languages and Systems, 2024, pp. 80-91.

Eclipse, Specifying Sirius Viewpoints, [Online]. Available: https://eclipse.

dev/sirius/doc/4.0.x/specifier/general/Specifying_Viewpoints.html, (Last

Accessed: 2025-07-10).

JetBrains, JetBrains MPS Website, [Online]. Available: https://www.

jetbrains.com/mps, (Last Accessed: 2025-07-10).

[9] M. Scheidgen, “Textual Modelling Embedded into Graphical Mod-

elling,” in European Conference on Model Driven Architecture-

Foundations and Applications. Springer, 2008, pp. 153-168.

Obeo and TypeFox, Xtext Sirius integration - white paper, [On-

line]. Available: https://www.obeodesigner.com/resource/white-paper/

WhitePaper_XtextSirius_EN.pdf, (Last Accessed: 2025-07-10).

J. Cooper, “A Framework to Embed Textual Domain Specific Languages

in Graphical Model Editors,” Master’s thesis, University of York, 2018.

Altran, Xtext Sirius integration, [Online]. Available: https://altran-mde.

github.io/xtext-sirius-integration.io, (Last Accessed: 2025-07-10).

F. Ciccozzi, M. Tichy, H. Vangheluwe, and D. Weyns, “Blended Mod-

elling - What, Why and How,” in 2019 ACM/IEEE 22nd International

Conference on Model Driven Engineering Languages and Systems

Companion (MODELS-C). 1EEE, 2019, pp. 425-430.

Eclipse, Emfatic, [Online]. Available: https://eclipse.org/emfatic, (Last

Accessed: 2025-07-10).

D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “The Epsilon Object

Language (EOL),” in Model Driven Architecture — Foundations and

Applications, A. Rensink and J. Warmer, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2006, pp. 128-142.

Eclipse, EObjectlmpl, [Online]. Available: https://download.eclipse.

org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/impl/

EObjectImpl.html, (Last Accessed: 2025-07-10).

[4

=

[5

=

[6

=

[7

[8

[10]

(11]
[12]

[13]

(14]

[15]

[16

https://eclipse.dev/sirius/doc/4.0.x/specifier/general/Specifying_Viewpoints.html
https://eclipse.dev/sirius/doc/4.0.x/specifier/general/Specifying_Viewpoints.html
https://www.jetbrains.com/mps
https://www.jetbrains.com/mps
https://www.obeodesigner.com/resource/white-paper/WhitePaper_XtextSirius_EN.pdf
https://www.obeodesigner.com/resource/white-paper/WhitePaper_XtextSirius_EN.pdf
https://altran-mde.github.io/xtext-sirius-integration.io
https://altran-mde.github.io/xtext-sirius-integration.io
https://eclipse.org/emfatic
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/impl/EObjectImpl.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/impl/EObjectImpl.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/impl/EObjectImpl.html

	Introduction
	Related Work
	Running Example
	Graphite
	Tolerance of Temporary Inconsistencies
	Integrated Abstract Syntax Graph
	Smart Textual Editors
	Textual-Graphical Cross-Referencing
	Integrated Refactoring
	Consistency Enforcement
	Uniform Error Reporting
	Conditional Storage of Derived Model Elements
	Metamodel and Grammar Validation
	Grammar Generation
	Generation of Hybrid DSL Editors

	Language Engineering Process: Demonstration
	Conclusions and Future Work
	References

