
This is a repository copy of Graphite: Automated Development of Hybrid Graphical-Textual
DSL Editors.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232301/

Version: Accepted Version

Proceedings Paper:
Predoaia, Ionut orcid.org/0000-0002-2009-4054, KOLOVOS, DIMITRIS orcid.org/0000-
0002-1724-6563 and GARCIA-DOMINGUEZ, ANTONIO orcid.org/0000-0002-4744-9150 
(2025) Graphite: Automated Development of Hybrid Graphical-Textual DSL Editors. In: 
Proceedings of the ACM / IEEE 28th International Conference on Model Driven 
Engineering Languages and Systems Companion (MODELS-C). 28th International 
Conference on Model Driven Engineering Languages and Systems (MODELS), 05-10 Oct 
2025 , USA.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/232301/
https://eprints.whiterose.ac.uk/


Graphite: Automated Development of

Hybrid Graphical-Textual DSL Editors

Ionut Predoaia

University of York

United Kingdom

ionut.predoaia@york.ac.uk

Dimitris Kolovos

University of York

United Kingdom

dimitris.kolovos@york.ac.uk

Antonio García-Domínguez

University of York

United Kingdom

a.garcia-dominguez@york.ac.uk

AbstractÐHybrid graphical-textual domain-specific languages
can deliver the best of both worlds of graphical and textual
modelling, by providing a graphical syntax for some parts of the
language and a textual syntax for others. Graphite is a tool that
facilitates the automated development of hybrid graphical-textual
model editors for domain-specific languages. This paper outlines
the capabilities of the hybrid editors generated by Graphite:
smart textual editors, textual-graphical cross-referencing, inte-
grated refactoring, consistency enforcement, tolerance of tempo-
rary inconsistencies, integrated abstract syntax graph, uniform
error reporting, and conditional storage of derived model ele-
ments. Furthermore, the language engineering process employed
by Graphite is demonstrated.

Index TermsÐHybrid DSL Editor, Code Generation, EMF,
Graphical-Textual Modelling, Grammar, Graphite, Xtext, Sirius

I. INTRODUCTION

Hybrid graphical-textual domain-specific languages (DSLs)

are languages with a hybrid concrete syntax. The graphical

part of the hybrid syntax is commonly used for representing

high-level domain concepts, whereas the textual part typically

captures complex expressions and behaviour. In essence, they

are graphical DSLs containing embedded textual expressions.

Accordingly, hybrid graphical-textual DSLs can deliver the

best of both worlds of graphical and textual modelling, as

textual representations can reduce the number of clicks when

creating and editing models, whereas graphical representations

can reduce the time spent linking model elements together [1].

For brevity, the term hybrid will be used instead of the term

hybrid graphical-textual. Hybrid DSLs are effectively used

through hybrid model editors, alternatively called hybrid DSL

editors, as they enable editing a single domain model through

graphical and textual notations. When using a hybrid DSL,

some parts of the model are graphical, i.e., they are expressed

with a graphical syntax, whereas others are textual, i.e., they

are expressed with a textual syntax. The term graphical model

elements is used to refer to the graphical parts of the model,

whereas the term textual model elements refers to textual parts

of the model that are expressed through textual expressions.

This paper presents Graphite1, an open-source tool that

facilitates the automated development of hybrid DSL editors.

The work in this paper extends our prior works [2]±[5] by

1https://github.com/epsilonlabs/graphite

packaging Graphite into an installable tool with a user inter-

face, and by providing additional facilities such as metamodel

and grammar validation, automatic generation of grammars

and integrated refactoring. Hybrid DSL editors have been

developed using Graphite for the following DSLs: the Project

Scheduling DSL [3], the NetApp Cloud Services DSL [2], the

Fuzzing-based Testing DSL [6], and the Structurizr DSL [5].

The generated hybrid DSL editors are EMF-based, and rely

on the integration of the Sirius graphical modelling framework

and the Xtext textual modelling framework. For generating

a hybrid DSL editor, Graphite requires as input an Ecore

metamodel, an EMF generator model, a Sirius Viewpoint

Specification Model (VSM) [7], and one or more Xtext gram-

mars. The generated hybrid DSL editors provide the following

key features: smart textual editors, textual-graphical cross-

referencing, tolerance of temporary inconsistencies, uniform

error reporting, consistency enforcement and refactoring.

Graphite’s language engineering process is demonstrated

in this paper. The process can be outlined as follows: the

language engineer (1) defines the metamodel and then extends

it with string attributes and annotations, (2) changes a property

of the generator model and then launches the EMF code

generator, (3) defines the graphical and textual syntaxes using

Sirius and Xtext, and (4) executes the code generator of

Graphite to produce a hybrid DSL editor.

Paper structure. Section II presents related work. Section III

describes a running example. Section IV outlines the capabil-

ities of Graphite. Section V demonstrates Graphite’s language

engineering process. Finally, Section VI concludes the paper

and provides directions for future work.

II. RELATED WORK

In addition to Graphite, hybrid DSL editors could alterna-

tively be engineered using projectional editors such as Jet-

Brains MPS [8]. The works from [9]±[12] present techniques

for engineering hybrid DSLs and their supporting editors, how-

ever, unlike our work, they heavily rely on hand-written code.

Other related works are based on blended modelling [13],

which focuses on providing several graphical and textual

notations for the same concepts of the abstract syntax, while

keeping the different notations synchronised. However, in our

work we are concerned with DSLs that use graphical and

textual notations for different concepts of the abstract syntax,

https://orcid.org/0000-0002-2009-4054
https://orcid.org/0000-0002-1724-6563
https://orcid.org/0000-0002-4744-9150
https://github.com/epsilonlabs/graphite


Fig. 1. Hybrid DSL Editor

while maintaining the consistency of the references between

the graphical and textual parts.

None of the prior works propose techniques and facilities for

integrated refactoring, consistency enforcement, tolerance of

temporary inconsistencies and conditional storage of derived

model elements. Furthermore, in contrast with our automated

approach, the prior solutions are realised via a considerable

amount of hand-written code. Moreover, a declarative specifi-

cation is used in prior works for specifying which parts of the

language’s syntax are graphical; however, no techniques have

been proposed for declaratively defining the textual parts of

the syntax.

III. RUNNING EXAMPLE

This section presents a minimal contrived example that will

be used to showcase the capabilities of Graphite. Listings 1

and 2 present the metamodel (initial and after extension)

of a DSL for modelling project plans that has been defined

in Emfatic [14], a textual syntax for Ecore metamodels. The

metamodel of the Project Scheduling DSL specifies that the

root of the domain is a Project containing lists of tasks and

people. A Task has a name and a list of efforts, where each

Effort is assigned to a person and has a number of months.

We assume for the purpose of this example that stakeholders

prefer a hybrid syntax for the DSL, where tasks and people

are modelled graphically, but the efforts are specified using

an embedded textual notation as shown in Figure 1. Fig-

ure 1 illustrates a hybrid DSL editor operating over a model

conforming to the Project Scheduling DSL’s metamodel. The

tasks and people are modelled graphically, and the efforts are

modelled through a dictionary-like textual syntax. The edges

mark the dependencies and leader of each task. The efforts are

defined on separate lines as key-value pairs having the form

{person}:{months}. Accordingly, the model elements of type

Task and Person represent the graphical parts of the model,

whereas those of type Effort represent the textual parts of the

model. Note that the graphical part of the syntax is specified

using a Sirius VSM, whereas the textual part is defined using

an Xtext grammar, as shown in Figure 1.

As the task named Analysis is selected in the diagram,

its properties (i.e. name and efforts) are displayed in the

Properties view. Each line from the efforts textual expression

represents an effort model element. For example, the second

line is an effort that refers to the person named Alice and has

a value of 6 months.

IV. GRAPHITE

Hybrid DSL editors developed with Graphite are composed

of Sirius graphical diagram(s), Xtext textual editor(s), a Prop-

erties view for viewing and editing the properties of a selected

model element, a Palette view containing various symbols that

can be dragged and dropped on top of diagrams to create

various types of model elements, and a Problems view that

consistently reports errors in the model. In the following, we

describe the capabilities provided by Graphite.

A. Tolerance of Temporary Inconsistencies

To be able to tolerate temporary inconsistencies in the

hybrid DSL editor, Graphite requires the language engineer

to modify the metamodel by adding a string attribute for

each property that they desire to express through a textual

syntax. This decision and alternatives considered have been

discussed in detail in [2]. Therefore, one string attribute

(i.e., attr String effortsExpression) has been added

to the Task meta-class in the metamodel (see Listing 1),

to store the efforts in a textual format. The effortsExpres-

sion string attribute (i.e., the textual expression) represents

a textual representation of the efforts list (i.e., the textual

model elements). Note that the content of the embedded

textual editor is the value of effortsExpression. As shown in

Listing 1, an annotation must be added to the metamodel

to define a mapping between the added string attribute (i.e.,



class Task {

...

@syntax(feature="effortsExpression", derive="efforts", grammar="gEfforts", entryRule="Main")

attr String effortsExpression;

val Effort[*] efforts;

...

}

Listing 1. Annotated Metamodel obtained by extending the initial metamodel with a string attribute and an annotation

@namespace(uri="ProjectWorkloadsDSL")

package workload;

class Project {

val Task[*] tasks;

val Person[*] people;

}

class Task {

attr String name;

val Effort[*] efforts;

ref Person leader;

ref Task[*] dependencies;

}

class Person {

attr String name;

}

class Effort {

ref Person person;

attr int months;

}

Listing 2. Initial Metamodel of the Project Scheduling DSL

effortsExpression), the property that it represents (i.e., efforts),

and the grammar that is used for parsing, along with its entry

rule. The effortsExpression is parsed according to the grammar

and the derived model elements resulting from the parsing

operation are then assigned to the efforts list. Note that the

extended metamodel containing the added string attribute and

annotation will be referred to as the annotated metamodel.

B. Integrated Abstract Syntax Graph

To be able to perform model management operations over

the entire model such as model-to-model and model-to-text

transformation, Graphite exposes the model over which the

hybrid DSL editor operates as a single unified abstract syntax

graph (ASG) that integrates elements from both its textual and

graphical parts. For instance, the underlying semantic model

from Figure 1 can be exposed to model management programs

as a unified ASG that integrates the textual parts of the model,

i.e., the efforts, and the graphical parts, i.e., the tasks and

the people. Consequently, the textual model elements (i.e., the

efforts list) are not exposed to model management programs

only as plain text, but also as a list of model elements of type

Effort that can be accessed, queried and manipulated as part

of a model management operation. For instance, one could

write a script using the Epsilon Object Language (EOL) [15]

to execute a for loop to iterate over the list of four efforts from

Figure 1 to then print the number of persons having an effort

higher than 6 months. It is worth noting that for ensuring an

integrated ASG, bidirectional synchronisation is carried out

between textual model elements (i.e., the efforts list) and their

textual expression (i.e., the effortsExpression string attribute),

to ensure the integrity of the ASG.

C. Smart Textual Editors

In the Properties view, the embedded textual editor used

for editing the effortsExpression is a smart textual editor. The

smart textual editor provides syntax-aware editing features,

such as syntax highlighting, auto-completion, and error de-

tection. In Figure 1, the user is editing the effort on the first

line: while they are typing the Person assigned to the effort, an

auto-completion menu is displayed, showing all people in the

diagram. In addition, the effort on the fourth line references

the Person named Charles, who does not exist in the diagram,

therefore, an error marker is displayed on the left side of the

smart textual editor to inform the user about the issue.

D. Textual-Graphical Cross-Referencing

To be able to define complex expressions and behaviour,

the textual expressions written in the smart textual editors

can reference graphical model elements that are defined in the

diagram. For instance, the efforts textual expression references

the people defined in the diagram, i.e., Alice and Bob (Charles

does not exist). The hybrid DSL editor provides navigation

from textual expressions to referenced model elements in

diagrams. Performing control-click in the smart textual editor

on Alice will trigger the navigation (selection) to the diagram

definition of the person named Alice.

E. Integrated Refactoring

The hybrid DSL editor provides integrated refactoring

through the smart textual editor. In the smart textual editor,

one can right-click a referenced graphical model element (e.g.,

the person named Bob) in the textual expression and then a

context menu is displayed, allowing the user to perform a

refactoring operation over the selected model element. Next,

the user enters a new value (e.g., Robert) for the identifier of

the model element (e.g., the name) in a pop-up dialog box,

and then the model element’s identifier is refactored in an

integrated manner across all diagrams and textual expressions.

Note that selecting a part of the textual expression that does not

represent an existing graphical model element (e.g., Charles)

will not allow the user to carry out any refactoring.

F. Consistency Enforcement

Consistency is automatically enforced within the hybrid

DSL editor when referenced model elements in diagrams are



renamed or deleted. This avoids unnecessary inconsistency in

the model by maintaining consistency between the graphical

and textual parts of the model. To this end, when a graphical

model element from the diagram is renamed or deleted, all

textual expressions that were previously referencing the re-

spective model element are updated accordingly. For instance,

when in the diagram, the person named Bob is renamed to

Robert, then in the smart textual editor, the third line from

the efforts textual expression will be updated accordingly by

replacing Bob with Robert. In addition, if Bob is deleted in the

diagram, then the reference from the third line of the textual

expression will be removed as well.

G. Uniform Error Reporting

Graphite stores in memory the diagnostics information, i.e.,

the errors that are produced when parsing a syntactically

incorrect textual expression and when reference resolution

fails. When a validation operation is triggered in the hybrid

DSL editor, these diagnostics are used to populate error

markers in the Problems view. The Problems view from the

running example reports an error message informing the user

that the efforts textual expression could not be parsed due to

the unresolved reference to Charles.

H. Conditional Storage of Derived Model Elements

When the model is loaded, all textual expressions are parsed

according to their associated grammars, and for each of them,

the derived model elements are assigned to their respective

properties specified by the annotations. For example, when the

model is loaded, effortsExpression is parsed and the derived

model elements are assigned to the efforts list. Graphite stores

on disk the derived model elements (i.e., the efforts list) when

the model resource is saved, but only in the case that the

textual expression (i.e., the effortsExpression string) is in an

invalid state, i.e., it cannot be parsed successfully or reference

resolution fails. Therefore, the derived model elements are

stored on disk if the textual expression is in an invalid state.

However, if it is in a valid state, the derived model elements are

not stored on disk, as they can be recovered when the model

resource is loaded. For example, the efforts list containing

four Effort model elements in Figure 1 is stored on disk, as

effortsExpression is in an invalid state.

I. Metamodel and Grammar Validation

The grammar from Figure 1 defines the textual syntax used

for modelling the efforts. The grammar specifies that whenever

the textual representation of the efforts is parsed, a Task that

contains a list of Effort model elements is derived. Grammars

must adhere to the structure of the annotated metamodel,

taking into account the annotation(s). Specifically, the entry

rule must derive a root model element that is an instance of

the meta-class (e.g., Task) that contains the property being

expressed through a textual syntax (e.g., efforts). Furthermore,

only the property being expressed through a textual syntax

needs to be populated by the grammar’s entry rule (e.g., only

the efforts property of Task).

To assist language engineers, Graphite includes a validation

mechanism that checks whether a given grammar is compliant

with the structure of the annotated metamodel. For validating

a grammar, Graphite carries out a model validation operation

that takes as input the grammar and the annotated metamodel.

Additionally, Graphite provides the capability to validate the

annotated metamodel, ensuring that the added annotations

are properly defined and that the annotation attributes match

existing properties within the metamodel (i.e., feature and

derive), the grammar’s name (grammar), and the grammar’s

entry rule (entryRule).

J. Grammar Generation

Graphite requires a grammar that conforms to the specific

structural constraints of the annotated metamodel, as outlined

in the previous subsection. To streamline and simplify the

language engineering process, Graphite offers functionality

for automatically generating the initial structure (the skeleton)

of grammars that are compliant with its constraints. These

generated grammars serve as a starting point for the lan-

guage engineer, who can further customise and refine them

as needed. This capability is realised through a model-to-text

transformation which takes the annotated metamodel as input

and produces one or more compliant grammars, based on the

grammars referenced by the annotations.

K. Generation of Hybrid DSL Editors

The principal capability provided by Graphite is the auto-

matic generation of hybrid DSL editors. Graphite carries out a

model-to-text transformation that takes as input the annotated

metamodel, the generator model (the .genmodel file), the Sirius

VSM, and the Xtext grammar(s). The transformation generates

implementation code for configuring hybrid DSL editors. The

generated hybrid DSL editors provide all capabilities discussed

in this section.

V. LANGUAGE ENGINEERING PROCESS: DEMONSTRATION

Figure 2 presents the language engineering process one

would have to follow using Graphite to develop a hybrid DSL

editor as the one in Figure 1. The process begins with the

language engineer defining the metamodel of the DSL, as in

Listing 2. Next, the language engineer decides which parts of

the metamodel should be expressed through a textual syntax.

In the context of the running example, it is preferred to capture

the efforts using an embedded textual notation. Accordingly,

in the second step, the metamodel is extended by adding a

string attribute (i.e., effortsExpression) that stores the textual

representation of the efforts, and an annotation that links the

added string attribute with the grammar (the grammar’s name)

to which it must conform. The output of the second step is the

annotated metamodel presented in Listings 1 and 2. Note that

for following the exact steps described in this paper, one has

to convert the initial metamodel into Emfatic format (right-

click in Eclipse and select ªGenerate Emfatic Sourceº), and

then convert the Emfatic representation back into an Ecore

metamodel (right-click and select ªGenerate Ecore Modelº).



add string and annotation

Annotated 

Metamodel
Metamodel

Engineer

d
e
fi

n
e

E
M

F
 C

o
d
e
 G

en
e
rato

r

workload.edit

workload.editor

workload

Generator

 Model
Graphite

workload.sirius workload.xtext

Hybrid Editor

define

import

generate code

ex
ecu

te

1

2

4
5

3

6

im
p
o
rt

7

8

9

Fig. 2. Language Engineering Process with Graphite

In the third and fourth steps, Graphite is imported into the

project (i.e., the workload project) containing the generator

model; the language engineer modifies the generator model

by setting the ªRoot Extends Classº property to a custom

EObjectImpl class [16] from Graphite. This will change the

superclass of the EObject classes (i.e., EffortImpl, TaskImpl,

PersonImpl) that will be generated by the EMF code gener-

ator. Next, the EMF code generator is launched through the

generator model to generate the model code (i.e., the workload

project), edit code (i.e., the workload.edit project) and editor

code (i.e., the workload.editor project).

In the sixth step, the language engineer defines the graphical

part of the syntax in a Sirius VSM (i.e., the workload.sirius

project), as in the left side of Figure 1, to specify that Person

model elements should be represented using ªperson.pngº,

Task model elements using ªtask.pngº and the Dependencies

and Leader edges as a solid edge. Additionally, the language

engineer defines the textual part of the syntax through the

Xtext grammar (i.e., the workload.xtext project) presented on

the right side of Figure 1. The grammar specifies that each

Effort is separated by a newline, containing a person and

a number of months separated by a colon. In the seventh

step, both the Sirius VSM and the Xtext grammar import the

annotated metamodel, to be able to reference the parts of the

metamodel they operate over.

Finally, the language engineer triggers the code generation

facility provided by Graphite, to automatically generate the

code required for configuring a hybrid DSL editor. One must

select in the Eclipse Workspace the annotated metamodel

(.ecore), the generator model (.genmodel), the Sirius VSM

(.odesign) and the Xtext grammar (.xtext), then right-click

and select in the context menu ªGraphite > Generate Hybrid

Editorº. Before performing code generation, Graphite first val-

idates the selected metamodel and grammar (see Section IV-I),

and reports any errors or warnings in the Problems view.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented Graphite, a tool that aids the automated

development of hybrid DSL editors. For generating a hybrid

DSL editor, Graphite requires as input an Ecore metamodel, an

EMF generator model, a Sirius VSM, and one or more Xtext

grammars. The paper outlined the capabilities provided by

Graphite and demonstrated its language engineering process.

In future work, we plan to investigate unified capabilities

for searching and for finding all references across the textual

and graphical parts of the model.

ACKNOWLEDGMENTS

The work in this paper has been partially funded through

the SCHEME InnovateUK project (contract no. 10065634).

REFERENCES

[1] J. Cooper and D. Kolovos, ªEngineering Hybrid Graphical-Textual
Languages with Sirius and Xtext: Requirements and Challenges,º in
ACM/IEEE 22nd International Conference on Model Driven Engineer-

ing Languages and Systems Companion (MODELS-C). IEEE, 2019,
pp. 322±325.

[2] I. Predoaia, D. Kolovos, M. Lenk, and A. García-Domínguez, ªStream-
lining the Development of Hybrid Graphical-Textual Model Editors for
Domain-Specific Languages,º Journal of Object Technology, vol. 22,
no. 2, 2023.

[3] I. Predoaia, ªTowards Systematic Engineering of Hybrid Graphical-
Textual Domain-Specific Languages,º in 2023 ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems

Companion (MODELS-C). IEEE, 2023, pp. 153±158.
[4] I. Predoaia, D. Kolovos, and A. Garcia-Dominguez, ªHybrid Graphical-

Textual DSL Editors: Vision, Requirements and Challenges,º in Pro-

ceedings of the ACM/IEEE 27th International Conference on Model

Driven Engineering Languages and Systems, 2024, pp. 1156±1160.
[5] I. Predoaia, D. Kolovos, and A. García-Dominguez, ªReimplementing

the Structurizr Software Architecture Modelling Language as a Hybrid
DSL,º in 2025 IEEE 22nd International Conference on Software Archi-

tecture Companion (ICSA-C). IEEE, 2025, pp. 380±386.
[6] I. Predoaia, J. Harbin, S. Gerasimou, C. Vasiliou, D. Kolovos, and

A. García-Domínguez, ªTree-Based versus Hybrid Graphical-Textual
Model Editors: An Empirical Study of Testing Specifications,º in
Proceedings of the ACM/IEEE 27th International Conference on Model

Driven Engineering Languages and Systems, 2024, pp. 80±91.
[7] Eclipse, Specifying Sirius Viewpoints, [Online]. Available: https://eclipse.

dev/sirius/doc/4.0.x/specifier/general/Specifying_Viewpoints.html, (Last
Accessed: 2025-07-10).

[8] JetBrains, JetBrains MPS Website, [Online]. Available: https://www.
jetbrains.com/mps, (Last Accessed: 2025-07-10).

[9] M. Scheidgen, ªTextual Modelling Embedded into Graphical Mod-
elling,º in European Conference on Model Driven Architecture-

Foundations and Applications. Springer, 2008, pp. 153±168.
[10] Obeo and TypeFox, Xtext Sirius integration - white paper, [On-

line]. Available: https://www.obeodesigner.com/resource/white-paper/
WhitePaper_XtextSirius_EN.pdf, (Last Accessed: 2025-07-10).

[11] J. Cooper, ªA Framework to Embed Textual Domain Specific Languages
in Graphical Model Editors,º Master’s thesis, University of York, 2018.

[12] Altran, Xtext Sirius integration, [Online]. Available: https://altran-mde.
github.io/xtext-sirius-integration.io, (Last Accessed: 2025-07-10).

[13] F. Ciccozzi, M. Tichy, H. Vangheluwe, and D. Weyns, ªBlended Mod-
elling - What, Why and How,º in 2019 ACM/IEEE 22nd International

Conference on Model Driven Engineering Languages and Systems

Companion (MODELS-C). IEEE, 2019, pp. 425±430.
[14] Eclipse, Emfatic, [Online]. Available: https://eclipse.org/emfatic, (Last

Accessed: 2025-07-10).
[15] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, ªThe Epsilon Object

Language (EOL),º in Model Driven Architecture ± Foundations and

Applications, A. Rensink and J. Warmer, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 128±142.

[16] Eclipse, EObjectImpl, [Online]. Available: https://download.eclipse.
org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/impl/
EObjectImpl.html, (Last Accessed: 2025-07-10).

https://eclipse.dev/sirius/doc/4.0.x/specifier/general/Specifying_Viewpoints.html
https://eclipse.dev/sirius/doc/4.0.x/specifier/general/Specifying_Viewpoints.html
https://www.jetbrains.com/mps
https://www.jetbrains.com/mps
https://www.obeodesigner.com/resource/white-paper/WhitePaper_XtextSirius_EN.pdf
https://www.obeodesigner.com/resource/white-paper/WhitePaper_XtextSirius_EN.pdf
https://altran-mde.github.io/xtext-sirius-integration.io
https://altran-mde.github.io/xtext-sirius-integration.io
https://eclipse.org/emfatic
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/impl/EObjectImpl.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/impl/EObjectImpl.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/impl/EObjectImpl.html

	Introduction
	Related Work
	Running Example
	Graphite
	Tolerance of Temporary Inconsistencies
	Integrated Abstract Syntax Graph
	Smart Textual Editors
	Textual-Graphical Cross-Referencing
	Integrated Refactoring
	Consistency Enforcement
	Uniform Error Reporting
	Conditional Storage of Derived Model Elements
	Metamodel and Grammar Validation
	Grammar Generation
	Generation of Hybrid DSL Editors

	Language Engineering Process: Demonstration
	Conclusions and Future Work
	References

