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ScarFinder: a detector of optimal scar trajectories in quantum many-body dynamics
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2School of Physics and Zhejiang Key Laboratory of Micro-nano Quantum

Chips and Quantum Control, Zhejiang University, Hangzhou 310027, China

Mechanisms that give rise to coherent quantum dynamics, such as quantum many-body scars,
have recently attracted much interest as a way of controlling quantum chaos. However, identi-
fying the presence of quantum scars in general many-body Hamiltonians remains an outstanding
challenge. Here we introduce ScarFinder, a variational framework that reveals possible scar-like
dynamics without prior knowledge of scar states or their algebraic structure, assuming only that
such dynamics remain low in entanglement. By iteratively evolving and projecting states within
a variational manifold, ScarFinder isolates scarred trajectories by suppressing thermal contribu-
tions. We validate the method on the analytically tractable spin-1 XY model, recovering the known
scar dynamics, as well as the mixed field Ising model, where we capture and generalize the initial
conditions previously associated with “weak thermalization”. We then apply the method to the
PXP model of Rydberg atom arrays, finding a previously unknown trajectory with nearly-perfect
revival dynamics in the thermodynamic limit. We also demonstrate that ScarFinder can efficiently
identify the centers of stable islands in Poincaré sections of the mixed phase space that results from
the projection of many-body quantum dynamics to a variational manifold. Our results establish
ScarFinder as a powerful, model-agnostic tool for identifying and optimizing coherent dynamics
in quantum many-body systems.

I. INTRODUCTION

Recent progress in quantum simulations [1–5] has en-
abled in situ monitoring of real-time dynamics and ther-
malization in isolated many-body quantum systems, al-
lowing to directly probe foundational questions of quan-
tum statistical mechanics. A powerful framework for de-
scribing thermalization in closed quantum systems is the
eigenstate thermalization hypothesis (ETH) [6–10]. The
ETH posits that in “generic” non-integrable systems –
those comprising many interacting degrees of freedom –
all eigenstates apart from spectral edges appear “ther-
mal” in the sense of local observable expectation values.
This elucidates how local observables equilibrate ther-
mally as the entire system evolves unitarily.

However, many non-integrable systems once thought
to fully obey the ETH are now understood to weakly
violate it by hosting atypical eigenstates known as quan-
tum many-body scars (QMBSs) [11–13]. Some examples
of systems that weakly violate the ETH include Ryd-
berg atom arrays [14, 15], the Heisenberg-type spin mod-
els [16–18], ultracold atoms [19–25], superconducting cir-
cuits [26–28], and numerous other [29–41]. The ability to
defy thermalization is of interest in quantum information
processing [42–44], e.g., QMBSs have been used to gen-
erate Greenberger-Horne-Zeilinger (GHZ) states [45] and
disorder-tunable entanglement far from equilibrium [46].

A common trait of QMBS systems are long-lived, non-
thermal dynamics when the system is initialized in spe-
cial states with high overlap on QMBS eigenstates. In
this work, we use the term “scar eigenstate” to refer to
nonthermal eigenstates embedded in an otherwise ther-
mal spectrum, and “scar initial state” to refer to an initial
state that exhibits slow thermalization due to its large

overlap with such eigenstates. Manifestations of slow
thermalization include persistent oscillations in quench
dynamics and slow entanglement growth [47], both of
which are unexpected in fully chaotic systems. In some
models, these features have an elegant theoretical de-
scription in terms of a so-called restricted su(2) spec-
trum generating algebra (RSGA) [48–51]. For example,
the RSGA approximately describes the QMBSs in the
PXP model [15, 52–61], an effective model of Rydberg
atom arrays in which persistent revivals have been ob-
served in several experiments [14, 23, 62, 63]. On the
other hand, the theoretical landscape of QMBS models
is much richer due to a multitude of exact constructions
of non-thermalizing states and dynamics within chaotic
many-body Hamiltonians [29, 64–69].

Despite much progress in the understanding of weak
ETH violations, one key practical challenge remains: for
a general model described by some unfamiliar Hamilto-
nian, how does one verify the existence of QMBSs or
other kinds of non-thermalizing states? Such a task
is non-trivial as QMBSs are typically associated with
chaotic systems that lack integrability or conserved quan-
tities, making them hard to treat analytically. In mod-
els with special structure, such as the PXP model, the
QMBS eigenstates stand out as outliers with the lowest
entanglement entropy in the spectrum [70] and the ini-
tial states associated with them can be inferred based
on semiclassical intuition [54, 71, 72]. However, this does
not easily generalize to other models, including the PXP-
type models with longer-range constraints [73]. Similarly,
numerical tools such as exact diagonalization or tensor
network methods, are limited by system size or entangle-
ment, which restricts their applicability in general.

In this work, we introduce the ScarFinder method
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which uncovers scar-like dynamics in general chaotic sys-
tems. without requiring prior knowledge about the model
or its scar states. The key principle behind ScarFinder

is that scarred dynamics are typically confined to a low-
entanglement submanifold of the Hilbert space. This
allows to systematically search for scar trajectories by
iteratively evolving and projecting states within a suit-
able variational manifold, such as matrix product states
(MPS) with fixed bond dimension. The only required
inputs for ScarFinder are the system’s Hamiltonian
and a choice of this variational manifold that harbors
the low-entanglement dynamics. Crucially, this approach
requires no prior knowledge of scar eigenstates or their
algebraic structure, and depends only on the existence of
a suitable low entanglement variational manifold. The
algorithm then leverages the dynamical separation be-
tween scarred and thermal components that emerges dur-
ing time evolution within this manifold: while thermal
components spread rapidly and exit the manifold, the
scar components remain coherent and confined to the
manifold, see Fig. 1. By combining short-time evolution
with projection back to the manifold, ScarFinder ef-
fectively suppresses thermal contributions and converges
toward periodic trajectories.

The remainder of this paper is organized as follows. In
Sec. II we motivate the ScarFinder method and out-
line the structure of the algorithm. In Sec. III, to facil-
itate understanding, we validate the algorithm using an
analytically-tractable example of the spin-1 XY model
that hosts exact QMBS states [17]. We demonstrate that
our method recovers the known scar trajectories without
any input of their algebraic construction, and we discuss
in detail the convergence of the method. In Sec. IV, we
apply the method to the PXP model, where we iden-
tify a new scar trajectory that enhances the previously
known trajectory associated with the Néel initial state
and results in robust – almost perfect – revivals in the
thermodynamic limit. This highlights the power of the
method both in discovering scars as well as optimizing
known scar dynamics in systems without exact solutions.
Finally, in Sec. V we show that ScarFinder can re-
veal regions of regular dynamics within “mixed phase
space” of many-body quantum systems by projecting
their evolution onto a low-dimensional variational mani-
fold, where classical structures like Kolmogorov-Arnold-
Moser (KAM) tori and Poincaré sections can be directly
identified with high efficiency. Our conclusions are pre-
sented in Sec. VI, while Appendices contain further tech-
nical details of the algorithm, its pedagogical demonstra-
tion, and an application beyond QMBS systems, where
we successfully reproduce and generalize the findings of
Refs. [74, 75] for the mixed field Ising model.

FIG. 1. Schematic illustration of a single step of the
ScarFinder algorithm. (a) The initial state |ψ(0)⟩, lying
on a low-entanglement variational manifold M, is assumed to
be a superposition of a scar component |ψ0⟩, which evolves pe-
riodically (dashed line), and a generic component |ϕ⟩. (b) At
t = 0, both components exhibit low entanglement, character-
ized by a small number of dominant Schmidt coefficients λk.
(c) After a unitary time evolution step Û(∆t), the state be-
comes |ψ(∆t)⟩, with the superposition preserved. However,
while the scar component |ψ′

0⟩ remains low-entangled, the
generic component |ϕ′⟩ becomes highly entangled and delocal-
ized. (d) The delocalization of |ϕ′⟩ leads to a broader distri-
bution of Schmidt coefficients. This entanglement difference
enables the separation of the two components in |ψ(∆t)⟩: the
leading Schmidt coefficients are dominated by the scar part,
while the subleading terms largely originate from the thermal
component. The projection step in ScarFinder leverages
this structure to suppress thermal contributions and reinforce
the scar trajectory.

II. THE SCARFINDER ALGORITHM

Identifying initial states that lead to periodic or oth-
erwise non-thermal dynamics within chaotic many-body
systems is an important goal in understanding the ap-
plicability of the ETH and the mechanisms of its break-
down. Beyond QMBSs, recent examples of time crys-
tals [76–78] and the quantum Mpemba effect [79, 80]
further highlight the importance of this task. In the
former case, states exhibit periodic motion by sponta-
neously breaking time-translation symmetry, while in the
latter the system’s relaxation dynamics depend coun-
terintuitively on the effective temperature of the initial
state. Despite their distinct origins, all these phenomena
share a common difficulty: how to pinpoint the special
initial conditions in an exponentially large state space.
Motivated by this need for a systematic method, below
we introduce the ScarFinder algorithm and present an
intuitive illustration of its underlying principle.
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A. The algorithm and its motivation

The core idea of ScarFinder is illustrated schemat-
ically in Fig. 1. Suppose that for a given many-body
Hamiltonian Ĥ, there exists a variational manifold M
that captures the scar dynamics (either exactly or to a
good approximation). Specifically, let us assume there
exists a state |ψ0⟩ ∈ M whose time evolution remains
confined to the manifold and traces out a periodic tra-
jectory |ψ0(θ)⟩, parametrized by a variable θ.

Consider now a state slightly perturbed away from the
ideal scar trajectory. As illustrated in Fig. 1(a), the state
can be written as a superposition of a generic (non-scar)
component |ϕ⟩ and a scar component |ψ0(θ)⟩:

|ψ⟩ = η|ϕ⟩+
√

1− η2|ψ0(θ)⟩, (1)

where both components belong to M and η is the weight
of the non-scar component. To gain some intuition, let
us first assume that η is small, such that the initial state
is in the vicinity of the periodic orbit. Since both compo-
nents lie within the manifold, separating them typically
requires detailed knowledge of |ψ0⟩. However, the key
insight of ScarFinder is that the distinct dynamical
behavior of these components enables their separation
without such knowledge.

After evolving the state under the Hamiltonian for a
sufficiently long time ∆t under Û(∆t) = exp(−iĤ∆t),
we obtain:

|ψ(∆t)⟩ = η Û(∆t)|ϕ⟩+
√

1− η2 Û(∆t)|ψ0⟩, (2)

In systems hosting scars, it is natural to expect that the
second, scar component in the above equation remains
coherent and low-entangled, while the generic compo-
nent, Û(∆t)|ϕ⟩, typically thermalizes and spreads across

the Hilbert space. Thus, after projection P̂M back onto
the manifold M, we obtain:

P̂M|ψ(∆t)⟩ = η′ |ϕ′⟩+
√

1− (η′)2 |ψ0(θ
′)⟩, (3)

where the prime denotes components projected toM and
η′ ≤ η indicates the expected reduced weight of the ther-
mal component, see Fig. 1(b). While we do not have
a proof of Eq. (3) – and indeed do not expect it to be

generally satisfied for an arbitrary Ĥ – in Sec. III and
Appendix B we will demonstrate its validity in physical
QMBS models.

The difference between the two components of the state
in Eq. (3) can be revealed by performing the Schmidt
decomposition across a bipartition A∪B in the middle of
the system:

|ψ⟩ =
∑

k

λk|ψA
k ⟩|ψB

k ⟩, (4)

where {λk} are the Schmidt coefficients. Applying
Eq. (4) to the scar component |ψ0(θ

′)⟩ gives a sharply

concentrated set of Schmidt values with only a few dom-
inant ones, while the thermalizing component |ϕ′⟩ yields
a broad distribution of smaller Schmidt values, as illus-
trated in Fig. 1(c)-(d). As a result, even in the com-
bined state |ψ(∆t)⟩, the Schmidt spectrum exhibits a
‘two-component’ structure: the dominant coefficients are
governed by the scar component, while the tail contains
contributions from the thermal component.

In summary, we conjecture that each iteration of the
evolution-projection cycle, implemented via repeated ap-
plications of Eqs. (2)-(3), edges the state closer to the
scar trajectory. The natural separation of the Schmidt
coefficients motivates a truncation procedure that effec-
tively suppresses the non-scar part, with the structure
of the full ScarFinder presented in Algorithm 1. In
the following Sec. II B, we discuss the different steps and
their implementation in detail.

B. Implementation

Here, we highlight some important practical aspects of
ScarFinder. First, the manifold M can be arbitrary.
Throughout this work, we will focus on spin chains and
cases where M is spanned by infinite matrix product
states (iMPS) [81] with an n-site unit cell:

∣

∣ψ([A1,· · ·, An])
〉

=
∑

s

(

· · ·A[si]
1 A

[si+1]
2 · · ·A[si+n−1]

n · · ·
)

|s⟩,

(5)
where Ai are matrices of maximum bond dimension χ
and |s⟩ denotes basis states. This manifold faithfully
captures low-entanglement states in the thermodynamic
limit. Provided that the target dynamics is captured by
such states, we shall not require any further knowledge
of the scar structure.

Algorithm 1 ScarFinder algorithm

Input: An appropriate variational manifold M, Hamil-

tonian Ĥ, projection time step ∆t, number of iteration

steps Nstep, target energy density Etarget;

Output: A potential scarred state |ψ⟩ ∈ M;

1: Initialize: A trial state |ψ⟩ ∈ M;

2: for n = 1 : Nstep do

3: Evolve the |ψ⟩ to |ψ(∆t)⟩ := exp(−iĤ∆t)|ψ⟩;
4: Project back onto M, |ψ′⟩ := P̂M|ψ(∆t)⟩;
5: Enforce energy conservation if the energy of |ψ′⟩

deviates from Etarget, and any crucial symme-

tries or constraints, resulting in |ψ′′⟩;
6: Update |ψ⟩ := |ψ′′⟩;
7: end for

8: return |ψ⟩
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Previously, we motivated the algorithm heuristically,
assuming that the initial state is close to the scar state
(η ≪ 1) and the projection time step ∆t is large. In
practice, neither assumption necessarily holds: we do
not know the scar state a priori, while large time steps
are computationally costly. Regarding η, if we do not
assume prior knowledge about the structure of the pe-
riodic orbit, the natural strategy is sampling over ran-
domly chosen states within M. Although convergence is
not guaranteed for every initial condition, our algorithm
exhibits a high success rate for all models we tested. It
is important to note that even though the scar states are
known in these models, we independently obtain them
using the ScarFinder algorithm. We found that only
a few random initializations are needed to reliably re-
cover these scar trajectories, and we have not encoun-
tered cases that require extensive sampling, indicating
the algorithm’s low sampling complexity in practice.

The time-evolution step (line 3) of the algorithm
can be conveniently performed using standard meth-
ods, e.g., both infinite time-evolving block decimation
(iTEBD) [82] and time-dependent variational princi-
ple (TDVP) [83, 84] can be used for MPS manifolds.
These methods favor smaller ∆t due to the entanglement
buildup, which increases the complexity of the simula-
tion. On the other hand, ScarFinder naturally prefers
large ∆t, which allows the thermal component |ϕ′⟩ to suf-
ficiently delocalize over M. Note that we will distinguish
between ∆t and t: ∆t refers to the projection interval
used during the ScarFinder optimization, while t de-
notes the real-time evolution starting from the optimized
initial state. In general, larger values of ∆t enhance the
separation between thermal and scar components during
time evolution. Thus, one would choose ∆t to be as large
as possible, given the available computational resources.
In several examples considered below, we find that the
entanglement-based separation persists qualitatively for
moderate values of ∆t that are commonly used in MPS-
based methods for time evolution.

The projection step (line 4) is the most subtle; if this
is not performed carefully, the algorithm may converge
to a trivial low-entanglement state, such as the ground
state, rather than the desired scar trajectory at a non-
zero energy density in the many-body spectrum. The
projection may inadvertently break important conserva-
tion laws, e.g., for an iMPS manifold, bond truncation
can break energy conservation. To address this, we per-
form imaginary-time evolution to systematically reduce
errors arising from bond truncation after each projection
step. For a specific target energy Etarget, we monitor the

energy deviation, ∆E = ⟨Ĥ⟩ − Etarget, after each trun-
cation step. We then define a small imaginary-time step
dτ = ∆E/n (typically choosing n = 10) and evolve the
state within the fixed-bond-dimension MPS manifold:

|ψ0⟩ = |ψ⟩, |ψn⟩ = P̂M

[

e−Ĥdτ |ψn−1⟩
]

. (6)

This procedure yields a sequence of energies Ei =
⟨ψi|Ĥ|ψi⟩ with i = 1, 2, . . . , n. We track this sequence
until an energy value closest to the target Etarget is found.
However, since this optimization is constrained to a man-
ifold with fixed bond dimension, achieving exact conver-
gence to the desired energy may not always be feasible.
If we observe that the energy difference consistently in-
creases or fails to approach zero after multiple steps, the
optimization attempt is halted and considered unsuccess-
ful for that initial configuration.

Finally, after converging the results for one value of
χ, one might want to test their sensitivity to increasing
χ. The convergence of the results with χ is not guar-
anteed to be monotonic due to optimization instabilities
or getting trapped in local minima. Nevertheless, in all
scar models we studied in this paper, which do not ad-
mit an exact scar state within a fixed-bond-dimension
MPS manifold, we found that increasing the bond dimen-
sion χ generally improved the performance of the algo-
rithm. In the following Sec. III, we will apply the method
to the analytically-tractable example of the spin-1 XY
model [17], which will allow to concretely illustrate the
above steps and build intuition about the inner workings
of the algorithm.

III. SPIN-1 XY MODEL

One of the simplest and most studied models that
contain analytically exact QMBSs is the spin-1 XY
chain [17, 85]:

Ĥ =
∑

j

(

Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1

)

− h
∑

j

Ŝz
j + V̂ , (7)

where Ŝα
j are the standard spin-1 operators with α =

x, y, z on site j, h is the external magnetic field in the
z-direction, and V̂ is a perturbation term that breaks
integrability and any symmetries that are not essential
for QMBS states. In previous works [17, 85], it was
shown that the model (7) hosts two families of QMBS
eigenstates, known as the Type-1 and Type-2 scar tow-
ers. The two types are distinguished by the initial state
they overlap with; as we detail below, the Type-I tower
overlaps with a product state, while the other, Type-II,
tower has overlap with an MPS state of bond dimension
χ = 2. From the perspective of ScarFinder, the algo-
rithm performs similarly in the two cases, hence in the
remainder of this section we focus on Type-1 scar tower,
while the results for Type-2 are relegated to Appendix C.

To simplify the analysis, we will choose V̂ that breaks
both integrability and the U(1) symmetry of the model,
i.e., the conservation of magnetization

∑

j S
z
j , while pre-

serving the desired scar structure. For the Type-1 scar
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tower, this is achieved by the following perturbation:

V̂1 =
∑

j

P̂ 0
j Ŝ

x
j+1, P̂ 0

j = Î− (Ŝz
j )

2 = |0j⟩⟨0j |. (8)

For the perturbation V̂1 in Eq. (8), the spin-1 XY model
hosts an exact tower of QMBS eigenstates:

|ψn⟩ = (Q̂+)n| − · · · −⟩, (9)

generated by the ladder operator Q̂+:

Q̂+ =
∑

j

(−1)j(Ŝ+
j )2. (10)

Here, |+⟩ and |−⟩ denote the highest and lowest weight
spin-1 basis states, respectively.

The scar eigenstates |ψn⟩ in Eq. (9) can be coherently
combined to form special initial states that exhibit persis-
tent, nonthermal dynamics under unitary evolution [17]:

|ψ0(θ, ξ)⟩ = e−iθ
∑

j
Ŝz
j eξQ̂

+ | − · · · −⟩. (11)

To explicitly illustrate the working principle of the
ScarFinder algorithm, we consider an imperfect initial
state parameterized by a real number α:

|ψα⟩ = exp
[

− iα
∑

j

(−1)jŜz
j

]

∣

∣ψ0(0, 1)
〉

. (12)

When α = 0, the initial state is identical to the scar state
|ψ0(0, 1)⟩. Thus, nonzero values of α serve as a measure
of the departure from the ideal scar trajectory.

A subtlety arises in infinite systems: the intuitive de-
composition introduced earlier in Eq. (1) is ill-defined for
iMPS due to the challenge of defining a proper norm. To
explicitly illustrate convergence in terms of the parame-
ter η, we provide a pedagogical example in Appendix B,
which utilizes the exact scar structure in a finite size
L = 6. For infinite systems, instead of the global norm,
we quantify the overlap between two iMPS wavefunc-
tions, ψ(A1) and ψ(A2), using the largest eigenvalue of
the generalized transfer matrix:

N [ψ(A1), ψ(A2)] = max
∣

∣ eigvals[T (A1, A2)]
∣

∣. (13)

We refer to this quantity as the logarithmic fidelity. Note
that the fidelity revival implies recurrence of all local ob-
servables. Since the scar states form a continuous sub-
manifold S, we introduce a fidelity measure – the “scar
fidelity” – to quantify how closely a given state ψ aligns
with S:

FS [ψ] = max
s∈S

N [s, ψ]. (14)

We emphasize that this fidelity serves purely as a diag-
nostic tool for evaluating convergence toward the scar
manifold. The ScarFinder algorithm itself requires

FIG. 2. Convergence of scar fidelity FS in Eq. (14) for initial
states |ψα⟩ in Eq. (12), simulated using iTEBD. (a) For a
fixed projection time step ∆t = 0.2, states quickly converge
to the scar trajectory for smaller values of α, whereas larger
α slows convergence. (b) For fixed deviation α = π/2, larger
values of ∆t generally accelerate convergence.

no explicit information about the scar subspace, as it
operates solely within a generic manifold of fixed-bond-
dimension MPS.

In Fig. 2, we fix the value of field strength at h = 1.0
and perform numerical simulations starting from |ψα⟩,
which we represent as iMPS with a two-site unit cell.
For a fixed projection time step ∆t = 0.2, we observe
rapid convergence for smaller values of α, whereas larger
deviations (α ≈ π/2) result in slower convergence, indi-
cating an initial-state dependence. Conversely, as shown
in Fig. 2(b), by fixing α = π/2 and varying ∆t, we con-
firm that larger evolution intervals enhance convergence
speed. Thus, we conclude that there is a tradeoff between
α and ∆t: for poor initial guesses that land far from the
scar trajectory in M, we need to evolve the system for a
longer time ∆t.

We remark that during iterative applications of
ScarFinder, the state’s energy may drift due to bond
truncation. Although the energy density of the scar state
in Eq. (11) covers the interval [−h,+h], uncontrolled en-
ergy drift could complicate precise trajectory selection.
This is why it is essential to enforce energy targeting, as
previously explained in Sec. II B.

To illustrate sensitivity to initial conditions, we run the
energy-corrected ScarFinder algorithm with randomly
initialized states in Fig. 3(a). For the perturbation V̂1,
the success rate is low, highlighting significant initial-
state dependence. The reason for this is the simplicity
of V̂1 perturbation, which leaves some residual structure
in the non-scar eigenstates. To test the assumptions un-
derlying the ScarFinder algorithm, we next consider a
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FIG. 3. Convergence behavior of ScarFinder initial-
ized from random states at target energy Etarget = 0, with
∆t = 0.2. Energy conservation is explicitly enforced during
the algorithm’s iterations. (a) For the V̂ = V̂1 perturbation
in Eq. (8), among 100 independent trials, only 5 successfully

converge. (b) For the V̂ = V̂ ′
1 perturbation in Eq. (15), 9

out of 10 trials converge successfully. (c)-(d): Entanglement

entropy of eigenstates for (c) V̂ = V̂1 and (d) V̂ = V̂ ′
1 . Im-

proved convergence in (b) correlates with a clearer separation
between scar and thermal states in the entanglement entropy
spectrum. Data in panels (a)-(b) is obtained using iTEBD
with a maximal bond dimension χ = 16 and evolution step
dt = 0.01. Panels (c)-(d) are exact diagonalization results for
a finite system L = 10, combining momentum sectors k = 0
and k = π.

more general perturbation

V̂ ′
1 =

∑

j

P̂ 0
j

[

8
∑

i=1

sin(100 i)λ̂
(i)
j+1

]

, (15)

where λ̂(i) are Gell-Mann matrices. This perturbation
can be derived from the quantum inverse method, as de-
tailed in Appendix A. While neither perturbation is fully
generic due to this constraint, the second one includes a
broader range of local terms and thus breaks more of the
model’s residual structure. As shown in Fig. 3(b), the

V̂ ′
1 perturbation indeed substantially improves the con-

vergence rate.

We attribute the difference in performance to residual
symmetry-related structures in the eigenstate spectrum.
To characterize the spectrum, we perform exact diag-
onalization of finite-size chains with periodic boundary
condition, which are expected to approximately capture
the main features of infinite systems. For each of the en-
ergy eigenstates, we perform the Schmidt decomposition,

Eq. (4), and we evaluate the entanglement entropy

SA = −
∑

k

λ2k lnλ
2
k, (16)

where A is assumed to be one half of the chain. While
the perturbation V̂1 breaks the original U(1) symmetry, it
does not entirely erase the associated spectral features, as
evident from the exact diagonalization data in Fig. 3(c).
Consequently, the thermalizing component |ϕ′⟩ does not
fully exhibit the generic entanglement structure assumed
in Sec. II, weakening the convergence performance. A
more generic perturbation, such as V̂ ′

1 , better suppresses
the residual structures, resulting in a clearer separation
between scar and thermal eigenstates [Fig. 3(d)] with sig-
nificantly improved convergence.

Finally, for the spin-1 XY model, in addition to the
Type-1 QMBS states discussed above, there exists a
distinct Type-2 scar tower [17, 85]. This Type-2 scar
tower features a weakly-entangled scar trajectory de-
scribed by MPS. In Appendix C we demonstrate that
the ScarFinder successfully obtains the Type-2 trajec-
tory, with similar convergence criteria as in the Type-1
case illustrated above.

IV. PXP MODEL

In this section we turn our attention to the ex-
perimentally relevant example of QMBSs in the PXP
model, which is natively realized in Rydberg atom ar-
rays [14, 62] and has also been engineered using tilt po-
tential in a Bose-Hubbard optical lattice [23]. The PXP
model [15, 52, 53] represents a one-dimensional spin-1/2
chain with the Hamiltonian:

ĤPXP = Ω
∑

j

P̂j−1σ̂
x
j P̂j+1, (17)

where Ω = 1 is the Rabi frequency, σ̂x
j is the standard

Pauli-x operator on site j, and P̂j = (1 − σ̂z
j )/2 is the

projector on the local |↓⟩ state. The PXPmodel describes
constrained flipping of atoms in the Rydberg blockade
regime [4]: each atom can flip only if both of its neighbors
are in the | ↓⟩ state. Hence, neighboring excitations, such
as |· · ·↑↑· · ·⟩, are energetically forbidden, which imposes
a constraint on the dynamics.

The PXP model is known to be chaotic [15], while
at the same time it also hosts a small number of non-
thermal QMBS eigenstates which are evenly distributed
in energy and possess anomalously low entanglement en-
tropy [15, 58, 70, 86]. These QMBS eigenstates have
high overlap with the |Z2⟩ ≡ |↓↑↓↑· · ·⟩ state, leading to
a suppressed growth of entanglement entropy and pe-
riodic revivals in local observables when the system is
quenched from that state. The resulting scar dynamics
were shown to have an elegant semiclassical explanation
in terms of a variational manifold M spanned by χ = 2
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MPS states [54]. Equivalently, the scar dynamics can
be interpreted as precession of a collective spin in an ap-
proximate su(2) RSGA picture [51, 55, 60, 70]. The latter
approach has also allowed to construct deformations of
the PXP model which lead to nearly perfect revivals from
the |Z2⟩ initial state [51, 55, 57, 60].

The PXP revival dynamics is understood to be a many-
body analog of scar phenomena in stadium billiards,
which are quantum remnants of classical, unstable peri-
odic orbits [87–90]. Nevertheless, some important ques-
tions remain open. For example, the QMBS subspaces
beyond those associated with |Z2⟩ are poorly understood,
a simple example being the reviving |Z3⟩ ≡ |↓↓↑↓↓↑· · ·⟩
state with a repeated 3-site unit cell [70]. This leads
to the question: can one do better than |Z2⟩ and |Z3⟩
states, i.e., can one construct low-entangled initial states
that have more pronounced revivals than these product
states? Specifically, for the undeformed PXP model, is it
possible to find initial states that exhibit nearly perfect
revival dynamics and almost no entanglement growth in
the thermodynamic limit? In the remainder of this sec-
tion, we demonstrate that ScarFinder algorithm can
provide useful insights into these questions.

A. Two-site unit cell

When directly applying the ScarFinder algorithm to
the PXP Hamiltonian in Eq. (17), a subtlety arises due
to the Rydberg blockade constraint: the state |↑↑⟩ is for-
bidden on adjacent sites, therefore the expectation value
of the projector |↑↑⟩ ⟨↑↑| must vanish throughout the dy-
namics. However, bond truncation of iMPS during the
simulation can violate this constraint. To mitigate this,
we introduce an artificial penalty term:

Ĥ ′
PXP = ĤPXP − iµ

∑

j

|↑↑⟩j,j+1 ⟨↑↑|j,j+1 , (18)

where µ is a large positive constant (we set µ = 100 in our
simulations). The imaginary coefficient then suppresses
the unphysical components that could be generated dur-
ing time evolution.

We run ScarFinder on Ĥ ′
PXP by sampling 100 ran-

dom initial states in M and selecting one that exhibits
the lowest entanglement entropy at time t = 30.1 The
resulting optimal dynamics are shown in Fig. 4(a)-(c).
Notably, we find that even with a relatively small bond
dimension χ = 8, the algorithm produces an initial state
that shows minimal entanglement growth and remark-

1 We use the iTEBD algorithm to simulate the time evolution.

Since local terms in the PXP Hamiltonian act on three neighbor-

ing sites, a four-site unit cell is required to implement the Trotter

decomposition. Nevertheless, the resulting dynamics largely pre-

serve the underlying two-site translational symmetry.

FIG. 4. (a)-(c) Dynamics of the optimal scar initial state
for the PXP Hamiltonian with a two-site unit cell and var-
ious bond dimensions χ. (a) Entanglement entropy growth.
Compared to the |Z2⟩ state (black line), χ = 2 already shows
significantly reduced entanglement growth, while χ = 8, 12
dynamics are nearly flat, indicating an extremely stable scar.
(b) Logarithmic fidelity dynamics for the optimal state at
χ = 12, shows nearly perfect revivals with no visible de-
cay. (c) Expectation value of the nearest-neighbor observable
⟨ZiZi+1⟩ for χ = 12, showing persistent oscillations through-
out the evolution. (d)-(g) Overlap between the optimized
scar state |ψ(χ)⟩ and the eigenstates of the PXP Hamilto-
nian for different bond dimensions: (d) χ = 2, (e) χ = 4, (f)
χ = 8, and (g) χ = 12. As χ increases, a well-defined band of
scarred eigenstates becomes more distinct from the thermal
bulk, with increasing spectral isolation. Data in panels (a)-(c)
are obtained by iTEBD, while (d)-(g) are exact diagonaliza-
tion results for system size L = 24 in k = 0 momentum sector.
Since iTEBD simulations in (a)-(c) use a 4-site unit cell, the
momentum k = 0 in exact diagonalization data corresponds
to translation by 4 sites.

ably robust fidelity revivals—signatures of scar dynam-
ics that persist over long times (t ≲ 30) in the thermo-
dynamic limit. We remark that the results presented
here are based on minimal entanglement entropy crite-
rion; however, they are not the only scar solutions iden-
tified by ScarFinder. Specifically, for χ = 3 (and also
χ = 4), we also find the exact E = 0 MPS eigenstate of
the PXP Hamiltonian reported in Ref. [58].

In order to understand the mechanism for the dynam-
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ics observed in Fig. 4(a)-(c), it is useful to inspect the
eigenstate composition of the optimal scar state. As
shown in Fig. 4(d)-(g), the states belonging to the scar
band generally split into two subsets as χ is increased.
The subset closer to the middle of spectrum develops an
enhanced overlap with the optimal scar state, while the
overlaps of the other subset diminish and approach those
of typical eigenstates in the bulk of the spectrum. Thus,
an increase in χ results in a clearer separation between
some of the scarred eigenstates and the other eigenstates.
Importantly, we find that these high-overlap eigenstates
coincide with those observed in the |Z2⟩ case. Thus, an
increase in χ effectively tunes the coefficients of these
scar eigenstates and picks out a superposition that ap-
proximates better and better the optimal scar state. A
qualitatively similar enhancement of overlaps near the
middle of the spectrum was observed in Ref. [91], albeit
in a different setting where the PXP Hamiltonian was
perturbed to enhance the scar dynamics.

B. Three-site unit cell and energy conservation

Beyond the well-known two-site unit cell dynamics, the
PXP model also supports approximate periodic revivals
on a three-site unit cell, most notably when the system is
prepared in the |Z3⟩ ≡ |↑↓↓↑↓↓ · · · ⟩ state [15, 70]. These
revivals, however, are much weaker than those associ-
ated with the |Z2⟩ initial state. Ref. [71] constructed an
MPS state with χ = 2 that showed improved revival fi-
delity compared to the simple |Z3⟩ product state. We
now apply the ScarFinder algorithm to the three-site
unit cell in order to systematically explore how well the
|Z3⟩ revivals can be improved by increasing the amount
of entanglement in the initial state.

The procedure is identical to the two-site case, except
for adapting the iMPS ansatz to a three-site periodic
structure. However, during the random sampling of ini-
tial states, we often find states whose dynamics are gov-
erned by the same set of eigenstates identified in the two-
site unit cell setting. Thus, the Z2 orbit acts as an attrac-
tor for the three-site dynamics. The appearance of Z2-
type oscillations in the three-site unit cell setting can be
understood as follows: the |Z2⟩ initial state has nonzero
overlap with eigenstates in the momentum k = 0 sector
defined under one-site translation symmetry. This k = 0
sector is fully contained within the k = 0 sector defined
under three-site translation symmetry. As a result, we
naturally expect to observe remnants of the Z2-type scar
dynamics even when working with a three-site unit cell.
To isolate genuine three-site scar trajectories, we per-
form a post-selection based on the oscillation frequency,
allowing us to filter out spurious results dominated by en-
hanced overlaps with these residual Z2 modes. These are
easily distinguished by their revival period: the intrin-
sic three-site scar dynamics feature a shorter oscillation
period compared to those from the two-site case [70].

FIG. 5. (a)-(c) Dynamics of the optimized scar initial states
for the PXP Hamiltonian with a 3-site unit cell and differ-
ent bond dimensions χ. (a) Late-time entanglement entropy
growth (t ∈ [15, 30]). Increasing χ systematically suppresses
the entanglement growth and stabilizes periodic dynamics.
The “*-state” refers to the MPS-optimized initial state from
Ref. [71], previously identified as having better revivals com-
pared to the |Z3⟩ product state. (b) Late-time (t ∈ [15, 30])
logarithmic fidelity for the optimized initial state at χ = 12,
computed from the dominant eigenvalue of the MPS transfer
matrix. The fidelity displays persistent revivals, highlighting
the stability of the identified scar trajectory. (c) Time evolu-
tion of the nearest-neighbor observable ⟨ZiZi+1⟩ for χ = 12.
(d)-(g) Overlaps between energy eigenstates and the opti-
mized initial scar state for bond dimensions χ = 2 (d), χ = 4
(e), χ = 8 (f), and χ = 12 (g). With increasing χ, distinct
eigenstate towers clearly emerge from the thermal continuum,
signifying improved scar dynamics. Data in panels (d)-(g) is
obtained by exact diagonalization for a system size L = 24 in
the k = 0 momentum sector w.r.t. 3-site translations.

The resulting optimal trajectories in a 3-site unit cell
are shown in Fig. 5(a). For comparison, the so-called
“*-state” introduced in Ref. [71] was constructed using
a fixed MPS ansatz with bond dimension χ = 2. We
observe that with increasing bond dimension, the entan-
glement growth of the optimized scar states is further re-
duced, and the fidelity revivals become more pronounced.
For χ = 12 [Fig. 5(b)], the fidelity revival is nearly per-
fect, although not as high as in the two-site unit cell case.
In addition, the improved scar dynamics is further sup-
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ported by the oscillatory behavior of the nearest-neighbor
observable ⟨ZiZi+1⟩, shown in Fig. 5(c).

In Fig. 5(d)-(g), we also plot the overlaps of the ini-
tial scar states with the energy eigenstates. Interestingly,
unlike the two-site unit cell case where the overlap distri-
bution is more dispersed, the three-site unit cell dynam-
ics produce discrete towers of states with approximately
equal energy spacing, highlighting a distinct and more
structured scar subspace.

V. IDENTIFYING STABLE ISLANDS IN

POINCARÉ SECTIONS

In few-body dynamical systems, periodic dynamics
and atypical eigenstates can emerge from the coexistence
of regular and chaotic regions, resulting from weakly-
broken integrability described by the Kolmogorov-
Arnold-Moser (KAM) theorem [92, 93]. This phe-
nomenon is known as mixed phase space and it has
many physical realizations, including the Chirikov map,
the Fermi-Pasta-Ulam system of coupled oscillators, the
Lorentz attractor, and many other [94]. For a gen-
eral dynamical system, mixed phase space is diagnosed
by recording successive intersections of trajectories with
a chosen lower-dimensional transverse surface in phase
space – a map known as the Poincaré section [95]. Pe-
riodic trajectories correspond to stationary points of the
Poincaré map, while during the chaotic dynamics, the
system returns to the same surface at a location that is
generally far away from a previous encounter.

Ref. [71] demonstrated that analogues of Poincaré sec-
tions can be identified in many-body quantum systems,
once their dynamics is projected to a low-dimensional
MPS manifold. The resulting TDVP equations of mo-
tion within the manifold then serve as an effective map-
ping of the many-body quantum system onto a few-body
classical (non-linear) dynamical system. For the latter,
standard tools [95] can be employed to obtain Poincaré
sections. However, such analyses become increasingly
cumbersome in higher-dimensional manifolds. A perti-
nent practical question is: can one directly identify the
centers of KAM tori associated with scar dynamics?

From the above description of the Poincaré section,
it should be clear that it has many things in common
with the ScarFinder algorithm. As discussed in Sec. II,
the ScarFinder algorithm can be viewed as generat-
ing discrete-time dynamics on the variational manifold.
Although the theoretical justification of ScarFinder

naturally favors larger projection time steps ∆t, the
method remains well-defined in the continuous-time limit
∆t → 0. In this limit, ScarFinder dynamics become
equivalent to the TDVP evolution equations [71]. This
connection implies that, for a given MPS ansatz describ-
ing the manifold M, the continuous-time limit ∆t → 0
of the ScarFinder algorithm should recover precisely
the TDVP dynamics within M. Since any numerical

implementation of ScarFinder necessarily uses finite
time steps ∆t, such discretizations will inevitably intro-
duce small, systematic deviations from the ideal TDVP
trajectory. Surprisingly, rather than causing the dynam-
ics to become chaotic, these deviations accumulate con-
structively, driving the trajectory towards stable fixed
points—precisely the centers of stable islands in the
mixed phase space portrait. This motivates the following
generalization of the ScarFinder algorithm for explor-
ing Poincaŕe sections.

A. ScarFinder algorithm for stable islands in

Poincaré sections

We propose the following protocol to directly identify
stable islands in a Poincaré section via the following mod-
ification of ScarFinder algorithm:

Algorithm 2 Poincaré ScarFinder algorithm

Input: An appropriate manifold M, Hamiltonian Ĥ,

projection time step ∆t, number of iteration steps Nstep,

Poincaré sampling number Nsample.

Output: Poincaré section data points

1: for n = 1 : Nsample do

2: Initialize: Initialize an MPS state |ψ(A(θ))⟩
with matrices A(θ) and randomly chosen param-

eters θ = (θ1, θ2, θ3, . . .);

3: for m = 1 : Nstep do

4: Evolve |ψ⟩ to |ψ(∆)⟩ := exp(−iĤ∆t)|ψ⟩;
5: Project |ψ(∆t)⟩ back onto M by

maximizing the logarithmic overlap,

maxA(θ) N [ψ′, ψ(A(θ))], |ψ′⟩ := P̂M|ψ(∆t)⟩;
6: if The trajectory in parameter space crosses

the plane of interest then

7: Record the intersection point obtained by

linear interpolation between consecutive

points;

8: end if

9: Update |ψ⟩ := |ψ′⟩.
10: end for

11: end for

We note that, in general, the projection step (line 5)
should include an energy correction to ensure that the
target energy density is preserved. This can be achieved
by slightly modifying the projection procedure to incor-
porate an energy constraint during the maximization.
However, for certain models such as the PXP model stud-
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FIG. 6. (a)-(b) Comparison of Poincaré sections obtained via
TDVP and ScarFinder. Trajectories obtained from TDVP
(blue points) and ScarFinder (orange points with numbers
indicating iteration steps), starting from the same initial con-
dition. The trajectory under ScarFinder spirals rapidly to-
wards the center of the stable island, corresponding exactly
to the robust scar trajectory identified as the “*-state” in
Ref. [71]. (c) Our reproduction of the TDVP Poincaré sec-
tion from Ref. [71], displaying a mixture of stable islands and
chaotic regions. (d) ScarFinder directly identifies the cen-
ters of stable islands in (c).

ied in Sec. VB below, this correction turns out to be un-
necessary, as the chosen variational manifold inherently
preserves the energy.

B. Application to PXP mixed phase space

Let us illustrate the Poincaré-ScarFinder algorithm
on the example considered in Ref. [71]. We assume the
PXP model with a simple two-dimensional manifold de-
fined by the following MPS ansatz, first introduced in
Ref. [54]:

A↑(θi) =

(

0 i
0 0

)

, A↓(θi) =

(

cos θi 0
sin θi 0

)

. (19)

Like in Sec. IVB, we assume 3-site periodicity with three
MPS angles, θ1, θ2 and θ3, which is the minimal man-
ifold that allows for quantum chaos. We initialize the
angles to θ = (0.8, 0, 0.1)π, and compare the evolution
under standard TDVP dynamics with the discrete-time
ScarFinder iteration with ∆t = 0.1. We track the
parameter-space trajectory’s intersection points with the
plane defined by θ2 = 0.

FIG. 7. (a) Distribution of 16 distinct fixed-point solu-
tions identified by the ScarFinder algorithm from a total
of 640 random initial state samplings within the MPS mani-
fold given by Eq. (19). We label the fixed-point sets accord-
ing to the frequency of getting that solution. That red star
in the figure marks the position of the optimized state from
TDVP-Poincaré section method. The red circle highlights
two points from different methods, illustrating the dynamics
in panels (b) and (c). (b) Comparison of bipartite entangle-
ment entropy dynamics starting from optimized initial states
obtained via TDVP Poincaré section (blue) and ScarFinder

(orange line). (c) Fidelity revival dynamics for the two op-
timized scar initial states. The state found by ScarFinder

exhibits slightly enhanced revivals.

Figures 6(a)-(b) illustrate the contrast between TDVP
and ScarFinder dynamics. While TDVP trajectories
trace invariant tori, the finite-step ScarFinder trajec-
tory spirals to a unique attractor, located precisely at
the center of a stable island. In Fig. 6(c)-(d), we present
additional examples, confirming that ScarFinder sys-
tematically identifies the main stable island centers, pro-
vided that a sufficient number of initial conditions are
sampled.

For smaller islands, we observe minor discrepancies be-
tween the locations of fixed points found by ScarFinder

and the island centers identified from TDVP-generated
Poincaré sections. To analyze these differences, we ex-
tensively sample 640 random initial states within the
three-site unit-cell MPS manifold for the PXP model,
Eq. (19), and identify a total of 16 distinct fixed-point
solutions (within θ1 ∈ [0.5π, 1.5π], θ3 ∈ [0, π]) using the
ScarFinder algorithm, as shown in Fig.7(a). We find
that the fixed points labeled “1” and “2” correspond ex-
actly (within numerical precision) to the “*-state” pre-
viously discovered in Ref. [71]. These points coincide
precisely with the centers of the largest stable islands
identified from the TDVP-generated Poincaré sections.

In contrast, the fixed-point set labeled “5” [inside the
red circle in Fig. 7(a)] identified by ScarFinder is lo-
cated at θSF=(0.928, 0, 0.588)π, while the corresponding
stable island center from the TDVP-generated Poincaré
section is at: θTDVP=(0.942, 0, 0.5)π. To evaluate the
impact of these differences, in Fig. 7(b)-(c) we explic-
itly compare the dynamics starting from these two ini-
tial states. While the dynamical behaviors from the two
states are qualitatively similar, we observe that the ini-
tial state identified by ScarFinder consistently exhibits
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lower entanglement entropy and noticeably enhanced fi-
delity revivals.

We thus conclude that the ScarFinder algorithm not
only efficiently locates optimal scar states, but in certain
cases, even provides better initial conditions compared
to states obtained from direct exploration of TDVP-
generated mixed-phase spaces. This can be understood
by noting that TDVP restricts quantum dynamics to a
particular variational ansatz, unlike ScarFinder which
utilizes information from exact quantum dynamics dur-
ing each iteration. The deviation between TDVP and the
exact quantum dynamics is characterized using “quan-
tum leakage” [55]. Since scarred trajectories are typi-
cally found in regions of small leakage, there is a strong
correspondence between their TDVP trajectory and ex-
act quantum dynamics. However, even in these cases the
leakage is non-zero and some relevant information has
been lost, therefore it is unsurprising that ScarFinder,
can improve upon these results as it does not suffer from
any leakage effects.

VI. CONCLUSIONS

In this paper we have introduced the ScarFinder:
a general-purpose algorithm for identifying initial condi-
tions that give rise to regular dynamics in chaotic quan-
tum systems. Using the spin-1 XY model with exact
QMBS states, we have performed extensive benchmarks
and elucidated the ScarFinder convergence mecha-
nism: the trade-off between the distance of the initial
state from the scar trajectory, and the projection time
step ∆t allowing the dynamics to leave the variational
manifold M. In particular, we have shown that larger
∆t ensures faster convergence, even for states initially far
from the sought trajectory. We have also pointed out the
important role of symmetries and energy conservation.

Beyond reproducing the known QMBS phenomenol-
ogy, our application of ScarFinder to the PXP model
gave several intriguing new results. In particular, our ob-
servations in Fig. 4 and Fig. 5 hint at an equal energy
spacing between (some) scar eigenstates in the thermo-
dynamic limit. Previously, the scar dynamics observed
from the |Z2⟩ state were attributed to an approximately

equal energy spacing among these eigenstates [15, 55].
However, since the |Z2⟩ state does not exhibit perfect re-
vivals and exact diagonalization is limited by finite-size
effects, it has remained unclear whether the equal energy
spacing persists in the thermodynamic limit or if it is
merely an approximation. Our improved superposition
state in the form of an iMPS and the trend in Figs. 4-5
suggest that equal energy spacing is an exact property
of some eigenstates in the middle of the spectrum of the
PXP model in the thermodynamic limit. Indeed, this is
also in line with recent work [61] which found several ex-
act MPS eigenstates in the spectrum of the PXP model.

Although our discussion has primarily focused on 1D

systems, the core methodology of ScarFinder general-
izes naturally to higher dimensions. In Appendix D, we
explore its application to quasi-1D settings, including the
PXP model on square and triangular lattices wrapped
around a finite cylinder. These results demonstrate the
versatility of ScarFinder beyond 1D, and for target-
ing simultaneously the scar initial states as well as scar
eigenstates. For isotropic 2D (and higher) systems, one
could consider extending the approach using projected-
entangled-pair state representations [81], which would in-
volve a significant computational overhead and we there-
fore leave it as a future direction.

We emphasize that the utility of ScarFinder is not
limited to QMBS models and it can also aid the iden-
tification and understanding of other types of atypical
dynamics in chaotic models. For example, in the paradig-
matic quantum Ising model in the presence of both trans-
verse and longitudinal fields, Ref. [74] found certain prod-
uct states that undergo “weak” thermalization in con-
trast to the majority of other initial states that strongly
thermalize. While these states were subsequently re-
lated to low-lying quasiparticle excitations [75], their ex-
istence is nonetheless surprising given that the model is
believed to be “fully” chaotic and obey the ETH. In Ap-
pendix E, we show that ScarFinder successfully cap-
tures these states and allows to “refine” them by includ-
ing entanglement. More importantly, ScarFinder al-
lows to search for weakly-thermalizing states, like the
ones in Ref. [74], systematically and in general models,
without prior knowledge about their underlying physics.

We conclude by highlighting several advantages of
ScarFinder. In 1D systems, the algorithm is numer-
ically efficient compared to exact diagonalization due to
its straightforward implementation using MPS. The lat-
ter allows ScarFinder to operate directly in the ther-
modynamic limit, minimizing finite-size effects and pro-
viding direct access to stable, infinite-system scar trajec-
tories. On the other hand, DMRG-based searches have
recently been adapted to target low-entanglement excited
eigenstates in finite systems [96]. However, this approach
does not automatically yield the initial conditions for
probing such eigenstates in experiment. As mentioned
above, ScarFinder can identify both scar eigenstates
and scar initial states, thereby circumventing the chal-
lenge of DMRG-type methods when scar eigenstates pos-
sess entanglement beyond area law. We note, however,
that some volume-law states, such as the rainbow states
from Refs. [34, 97], can still be amenable to ScarFinder

with a suitably modified unit cell of the lattice, which
minimizes entanglement. Additionally, we have demon-
strated that ScarFinder directly identifies the centers
of stable islands in Poincaré sections, eliminating the
need for complicated visualizations of high-dimensional
phase spaces. These advantages make ScarFinder a
versatile tool for identifying non-thermal behaviors in
many-body systems, in particular in the field of quan-
tum simulation and designing long-lived quantum states.

Note Added: During the completion of this work, we
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became aware of a related study by Petrova et al. [98],
where a different method based on TDVP and gradient-
descent was developed to identify periodic trajectories in
the Floquet Ising model.
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Appendix A: Construction of parent Hamiltonians

For a given set of target states {|ψn⟩}, general
frameworks exist for constructing parent Hamiltonians,
namely, the quantum inverse method [99, 100] and the
projective embedding method [29]. For the Type-I scar
tower in the spin-1 XY model, we adopt the quantum
inverse method, which provides an explicit and inter-
pretable Hamiltonian expression. In contrast, for the
Type-II scar tower, the resulting Hamiltonians from the
inverse method become overly complicated and obscure
the underlying physics. In this case, we instead employ
the projective embedding method, which yields a struc-
turally simple and formally well-defined Hamiltonian tai-
lored to the desired subspace.

1. Type-I scar tower

The key object in the quantum inverse method is the
quantum covariance matrix CT [99, 100], defined on the
target subspace:

(CT )ab =
1

2
⟨{ĥa, ĥb}⟩T − ⟨ĥa⟩T ⟨ĥb⟩T , (A1)

where the set of {ĥa} is the given list of local operators as
the building block for the parent Hamiltonian, and ⟨·⟩T
indicates expectation values averaged over all states in

the target subspace: ⟨Ô⟩T = 1
N

∑N

n=1⟨ψn|Ô|ψn⟩. For
the Type-I scar tower, we start by selecting an oper-

ator basis consisting of nearest-neighbor couplings for
a spin-1 system. Specifically, we consider two-site in-
teractions generated by the following local operators:
{Î , Ŝx, Ŝy, Ŝz, P̂ 0}, where the operator P̂ 0 = |0⟩⟨0|
projects a local spin onto the zero magnetization state.

We numerically construct the covariance matrix CT

[Eq. (A1)] using exact Type-I scar eigenstates as input
for a finite system of length L = 8. Explicitly, the scar
eigenstates used in this construction are given by Eq. (9).
By computing the numerical null space of CT , we iden-
tify a set of 9 linearly independent Hamiltonian terms
under which the given scar states form an exact degen-
erate eigenspace. These Hamiltonians take the following
explicit forms:

Ĥ0 =
∑

j

(

Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1

)

,

Ĥ1 =
∑

j

P̂ 0
j , Ĥ2 =

∑

j

P̂ 0
j P̂

0
j+1,

Ĥ3 =
∑

j

P̂ 0
j Ŝ

x
j+1, Ĥ4 =

∑

j

Ŝx
j P̂

0
j+1, (A2)

Ĥ5 =
∑

j

P̂ 0
j Ŝ

y
j+1, Ĥ6 =

∑

j

Ŝy
j P̂

0
j+1,

Ĥ7 =
∑

j

P̂ 0
j Ŝ

z
j+1, Ĥ8 =

∑

j

Ŝz
j P̂

0
j+1.

We notice that the term Ĥ0 corresponds precisely to the
standard XY Hamiltonian, while the remaining terms are
variations of the general form:

Ĥ l
i =

∑

j

P̂ 0
j V̂

i
j+1, Ĥr

i =
∑

j

V̂ i
j P̂

0
j+1, (A3)

where V̂ i
j denotes arbitrary single-site Hermitian opera-

tors. Physically, the presence of the operator P̂ 0
j ensures

that these Hamiltonian terms annihilate all scar eigen-
states, since the type-I scar states contain no local |0⟩
components. Thus, these terms effectively embed the
target scar subspace as degenerate eigenstates within an
otherwise chaotic spectrum.

In Ref. [17], the additional perturbation included was

simply Ĥ1. In the main text, we focus on a representative
Hamiltonian of type Ĥ l with the specific choice V̂j =

Ŝx
j . For a more robust and generic construction yielding

a cleaner scar model, we further propose the following
random Hermitian operator:

V̂ =

8
∑

n=1

sin(100n) λ̂(n), (A4)

where λ̂(n) is the n-th Gell-Mann matrix, providing a
maximally generic perturbation that eliminates resid-
ual structure and promotes optimal convergence of the
ScarFinder algorithm.
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2. Type-II scar tower

For the type-II scar tower, the construction is slightly
more involved due to the intrinsic MPS structure of the
scar eigenstates. To adequately capture this structure,
we enlarge our operator basis to include all possible two-
site local coupling terms. Following the same numerical
approach with exact diagonalization for a finite system
of size L = 8, apart from XY Hamiltonian, we obtain 4
additional solutions:

Ĥ1 =
∑

j

[

(Ŝ+
j )2(Ŝ−

j+1)
2 + (Ŝ−

j )2(Ŝ+
j+1)

2
]

,

Ĥ2 =
∑

j

[

i(Ŝ+
j )2(Ŝ−

j+1)
2 − i(Ŝ−

j )2(Ŝ+
j+1)

2
]

,

Ĥ3 =
∑

j

[

(Ŝz
j )

2(Ŝz
j+1)

2 − Ŝz
j Ŝ

z
j+1

]

, (A5)

Ĥ4 =
∑

j

[

Ŝz
j+1(Ŝ

z
j+2)

2 − (Ŝz
j+1)

2Ŝz
j+2

]

.

These 4 terms, however, also conserve magnetization.
Note that these terms all locally annihilate the scar
tower, hence we can construct the 3-site interaction:

V̂2 =
∑

j

[

(Ŝ+
j )2(Ŝ−

j+1)
2 + (Ŝ−

j )2(Ŝ+
j+1)

2
]

Ŝx
j+1. (A6)

This term, however, still contains certain structure. To
get a fully thermalizing perturbation, we use the projec-
tive embedding method [29] on 3-site cluster:

V̂ ′
2 =

∑

j

(1− P̂ [3])j ĥ
rand
j (1− P̂ [3])j , (A7)

where P̂ [3] is the local projector.

Appendix B: Pedagogical example of spin-1 XY

model

In this Appendix, we explore explicitly how η in Eq. (1)
updates during the Schmidt truncation. We restrict our-
selves to a sufficiently small system size L = 6 with pe-
riodic boundary condition that can be exactly diagonal-
ized. We fix the Hamiltonian with V̂ = V̂1, choose h = 1,
and consider the imperfect initial state in Eq. (12), with
α = π/6. Numerically, we find that this state has a scar
overlap characterized by η ≈ 0.583 in the decomposition
defined in Eq. (1).

We now consider the Schmidt decomposition of the
time-evolved state:

e−iĤt|ψ⟩ =
27
∑

k=1

λk(t) |ψk
A⟩ ⊗ |ψk

B⟩, (B1)

FIG. 8. (a) Singular values λk(t) of the time-evolved states ψ0

(red lines) and ϕ (grey lines). (b) Singular values λk(t) of the
combined time-evolved state ψ, with the dominant Schmidt
value plotted in red. (c) The extracted η-value corresponding
to the dominant Schmidt component at each instant in time.

where λk(t) are the singular values. Since the initial state
is a product state, only one singular value is non-zero at
t = 0. As time passes, entanglement builds up due to
the imperfect initial state, and additional singular val-
ues emerge. However, because the scar component domi-
nates, a significant gap between the leading and sublead-
ing singular values persists throughout the evolution, as
shown in Fig. 8.

The key insight of the ScarFinder algorithm lies in
the observation that the dominant Schmidt component,

λ1(t) |ψ1
A⟩ ⊗ |ψ1

B⟩,

contains more scar content than thermal content. Hence,
when the variational manifold M is defined as the set of
all bipartite product states across the half-cut, the pro-
jection step becomes a simple truncation to the leading
Schmidt term:

P̂M|ψ(t)⟩ = λ1(t) |ψ1
A⟩ ⊗ |ψ1

B⟩. (B2)

Choosing a fixed projection time step ∆t, a single step
gives

|ψ⟩ → P̂M

[

e−iĤ∆t|ψ⟩
]

.

By evaluating the η-value of the projected state, we find
that it tends to decrease with time, as shown in Fig. 8(c).

We iterate this projection process with a time step of
∆t = 2.0. The resulting sequence of λ-values is shown in
Table I, confirming steady convergence toward the scar
trajectory.
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Step 0 1 2 3 4 5 6

η 0.5833 0.1938 0.0657 0.0264 0.0107 0.0050 0.0024

TABLE I. Convergence of the ScarFinder algorithm. Each
entry shows the value of η after successive steps of time evolu-
tion (∆t = 2.0) followed by projection onto the product-state
manifold M.

FIG. 9. (a)-(b) Convergence behavior of ScarFinder ini-
tialized from random states with energy correction (at target
energy Etarget = 0), with ∆t = 0.5. (a) For the Hamiltonian

with V̂ = V̂2, with the perturbation in Eq. (8), among 200
independent trials, only 2 successfully converge. (b) For the

modified Hamiltonian with V̂ = V̂ ′
2 , with the perturbation in

Eq. (15), 18 out of 20 trials converge successfully. (c)-(d) Bi-
partite entanglement entropy of eigenstates for the spin-1 XY
Hamiltonian [Eq. (7)] with (c) V̂ = V̂2 and (d) V̂ = V̂ ′

2 . The
results are obtained via exact diagonalization on a finite sys-
tem of size L = 10, combining the momentum sectors k = 0
and k = π.

Appendix C: Matrix-product-state scar tower for

spin-1 XY model

When the perturbation is chosen according to V̂ ≡
V̂2 in Eq. (A6), the spin-1 XY model hosts a different
type of scar tower, whose linear combination defines the
following exact MPS state:

A
[+]
j =

[

sin φ
2 e

iθ 0

0 0

]

, A
[0]
j =

[

0 cos φ
2

(−1)j sin φ
2 0

]

,

A
[−]
j =

[

0 0

0 (−1)j cos φ
2 e

−iθ

]

.

(C1)
The energy density of this state is set by the parameter
ϕ according to E(ϕ) = h cosϕ.

A

B

C

D

Square lattice Triangular lattice( a) ( b)

FIG. 10. Quasi-1D versions of the PXP model defined on (a)
square lattice and (b) triangular lattice. Both systems form
cylindrical tubes with periodic boundary conditions along
the vertical direction and infinite length horizontally. The
Rydberg blockade constraint is imposed along the nearest-
neighbor links. Each block, denoted by dashed line, outlines
a unit cell that is repeated along the horizontal axis. The
unit cell is composed of four sublattice sites labeled A,B,C,D,
which are used to define the MPS ansatz for ScarFinder.

As discussed in Appendix A, besides V̂2, we can
construct a more generic perturbation V̂ ′

2 [Eq. (A7)].
Fig. 9(a)-(b) compare the convergence behaviour of
ScarFinder with these two types of perturbations.
Fig. 9(c)-(d) contrast the entanglement entropy spec-

tra for these two perturbations, V̂2 and V̂ ′
2 . Compared

to panel (c), panel (d) exhibits a clearer separation be-
tween low-entanglement scar states and highly entangled
thermal states. This sharper distinction suggests that
the modified perturbation V̂ ′

2 creates a more favorable
spectral structure and improves the performance of the
ScarFinder algorithm.

Appendix D: PXP-type models on quasi-1D lattices

While the main text focuses on 1D models, the core
ideas behind ScarFinder are not restricted to that set-
ting. In principle, the algorithm can be extended to
higher-dimensional systems, provided one can define a
suitable low-entanglement variational manifold. How-
ever, such generalizations face significant technical chal-
lenges, as entanglement structures are more complex in
higher dimensions and tensor network methods are sub-
stantially more difficult to implement [81]. As a prac-
tical intermediate step, we explore quasi-1D lattice ge-
ometries which go beyond simple chains in structure,
but retain limited width, allowing for efficient simulation
using MPS-based methods. In the following, we apply
ScarFinder to the PXP model defined on square and
triangular lattice tubes, illustrated in Fig. 10. We demon-
strate that the algorithm remains effective in uncovering
scarred dynamics, while it also allows to find exact eigen-
states even in these extended quasi-1D settings.
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FIG. 11. Dynamics of the PXP model on a quasi-1D lat-
tice. (a) Entanglement entropy evolution starting from the
charge density wave (CDW) state and from optimized initial
states obtained by ScarFinder with various bond dimen-
sions χ = 2, 4, 8. The optimized states exhibit suppressed
entanglement growth compared to the CDW state. (b) Local

spin expectation values ⟨Ẑ⟩ on two sublattices shows nearly
perfect revival dynamics from the optimized state with χ = 8.
ScarFinder was run with projection time step ∆t = 1.0 for
200 iterations and the underlying dynamics were simulated
using the iTEBD algorithm with a maximum bond dimen-
sion of χmax = 24.

1. Square lattice on a thin cylinder

Previously, for the PXP model on a 2D square lat-
tice, Refs. [101, 102] studied the dynamics from a charge-
demsity-wave state, |CDW⟩, with excitations on every
site of one of the two sublattices of this bipartite lat-
tice. Qualitatively, the scar dynamics were found to be-
have similarly as in the 1D case. As a first extension,
we apply ScarFinder to the PXP model defined on a
square lattice, but wrapped onto a finite cylinder shown
in Fig. 10(a). We consider a cylinder defined by periodic
boundary conditions along one spatial dimension, while
leaving the other dimension infinite. In this quasi-1D set-
ting, the lattice can be described using MPS methods by
grouping sites around the circumference into composite
sites, as depicted by dashed lines in Fig. 10(a).

Specifically, we study the square lattice with circum-
ference Ly = 4 and infinite length along the x-direction.
We apply ScarFinder by employing translationally-
invariant MPS representation adapted to this geome-
try, where each physical site represents one circumfer-
ence unit cell of the cylinder. Note that, because of
the constraint, the local Hilbert space dimension for each
blocked site is d = 7. For notational simplicity, we define
the following 4-site configurations of the block:

|0⟩ ≡ |↓↓↓↓⟩ , |Z2⟩ ≡ |↑↓↑↓⟩ , |Z′
2⟩ ≡ |↓↑↓↑⟩ . (D1)

The CDW state is a natural extension of the 1D |Z2⟩
state, expressed as a product of alternating |Z2⟩ and |Z′

2⟩
configurations: |CDW⟩ = |Z2,Z

′
2, . . . ⟩.

Now we can apply ScarFinder to this model start-
ing from the |CDW⟩ state, choosing bond dimensions
χ = 2, 4, 8 to find an optimized scar initial state. The re-
sulting entanglement dynamics are shown in Fig. 11(a).

Compared to the CDW state, which exhibits steadily in-
creasing entanglement characteristic of thermalization,
the optimized states found by ScarFinder display
slower entanglement growth with clearly visible revivals,
though sharing the same revival frequency as the |CDW⟩
state. As the bond dimension increases from χ = 2 to
χ = 8, these revivals become more pronounced, and the
entanglement entropies become substantially lower than
that of the |CDW⟩ state at late times.

To further illustrate the coherent dynamics, Fig. 11(b)

shows the time evolution of local observables ⟨Ẑ1⟩ and

⟨Ẑ2⟩, representing magnetization on two underlying sub-
lattices. The data correspond to dynamics initialized
from the optimized state with χ = 8 and reveal stable pe-
riodic oscillations. These oscillations qualitatively resem-
ble those of the |CDW⟩ state, but the optimization pro-
vided by ScarFinder yields notably improved revival
stability and reduced entanglement growth. These re-
sults confirm that ScarFinder effectively enhances the
scar dynamics of the quasi-1D PXP model defined on a
finite cylinder. While numerical limitations currently re-
strict our analysis to such quasi-1D settings, it would be
interesting to verify if a similar optimization procedure
could also yield improved scar initial states in the full 2D
PXP model.

2. Triangular lattice on a thin cylinder

As a further application, we apply ScarFinder to
the PXP model defined on a triangular lattice wrapped
around a cylinder, with a vertical circumference of four
lattice sites and infinite length in the horizontal direction
[see Fig. 10(b)]. QMBSs on non-bipartite lattices, such as
the triangular lattice, have remained largely unexplored
and no scar states have previously been reported in such
settings, including the experimental study in Ref. [62].
Below we demonstrate that the ScarFinder successfully
identifies an exact scar eigenstate for the geometry in
Fig. 10(b) within the MPS variational manifold.

Specifically, we perform random sampling over initial
states and apply ScarFinder using a projection time
step of ∆t = 1.0 for 100 iterations. For bond dimensions
χ > 2, the algorithm consistently converges to a unique
low-entanglement initial state. Upon inspection, we find
this state can be exactly represented with χ = 2. Nu-
merical checks confirm that this identified state remains
invariant under the PXP Hamiltonian dynamics, verify-
ing itself as an exact eigenstate.

To analyze the structure of the found MPS state, we
first note that the MPS tensors have nonzero entries only
when the physical indices correspond to the three states
in Eq. (D1). Thus, the local Hilbert space is effectively
reduced to a spin-1 degree of freedom per site. To further
characterize the state, we restrict the system to a finite
periodic chain of length L = 4, convert the MPS into a
state vector, and explicitly examine the nonzero ampli-
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tudes. We find that these nonzero coefficients all have
magnitude 1/

√
17 and differ only by sign. The nonzero

amplitudes correspond exactly to product-state config-
urations that avoid placing two adjacent |Z2⟩ or |Z′

2⟩
blocks. For a length-four periodic system, precisely 17
such allowed configurations exist. The sign of each am-
plitude depends on the parity (even or odd positions) of
the |Z2⟩ and |Z′

2⟩ states. Based on these insights, we
determine that the exact wave function takes the form

|S⟩ = P
⊗

j

(|0⟩j − |Z2⟩j − |Z′
2⟩j) , (D2)

where the projector P eliminates any configurations con-
taining adjacent |Z2⟩ or |Z′

2⟩ blocks.
Given this explicit form, one can straightforwardly ver-

ify that the state is indeed annihilated by the PXP Hamil-
tonian. Under the PXP constraint, the Hamiltonian al-
lows spin flips only when an excited site is surrounded
by two unexcited neighbors. Specifically, two different
initial configurations, namely |0⟩ ⊗ |Z2/Z

′
2⟩ ⊗ |0⟩ and

|0⟩⊗ |0⟩⊗ |0⟩, both yield the intermediate flipped config-
uration |0⟩ ⊗ |1⟩ ⊗ |0⟩. By construction, the coefficients
of these initial configurations are equal in magnitude and
identical in sign, causing the resulting intermediate con-
figurations produced by the Hamiltonian action to de-
structively interfere and exactly cancel each other out.
Consequently, the entire state remains unchanged by the
Hamiltonian action, confirming it as a E = 0 eigenstate.

We emphasize that the exact cancellations discussed
above occur as a special case arising from the 4×∞ cylin-
drical geometry. It would be interesting to understand
if some generalization of this construction may apply to
quasi-1D geometries with a larger number of horizontal
layers or even in the isotropic 2D limit. Furthermore,
we note that our search on a 4 × ∞ cylinder did not
reveal any long-lived dynamical scar states (beyond the
exact eigenstate mentioned above), suggesting that ro-
bust scar dynamics may not be present in more general
non-bipartite systems such as the 2D triangular lattice.

Appendix E: Mixed field Ising model

The transverse-field Ising model with an additional
longitudinal field provides a canonical example of a non-
integrable quantum many-body system:

ĤIsing = −J
∑

j

σ̂z
j σ̂

z
j+1 − h

∑

j

σ̂z
j − g

∑

j

σ̂x
j . (E1)

For such nonintegrable quantum Hamiltonians, a generic
initial state is expected to rapidly thermalize: local ob-
servables should swiftly equilibrate to their thermal ex-
pectation values, and the bipartite entanglement entropy
should quickly saturate to a volume-law scaling. How-
ever, previous studies [74, 103] has revealed exceptions to
this expectation, where in the chaotic regime (parameters

FIG. 12. Eigenstate overlaps for optimized initial states ob-
tained via ScarFinder at various target energy densities ϵ in
the mixed-field Ising model, Eq. (E1). Each initial state is op-
timized within the iMPS manifold of bond dimension χ = 10.
The optimal states are selected from an ensemble of 100 ran-
dom initializations, with a time step ∆t = 0.5 over 1000 iter-
ations. The optimal state at each energy density is chosen as
the one exhibiting minimal entanglement entropy at t = 4.0.
The overlap data are obtained via exact diagonalization of
the Hamiltonian Eq. E1 (with (J = 1.0, h = 0.5, g = 1.05) on
a system of size L = 16, restricted to the momentum sector
k = 0, which corresponds to two-site translational symme-
try. This symmetry reduction arises from the two-site unit
cell used in the iTEBD simulation, which explicitly breaks
the original one-site translation symmetry down to two-site
periodicity.

set as J = 1.0, h = 0.5, g = 1.05), certain initial product
states, such as the fully polarized state |Z+⟩ ≡ |↑↑ · · · ↑⟩,
exhibit anomalously slow thermalization dynamics. This
phenomenon, referred to as “weak thermalization”, was
subsequently attributed to high overlaps of the initial
state with low-entanglement eigenstates in the vicinity of
the system’s ground state [75]. Recent works, however,
have raised questions about whether the model thermal-
izes in the thermodynamic limit [104], or whether thermal
behavior only emerges at much larger system sizes than
previously explored [105].

Motivated by these observations, we apply the
ScarFinder algorithm to systematically search for opti-
mized scar-like initial states in this nonintegrable model.
In contrast to our previous investigations of the PXP
model in the main text, where it was sufficient to set
the targer energy to zero and study the middle of the
spectrum, for the mixed-field Ising model in Eq. (E1)
we expect the results to be more sensitive to the en-
ergy density. Hence, we vary the target energy density:
ϵ = (E−E0)/(Emax−E0), with E0 and Emax denote the
lowest and highest eigenenergies, respectively. Figure 12
shows the eigenstate overlaps of optimized initial states
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FIG. 13. Comparison of the optimized ScarFinder ini-
tial state and the polarized product state |θ ≈ 0.1649π⟩
from Eq. (E2), both at energy density ϵ = 0.1. (a) Entan-
glement entropy growth comparison between the optimized
ScarFinder initial state and the product state in Eq. (E2).
The optimized initial state demonstrates significantly sup-
pressed entanglement growth compared to the polarized state.
(b) Logarithmic fidelity N [ψt, ψ0] as a function of time. The
optimized state shows larger and more regular revivals, fur-
ther confirming its enhanced coherence.

identified via ScarFinder at different energy densities,
demonstrating distinctive spectral signatures, especially
at higher energy densities.

To illustrate the improvement provided by
ScarFinder, we compare the dynamics of optimized
states against simple product states from Ref. [74], when
the two are matched to have the same energy density.
Specifically, we choose the product state:

|θ⟩ =
⊗

j

(cos θ |↑j⟩+ sin θ |↓j⟩), (E2)

with θ ≈ 0.1649π, yielding an energy density ϵ = 0.1.
Figure 13(a) compares the entanglement entropy dynam-

ics from this product state against the ScarFinder’s
optimized initial state. The optimized state exhibits con-
siderably slower entanglement growth, demonstrating the
algorithm’s efficacy in isolating dynamically atypical ini-
tial conditions with suppressed thermalization. In ad-
dition, Fig. 13(b) shows the logarithmic fidelity dynam-
ics, where the optimized state maintains larger and more
regular revivals compared to the polarized state, further
supporting its nonthermal character.

The results at intermediate energy density, ϵ ≈ 0.5 in
Fig. 12, display characteristics typical of a null result. In
particular, the eigenstate overlap distribution shows pro-
nounced weight at both the low- and high-energy ends of
the spectrum, forming a superposition reminiscent of an
energy-space “cat state”. Importantly, this does not in-
dicate instability or non-injectivity – the resulting MPSs
are all injective. However, the nonlocal energy distri-
bution suggests that such a state is unlikely to arise
from any physically meaningful or experimentally rele-
vant context. This null result, of course, is fully consis-
tent with the expected absence of atypical eigenstates in
the middle of the spectrum of a generic chaotic model.

While this demonstrates that the ScarFinder algo-
rithm can successfully identify nonergodic dynamics in
generic nonintegrable models, further work is needed
to fully understand the underlying mechanisms of these
emergent trajectories. In particular, in the intermedi-
ate energy density range, e.g., ϵ = 0.4 or ϵ = 0.8 in
Fig. 12, one notices intriguing tower structures that are
somewhat reminiscent of the energy-dependent QMBSs
in the PXP model in the presence of a chemical poten-
tial [23, 72]. It would be interesting to understand if
these are indeed related to QMBSs or if the quasiparticle
picture from Ref. [75] can be generalized to explain these
atypical spectral features.
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[68] B. Buča, Unified theory of local quantum many-
body dynamics: Eigenoperator thermalization theo-
rems, Phys. Rev. X 13, 031013 (2023).

[69] S. Moudgalya and O. I. Motrunich, Exhaustive charac-
terization of quantum many-body scars using commu-
tant algebras, Phys. Rev. X 14, 041069 (2024).

[70] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Ser-
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criticality via many-body scarring, Phys. Rev. B 107,
235108 (2023).

[73] A. Kerschbaumer, M. Ljubotina, M. Serbyn, and J.-Y.
Desaules, Quantum many-body scars beyond the pxp
model in rydberg simulators (2024), arXiv:2410.18913
[quant-ph].
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