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Non-stabilizer states are a fundamental resource for universal quantum computation. However,

despite broad significance in quantum computing, the emergence of “many-body

” non-stabilizerness

in interacting quantum systems remains poorly understood due to its analytical intractability. Here
we show that Rydberg atom arrays provide a natural reservoir of non-stabilizerness that extends
beyond single qubits and arises from quantum correlations generated by the Rydberg blockade. We
demonstrate that this non-stabilizerness can be experimentally accessed using two complementary

methods, either performing quench dynamics or via adiabatic ground state preparation.

Using

the analytical framework based on matrix product states, we explain the origin of Rydberg non-
stabilizerness via a quantum circuit decomposition of the wave function.

I. INTRODUCTION

Concepts from quantum information theory have be-
come indispensable tools for understanding many-body
quantum systems. For example, quantum entanglement
is now central to the understanding of topological or-
der [1-4] and the non-equilibrium dynamics of interact-
ing quantum systems [5-8] (see Ref. [9] for a review).
Moreover, low-energy eigenstates of quantum Hamilto-
nians typically have a limited amount of entanglement,
making them amenable to variational ansatze such as
tensor networks and the density-matrix renormalization
group [10-12].

Entanglement, however, is not the only resource re-
quired for large-scale, fault tolerant, quantum computa-
tion. The implementation of a universal set of gates is
a major challenge — typically only the Clifford group of
multi-qubit Pauli gates is feasible, a set of gates that
can be efficiently simulated classically [13, 14]. One ap-
proach to universal quantum computation is to inject
non-stabilizer or “magic” states into the circuit [15-17].
From a practical standpoint, this raises the question how
such special states can be conveniently generated. While
there has been much progress in understanding the non-
stabilizerness of few-qubit systems [16, 18], analogous
property in many-qubit Hamiltonian and circuit systems
is a subject of active investigation [19-29]. Consequently,
many basic questions remain open, e.g., whether non-
stabilizerness can play a similar role to entanglement in
characterizing the properties of many-body systems.

Unfortunately, quantifying the non-stabilizerness of
generic wave functions is very costly. In this work we
focus on the Stabilizer Rényi Entropy (SRE) [22, 30],
which has recently been proposed as a measure of non-
stabilizerness for many-qubit wave functions (we note
there are related local measures such as “robustness of
magic” [18, 31, 32] and Mana entropies for qudit sys-
tems [33, 34]). The SRE, while still exponentially hard
to evaluate in general, can be approximated via Monte
Carlo methods [24, 35, 36]. Morever, for a class of matrix
product states (MPS) with a low bond dimension, the
SRE can be expressed in closed form [23, 37, 38]. Nev-

ertheless, it remains unclear what information about the
wave function is contained in its SRE. Studies of quantum
spin chains and related models have empirically found
that many-body ground states can exhibit varying lev-
els of non-stabilizerness but generally do not approach
the upper bound of the SRE, even at quantum critical
points [24]. Moreover, a microscopic explanation of the
origin of the SRE for a given state is lacking. Thus, it is
important to identify analytically tractable models where
enhancement of SRE compared to a single qubit can be
analytically understood.

In this work we study non-stabilizerness in the PXP
model — an effective model of one-dimensional (1D) Ry-
dberg atom quantum simulators [39—41]. This model
has the advantage that both its ground state and cer-
tain kinds of far-from-equilibrium quench dynamics can
be accurately described using a manifold of low-bond di-
mension MPS states [42, 43]. While the ground states of
gapped systems in 1D are well-known to be captured by
finite bond dimension MPS, the ability to describe highly
excited quench dynamics in the same way is due to the
PXP model hosting a set of non-thermalizing eigenstates
known as quantum many-body-scars (QMBSs) [44-47].
We analytically calculate the SRE across the MPS mani-
fold associated with QMBS dynamics of the PXP model,
finding that the manifold hosts regions of large non-
stabilizerness. The non-stabilizerness can be understood
microscopically from the corresponding unitary circuit
that generates the states in the manifold. Finally, we
demonstrate that the MPS manifold is relevant for the
physics of the full 1D Rydberg model realized in experi-
ments, and we propose two protocols that can be used to
access the non-stabilizer states, either by performing the
global quench or by adiabatic ground state preparation.

The remainder of this paper is organized as follows. In
Sec. IT we review the concept of stabilizer Rényi entropy
for MPS states — the main quantity of interest in this
work. In Sec. IIT we introduce the PXP model of Ryd-
berg atom arrays and the MPS ansatz that describes its
non-equilibrium behavior under quench dynamics from
certain initial states. Focusing on this MPS variational
manifold, we then analyze the non-stabilizerness that can
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be generated under time evolution and we identify its mi-
croscopic origin. Two experimental protocols for observ-
ing the non-stabilizerness in Rydberg atom arrays are
discussed in Sec. IV. Our conclusions are presented in
Sec. V, while Appendices contain further technical details
of the MPS calculations, a discussion of other measures
of non-stabilizerness, and a study of non-stabilizerness of
the eigenstates of the PXP model.

II. STABILIZER RENYI ENTROPY OF MPS
STATES

For a pure state |¢) of N spin-1/2 particles, a use-
ful measure of non-stabilizerness is the stabilizer Renyi
entropy (SRE) of order n [22]:

() =1 -mw Y WP
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where Px denotes the set of all N-strings of Pauli ma-
trices {oc*} = {l,0%,0Y,0%}. The SRE is zero iff |¢) is
a stabilizer, it is invariant under Clifford unitaries and
additive under tensor product [22].

The cost of directly evaluating Eq. (1) scales as 4%,
which rapidly becomes intractable. Instead, the SRE can
be approximated by Monte Carlo sampling over Pauli
strings [24, 35], which scales more favorably but may
require many samples to obtain accurate statistics. Fi-
nally, the SRE can be calculated directly using MPS tech-
niques, naively scaling like ¥" in the bond-dimension y
of the MPS [23]. We utilize the latter approach in this
work as we focus on low-y MPS states for which we can
obtain analytical insight into the SRE.

A. Replica MPS method for evaluating SRE

We consider a translation-invariant MPS state |¢(A)),
defined on an infinite lattice with (d = 2)-dimensional
local Hilbert space,
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where A% is a set of d matrices of dimensions x x ¥,
with x being the MPS bond-dimension. To calculate the
SRE of |1/(A)), we employ the replica trick method from
Ref. [23] that we briefly review in this section.

To calculate the nth order SRE, we be%m by creating a
2n-fold replica of the state ‘¢(”)> with physical
dimension d’ = d?>™ and bond dimenslon X' = x*". Below
we will mainly be interested in the simplest n = 2 case.
Let us define tensors

3
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where B" is a 2n-fold copy of A and A( ") acts over every
2n rephca of |¢) on a physical site j. Wlth these tensors,
the expectation value over all the N-qubit Pauli Strings
can be seen as a single expectation value:
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which we will denote as <¢(")’A(") ‘¢(")>. Thus, the
many-body SRE is:
M) = A®)

and the SRE density can be defined as
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m™ = M™/N. (6)

Below we will always use the SRE density m( as it is
an intensive quantity that can also be defined for a state
on an infinite lattice, discussed next.

The SRE in the thermodynamic limit is obtained from
the modified 4" x x*" transfer matrix:
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Denoting the dominant eigenvalue of 7 as )\é"), the SRE
density in the thermodynamic limit is given by

m™ ([ (A))) =

As defined here, the SRE is upper-bounded by

1 n

m™ < (1/N)InD, (9)

where D is the Hilbert space dimension [22].

Performing the SRE calculation directly is computa-
tionally demanding for x = 8. Thus, for larger bond
dimensions we make use of a reformulated version of the
replica trick via conversion to the Pauli basis [38]. This
allows for truncation of the bond dimension during the
calculation and the key steps are outlined in Appendix A.

B. Global vs local non-stabilizerness

The SRE, Eq. (1), is intrinsically a global property of
the wave function as it depends upon N-site products of
Pauli matrices, and the latter can be extended through-
out the entire system. In contrast, physical observables
are typically spread over a few physical sites and there-
fore can be measured on a finite subsystem described by
the reduced density matrix. We will now address the ex-
tent to which the non-stabilizerness of the MPS ansatz
is stored in local or global degrees of freedom.

The SRE is a basis dependent quantity, hence it
can vary even for uncorrelated product states. For



this reason, it is common to consider “long-range” non-
stabilizerness, defined as the minimal non-stabilizerness
after performing arbitrary local rotations on every site
of the system. As an example, for the MPS ansatz that
will be used in the PXP model in Sec. III below, the only
relevant rotation that can reduce the SRE is the y-axis
rotation for spins on the even and odd sublattice:

19 = [F30:70)) = @71 © 7ot ). (10)
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The long-range SRE is then defined by minimizing over
the local basis rotations:

m® = min m® (| d(0,7)))- (11)
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Another way to distinguish local from global non-
stabilizerness is via the non-stabilizerness of a two-site
reduced density matrix ps. Since ps is generally a mixed
state, the calculation of the SRE density changes from
the definition given in Eq. (1) to [22]:
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Therefore, the mixed state magic is computed from the
expectation values of the 16 two-qubit Pauli operators in
the state ps. For simplicity, we will restrict to two-site
reduced density matrices and denote py simply as p.

We note that SREs are not strong magic monotones,
i.e., they do increase under non-deterministic stabilizer
protocols [48]. However, they are widely used as they
are relatively easy to compute for large systems. In Ap-
pendix C we consider the “Robustness of Magic” (RoM)
of a two-qubit reduced density matrix ps as a method
of quantifying local magic. Unlike SREs, the RoM is a
strong magic monotone but is typically reserved for few
qubit systems.

III. NON-STABILIZERNESS IN THE PXP
MODEL

In the remainder of this paper, we focus on the physi-
cal manifestations of non-stabilizerness in Rydberg atom
arrays [49]. The latter are described by the kinetically
constrained 1D spin-1/2 PXP model [40, 50, 51]:

QX
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where Q2 = 1 is the Rabi frequency describing the flipping
of each atom between its ground state |0) and the excited
Rydberg state |1), N is the total number of atoms, and
Pj = (1 —07%)/2 is the projector on the |0) state. With
open boundary conditions we set Py = Py4+1 = 1. The

PXP model describes the low-energy physics in the Ry-
dberg blockade regime [49], a phenomenon where neigh-
boring excitations of the atoms, such as |...11...), are en-
ergetically forbidden. The blockade is imposed globally
with the projector P = @, (1 — [11) (11], ;) or, equiv-
alently, in the local form using the P; operators as in
Eq. (13).

A. PXP dynamics and MPS ansatz

When the PXP model is quenched from typical initial
states such as [0) =|0000 - - -), rapid thermalization is ob-
served [39], consistent with the system being chaotic [40].
Nevertheless, the PXP model also hosts a small number
of non-thermal eigenstates which are evenly distributed
in energy and possess anomalously low entanglement en-
tropy [40, 41, 52-57]. These QMBS eigenstates have a
high overlap with the |Z5) =]0101 - - -) state, leading to a
suppressed growth of entanglement entropy and periodic
revivals in local observables when the system is quenched
from that initial state [39].

The short-time dynamics of the PXP model can be
understood semiclassically using an MPS ansatz with
x = 2 with the help of time-dependent variational princi-
ple (TDVP) [42, 43]. The ansatz is physically motivated
by applying the Rydberg blockade projector P to a prod-
uct of spin coherent states,

(0. 9) =P &) ( cos(0;/2)[0); — ie™ sin(0;/2)|1); ).
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where 0, ¢; are the Bloch sphere angles of jth spin. The
resulting state [1)(6, ¢)) can be equivalently expressed as
a x =2 MPS [42]:

0 _ (cos(6;/2) 0 1 (0 —iet®i
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(15)
which defines a continuous manifold M =
span{|y(A)) [V0;,¢;}.  The manifold M, by defi-
nition, includes the states |[0) and |Zs), which are
representatives of generic (thermalizing) and scarred
(non-thermalizing) initial conditions.

We note that the Rydberg blockade projector increases
the periodicity of M to T = 4x [42]. As we are primar-
ily interested in |0) and |Zs) initial states, we assume
two-site periodicity of the angles, leaving the angles on
even and odd sites, (6., ¢.) and (6,, ¢,), as our only pa-
rameters. Furthermore, we can set ¢. = ¢, = 0 due to
energy conservation [42]. Quantum dynamics can then
be projected to M using TDVP. This projection “dis-
torts” the Schrédinger equation, resulting in a system of
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(a)-(b): The dynamics of m® following the quench from the |0) and |Z2) initial states in the PXP model. Panel (a)

shows full quantum dynamics obtained numerically using TDVP for N = 51 spins and different bond dimensions x indicated
in the legend. Single-qubit precession is shown in gray for comparison. Panel (b) shows the dynamics projected to M with

X = 2, obtained analytically by integrating the equations of motions (16).

non-stabilizerness, m(LQ)7 in Eq. (11).

function of 6. and 0, angles. The three panels correspond, respectively, to m(2), its long-range version mf) in Eq. (1

For comparison, we also include the long-range

(c)-(e): Phase diagram of non-stabilizerness across the MPS manifold M, plotted as a

1), and

the two-site mixed state non-stabilizerness m® (p) in Eq. (12). The trajectories traversed by the |Z2) and |0) states are shown

by solid white and black dashed lines, respectively.

two non-linear differential equations for 6. and 6,:
o con(%2) () e 2 (2
= cos| o sin 5 Jtan{ 5 Jeos™ | o ),
0, 0. 0o o (O
6. = cos + sin tan cos“ | — |,
2 2 2 2
see Ref. [42] for a derivation. This elegant description of
the dynamics in terms of low-xy MPS states will allow us

to gain analytical insight into the out-of-equilibrium be-
havior of non-stabilizerness in the PXP model, Eq. (13).

(16)

B. Non-stabilizerness of MPS ansatz

The dynamics of SRE density m(®, Eq. (8), when the
PXP model is quenched from |0) and |Z5) initial states is
presented in Fig.1(a). We obtain the time-evolved state
in MPS representation for various bond dimensions using
a numerical implementation of TDVP [58] and then eval-
uate its SRE according to Eq. (4). For the scarred |Z2)
state, we see a complex pattern in the dynamics of SRE,
with a single large peak in between two smaller peaks.
This data is well-converged already with small x. The
complex dynamics of SRE should be compared with the
independent spin precession generated by H= ;05 /2,
which is also shown in Fig.1(a). By contrast, the ther-
malizing |0) state displays a rapid increase in SRE, ex-
ceeding the values reached by the |Z3) state. Following
this initial increase, the SRE of |0) initial state remains
relatively stable, despite the continuously increasing en-
tanglement entropy found in Ref. [40].

The dynamics projected into M lead to perfectly peri-
odic evolution of the SRE when starting in the |Z5) state,

see Fig. 1(b). Although the full dynamics in Fig. 1(a) is
not exactly periodic, the TDVP representation of m(?)
within M still shows excellent agreement. In particular,
the distinctive pattern of a large peak surrounded by two
smaller peaks in m(? is fully reproduced within M, and
we will provide its explanation in Sec. III C below. For
the |0) initial state, however, the agreement between full
dynamics and M is only good up to times t = 2, after
which the TDVP clearly no longer captures the full SRE
dynamics. This is expected due to the large leakage of the
dynamics outside the manifold [42]. In fact, at late times
the evolution of the |0) state becomes perpendicular to
the ansatz and m® is stuck near zero. Nevertheless,
comparing Fig.1(a) and Fig.1(b), we see that projection
into M captures well the early-time enhancement of the
SRE, which will be our main focus below.

Since non-stabilizerness is basis-dependent, a priori it
is not clear if the behavior seen in Fig.1(a) is truly a
many-body phenomenon or if it can be removed through
a local unitary rotation as discussed in Sec. IIB. In
Fig. 1(b) the long-range SRE, mg) in Eq. (11), for the
MPS ansatz trajectories of the |0) and |Z3) states are
shown. For the |0) state, we see the long-range SRE is
slightly smaller than the SRE but not significantly differ-
ent, indicating that most of the SRE is ‘long-range’ for
this trajectory. For the |Zy) state, on the other hand,
we see a more pronounced difference between m(? and
mf). The distinctive three-peak behavior seen in the
SRE disappears for the long-range SRE, with only a sin-
gle residual peak, much reduced in magnitude. For this
reason, we argue that the two smaller peaks of the SRE
in the |Zy) case can be considered primarily local, i.e.,
similar in nature to the non-stabilizerness of a product
state. The larger central peak, however, is a genuine



many-body phenomenon, arising from the correlations
due to the Rydberg blockade.

Figure 1(c) shows the SRE across the manifold M plot-
ted as a function of 8, and 6, angles. When either angle is
zero, the MPS ansatz reduces to a simple product state,
with one of the spins fixed to |0) and the other rotating
in the yz-plane. Hence, the SRE reaches a maximum
whenever it is furthest from the other spin being an o¥
or o* eigenstate, i.e., at 6, = 7/4,37/4,.... Cases
0,/ = m are also easy to understand, since one of the
sites in the unit cell is guaranteed to be occupied, hence
the other must be unoccupied due to the Rydberg block-
ade. Since this corresponds to the |Z3) product state,
the SRE is zero along these lines. The non-trivial feature
of the diagram in Fig.1(c) are the four arrow-like struc-
tures pointing towards the center of each quadrant. The
SRE maxima lie at the centers of these arrows along the
0, = +0, line with a large value of m® = 0.42. Note
that the latter is considerably larger than the quantum
Ising model at its critical point [24, 36].

The TDVP trajectory followed by the |Z5) state in M
is shown by a white solid line in Fig. 1(c), moving periodi-
cally between high and low SRE regions. By contrast, the
|0) state follows the black dashed line in Fig. 1(c), mov-
ing diagonally from (6,,6.) = (0,0) to (6,,0.) = (m,m),
passing through the state with maximal SRE before ex-
iting the manifold. Recalling Fig. 1(b), it is clear that
the repeating pattern of three SRE peaks is due to the
|Z5) trajectory cutting through the arrow-shaped regions
in Fig. 1(c). The two smaller peaks in the SRE are from
the sides of the arrow shape, suggesting they arise due
to local non-stabilizerness, whereas the larger peak is a
many-body effect. By contrast, the dynamics initialized
in the |0) state directly flows towards the global non-
stabilizerness maximum m® = 0.42 within M, close to
the value in the full model in Fig. 1(a). Thus, high non-
stabilizerness is created under PXP dynamics within M,
given that SRE is upper-bounded by m(? < 0.48 due
to the PXP Hilbert space dimension growing as the Fi-
bonacci number [41].

Figure 1(d) shows the long-range SRE, Eq. (11), across
the entire MPS manifold. We see that the arrow-head
structure vanishes for the long-range SRE, demonstrat-
ing that only the central areas of the arrow-heads are
non-local. On the other hand, the SRE of a two-site
reduced density matrix, Eq. (12), plotted in Fig. 1(e)
accurately recreates the structures obtained in the full
SRE calculation. The two-site reduced density matrix is
generally in good agreement with m(® in Fig. 1(c), with
some quanitative differences, e.g., the peak SRE for the
former is at around m®(p) ~ 0.32, while for the latter
it is considerably larger, m(?) ~ 0.42.

In summary, comparing Fig. 1(c)-(e) we conclude that
a two-site reduced density matrix contains sufficient in-
formation to qualitatively reproduce the many-body non-
stabilizerness that emerges after the quench from |0) ini-
tial state in the PXP model. While the two-site reduced
density matrix, in principle, also captures the behavior

of non-stabilizerness from the |Z,) initial state, in this
case the non-stabilizerness is largely due to local basis
rotations.

C. The origin of non-stabilizerness

To provide an intuitive understanding of large SRE
in Fig. 1(c), we utilize a quantum circuit description.
Any MPS can be rewritten to satisfy the canonical con-
dition [11, 59]

D (A7)fAT =1, (17)

led

which can be thought of as y columns of a dy x dx uni-
tary matrix. The product structure of the MPS wave
function, --- A% A%+t ... is reproduced by composing
these unitary matrices in a staircase pattern as shown in
Fig. 2(a), with one leg contracted with a dummy state |0)
to select the first x columns of the unitary. The ansatz
described in Eq. (15) is no exception — it can be con-
structed from the two-qubit unitary given in Fig. 2(b):

CNOT R

Unps = CNOT R o

0/4,6/4 SWAP, (18)

where R‘(;q)ﬁ = exp(i(m/2)n - o) is a rotation of the second
qubit around the axis n = (sin 6 cos ¢, sin 6 sin ¢, cos §).
Note that the # and ¢ parameters in Eq. (18) are the
same as in Eq. (15).

Uwmps in Eq. (18) is simply an arbitrary controlled ro-
tation on the second qubit, conditional on the first being
|0), and combined with a SWAP gate. The unitary is
made up of two CNOT gates and one SWAP gate which
are Clifford gates, and two local rotations which are non-
Clifford and responsible for the non-stabilizerness of the
MPS wave function. The subtlety, however, is that the
non-Clifford unitaries are only relevant if they act non-
trivially on the input state. The first qubit always acts
upon |0) by construction. In the thermodynamic limit,
the second qubit acts on pg, the right eigenvalue of the
MPS transfer matrix E=), A°®A’. Thus, the non-
stabilizerness of the MPS can be estimated as the non-
stabilizerness of pi,=|0) (0] ® pr with Uyps applied to
it, minus the non-stabilizerness of piy,

me? = m® (Unps pinUgps) — m® (pr), (19)

where we have taken advantage of the SRE additivity
under tensor product to write m® (py) = m® (pg).
Due to the inherent gauge freedom in our MPS, Unps
is only unique up to a unitary transformation, Uyps —
(u®0g)Unmps(u®ly), where u is an arbitrary x X x unitary
matrix. Since u can be non-Clifford, it can change mg).
The gauge chosen throughout this paper is the only nat-
ural choice for the PXP model: the form of p;, and Uyps
guarantees that the |11) component of the MPS remains
zero, ensuring that the Rydberg blockade constraint is
also obeyed by the unitary generating the MPS.



0.45

l R(0/4,9/4)

0.40

0.30
(C) \Cl\i 0.25§A
0.4 3 020
' —0.25F4 ,
(A 0.15
0.9 ;; —0.50 0.10
—0.7 0.05
0.04£ . YR = 0.00
0.00 0.25 0.5 0.00 0.25 0.50 0.75 1.00

6/ (2m) Oe/ (2r)

Figure 2. (a)-(b): Decomposing the MPS tensors into unitary
rotations (a), with the resulting PXP unitary circuit shown
in (b). (c): The SRE m® of the MPS ansatz along the
|0) trajectory is well-described by m?, Eq. (19), the non-
stabilizerness of the input state pin after being acted on by
the unitary generated by the ansatz. (d) The SRE from the
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PXP unitary ansatz, mg;’, across the entire manifold M.

In Fig.2(c) we compare the non-stabilizerness ob-
tained from the MPS ansatz in Fig. 1(b) against mg)
in Eq. (19). We observe excellent agreement between
the two over the range in which we traverse diagonally
through one of the arrow-shaped regions, especially at
the two extremes of the 6 range. In the region of high
non-stabilizerness, our ansatz in Eq. (19) very slightly
deviates from the exact m(?), implying that Uypg is not
the exact unitary and further corrections may be needed
to exactly capture the SRE across the entire manifold
M. In Fig. 2(d), mg) is shown for the full two-site unit-
cell ansatz. We see that, despite small deviations, it is
significantly closer to the full SRE than 2-site SRE and
accurately recreates the SRE of the PXP manifold.

IV. EXPERIMENTAL PROTOCOLS

Finally, in this section we outline two protocols for ex-
perimentally accessing the non-stabilizer states in Fig. 1.
The PXP model, Eq. (13), arises as a limiting case of
the more general Hamiltonian describing a 1D array of
Rydberg atoms [39]

Q NN,
i = 3 S48 n + VY M o)
J J

i<j J

with n; = |1)(1],; counts local excitations, A is the chem-
ical potential, and V' is the overall strength of the van der
Waals interactions. Due to the fast decay of the interac-
tions (o = 6), we will neglect interaction terms beyond
next-nearest neighbors. The Hamiltonian Hryq reduces
to the PXP model in the regime V' > Q, A [40, 50, 51].

In the strong blockade regime V > Q A, the non-
stabilizerness in Fig. 1 can be accessed by repeating the
same type of quench experiments performed in Ref. [39].
While measuring the global SRE may not be feasible,
the SRE can be approximated locally using a two-site re-
duced density matrix, Eq. (12), as we have demonstrated
in Fig. 1. Note that, in order for the ground state of
Eq. (20) to be consistent with states obtained through
dynamics in Fig. 1(c), where (3°;07) = 0, we have ori-
ented the Rabi flip term in Eq. (20) along the y-axis.
This, however, does not affect the SRE value.

Alternatively, it is possible to access the non-
stabilizerness in Fig. 1 by adiabatic ground state prepa-
ration. With the reparametrizations

Q=2V/(2"2), A=-(2V/29)(3-1/2%), (21)

the ground state of Hgyq can be approximated with the
ground state of the following Hamiltonian [61, 62]:

N
Ho = ij—l (0’;! + ZPJ + Z_l’I’Lj) Pj+1. (22)
Jj=1

The advantage of Hy is that it is frustration-free and its
ground state is known exactly for any value of z [61]. In
Appendix B, we prove that the ground state of Hy is, in
fact, equivalent to the MPS state in Eq. (15) with
0=0,=0., =z=sin(0/2)/cos*(0/2). (23)
Thus, the non-stabilizerness in Fig. 1 can be generated
by simply preparing the ground state of Hy with z = 2.

In Fig. 3(a) we show the SRE of the ground state
of Hryq for N = 51 atoms as a function of © and A,
with fixed V' = 1. We overlay the trajectory of Hy by
the dashed black line and mark the point of maximal
non-stabilizerness with a cross. We observe a large W-
shaped band of non-stabilizerness which becomes more
pronounced at larger Q with the trajectory touching the
tip of this band. A similar phase diagram is observed
in Fig. 3(b), where we plot the two-site reduced density
matrix SRE for the ground state of the Rydberg model.
We find this local measure of magic produces an excel-
lent qualitative agreement with the full calculation of the
SRE in Fig. 3(a), capturing the W-shaped band emanat-
ing from A = 0.

The black dashed line in Fig. 3(a),(b) represents the
effective Hamiltonian for the MPS ansatz, Hj, whose
trajectory is analyzed in more detail in Fig. 3(c). The
SRE of the trajectory of Hy attains a maximum value of
m® ~ 0.38 at z ~ 2, corresponding to Q ~ 0.0156 and
A =~ —0.0429. Similarly, the maximal value of the two-
site density matrix SRE, m(?(p) ~ 0.32, in Fig. 3(b) is
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Figure 3. (a)-(b): SRE of the ground state of the Rydberg model in Eq. (20) with V=1 and varying A and 2, with interactions
truncated at next-nearest neighbors. The ground state of N = 51 atoms was obtained using density matrix renormalization
group (DMRG) based on ITensor Library [60] at a bond dimension of x = 8. Panel (a) shows the SRE m® | while panel (b) is
the two-site reduced density matrix SRE m(2)(p). Dashed line represents the trajectory of the effective model Hy in Eq. (22),
with the cross denoting the point of maximum non-stabilizerness. (c): Non-stabilizerness in the effective model Hy, Eq. (21),
as a function of z. The maximum value m2 & 0.38 is comparable to Fig. 1 and attained at z ~ 2 (cross). Inset is a magnified
section of the phase diagram in panel (a). (d) Two-site reduced density matrix SRE m?)(p) for the ground state of the Rydberg
model computed by four different methods: MPS (green line), ED (black line), clean adiabatic ramping (AR) protocol with
sampling in Blogade (blue line), and Bloqade’s stochastic noise simulation with noise amplitude v = 0.01 (red symbols). All
simulations were performed for N = 11 atoms while the Blogade simulations were performed with a lattice spacing of 3.12um
and nshots = 1000. The error bars represent the statistical error in averaging the noisy results over 10 runs.

comparable to the actual SRE maximum of m(® ~ 0.38,
suggesting that quantum state tomography would allow
to accurately approximate the SRE.

Finally, in Fig. 3(d) we demonstrate that it is possible
to detect non-stabilizerness by preparing the states along
the trajectory described by the Hamiltonian Hy and by
measuring the mixed state magic of two sites at the cen-
ter of the chain. To assess the impact of experimental
imperfections on the measurements of non-stabilizerness,
we perform realistic small-scale simulations of QuEra’s
Rydberg atom platform using the Blogade interface [63].
We determine the ground state |¢) of the Rydberg Hamil-
tonian along the desired trajectory using exact diagonal-
ization (ED) and by adiabatically ramping (AR) from the
polarized state |0). We have assumed a maximum ramp
time of 4us [63]. To adiabatically prepare the ground
state along the Hy trajectory, we consider two seperate
ramp sequences depending on the sign of A. For Q we
consider a quick linear ramp to the desired €2;. When
we ramp to negative A we also consider a linear func-
tion where we ramp from Ap;ep, to the desired A;. When
ramping to a positive A; we consider a sigmoid ramp
with curvature k

t—kt
A(t) = [T, (24)

with curvature k = 0.98. Secondly we shift the inflection
point such that it lies at (¢, A) = (2,0) and we rescale
t € (0,2) and t € (2,4) to match A,,., and A; respec-
tively. To mimic the experimental protocol, we perform
two-site tomography by sampling the probability distri-
bution [¢|? and calculating the 16 possible Pauli expec-
tation values for two sites located at the center of the
chain. Using these measurements, the definition given
in Eq. (12) and standard statistical error analysis, we

obtain estimates of the n = 2 mixed state SRE. To simu-
late experimental noise, we consider a depolarizing noise
channel with error rate v during the adiabatic ramping
procedure and optimize the ramp parameters over the
trajectory to obtain the mixed state SRE.

Figure 3(d) compares the mixed-state non-
stabilizerness m(?)(p) obtained using ED and adiabatic
ramping through noiseless and mnoisy channels with
sampling (averaged over 10 runs). We also show the
MPS results for y = 100 for comparison and the
error bars represent the average error over the 10
runs. We note that the difference between the peak of
non-stabilizerness in Fig. 3(d) and z ~ 2 in Fig. 3(c) is
due to finite-size effects and divergences in regions of
large global non-stabilizerness. We find good agreement
between the expected ED results and the experimental
simulations in the regions of high non-stabilizerness.
This suggests that our protocol can be implemented in
practice, even after accounting for experimental noise
and readout errors.

V. CONCLUSIONS

We showed that kinetic constraints stemming from
the Rydberg blockade can lead to many-body non-
stabilizerness. While we focused on the strong blockade
regime described by the PXP model, our approach can be
directly generalized to other blockade regimes explored in
recent experiments [64]. While in the main text we stud-
ied dynamical manifestations of non-stabilizerness, fur-
ther results on the non-stabilizerness of PXP eigenstates
can be found in Appendix D. Utilizing a quantum circuit
construction, we provided an intuitive understanding of
the origin of non-stabilizerness of an MPS in terms of



the number of non-stabilizer unitaries used to generate
it. While we expect this analysis to have broader applica-
bility beyond the PXP model, to make it more rigorous,
it would be necessary to better understand the impact of
the MPS gauge degree of freedom on non-stabilizerness.

Our work highlights the fact that some low bond-
dimension MPS can exhibit high levels of non-
stabilizerness. Since all 1D area-law entangled states —in-
cluding the ground-states of local, gapped Hamiltonians
— can be arbitrarily well approximated by MPS [65, 66],
they can be efficiently generated using classical algo-
rithms such as DMRG. Most of these wave functions pos-
sess intrinsic non-stabilizerness, which implies that there
may be certain ground states which are easy to gener-
ate classically but difficult to create in a fault-tolerant
quantum computer, in particular the points of maximum
SRE identified for the Rydberg model above. Finally,
an intriguing question is which many-body systems sat-
urate the upper bound of non-stabilizerness. In this con-
text, Rydberg atom arrays exhibit a variety of exotic
phases [67, 68] and it would be interesting to study the
non-stabilizerness in their ground states to see if any of
them further approach the upper bound.
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Appendix A: Calculating SRE by Pauli basis
conversion

Calculating the SRE for an MPS state by the replica
trick becomes infeasible for states with large bond dimen-
sions due to the replicated state scaling as x2". Instead,
this method can be reformulated to allow truncation of
the bond dimension during the calculation.

For a normalized state |¢)) which is represented by an
MPS of physical dimension d and bond dimension y, we
can define its density matrix as p = [¢){(¢)|, an MPO
of bond dimension y? and two physical dimensions d
and d’. We then introduce a three-legged Pauli tensor
Py = %(Ua)i,i/ with bond dimension x = d and physi-
cal dimension d?. This Pauli tensor is then contracted on
both physical bonds on each site of p, thereby converting
it into the Pauli basis and leaving an MPS |P(%))) with

bond dimension x? and physical dimension d?. This now
grants us the ability to truncate the bond dimensions to
some Yy p if required.

Now that the MPS has been converted to the Pauli
basis, we can perform the replica trick at a reduced cost.
To do this we define a diagonal operator W whose diag-
onal elements are just the components of the Pauli MPS
at each site. This MPO is built by contracting a three-
legged delta tensor of dimensions d?. This delta tensor
is contracted onto each physical leg of the Pauli MPS to
produce the MPO W. For some stabilizer Renyi index n
we apply the MPO W, n — 1 times onto |P(¢)) to ob-
tain |P(™) (1)) = W™ P(¢)), while also truncating the
bond dimension after each application of W. Therefore
the nth order SRE is given by:

1

—-n

M) = ——log((P™()[PM (@) — N, (A1)

and, similarly, the SRE density is m(™ = M) /N.

Appendix B: Parent Hamiltonian for MPS ansatz

Any matrix-product state |1)(A)) is the ground state
of a so-called parent Hamiltonian which is a local,
frustration-free Hamiltonian constructed as the sum of
projectors

(B1)

J

HpaI‘Cnt — Z [P], [P2 — [P].
J

The MPS of interest is in the null-space of the projector
P; and therefore has energy exactly E' = 0 with respect to
this parent Hamiltonian. We would like to find a parent
Hamiltonian for the MPS used in Eq. (15) the main text.
In this section, we will work in the thermodynamic limit
and assume a single-site unit cell, as we are interested in
the dynamics of |0) state.

The projector which defines the parent Hamiltonian for
the MPS in Eq. (15) is found by constructing the reduced
density p,, of |¢p(A)) over n sites. The value of n should be
chosen such that p, has at least one eigenvalue zero. This
is typically the case when d” > x2. For the PXP model,
the Hilbert space obeys the Rydberg blockade constraint
which excludes certain states, hence p,, does not grow
exactly like d”. Nevertheless, n = 3 is suitable since p,
has 5 eigenvalues, which is larger than the x? = 4.

We choose the basis {|000),]001),|010),|100),|101)}
for p3. The leading left/right eigenvalues of the MPS
transfer matrix are

(U_| = (17070’ 1)7 |[R)

(1,cs,¢s,5%), (B2)

T1ts?

where we have introduced a shorthand notation ¢ =
cos(6/2) and s = sin(6/2). Furthermore, p3 can be shown
to be:
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When ¢ = 0, this is the model introduced in Ref. [61]
and discussed in the main text, up to an overall prefac-
tor. Although considerably more tedious, it is possible
to generalize this to the case of 2-site unit cell which
would be needed for describing the dynamics of the |Z2)
state. We have not pursued this, however, since the non-
stabilizerness along the |Z3) orbit is smaller than for the
|0) state.

Appendix C: Robustness of Magic

In Sec IT we introduced the mixed state SRE for a two-
site density matrix as an experimental ”witness” for cal-
culating SREs. However, there are other potential magic
monotones that could be considered. In addition to the
mixed state SRE, we also studied a different measure for
local non-stabilizerness called the “Robustness of Magic”
(RoM) [18, 32, 69] which quantifies the minimal weight
of stabilizer states that yields a stabilizer state when
mixed with a density matrix p. Since the set of stabilizer
states is overcomplete, it is possible to decompose p into
a weighted sum of stabilizer states, p = Y. X;S;, where
S; is a stabilizer state, while satisfying the normalization
constraint ) . X; = 1. For p to have non-stabilizerness,
at least one of the weights must be negative. Therefore
the ROM is expressed as a convex optimization problem:

R = inf Xi|—1: AX = B}, C1
it (1 b

where A,p = tr(c*Sg) and B, = tr(c®p), with o as
a two-qubit Pauli string. However, the RoM is known
to be multiplicative under tensor product, therefore we

x = 8 using iTensor [60] with fixed V = 1 and interactions
truncated beyond next-nearest neighbors.

instead define the “log-free” RoM In(R + 1) [21] which
is additive under tensor product and allows for a better
comparison with SREs.

Figure 4(a) shows the RoM for the two-site unit cell
MPS in Eq. (15). While the RoM captures some of the
arrowhead-like structure of the SRE, it diverges dramat-
ically from the SRE in the long-range non-stabilizerness
regions we identified in Fig. 1(d). Noticeably, a large
area of stabilizerness is created at the centre of the unit
cell where the points of the arrow-heads should be lo-
cated. In Fig. 4(b) we plot the phase diagram of the
log free robustness of magic, In(R + 1), for the ground
state of the Rydberg model. This measure produces more
qualitative accuracy with the original phase diagram in
Fig. 3(a) compared to the two site PXP phase diagram
in Fig. 1(c). Therefore, the RoM could also be used as a
measure of local non-stabilizerness similar to mixed state
SRE’s. This metric is able to approximately capture the
W-shaped band of non-stabilizerness that emanates from
A =~ 0 and extends to larger Q.

Appendix D: Non-stabilizerness of PXP eigenstates

In the main text we focused on the PXP model and
explored the non-stabilizerness generated under its quan-
tum dynamics. Here we turn our attention to the non-
stabilizerness of energy eigenstates of the PXP model.
One of the remarkable properties of this model is that it
has a few eigenstates in the middle of the energy spec-
trum that can be written as exact low bond-dimension



MPS [52]. This will allow us to directly evaluate their
SRE with the replica MPS approach outlined above and
in the main text.

First, we analyze two exact scarred eigenstates with
energy E = 0 exactly in the middle of the spectrum. As-
suming even chain lengths and periodic boundary condi-
tions (PBCs), these states were written down in Ref. [52]
using the following MPS ansatze:

1) = > (B OB O oy ... o) (D)

{oi}
o) = Z tr(ClegQ...CfN’le\,Nﬂal ...on){D2)
{oi}

with the MPS matrices given by

100 000
B® = (0 1 0>’ Bl\@<1 0 1)’ (D3)

0 —1 10
c®= (1 0|, ct=v2{0 0 (D4)
0 0 -1 0

For |¢1) and |1), we find that m(?) ~ 0.376, which is sig-
nificantly larger than, e.g., the SRE at the critical point
of the Ising model. However, we find that the SRE of
these eigenstates is slightly smaller than maximal SRE
we found in the main text.

Apart from the MPS states in Egs. (D1)-(D4), the
majority of PXP eigenstates are believed to be volume-
law entangled [41]. Hence, we will rely on Markov
chain Monte Carlo sampling to evaluate their SRE. This
method overcomes the 4V scaling of the exact evalua-
tion of the SRE, but it comes at the cost of generally
poor convergence with the number of samples required
for accurate convergence being Ny ~ 1 x 106.

At energy E = 0 in the middle of the spectrum, similar
to the MPS states in Egs. (D1)-(D4) above, there are also
some volume-law entangled states that can be written
down in analytic form. For example, for a spin-1/2 PXP
chain with PBCs and size N = 2L, where L is the size of
the half chain, an exact volume-law entangled eigenstate
at energy E' = 0 is given by the following “rainbow”-like
state [70]:

By = —— S ()M f)y @ 1f) 0 (DD)
|FL| feFL

where F7, is the set of bitstrings for a chain of L spins with
PBCs and respecting the Rydberg blockade constraint.
The normalization |FL| = ¢1,—1 + @r+1 is given in terms
of Fibonacci numbers, ¢,,, while | f| denotes the parity of
a given bitstring. Performing the Monte Carlo sampling,
we computed the SRE of the |E) state for several sys-
tem sizes L, obtaining the L — oo extrapolated SRE of
m(® = 0.180 4 0.008. This implies that, in the thermo-
dynamic limit, the |E) state is closer to a stabilizer state
compared, e.g., to the peak in the SRE of the critical
Ising model. Intuitively, this may be expected due to the
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Figure 5. (a) Overlap between the |Z3) and all eigenstates of
the PXP model plotted as a function of their energy. Each
eigenstate is colored by its m® value (color bar) obtained by
Monte Carlo sampling. (b) SRE of the PXP eigenstates as a
function of their energy E. In both panels, the crosses indicate
the scarred eigenstates. The simulations were performed for
the PXP model with N = 14 spins with OBCs and in the
P = +1 parity sector, using 300000 Monte Carlo samples.

sparse structure of the |E) state when we consider the
Hilbert space of the entire 2L chain. Additionally, the
non-zero amplitudes on basis states in |E) are uniform,
requiring fewer non-Clifford gates to construct the state.

Finally, in Fig. 5 we study the SRE of all eigenstates
in the PXP model with N = 14 spins. We use exact
diagonalization (ED) to extract the eigenstates and then
apply Monte Carlo sampling to obtain their SRE. Here
we assume open boundary conditions (OBCs) while also
resolving parity symmetry. We found that OBCs result
in a much better convergence of the Monte Carlo sam-
pler compared to PBCs. Fig. 5(a) shows the overlaps
of eigenstates with the |Zy) state as a function of their
energy F, with the color bar showing m(® of each eigen-
state. We also highlight the scarred eigenstates using
crosses. The bulk of the spectrum contains a large den-
sity of thermal eigenstates with large non-stabilizerness.
Towards the edges of the spectrum, we see a noticeable
drop in m(®| indicating that the ground state and low-
energy excitations are closer to stabilizer states.

To isolate the non-stabilizerness of the scarred states,
we plot the SRE of the eigenstate spectrum in Fig. 5(b)
and also label the scarred states. The ground state of
the spectrum has the lowest SRE of the spectrum with
a value comparable to the SRE of the 1D critical Ising



model [24, 36]. The scarred eigenstates exhibit a roughly
linear increase of SRE until we reach the mid-spectrum
eigenstates with the largest overlap on |Z3) state. We
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note that any asymmetry in the plots in Fig. 5 around
FE =0 is due to accidental degeneracies in the spectrum
or convergence issues in Monte Carlo sampling.
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