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ClusterNet: Classifying Single-Molecule Localization
Microscopy Datasets with Graph-Based Deep Learning of

Supracluster Structure

Oliver Umney, Hayley Slaney, Christopher J. M. Williams, Philip Quirke,

Michelle Peckham,* and Alistair P. Curd*

Single-molecule localization microscopy (SMLM) data can reveal differences in
protein organization between different disease types or samples. Classification of
samples is an important task that allows for automated recognition and grouping
of data by sample type for downstream analysis. However, methods for classifying
structures larger than single clusters of localizations in SMLM point-cloud datasets
are not well developed. A graph-based deep learning pipeline is presented for
classification of SMLM point-cloud data over a field of view of any size. The pipeline
combines features of individual clusters (calculated from their constituent local-
izations) with the structure formed by the positions of multiple clusters (supra-
cluster structure). This method outperforms previous classification results on a
model open-source DNA-PAINT dataset, with 99% accuracy. It is also applied to a
challenging new SMLM dataset from colorectal cancer tissue. Explainability tools
Uniform Manifold Approximation and Projection and SubgraphX allow exploration

proteins or other labeled targets in a sample.
As SMLM has become more accessible and
used for a wider variety of problems, many
tools have been developed to analyze these
point clouds.?

Sample classification is an important
step in analysis, allowing for automated
recognition of sample type and down-
stream aggregation and analysis of data
from many samples of the same type.
Using deep learning (DL) algorithms for
this task may also facilitate biological dis-
covery, despite only having sample-level
labels (weakly supervised).”! While DL
algorithms have classified SMLM data of
complex structures such as whole cells,

of the influence of spatial features and structures on classification results, and
demonstrate the importance of supracluster structure in classification.

1. Introduction

Single-molecule localization microscopy (SMLM) is widely used
for determining protein organization at the nanoscale and has
opened up new possibilities for understanding disease and other
biological conditions. Unlike conventional imaging techniques, it
generates a list of high-precision coordinates (point cloud) of

they have first rendered the data as a pixe-
lated image, sacrificing the full potential of
the precision gain of SMLM over conven-
tional imaging, and hence the information
available.[*!

Existing pipelines for classifying SMLM point-cloud datasets
do not extend to classification of structures larger than single
clusters of localizations. Current methods focus on classifying
individual localizations and clusters, using either predetermined
(handcrafted) features of clusters, such as cluster area and
length,!®"* or more abstract cluster features learnt automatically
by a point- or graph-based DL network.'*™® However, the
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arrangement of multiple clusters in a sample (the supracluster
structure), as well as the combination of the features of the dif-
ferent clusters, is likely to hold important biological information.

Extending algorithms using handcrafted cluster features to
complex localization patterns such as multiple clusters is not
straightforward, requiring new calculations for features that
would discriminate between them. Point- and graph-based DL
pipelines have also been limited to classifying localizations
and clusters, and ignore the sample-level supracluster structure.
Particle averaging has been used to classify more complex pat-
terns than handcrafted features have typically described, but is
still restricted to classification of single particles with highly con-
sistent structure.'”'® New methods are therefore required for
the classification of variable and complex structures in SMLM
data, including whole fields of view (FOVs).

Here, we present a DL classification pipeline for SMLM point-
cloud datasets that incorporates supracluster structure. We have
developed ClusterNet, a graph-based DL network, to classify
graphs constructed from clusters in the localization data. The
clusters in each graph are each represented by discriminative fea-
tures extracted from their constituent localizations, alongside the
cluster coordinates, thereby retaining the original precision of
the localizations.

We demonstrate this new pipeline on a model, open-source
SMLM dataset of DNA-PAINT localizations from DNA origami
nanostructures designed to resemble a selection of Digits and
Letters."” We present implementations of ClusterNet using both
handcrafted features of individual clusters and features learnt with
a neural network, achieving balanced classification accuracy of
99% across the dataset, improving on previous workflows.[*81°!
Further, we include and demonstrate the use of DL explainability
algorithms to interpret the output of ClusterNet, for a data-driven
exploration of the results.”! Finally, we apply ClusterNet to a chal-
lenging new SMLM dataset from colorectal cancer tissue and com-
pare performance using different data preprocessing algorithms
and parameters. Localizations in SMLM FOVs of any spatial extent
and complexity may be clustered and used as input to ClusterNet,
allowing sample-level classification from the entire point cloud.

2. Results

2.1. Classification Pipeline and Performance

To classify 2D SMLM datasets using only the xy localization
coordinates, we developed a pipeline that includes the supraclus-
ter structure using graph-based DL models, and explores the
important features and substructure used in classification via
Uniform Manifold Approximation and Projection (UMAP)
and SubgraphX.1?*?! We tested two novel classification models,
ClusterNet-handcrafted cluster features (HCF) and ClusterNet-
learned cluster features (LCF), which combine per-cluster fea-
tures of clustered localizations with the spatial arrangement
of those clusters in a graph neural network (Figure 1).
ClusterNet-HCF passes handcrafted per-cluster features, for
example, area and perimeter, through a graph neural network,
ClusterNet. ClusterNet-LCF uses an additional point-based DL
module, LocNet, to embed per-cluster features for subsequent
classification with ClusterNet, in a single trainable network.
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We tested our pipeline on regions of interest (ROIs) from an
existing DNA-PAINT dataset acquired from DNA origami Digits
and Letters (Figure 1a)."® We chose this dataset for the following
reasons. It was large and contains point-cloud data with the spa-
tial coordinates and an estimate of their precision for each single-
molecule localization. It also had readily available ground truth
(GT) labels making it well-suited to training and validating a DL
model. Finally, our pipeline could be compared against previous
methods used to classify this dataset. The dataset additionally has
features characteristic of most SMLM datasets, such as clustered
localizations arranged in a nonrandom pattern and a wide range
in the number of localizations and the localization precision
between ROIs and classes (Table S1, Figure S1, Supporting
Information). As found for more complex biological datasets,
not all the localizations in each ROI contribute to the structure
being analyzed or were as relevant to the GT label (e.g., back-
ground localizations or localizations far from any binding site).

Both ClusterNet-HCF and ClusterNet-LCF classified the data
from the seven DNA origami structures in the dataset success-
fully. k-means clustering was used to preprocess the localization
data from the Digits and Letters (Methods), although any cluster-
ing algorithm could be applied. Both models achieved the maxi-
mum value of 1.00 for the area under the receiver operator curve
(AUROC,) for every class in the reserved test set. ClusterNet-HCF
outperformed ClusterNet-LCF on the reserved test set (Table 1)
and on the training, validation and test folds (Table S2—4,
Supporting Information).

ClusterNet-HCF and ClusterNet-LCF both outperformed pre-
vious results on the same dataset (Table 2). In addition, the accu-
racy for previous methods (nanoTRON and point cloud
registration) was calculated for classification within subsets
(Digits/Grid or Letters) of the seven classes of DNA origami
structure, whereas the accuracy of ClusterNet was from classifi-
cation over all seven classes, which is a harder task.'*'® The pre-
vious methods would be expected to give lower accuracies than
reported in Table 2, if tested on the same task as ClusterNet.

Classification performance (recall) was greater for the Digits
and Grid than the Letters (Table 1). This was expected as there
were misfolded DNA origami structures in the Letters dataset
which did not resemble the intended Letter."® This had less
impact on the Digits and Grid, as the authors of the published
dataset excluded some of the misfolded Digits and Grids in par-
ticle picking."® There may be an additional contribution to this
from the imbalance in the validation dataset used during training
(fewer Letters than Digits and Grid), despite attempts to mitigate
this with weighted random sampling of the training set based on
the prevalence of each class.

2.2. Feature Analysis via UMAP

The relative discriminative power of the handcrafted and deep
features for the clusters was measured by comparing the sepa-
ration of the clusters for each class in a 2D representation of the
feature space generated using UMAP.” Isolated per-cluster
features, with no incorporation of supracluster structure, were
not able to separate the classes, except for the Digit 3 (Figure 2a,
d). However, the handcrafted features did slightly separate the
Letters T, O, and L from Digits 1 and 2 and the Grid (Figure 2a).
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Figure 1. SMLM data classification pipeline. a) Example SMLM ROls for each DNA origami structure, with GT labels below.'" Scale bar: 13 nm.
b) Clusters of localizations from an ROl with GT Digit 3, colored by cluster identity. c) Graph representation of the ROl in (b) with localization nodes
(gray dots), cluster nodes (black dots), and edges. d) Handcrafted features (in ClusterNet-HCF) or automatically learnt features from DL (in ClusterNet-
LCF) are extracted for each cluster, and the graph composed from these clusters is passed to ClusterNet to give a final prediction (PRED). e) 2D repre-
sentation of cluster or graph embeddings from UMAP, colored by GT (reserved test dataset, graph-level features in this case, black arrow: ROl in (b—d).
f) Important subgraph (green nodes) for classification, extracted using SubgraphX.

Table 1. Classification performance on the DNA origami dataset. Recall values for ClusterNet-HCF and ClusterNet-LCF on the reserved test set.

Digit 1 Digit 2 Digit 3 Letter T Letter O Letter L Grid Mean £ S.D.
ClusterNet-HCF 0.99 0.98 1.00 0.96 0.99 0.99 1.00 0.99 +0.01
ClusterNet-LCF 0.97 0.94 1.00 0.93 0.95 0.91 0.99 0.96 +0.03

This reflected the differences in the DNA origami structures,
where the Digits have continuous structures with no spaces
between their binding sites, while the Letters have discrete
structures, with groups of binding sites well-separated from
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each other.™® The deep cluster features generated by LocNet
did not separate the Digits and Letters but better separated
the Grid, suggesting that they captured different aspects of
the input data to the handcrafted features (Figure 2d). Digit
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Table 2. Classification performance compared with previous methods on
the DNA origami dataset. Accuracy values for ClusterNet-HCF and
ClusterNet-LCF on the reserved test set and closest comparisons with
previous methods, nanoTRON and point cloud registration.'®

Model Digits and Grid Letters

nanoTRON ~98% (n=74k)>® n/a?
96.4% (n = 5000)><) 89.0% (n = 600)>°
99.1% (n = 960)>" 98.2% (n = 720)>

97.4% (n = 960)>" 93.1% (n =720)>"

Point cloud registration
ClusterNet-HCF
ClusterNet-LCF

IThe test dataset was reserved from a larger dataset, formed from 11-fold expansion
(via data augmentation) of 21 k unique ROIs./! ¥ Accuracy for ClusterNet-HCF and
ClusterNet-LCF included misclassifications between all Digits/Grid and Letters
structures. Accuracy for point cloud registration included misclassifications only
within either Digits/Grid or Letters subsets (not between them). nanoTRON was
only tested on Digits/Grid structures. 9The dataset included only Digits and
Grid. 95000 ROIs were randomly sampled from all ROIs over all Digits and Grid
classes. ©Accuracy when misfolded DNA origami Letter structures were classified
as one of the three Letters (with no extra “misfolds” class), as in our method.
200 ROIs sampled per GT class. "Calculated from Table S5, S6, Supporting
Information. 240 ROIs per GT class in reserved test dataset.

www.small-science-journal.com

3 may have been separable at the per-cluster level because it had
a significantly different localization density from the other clas-
ses (Figure S1 and Table S1, Supporting Information).
However, the remaining classes could not be separated based
on differences in localization density alone, as they had a simi-
lar average number of localizations per ROI (Figure S1 and
Table S1, Supporting information).

The cluster features generated by ClusterNet significantly
improved separation into each class, showing the importance
of considering the supracluster structure via information from
neighboring clusters (Figure 2b,e). Similar to the handcrafted
and LocNet cluster features, the Grid and Digit 3 classes were
the most clearly separated for both models. The remaining
Digits, 1 and 2, were separated from the Letters, although there
was significant overlap within these two groups.

The whole-graph features further improved the separation of
the classes (Figure 2¢,f). This showed the importance of moving
from per-cluster to whole-graph features, highlighted by Digits 1
and 2 which changed from overlapping to well-separated for
ClusterNet-HCF (Figure 2b,c). ClusterNet-HCF had the most
compact and well-separated representations, reflecting its

ClusterNet-HCF

ClusterNet-LCF

Isolated per-cluster features

UMAP2

ClusterNet (per-cluster)

ClusterNet (whole-graph)

@ Digit 1
® Digit 2
Digit 3
® Letter T
Letter O
©® Letter L

UMAP1 ® Grid
Figure 2. Feature analysis of SMLM ROI classification results. 2D feature representations (from UMAP) for the ROls in the reserved test set, for
a—c) ClusterNet-HCF and d—f) ClusterNet-LCF. The features incorporate larger structure from left to right: (a,d) isolated per-cluster handcrafted or
LocNet embedded features; (b,e) per-cluster features after message passing but before global pooling in ClusterNet; and (c,f) whole-graph features
aggregated from ClusterNet.
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classification performance (Figure 2c). The Letters and Digits 1 ~ from the rest of their class members, measured by the distance
and 2 were still assigned into two distinct groups. to the centroid of the class features (e.g., Figure 3a: ROI1, ROI2).
After graph representation and classification (Figure 3b,d),
SubgraphX returned the most important subgraph for the
classification that it found (Figure 3c,e; for parameters
see Experimental Section in Supporting Information). Positive
and negative fidelity metrics (Fid+, Fid-) measured the necessity
and sufficiency, respectively, of the subgraph for the classifica-
tion (Methods; best performance: Fid+ = 1, Fid— = 0; worst per-
formance: Fid4+ =0 and Fid— = 1).*?

An exemplary graph closest to its class members (Figure 3a:

2.3. Structure Analysis via SubgraphX

Different classes may be distinguished by the arrangement of
some or all of their clusters (supracluster structure). We tested
a method for identifying these structures by finding the impor-
tant parts of a cluster graph for the classification of an SMLM
ROI. SubgraphX searches for the most important subgraph
for the graph classification,”" in this case a subset of clusters
and their supracluster structure. We analyzed the classification =~ ROIl) was from a clear DNA-PAINT example of a Digit 3, correctly
results from ClusterNet-HCF (the best performing model). predicted (Figure 3b). The subgraph identified by SubgraphX was

The 2D representation of the whole-graph feature space both necessary and sufficient for the classification (Fid+: 1.0,
(Figure 2c) allowed us to choose ROIs closest to and furthest Fid—: 2.6 x 10°) and reflected the Digit 3 shape that would be

(a)

ROI2 o Digit 1

e Digit 2
Digit 3

o Letter T
Letter O

Letter L
UMAPT ¢ Grig |

/
UMAP2

(b) (c)
5 - ]
14
/
GT: Digit 3 F@d+: 1.0
- PRED: Digit 3 Fid-:2.6 x 10°®
(d) (e)
5 —> >
m .
. GT: Letter O Fid+: 0.96
- PRED: Letter T Fid-:2.5 x 102
ClusterNet-HCF classification SubgraphX analysis

Figure 3. Structure analysis of SMLM ROI classification results. a) 2D whole-graph feature representation (from UMAP) for ClusterNet-HCF for the
reserved test dataset ROls, highlighting ROIs with whole-graph features (from their classified cluster graph) closest to (ROIT) or furthest from
(ROI2) their fellow class members. Classification and structure analysis of b,c) ROI1 and d, e) ROI2. (b, d): DNA-PAINT localizations (scale:
13 nm) represented as a graph and classified by ClusterNet-HCF (GT: ground truth, PRED: prediction). Localizations in graph representation colored
by cluster identity. (c, €): SubgraphX results, showing important subgraph (supracluster structure) for class prediction (green nodes). Positive fidelity
(Fid+) and negative fidelity (Fid—) measure the necessity and sufficiency respectively of the important subgraph (best performance: Fid+ =1, Fid— =0;
worst performance: Fid4+ =0 and Fid—=1).
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expected (Figure 3c). An example furthest from its class members
(Figure 3a: ROI2) may have been a misfolded item, as there only
appear to be three well-separated groups of localizations whereas
the Letter O (the GT label) should have four (Figure 3d and
Figure 1a)."® It was incorrectly predicted as the Letter T, which
was reflected in its location near the other Letter Ts in the
UMAP representation (Figure 3a, d). The subgraph extracted by
SubgraphX was important for its classification (Fid+: 0.96,
Fid— 25x107% and resembled the Letter T structure
(Figure 3e and Figure 1a). In general, the important subgraph
for incorrectly classified ROIs did not appear to reflect the struc-
ture expected of the correct class (Figure S2, S3, Supporting
Information), and a closer resemblance to the incorrectly predicted
class could sometimes be discerned (Figure S2h,],m,n and Figure
S3b, Supporting Information). This suggests that this approach
could allow us to begin to identify specific patterns in the supra-
cluster structure that lead to classification results in SMLM data-
sets, including misclassifications (further results in Figure S4,
Table S7, and Table S8, Supporting Information).

We also note that some clusters appeared outside of the
designed DNA origami patterns, arising from imperfections
in the original sample and raw data acquisition, influencing clas-
sification with ClusterNet (Figure S2a,eh and Figure S3c,
Supporting Information). SubgraphX showed that these spuri-
ous clusters were sometimes considered important in classifica-
tion (Figure S2ah, Supporting Information), also explaining
some incorrect results (Figure S2h, Supporting Information).

2.4. Classification of Direct Stochastic Optical Reconstruction
Microscopy (dSTORM) Biological Dataset

To determine if this pipeline can be used to classify more com-
plex biological datasets and other SMLM techniques, we tested its

(a) (b)

No-response

Manual annotation of
cells using locpix

www.small-science-journal.com

ability to classify a dataset of dSTORM localizations for epiregu-
lin (EREG) in tissue sections. The dataset was obtained by imag-
ing cells (n=163) stained for EREG in tissue microarrays
(TMAs) from colorectal cancer patients (n=23) (Figure 4,
Figure S5 and Table S9, Supporting Information).?***1 The
TMAs were obtained from patients classified by their response
(no-response vs. any-response) to anti-epidermal growth factor
receptor (EGFR) treatment. This dataset is more challenging
to classify, because the localizations have a lower signal-to-noise
ratio than the Digits and Letters dataset, and the classes are not
visually identifiable from reconstructed images of the cells.

The ClusterNet-HCF pipeline successfully classified the cells.
After changing the number of clusters identified in preprocess-
ing from k=12 to k=96, the AUROC reached 0.70 £ 0.15 and
balanced accuracy was 0.64 & 0.14. This suggests that the spatial
organization of the ligand EREG may help predict response to
anti-EGFR treatment.

We also investigated the effect of the clustering algorithm and
parameters in preprocessing on classification results for this
dataset. k-means and density-based spatial clustering of applica-
tions with noise (DBSCAN) were compared over a wide range of
parameters (Table S10, Supporting Information). For k-means,
both AUROC and balanced accuracy improved when k=12
was increased to k = 96, showing the importance of fine-tuning
the graph representation for each task. DBSCAN, with € = 50 nm
and minPts = 3, achieved the same AUROC as k-means with
k =96. However, the variance in AUROC was greater between
the test folds (greater uncertainty in performance on unseen test
data) and balanced accuracy was decreased. We also found that
k-means was more robust to changes in parameters than
DBSCAN, which had large differences in results for small
changes to € and minPts. Of note, removing some of the prepro-
cessing steps such as filtering localizations and cells made little
difference to results (see Supporting Information).

k=96

2,

W

Clustering and graph-representation
of cells

Figure 4. Classification of cells from advanced colorectal cancer patients by response to anti-EGFR treatment. a) Example dSTORM image of EREG in a
tissue section, from a patient that did not respond to treatment. b) EREG localizations for each cell, manually annotated using locpix (red lines: mem-
brane, blue crosses: cell centers).l*% c) Localizations for a cell from (b), clustered using k-means for k=12 or 96 clusters (color: cluster identity). Graph

representations are overlaid (black dots: cluster nodes).
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3. Discussion

We have demonstrated a pipeline for classifying SMLM fields of
view, combining per-cluster features extracted from the localiza-
tion pattern with supracluster structure extracted via graph-based
DL (ClusterNet, Figure 1). Per-cluster features may either be
handcrafted and fully interpretable (e.g., cluster area, perimeter)
or also obtained from DL (LocNet). We have also incorporated
analysis of the features and structures learnt during classifica-
tion. UMAP allowed investigation of cluster and supracluster
structure feature embedding.?® It demonstrated that supraclus-
ter structure was required to separate the classes in the Digits
and Letters dataset and revealed subpopulations such as Digit
vs Letter structures without user specification (Figure 2).
SubgraphX identified the important subgraphs (subsets of clus-
ters in their supracluster arrangements) for classification
(Figure 3).2!

Combining handcrafted features (HCF) with ClusterNet
(ClusterNet-HCF) outperformed the model that extracted deep
features at both the per-cluster and whole-graph scale
(ClusterNet-LCF) (Table 1, Figure 2c, f). This shows that incor-
porating known handcrafted features can boost classification
performance, besides being more interpretable. In other
SMLM datasets, deriving discriminative handcrafted features
may be more difficult. We anticipate that generating cluster fea-
tures via DL, as with LocNet, will be more useful in these cases.
Further, extending ClusterNet-LCF to include photophysical
parameters as features of the localizations, or weighting local-
izations by these parameters in the calculation of handcrafted
features, could allow the model to account for localization
uncertainty.

Our classification pipeline outperformed previous methods
applied to the Digits and Letters dataset (Table 2). One was
designed for particle fusion and requires no training and mini-
mal supervision,['® and the other was an image-based model. Tt
is likely that an alternative image-based method could match our
classification performance, but it would require large images
(e.g. 1 pixel per nm) to incorporate the high precision of the
SMLM data as the localizations are binned into pixels.'*?)
Such rendering does not scale well for larger ROIs or when mov-
ing from 2D to 3D SMLM data, as the size of the image increases
exponentially." Instead, point-based methods such as ours can
be simply extended without a large increase in the size of the data
representation. For ClusterNet, this would include changing the
handcrafted features to characterize 3D rather than 2D shapes
(e.g., area to volume), changing the dimension of the position
vector for each localization and node from 2D to 3D and includ-
ing 3D rotations during training to learn invariance to rotations
not in the optical plane.

Analyzing high dimensional features of SMLM data can help
to identify and investigate the underlying substructures that
distinguish different SMLM data structures. This has mainly
been restricted to visualization of the features in a lower-dimen-
sional space, via dimension reduction techniques such as
UMAP.P101426] gor the Digits and Letters dataset, this revealed
intraclass variability and identified misfolded structures by visu-
alizing graphs closest to and furthest from the center of the class
(Figure 3 and Figure S2, Supporting Information), without
requiring an additional class to capture the misfolds.!"®
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DL explainability algorithms can more directly identify the
underlying substructures, by measuring their impact on the
model’s prediction. So far this has been used on SMLM data rep-
resented as images, but not on graph representations.”” For the
Digits and Letters dataset, SubgraphX was used to identify the
discriminative substructure in each FOV represented as a graph.
In some cases, this was able to identify substructure that aligned
with our knowledge of the GT (Figure 3). However, future work
is required to make it more reliable, if this is to be applied to
other SMLM data.

In this study, the pipeline was demonstrated on DNA-PAINT
and dSTORM data, but the pipeline could be applied to a broad
range of SMLM data from other techniques that generate point-
cloud data (e.g., PALM) photoactivated localization microscopy.
Our datasets had characteristics common to most SMLM data
(e.g., being clustered or containing localizations that are less rel-
evant to the classification task), making them a useful proof of
concept. Moving between these different techniques or experi-
mental conditions should not significantly affect handcrafted fea-
tures that capture the overall shape and size of clusters. Learnt
cluster features can adapt to any differences, as seen by the range
of data types (e.g. 3D shapes, indoor and outdoor scenes etc.) that
point-based DL networks have been applied to.””! The model can
then be retrained or adjusted to adapt to any remaining differ-
ences, for example, increasing the number of clusters improved
the accuracy of ClusterNet for the dSTORM data from cells. To
further improve the classification performance on the cells, other
modifications to the pipeline could be tested, such as: including
more handcrafted features, increasing the number of layers in
the network, changing how the localizations and cells are filtered
during preprocessing, or including another level of clusters
(localizations, clusters, super-clusters) to better capture larger
structures in the data.

ClusterNet can be applied to complex biological samples as we
show here. ClusterNet was able to classify tumor samples into
response and no response to treatment. The drop in classification
performance compared to the Digits and Letters reflects the chal-
lenge of classifying complex biological samples, with lower
signal-to-noise ratio and with fewer ROIs available for model test-
ing. Results on the tumor samples also highlighted factors that
may impact classification performance, such as how the data is
preprocessed or the choice of graph representation and cluster-
ing technique. Furthermore, the TMAs contain multiple cell
types, some of which may not change their expression or orga-
nization of EREG in cancer (e.g., lymphocyte, enterocyte, etc.),
and which could not be identified from the dSTORM data.
These cells could therefore not be excluded from the annotation
stage, which is likely to have affected the overall classification
performance metrics. With further development, this pipeline
could be used to differentiate between disease conditions or bio-
logical states from SMLM data on cells and tissues, refining cur-
rent techniques in pathology that use ligand expression.**"
ClusterNet can therefore contribute to realizing the use of
SMLM data as a new modality in characterization of phenotype,
classification of disease progression and prediction of response
to treatment.?' 4 We also provide a new route to increased
understanding of disease and other biological processes through
downstream feature and structure analysis.

© 2025 The Author(s). Small Science published by Wiley-VCH GmbH
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4. Experimental Section

Digits and Letters Dataset: To develop and test our pipeline we used the
open-source Digits and Letters dataset from.'” Further details on how
these datasets were acquired can be found at!l for the Digits and Grid
and at!'® for the Letters. The dataset comprises 22 047 SMLM ROls from
DNA-PAINT data acquired from DNA origami structures, with one struc-
ture per ROl This included Digits (4155 x Digit 1, 4943 x Digit 2,
2541 x Digit 3), Letters (1161 x Letter L, 991 x Letter T, 560 x Letter
0), and a 3 x 4 grid (7696 x Grid), imaged separately per class.[*'®
The number of localizations per ROI and localization uncertainty for each
class are visualized and characterized in Figure S1 and Table S1,
Supporting Information.

Tumor Dataset from the PICCOLO Trial: PICCOLO was a randomized
phase Il trial of second-line irinotecan with or without panitumumab
(anti-EGFR therapy) in advanced colorectal cancer.”*?* As part of the trial,
pretreatment tumor samples were collected from each patient (mainly
from the primary tumors but with ~5% from metastases). Best response
by Response Evaluation Criteria In Solid Tumors (RECIST) criteria within 1-
year follow-up from randomization was recorded.?***!

In our study, we imaged cells in tumor cores from the preconstructed
formalin-fixed paraffin-embedded (FFPE) TMA blocks from PICCOLO, pre-
ferred over whole slides to minimize time identifying tumor regions and
increase throughput. Only patients who received anti-EGFR therapy (pan-
itumumab arm) and tested wild-type (WT) for confounding genetic muta-
tions were included (mutations in KRAS codons 12, 13, 61, and 146; NRAS
codons 12, 13, and 61; and BRAF codon 1799 T > A). Patients with BRAF-
mutant tumors were excluded because anti-EGFR therapy is less effective
for this subgroup.® The best response variables (from RECIST) were
grouped into any-response (complete response, partial response) and
no-response (radiological progression, clinical progression, death), with
patients that only achieved stable disease excluded to simplify the
problem.

Sample Preparation and SMLM Imaging for the Tumor Dataset: 3 pm sec-
tions were cut from each preconstructed FFPE TMA block and placed on
APES-coated 1.5 H coverslips. Coverslips were placed on a hotplate at
70°C for 30min and then inside a pressure cooker with Reveal
Decloaker (pH 6.0) for antigen retrieval. At room temperature, samples
were then quenched with ammonium chloride for 15 min, permeabilized
with 0.5% Triton-X in (PBS) phosphate buffered saline for 1 h and blocked
with 3% bovine serum albumin (BSA) plus 20% donkey serum for 1h.
Samples were then incubated with Roche RTU anti-EREG antibody
(SP326: rabbit monoclonal, Roche) overnight at 4 °C and then with donkey
anti-rabbit Alexa 647 for 1 h at room temperature.

Each section contained samples from up to ~30 patients, with three
tumor cores (preselected from the region of highest tumor) per patient.
For each patient included in this study, the core with the highest tumor
content (greatest area of anti-EREG staining in widefield scans) was
selected for imaging. One FOV was imaged at the region of greatest stain-
ing within the core.

To image the samples, we performed total internal reflection fluores-
cence microscopy dSTORM imaging using a commercial system
(Nanoimager, ONI, UK) and a 100 x 1.4 NA oil-immersion objective lens
with a 50 x 80 pm FOV. Samples were bathed in STORM buffer (B-cubed
buffer, ONI, BCA0017). Using an exposure time of 30 ms, 10 000 frames
were acquired using 640 nm laser excitation at 80% power of the maxi-
mum excitation output of the Nanoimager. 2D localization of fluorescence
emission events was performed while imaging using NimOS (ONI).

Drift correction, filtering, and temporal grouping for each FOV were
performed using CODI (COllaborative Dlscovery platform from ONI;
https://oni.bio/nanoimager/software/codi-software/). Localizations with
>30 000 photons, with a standard deviation of the fitted point spread func-
tion (PSF) <75 nm or >200 nm, with a p-value for the fitted PSF above
0.01 or with a localization precision >25nm were removed.
Localizations within 60 nm and no more than two frames apart were
grouped, removing those that existed for longer than five frames. The data
in its proprietary format was then converted into an Apache Parquet file, a
column-oriented data format which can be more efficient for querying and
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storing than.csv files (https://parquet.apache.org/). For each localization,
the channel, frame number, and xy coordinates were stored.B7]

Preprocessing and Clustering the Digits and Letters Dataset: Each ROl was
preprocessed and clustered in preparation for feature extraction and graph
representation as follows. The point cloud was initially partitioned into
clusters following a similar approach to PointTransformer V2.8 First,
the xy localization coordinates for each ROl were converted from a
MATLAB to an Apache Parquet file and labeled in the metadata according
to the character they represent. This gave seven classes (Digit 1, Digit 2,
Digit 3, Letter T, Letter O, Letter L, or Grid). Next, k-means clustering was
applied to each ROI with k set to 12 to ensure every well-separated group
of DNA-PAINT binding sites was recovered (Grid had 12 well-separated
binding sites; Digits had more binding sites, but not well-separated).
Clusters with two or fewer localizations were discarded to allow future cal-
culation of the convex hull and principal components. We chose k-means
clustering over DBSCAN, as DBSCAN requires careful tuning of two hyper-
parameters rather than one and risks dropping many important localiza-
tions considered as noise.*”!

Cell Annotation, Preprocessing, and Clustering: Cells within FOVs were
annotated and their localizations extracted using locpix.?! First, the unfil-
tered localizations were rendered into a histogram to facilitate annotation.
The membranes of cells with low intensity at their center and high intensity
at their membrane were annotated, generating a membrane mask.
Annotations were either closed with themselves or the edge of the
FOV. Cells were ~5-15um in diameter and could be at the edge of
the FOV (only partially visible). The cell-containing region was generated
by flood-filling the membrane mask at seed locations manually placed at
the cell centers. The watershed algorithm was then applied to the mem-
brane mask, over the cell-containing region, to generate the individual cell
masks. Having first checked these annotations still correctly overlaid the
higher quality localizations (with drift correction, filtering, and temporal
grouping), the cell masks and membrane annotations were used to extract
the higher quality localizations for each cell and label each localization
according to its location (membrane or interior). All localizations not part
of a cell were removed. Cells with fewer than 500 localizations, or with
fewer than five interior or membrane localizations, were removed. The
xy localization coordinates for each cell were saved as an Apache
Parquet file with a label in the metadata for the treatment response
(any-response or no-response). This gave 163 cells (no-response: 117,
any-response: 46) from 23 patients (no-response: 18, any-response:
5) in which the numbers of cells per patient were unequal, ranging from
1-31 cells per patient (Figure S5, Supporting Information).

Each cell was clustered in preparation for feature extraction and graph
representation. We trialed k-means clustering, with k=12, 24, 48, 72, 96,
120, or 144, and DBSCAN clustering, with epsilon, e =50 nm, 75 nm, or
100 nm and minimum samples, minPts =3, 5, or 7. The DBSCAN param-
eters were set to similar values as used in previous studies to identify clus-
ters of EGFR in SMLM data.*®*" Clusters with two or fewer localizations
were discarded to allow calculation of the convex hull and principal
components.

Handcrafted Feature Extraction: Eight handcrafted features were calcu-
lated for each cluster. First, the number of localizations per-cluster
(count), the mean squared distances of localizations within the cluster
from the cluster centroid (radius of gyration squared) and the perimeter
from its convex hull were calculated. Next, principal component analysis
was used to calculate the variance of the clusters along the two principal
components, Ao and A; where 1y > 1;. These were used to calculate lin-

earit M, planarit A1) length 2.35 %X Ag), and area
Y 7 Yy 7 g

(2.352 x Jg4q)of each cluster (the full width at half maximum of a
Gaussian is given by 2.35 times the standard deviation).*>**! In 3D, pla-

narity is given by %, where 1, is the third principal component.[*?
0

The data were 2D in this study, so A, =0 and linearity = 1—planarity,

which made one of linearity or planarity redundant. However, nothing

is lost by including the redundant features in 2D, except a small increase

in memory usage and training time. Finally, density for each cluster was

calculated by dividing count by area.
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Graph Construction: Each SMLM ROI (Digits and Letters) or cell (tumor
dataset) was represented as a graph using PyTorch Geometric.*Y Each
graph contained localization and cluster nodes (from clustering as
described), where each localization node belonged to its cluster node
and undirected edges connected each cluster node to itself and its
nearest five neighbors. The position of each localization node was
given by its coordinates and the position of each cluster node was
given by the center of mass of its constituent localizations. xy node posi-

2(x—min(x)) —1 and

tions were normalized to between —1 and 1, x— —————"2/
MaX(Xranger Vrange)

2(y—min(y) _
MaX(Xrange: Yrange)
the parent graph. Cluster nodes initially had either no features or the eight
handcrafted features depending on the downstream model (learnt or
handcrafted features). When present, these features, h, were normalized

%, where the minimum and max-
imum values were measured over the whole training set for the relevant
dataset. The localization nodes had no input features.

Data Partitions: For the Digits and Letters dataset, 20 367 graphs (Digit
1: 3915, Digit 2: 4703, Digit 3: 2301, Letter L: 921, Letter T: 751, Letter O:
320, Grid: 7456) were used for five-fold cross-validation. A further 240
graphs from each class formed a reserved test set. The five different splits
in cross-validation each contained a training (64%), validation (16%), and
test set (20%, nonoverlapping between splits). For each split, the training,
validation, and test set each had the same proportion of classes as the
overall cross-validation dataset.

For the cell dataset, the cells were partitioned for five-fold cross-
validation of model performance. The cell dataset was first divided into
five folds (groups of cells). Each fold was used for testing, with the remain-
ing four folds used for training. During training, 20% of this training set
formed a validation set, where the ratio of any-response to no-response
cells in the validation set was the same as in the training set, or as close as
possible. This was used to monitor performance on data not used to train
the model. The cells from a single patient could only be in one of the folds,
to ensure that none of the models were trained and tested on cells from
the same patient. Further, as best as possible, the folds had the same ratio
of any-response to no-response cells as in the overall dataset.

Model Architecture: Two different neural network models were
developed to classify each graph, ClusterNet-HCF and ClusterNet-LCF.
ClusterNet-HCF passed HCF, as described, and the positions of the
cluster nodes, through a novel graph neural network, ClusterNet.
ClusterNet-LCF instead generated cluster features via DL using an addi-
tional point-based module, LocNet, and passed them, with cluster posi-
tion, through ClusterNet in a single network. Brief descriptions of the
models are given below, with further details in Methods and Figure S6
in Supporting Information.

LocNet acted on each cluster independently, taking the constituent
localization node positions, p € R?, as input and embedding the localiza-
tions into a feature vector (length eight) for each cluster using
PointTransformer v1.1**% The feature vector was chosen to be length
eight to allow a fair comparison between ClusterNet-HCF, which used
an eight-dimensional input feature, and ClusterNet-LCF. Increasing the
dimension of this feature vector may allow ClusterNet-LCF to represent
and classify more complex structures. Output cluster node features from
LocNet were then scaled to between 0 and 1 using the sigmoid function.

ClusterNet acted on the graph of cluster nodes with their feature vec-
tors and their xy position. It was composed of four message passing layers
with PointTransformer convolutions, a global maximum pooling layer over
the cluster features, resulting in a feature vector for the graph, and a final
linear layer, generating a class prediction. When classifying the cells, the
number of output channels for the ClusterNet was changed from 7 to 2
(Figure S6, Supporting information).

Training Procedure: For each split in five-fold cross-validation, the model
was trained on the training dataset for 100 epochs using the ADAM opti-
mizer with a learning rate of 0.001, a weight decay of 0.0001, and a batch
size of 128 for the Digits and Letters or eight for the cells.l*”! During train-
ing, a weighted random sampler that oversampled from the minority class
and undersampled from the majority class was used to encourage equal

y— 1, where the minimum and range were measured over

to between zero and one, h —
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performance across the classes. Further, random rotations in the xy plane
were applied to the graphs for data augmentation. For each graph, the
model outputted the log probability for each class and the negative
log-likelihood loss was calculated. After each epoch, the model was evalu-
ated on the validation set. The model that gave the lowest loss on the
validation set over all the epochs was chosen as the best model.
Training for 100 epochs on a NVIDIA GeForce RTX 2060 with 6 GB
RAM took ~1.5 h for the Digits and Letters dataset and ~5 min for the
cell dataset. ClusterNet-LCF was trained in an end-to-end manner, mean-
ing that LocNet and ClusterNet were trained together as a single network.

Evaluation Procedure: The best model for each split was evaluated on
the test set for each split. For evaluation, each graph (without random
rotation) was classified according to the highest probability class from
the model. For the Digits and Letters the predictions for each class were
evaluated using recall and combined into a single metric for all the classes
using the arithmetic mean (balanced accuracy).*® For the cell dataset, the
predictions for both classes were evaluated using balanced accuracy for
binary classification.*®! The probabilities for each class were evaluated
using the AUROC.

Evaluation on the Reserved Test Set for the Digits and Letters Dataset: The
performance of ClusterNet-HCF and ClusterNet-LCF were ultimately com-
pared on the reserved test set. First, the entire dataset (excluding the
reserved test set) was split into a training (80%) and validation (20%)
set, by randomly taking ~20% of each class into the validation set.
Next, each model was trained on the training set and saved when the loss
was lowest on the validation set. These models were then evaluated on the
reserved test set following the evaluation procedure above.

Feature Analysis via UMAP: We used UMAP to visualize the per-cluster
and whole-graph features and to explore if they separated the classes. Four
sets of features were visualized: HCF, cluster features embedded by
LocNet, cluster features after the fourth message passing layer of
ClusterNet, and whole-graph features after the final maximum pooling
layer of ClusterNet. The handcrafted and LocNet features only consider
the structure at cluster-level and smaller and are later referred to as iso-
lated per-cluster features. The cluster features from ClusterNet have a
larger receptive field incorporating information from neighboring clusters.
Finally, the whole-graph features from ClusterNet pool information over all
constituent clusters. In all cases, features were normalized by subtracting
the mean and dividing by the variance of each feature independently, mea-
sured over the entire dataset excluding the reserved test set. UMAP gen-
erated a lower-dimensional (2D) representation of the features, with 20
neighbors for each feature vector and 0.5 minimum distance in the
lower-dimensional space. UMAP plots can be visualized interactively, dis-
playing the parent ROI, GT, and prediction.

Structure Analysis via SubgraphX: SubgraphX was used to identify struc-
tures in the graphs constructed from the cluster nodes (cluster graphs)
and their features (handcrafted or embedded by LocNet) that were impor-
tant for the classification.”") SubgraphX was preferred over similar meth-
ods due to its high performance in non-SMLM graph data benchmarks.!%!
SubgraphX searches for the most important connected subgraph in the
cluster graph by feeding subgraphs induced by different sets of nodes into
ClusterNet and measuring their relative contribution to the model’s pre-
diction (see methods section in Supporting Information). The optimal
subgraph was required to have no more than eight nodes, and the number
of rollouts was increased from 20 (default value) to 100, to minimize insta-
bility of the prediction (further details and parameter values in methods
section in Supporting Information).

Positive and negative fidelity scores measured the necessity and suf-
ficiency, respectively, of the optimal subgraph (subset of cluster nodes)
for the prediction.??! They calculated the difference between the prob-
ability of the predicted class when the whole graph was fed into the
model, and when the graph minus the subgraph (positive fidelity) or
only the subgraph (negative fidelity) was fed into the model.?%%
Best performance was given by a positive fidelity of one and negative
fidelity of zero, and worst performance by positive fidelity of zero

and negative fidelity of one.
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Code Availability

All code used for analysis was written in Python and is available at https://
github.com/oubino/locpix_points/tree/v0.0.1, with latest developments
available at https://github.com/oubino/locpix_points. We highlight partic-
ular dependencies in Methods, Supporting Information.
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Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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