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Development, external validation and integration into
clinicalworkflowofmachine learningmodels to support
pre-operative assessment in theUK
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Summary
IntroductionDemand for surgical treatment is growing and patient complexity is increasing. TheNHSEngland
standard contract now requires that pre-operative services risk stratify and optimise patients awaiting surgery.
However, current pre-operative workflows (whether electronic or paper-based) remain based primarily on
resource-intensive manual tasks. Lack of real-time data transfer has been identified as a key limitation to
reducing the surgical backlog.
Methods We developed certified electronic linkages between a live pre-operative assessment system (Smart
PreOp, Aire Logic Ltd, Leeds, UK) and theGPConnect system fromNHSEngland to retrieve clinical data directly
from general practitioner records into pre-operative questionnaires. We developed machine learning models
to categorise patients into lower- and higher-risk cohorts based on their predictedASAphysical status (1 or 2 vs.
3–5) and 30-day postoperative mortality risk. In contrast with previous prediction modelling studies, we
constrained variable selection from the outset to variables that are available electronically in real time for all UK
surgical patients regardless of where they present (the proposed procedure, demographics and medications
lists).
Results The development and external validation cohorts consisted of 110,732 and 67,878 patients,
respectively, from two NHS Trusts using different electronic record systems. In external validation, at decision
threshold 0.2, the ASA physical status prediction model had recall 0.69 and precision 0.95 for identifying
lower-risk (ASA physical status 1 or 2) patients. The mortality prediction model discriminated well in external
validation but was poorly calibrated, lending support to the existing literature showing that hospital-specific
modelling improves mortality risk prediction. The technical architecture of the Smart PreOp system facilitates
such hospital-specificmodelling andperiodicmodel updates.
Discussion We conclude that conducting modelling together with systems development can yield accurate
prediction models that may be implemented directly into electronic health records. A prospective study of
clinical impact and acceptability is warranted.
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Introduction
Demand for surgical treatment is growing, having

outstripped capacity since before the COVID-19 pandemic.

As of November 2024, over 6 million patients in England

were waiting for over 7 million procedures, with over 3

million patients missing the target set by NHS England for

time to receiving first treatment [1]. From April 2024, the

NHS standard contract mandates, for the first time, new

responsibilities for provider hospitals such as early

screening for modifiable risk factors, health optimisation

and regular follow-up while on the waiting list [2]. Workload

for already stretched pre-operative assessment teams can

thus be expected to increase significantly [3], since triage is

currently a manual process requiring substantial time and

expertise [4, 5].
Improved use of data and digital systems has been

identified as a key enabler of elective care recovery plans

[3]. National reports and experts in the UK [6–9] and

elsewhere [10] recommend that care planning considers

individualised objective risk assessment. However, the use

of peri-operative risk prediction models remains limited

[10], despite a proliferation of newmodels being developed

based on regression analysis [10] or machine learning [11].

A systematic review concluded that machine learning in

peri-operative medicine is still in an early stage of

development [11]. Other than image analysis or precision

oncology, artificial intelligence in healthcare remains

confined to a few areas [12].
Several reasons have been identified for this lag,

particularly in peri-operative medicine. Issues of trust, bias

and accountability are well described [13]. Despite rapid

model proliferation, few models in peri-operative medicine

are externally validated and even fewer subjected to

prospective study [11]. There is a lack of integration

between models and clinical systems [14, 15]. In practice

this means that, to quantify risk, a clinician must first open a

website or app and transcribe data. Such additional manual

work increases workload and potential for error, instead of

making care safer.
Expertise for health data analytics and tools

development to integrate prediction models with

electronic health records is lacking in the NHS [16].

Currently available risk prediction models (e.g. surgical

outcome risk tool (SORT) [17]) require information such

as ASA physical status and some clinical assessment

of risk, and others require laboratory test results

[18, 19]. Modelling therefore cannot readily guide the

assessment and testing process itself, despite national

recommendations that patients expected to be

straightforward are managed in dedicated pathways [2] or

considered for elective surgery hubs and high-volume,

low-complexity pathways [3].

We therefore aimed to develop a prediction model

suite and accompanying technical infrastructure that can

support pre-operative assessment teams. This would

automate data collection directly from the general

practitioner (GP) record rather than relying on patient

recollection and then feed that information into a prediction

model to ensure that patients can be `streamed´ to

appropriate pathways. To be suitable, the models must

satisfy essential requirements such as: easy implementation

in the NHS, by taking account only of data items that are

available electronically and automatically for most surgical

patients across the UK, regardless of where they live or

where they are treated; external validation; integration with

clinical workflow and appropriate certification; and inform

care planning from receipt of referral onwards, including

the pre-operative assessment process itself.

Methods
TheNHS Personal Demographics Service [20] is the national

master database of NHS patients, containing their NHS

number and patient details. Data sharing networks between

primary and secondary care are expanding rapidly [21].

Sharing is enabled and given a legal basis via the GP

Connect systems [22]. Broadly, GP Connect allows

approved healthcare workers to access a patient’s GP

record as an unstructured read-only document (GP Connect

HTML) or as a structured record that can be read and

interpreted by software (GP Connect Access Record:

Structured). As of February 2024, the only structured data

items potentially available live were `medications´ and

`allergies´.We therefore constrained ourmodelling from the

outset to only use available items, namely demographics,

medications and allergies, along with information the

secondary care provider would always be expected to have,

namely the proposed surgical procedure and method of

admission (elective or otherwise).

We chose two outcomes – ASA physical status and

30-day mortality – that can be expected to influence the

pre-operative assessment process and peri-operative care

planning. The ASA physical status was assigned by the

anaesthetist attending on the day of surgery (that is,

the score assigned after diagnoses, observations and test

results became available, and a face-to-face assessment was

conducted). We dichotomised the ASA physical status (1 or

2 vs. 3–5) to approximate low- and higher-risk pathways as

suggested by the Getting It Right First Time programme [4].

All-cause mortality 30 days after surgery was chosen to

allow comparison of this work with models published

2 © 2025 TheAuthor(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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previously, and because mortality risk is suggested as a key

element of peri-operative care planning, including critical

care allocation and shared decision-making consultations

[4, 7].

A research dataset was assembled, using prospectively

recorded administrative and clinical data from Leeds

Teaching Hospitals NHS Trust (LTHT) linked with mortality

data from the Office for National Statistics. De-identification

was conducted programmatically as part of the extraction

code, in such a manner that the research team never had

access to patient identifiable data. De-identification

included application of the national data opt-out [23] at

source, followed by cryptographic hashing and date stamp

obfuscation. The data access request was reviewed by a

data access committee in accordancewith established LTHT

standard operating procedures before receiving Caldicott

Guardian approval. As a condition of data access, age was

provided in 5-year bands as a privacy safeguard. Health

Research Authority review confirmed that the resultant de-

identified data did not require research ethics committee

review. Following dataset assembly, data were released in

the context of a collaboration agreement, data sharing

agreement and data sharing contract. The cohort

comprised all patients who underwent surgery in LTHT

between April 2018 and October 2022. Office for National

Statistics linkage was conducted in June 2023 to give a clear

period for the recording of deaths. Surgery was defined as

any procedure conducted in an operating theatre, not

including patients who received critical care rather than

surgery in an operating theatre because of limited critical

care capacity. Leeds Teaching Hospitals NHS Trust also runs

pathways for emergency surgery in otherwise stable

patients, who are discharged home for expedited

pre-operative assessment and planned non-elective

admission.

After model development, we entered into a similar

data sharing agreement and data sharing contract with the

Bradford Institute for Health Research, to access

the Connected Bradford data platform for the purpose of

external validation. The public engagement, ethics and

governance of the platform is described elsewhere [24].

We estimated a minimum sample size requirement of

1783 patients, based on guidance from Riley et al. [25]

(online Supporting Information Appendix S1). In practice,

we used all retrospective data available to us. Each data

entry, representing a surgical procedure, included the

following variables: age; sex; Index of Multiple Deprivation

decile; medications; admission method; and procedure.

We did not study individuals aged < 20 y (given

age banding conditions we were unable to define `adult´ as

> 18 y). Pre-processing, feature engineering, model training

and fine-tuning were all built into a custom pipeline,

including a warning flag that can generate warnings to

clinicians if the input data falls outside training data ranges.

The pipeline was housed in a secure cloud environment and

included capabilities for fitting models, pre-processing raw

data and predicting probabilities as well as schema

validation, which ensured compatibility with the expected

data format.

Medications were retrieved from the LTHT electronic

health records; the medicines list on admission was entered

by clinical pharmacists for each patient as part of medicines

reconciliation. Medications and procedures were encoded

in several ways. Wemappedmedications to count-encoded

values for British National Formulary codes and counted

items in British National Formulary subchapters. We

mapped procedures to Offices of Population Censuses and

Surveys (version 4) chapters and subchapters. We further

used a combination of domain-specific risk categories,

based on clinical knowledge and a biomedical language

representation model embeddings using Bidirectional

Encoder Representations from Transformers for Biomedical

Text Mining [26]. Language representation models

effectively treat a combination of text strings as `sentences´

by assigning a vector to each text string. A combination of

similar vectors thus yields a similar endpoint in a theoretical

n-dimensional space, which maximises the information gain

by capturing interactions. A numerical representation of

each individual endpoint was used for modelling. All

engineered features were used in model training. Patients

without an ASA physical status recorded were not studied,

as a target is necessary for supervised learning. Patients with

missing predictors were included in the analysis (see

below).

Model training followed the recommendations of the

TRIPOD statement [27], since a machine learning-specific

version (TRIPOD-ML) was still in development [28]. We used

SciKit-Learn in Python for model development (versions

1.3.2 through to 1.5.2). We developed models using

Logistic Regression and XGBoost [29], a gradient boosting

model that is well-established for modelling tabular

data [30]; XGBoost also provided a means of dealing with

data sparsity (missing predictors) [29]. We split the LTHT

data randomly (80:10:10) into training, testing and

validation sets. The split was by patient ID to ensure that no

data leakage could occur if the same patient appeared in

training and validation sets for different procedures. We

then conducted initial model training and iteration using the

training and testing sets. To deal with class imbalance we

optimised a set of hyperparameters that included the

© 2025 The Author(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists. 3
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number of estimators (trees); max_depth; learning rate; and

sample weighting. We computed the followingmeasures of

model performance against the LTHT validation set: area

under the receiver operating characteristic (AUROC);

precision; and recall. Calibration was assessed by means of

calibration plots.

The final models were evaluated against the

Connected Bradford cohort [24]. This validation included

a de facto validation step of the embeddings process as

medication recording formats differed between the two

NHS Trusts. The Connected Bradford cohort contains

medications as recorded in the patient’s GP record. We

used the GP medicines list 4 weeks before surgery for

modelling to ensure maximal fidelity in clinical practice.

We included adults aged > 18 y in external validation. We

pre-specified a sensitivity analysis to quantify the loss of

performance if variables were missing at prediction. We

also conducted post-hoc sensitivity analyses. The models

were integrated into the Aire Logic electronic

pre-operative assessment system, as well as via custom

application programming interfaces with the GP Connect

infrastructure. The application programming interfaces

were evaluated by NHS Digital from technical, safety and

Information Governance perspectives, including

reference to the Medicines and Healthcare products

Regulatory Agency [31]. Figure 1 illustrates the system

architecture.

Results
The LTHT cohort comprised 110,732 adult patients, who

underwent 151,832 surgical procedures during 139,728

hospital admissions. The Connected Bradford cohort

comprised 67,878 adult patients, who underwent 97,522

surgical procedures during 95,530 hospital episodes. Leeds

Teaching Hospitals NHS Trust mandates recording of ASA

physical status in the operating theatremanagement system

as part of the World Health Organization surgical safety

sign-in checklist (Table 1). Only 2437 patients in the

Connected Bradford cohort had ASA physical status

recorded electronically. In the LTHT cohort, 71,924 (59.3%)

patients had no medications recorded (online Supporting

Information Table S1). This may be due to missingness or to

patients not being on anymedications; the training data did

not differentiate. We treated all as `no medications

recorded´. The embeddings process performed well.

Across circa 9000 different medications in the LTHT and

Connected Bradford cohorts, only one was matched by a

conventional text-matching strategy. However, all

medicines were clustered successfully by the embeddings.

In the internal validation set, the logistic regression

model for ASA physical status categorisation into 1–2 vs.

3–5, trained using all features, exhibited an AUROCof 0.81

(95%CI 0.80–0.82) and was well calibrated. At decision

threshold 0.2, recall, precision and F1 score were 0.70,

0.91 and 0.79, respectively (Fig. 2). The comparable

XGBoost model AUROC was 0.85 (95%CI 0.84–0.86) and

was well calibrated. At decision threshold 0.2, recall,

precision and F1 score were 0.73, 0.92 and 0.81,

respectively (Fig. 3). Further external validation and

sensitivity analyses were therefore conducted using

XGBoost models only. In the external validation set, the

XGBoost ASA physical status model AUROC was 0.81

(95%CI 0.77–0.92) and was well calibrated. At decision

threshold 0.2, recall, precision and F1 score were 0.69,

0.95 and 0.80, respectively (Fig. 4).

The mortality prediction model (developed using

XGBoost) AUROC was 0.86 (95%CI 0.83–0.88) and good

calibration in the internal validation set. In the external

Figure 1 Smart PreOp system architecture and connections withNHS England digital services.

4 © 2025 TheAuthor(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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validation set, it retained good discrimination (AUROC0.87,

95%CI 0.84–0.91) but systematically overpredicted

mortality. Further analyses on mortality prediction are in

online Supporting Information Figures S1–S3.

Due to the small number of Connected Bradford

procedures with recorded ASA physical status, we did not

conduct sensitivity analyses in the external validation

cohort. The XGBoost ASA physical status model retained

discrimination (AUROC 0.81, 95%CI 0.78–0.89) and

calibration if the surgical procedure was masked from the

model at the prediction stage in the LTHT cohort (online

Supporting Information Figure S4).

In post-hoc analyses, we re-trained the XGBoost

model on a population that did not include non-elective

admissions, to simulate a setting that, unlike LTHT, does

not conduct pre-operative assessment for some urgent

surgery. The AUROC was 0.83 (95%CI 0.82–0.84) with

good calibration. At decision threshold 0.2, the recall,

precision and F1 score were 0.67, 0.92 and 0.83,

respectively (online Supporting Information Figure S5).

We also conducted decision curve analysis to evaluate the

clinical utility of the XGBoost model across a range of

thresholds [31]. Compared with the default strategy of

classifying all as low or all as high-risk, the model yielded

Table 1 Characteristics of the training/internal and external validation cohorts. Age, sex and deprivation index are given at time
of first surgical procedure. Values are number (proportion).

Training and internal validation set (LTHT) External validation set (ConnectedBradford)

Age; y

< 20 0 750 (1.1%)

20–29 13,785 (12.4%) 7788 (11.5%)

30–39 17,060 (15.4%) 9568 (14.1%)

40–49 14,398 (13.0%) 8949 (13.2%)

50–59 18,420 (16.6%) 11,010 (16.2%)

60–69 19,153 (17.3%) 11,741 (17.3%)

70–79 18,005 (16.3%) 10,260 (15.1%)

≥ 80 9911 (9.0%) 7812 (11.5%)

Sex;male 51,415 (46.4%) 31,716 (46.7%)

IndexofMultipleDeprivationdecile

1 25,978 (23.5%) 19,755 (29.1%)

2 11,755 (10.6%) 5661 (8.3%)

3 10,059 (9.1%) 7128 (10.5%)

4 5796 (5.2%) 4731 (7.0%)

5 9703 (8.8%) 4623 (6.8%)

6 9449 (8.5%) 4118 (6.1%)

7 11,684 (10.6%) 2637 (3.9%)

8 9481 (8.6%) 2352 (3.5%)

9 8810 (8.0%) 1723 (2.5%)

10 7825 (7.1%) 840 (1.2%)

Unknown 192 (0.2%) 14,310 (21.1%)

Total 110,732 67,878

ASAphysical status

1 31,594 (20.8%) 583 (23.9%)

2 79,523 (52.4%) 1404 (57.6%)

3 36,222 (23.9%) 429 (17.6%)

4 4230 (2.8%) 20 (0.8%)

5 263 (0.2%) 1 (<0.1%)

Total 151,832 2437

Elective surgery 105,794 (69.7%) 69,437 (71.2%)

30-daymortality 2065 (1.4%) 1091 (1.1%)

LTHT, Leeds TeachingHospital Trust.

© 2025 The Author(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists. 5
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net benefit across all thresholds (online Supporting

Information Figure S6).

We compared the mortality rates of correctly- and

incorrectly-classified ASA physical status 1–2 and 3–5

cohorts of the validation sets. This was a safety check to

establish the risk profile of patients where the model

assigned the patient to a different category than the ground

truth (the anaesthetist). For patients who were ASA physical

status 1–2 (ground truth), the mortality rate was significantly

higher for the subset where the model assigned ASA

physical status 3–5 (15/829, 1.8% vs. 18/10,340, 0.2%;

p < 0.001). Conversely, where the model assigned ASA

physical status 1–2 to true patients with ASA physical status

3–5, the mortality rate was lower (52/1933, 2.7% vs.

111/2192, 5.1%; p < 0.001) (online Supporting Information

Figure S7).

The model prediction pipeline was integrated with the

existing electronic pre-operative assessment solution from

Aire Logic Ltd., including functionality for recording patient

consent for data sharing; electronic pre-operative

assessment questionnaires; GP Connect access; and clinic

workflows. The system is highly customisable using a

low-code approach, enabling user organisations to

configure many aspects of the system for local

Figure 2 (a) Logistic regressionmodel calibration plot and (b) precision/recall at different prediction thresholds, for prediction
of ASAphysical status 1–2 vs. 3–5, in the held-out Leeds TeachingHospitals NHS Trust internal validation set. Dotted line, perfect
calibration; blue squares,model; blue shading, 95%CI; blue circles, precision; orange circles, recall; green circles, F1.

Figure 3 (a) XGBoostmodel calibration plot and (b) precision/recall at different prediction thresholds, for prediction of ASA
physical status 1–2 vs. 3–5, in the held-out Leeds TeachingHospitals NHS Trust internal validation set. Dotted line, perfect
calibration; blue squares,model; blue shading, 95%CI; blue circles, precision; orange circles, recall; green circles, F1.

6 © 2025 TheAuthor(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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circumstances and pathways without requiring new

code [32]. Examples of individual output and clinic

workflows are displayed in online Supporting Information

Figures S8 and S9.

Discussion
We present externally validated models developed from a

large cohort of surgical patients. In addition, we produced

a pipeline for recording patients’ medication lists

automatically in an electronic pre-operative assessment

system directly from their GP record, rather than relying on

patients self-reporting their medication histories. This

pipeline will also be suitable for importing other information

(e.g. diagnoses, vital sign observations, test results) fromGP

records when this functionality is made available by NHS

England. We also developed a well-performing machine

learningmodel for automated risk stratification that is aimed

specifically at supporting provider organisations in

implementing NHS England contractual requirements on

early risk stratification [2].

In contrast with previous model developments, we

ensured from the outset that the prediction variables and

technical architecture were suitable for implementation

within routine pathways and integrated with a live electronic

pre-operative assessment system as proof-of-concept. The

technical pipeline performs well across different electronic

patient record systems. The ASA physical status model can

identify lower-risk (ASA 1–2) patients with > 90% precision.

The model differed from anaesthetists in the category it

assigns in genuine edge cases, where mortality risk is

intermediate between the rest of the ASA physical status

1–2 and 3–5 cohorts. The mortality model discriminated

well in external validation but was poorly calibrated. The

Smart PreOp system is first-of-type, combining real-time

structured data transfer from primary to secondary care with

machine learning augmentation.

Despite rising demand [1] and complexity [33], surgical

pathways are still based largely on manual processes.

Digital questionnaires are likely to increase efficiency

somewhat [34] but remain manual processes substituting

paper for devices. Triage by means of screening tools and

read-only GP records access is a time-consuming task

requiring expertise [4]. Furthermore, the fidelity of

suggested stratification checklists [4] has not been

evaluated formally, though they have face validity. `Radical

redesign´ of surgical pathways to improve outcomes has

been advocated for some time [35] and is congruent with

recent guidelines [34] and NHS contractual mechanisms [2].

However, there is a risk that incremental changes (e.g. from

paper questionnaires to the same questionnaires via digital

means or the addition of screening steps to current

pathways) will be insufficient. The potential for shared

decision-making and health optimisation will inevitably be

diluted if pre-operative teams are primarily focused on

keepingmanual processes going.

Industry machine learning models (e.g. in financial

services) typically arise directly from specific business

questions [36, 37] and are integrated into systems from the

outset. Conversely, machine learning in peri-operative

medicine is primarily an academic activity focused on

modelling per se, with translation to routine practice often

not being a focus [11]. Incorporatingmodels into software is

thus left to electronic health record providers or NHS Trusts.

The Goldacre review identified the lack of widespread

Figure 4 (a) External validation calibration plot; and (b) precision/recall at different prediction thresholds, for prediction of ASA
physical status 1–2 vs. 3–5. Dotted line, perfect calibration; blue squares,model; blue shading, 95%CI; blue circles, precision;
orange circles, recall; green circles, F1.

© 2025 The Author(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists. 7
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advanced analytical expertise in the NHS as a shortcoming

in the system [16]. In practice, software for implementation

at scale can thus only be developed in collaboration with

industry, at least until data analysis and software

engineering is professionalised in the NHS or a funding

system is created for open source clinical tools

development [16]. However, large USA-based electronic

health record vendors have implemented paid-for

proprietary models without external validation, which were

subsequently shown to performpoorly [38].

We aimed to show that a model developed in response

to a specific NHS business question, in this case the

requirement to stratify patients efficiently, so releasing pre-

operative teams to focus on optimisation for those that are

likely to need it. This model can be developed from data

that can be retrieved automatically, again releasing pre-

operative staff time. We balanced discrimination against

precision and recall, since correctly ranking patients in

order is arguably less relevant to clinical decision-making

than whether predicted risk is accurate at the decision

threshold [39, 40]. Crucially, wewanted to release validation

data and develop a technical pipeline for periodic model

updating. The performance of even well-validated models

can deteriorate over time as populations and clinical

practice change,making evaluation a continuing task [41].

Given that only medicines, allergies and demographics

are currently available for structured transfer, the bar for

model performance was high. The ASA physical status

machine learning model had to predict, from a few data

items, the ASA physical status score category (1–2 vs. 3–5)

anaesthetists would likely assign after a comprehensive pre-

operative assessment, with all the subjective information

that such a consultation generates. Inter-rater variability in

ASA physical status scoring is a well-described issue, with a

third of patients assigned different scores in a pre-operative

assessment clinic compared with on the day of surgery [42],

and at best fair agreement being found between

anaesthetists faced with the same information [43, 44].

When setting a prediction target of the ASA physical status

score itself (from 1 to 5) the concept of a firm `ground truth´

thus does not exist; had the same patient been scored by a

different anaesthetist, the score may well have been

different. However, most scores were within one grade of

each other [42].

In practice, clinical pathways are often dichotomised

with lower-risk patients and procedures being considered

for high-volume, low-complexity pathways [45] and

objective assessment of mortality risk to guide decision-

making being recommended for patients with ASA

physical status 3–5 [46]. A categorisation model (ASA

physical status 1–2 vs. 3–5) is thus congruent with the

business question, namely stratification rather than ASA

physical status scoring per se. On this background, we

achieved a well calibrated and discriminating model. In

our external validation cohort, the missingness of ASA

physical status scores cannot be assumed to be at random.

Also, the medicines were retrieved from primary care

records, not secondary care as in the training and test sets.

It thus likely constitutes a truly independent cohort,

suggesting that the ASA physical status model will

performwell across diverse settings.

We also evaluated ASA physical status model failure,

comparing correctly- and incorrectly-classified patient

episodes with the assessment by anaesthetists of whether

the patient is likely to be of low (physical status 1–2) or

higher (physical status 3–5) complexity. Patient outcomes

were more congruent with model categories than with

individual assessments. This may again be explained by the

modelling process where a model, in effect, learns what

the most common or likely category is for a given

combination of data and will assign that consistently. The

implication is therefore not that a model can somehow be

better than an anaesthetist at stratification, rather that it can

eliminate inconsistency. In this way it approximates

`anaesthetic consensus´, congruent with research into inter-

rater variability which defined the notion of a `correct´ ASA

physical status by consensus [43].

Our mortality prediction model was well calibrated and

had discrimination statistics in a similar range to SORT,

which displayed the best combination of usability and

performance in a recent systematic review [10]. It retained

discrimination in external validation but systematically over-

predicted risk. This finding adds weight to a recent model

development study by Oliver et al., who found that hospital-

specific modelling was necessary for optimal performance

[19]. Machine learning models using between 31 and 285

input variables [11] that display similar discrimination

performance are not currently suitable for implementation

at scale in the UK without electronic patient record

integration, for whichNHS expertise is scarce [16].

A logistic regression model using the same engineered

features as the XGBoost model exhibited a clinically similar

performance. This is in keeping with a systematic review

which found no benefit of using machine learning over

regression techniques [47]. However, the technical and

access requirements for using GP Connect to automate

collection of the medicines list are identical, regardless of

which modelling is performed subsequently. In view of the

incremental but statistically significant improvement using

XGBoost in this case, we opted to conduct further

8 © 2025 TheAuthor(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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evaluation using XGBoost. In practice, a deploying

organisation can configure the system to use eithermodel.

A key aim of the project was to address the `research-

practice´ gap and integrate any model result into digital

workflows suitable for implementation into clinical practice

[48]. Producing a model alone, without providing practical

means to use it and completing the regulatory steps

necessary for implementation, would add to the gap rather

than address it. The fact that the outputs are probabilities,

rather than classifications, enables a deploying organisation

to choose a prediction threshold appropriate for its clinical

context. For example, a case for assigning lower-risk

patients to expedited pathways may have a low-risk

tolerance and thus choose a high precision model

threshold. This is in keepingwithmedicolegal guidance that

clinical artificial intelligence systems should output

probabilities rather than make recommendations, at least

until the regulatory system evolves to match technical

developments [49]. Performance was also maintained if the

surgical procedure was unknown, which implies potential

use cases for risk stratification at referral from primary care

(rather than on receipt of referral in secondary care),

enabling better use of high-volume, low-complexity surgical

hubs. The computing and time requirements for modelling

are such that real-time use is feasible and that predictions

may be repeated regularly while a patient is on the waiting

list to continually monitor risk and flag any changes beyond

preset thresholds to clinicians. The advantage of our model

over SORT is that neither an ASA physical status score nor

clinical judgement on risk is required; themodels rely solely

on data already in the system at the point of decision to

offer surgery. Even without modelling, automating data

collection from GP records may reduce the burden of

questionnaire completion for patients, as well as being less

susceptible to errors related to manual data entry and/or

transcription between systems.

A further strength of the project was developing the

technical and regulatory infrastructure [16]. Our methods

and model development systems can be turned rapidly to

modelling for other outcomes, or for regular updates and

hospital-specific model development as recommended

by others active in this field [19]. The relatively limited

number of variables currently available was a limitation of

this study. However, the GP Connect development

roadmap [22] is soon to increase the range of variables

available for structured data transfer. When diagnoses,

observations and laboratory tests become available via

GP Connect, we plan to develop new models that

incorporate these data points. The availability of more

structured data will also likely reduce the burden on

patients, as patient-completed forms could become

shorter and less onerous.

Our work has limitations. A high proportion of our

training data had no medications recorded which may be

either due to missingness or to the patient being on no

medications, and the training data did not differentiate. We

treated all as `no medicines´. In future iterations, when

missingness and no medications can be distinguished, we

would expect model performance to improve. Since feature

engineering was complex, involving both custom

classifications and embeddings, the model outputs are not

interpretable or explainable to the same extent as currently

recommended regression-based prediction models (e.g.

SORT). It is important to note that this is a consequence of

much of feature engineering as the prediction modelling

itself; as such, this also applies to our logistic regression

model. This concern is mitigated somewhat by the outputs

being probabilities, as discussed above. Whether our

models are equitable and whether their predictions differ

significantly based on protected characteristics such as sex

or ethnicity also requires specific evaluation. Safety,

acceptability and clinical impact (or lack thereof) in live use

will require prospective study.

In conclusion, we developed the first-of-type electronic

pre-operative assessment system that incorporates real-

time data transfer between primary and secondary care,

combined with machine learning augmentation to address

a key healthcare business requirement. The automated

machine learning models perform at least as well as manual

triage at initial stratification, with precision of around 95% in

identifying low-risk patients. This work acts as proof-of-

concept showing that model development can be

integrated with NHS systems from the outset rather

than post-hoc, producing accurate models without

compromising clinical utility.
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