
This is a repository copy of LLM-based task offloading and resource allocation in satellite
edge computing networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232258/

Version: Accepted Version

Article:

Sun, M., Hou, J., Qiu, K. et al. (3 more authors) (2025) LLM-based task offloading and
resource allocation in satellite edge computing networks. IEEE Transactions on Vehicular
Technology. ISSN: 0018-9545

https://doi.org/10.1109/TVT.2025.3612207

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a journal
article published in IEEE Transactions on Vehicular Technology is made available via the
University of Sheffield Research Publications and Copyright Policy under the terms of the
Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/TVT.2025.3612207
https://eprints.whiterose.ac.uk/id/eprint/232258/
https://eprints.whiterose.ac.uk/

1

LLM-based Task Offloading and Resource

Allocation in Satellite Edge Computing Networks
Minghao Sun, Jinbo Hou, Kehai Qiu, Member, IEEE, Kezhi Wang, Senior Member, IEEE, Xiaoli Chu, Senior

Member, IEEE, Zitian Zhang

AbstractÐSatellite Mobile Edge Computing (MEC) networks
offer a promising solution for delivering global services to
terrestrial Internet of Things (IoT) terminals in 5G and beyond.
However, satellite MEC systems face challenges such as under-
utilization of resources and task congestion, leading to resource
waste and increased latency. In this paper, we investigate the joint
resource allocation and task offloading problem in multi-satellite
MEC networks, aiming to minimize the average latency of IoT
terminals. To solve the joint optimization problem involving IoT
terminals’ task offloading decisions, uplink transmission power
and sub-channel allocation, and satellite computation resource
allocation, we propose an iterative optimization algorithm that
uses the Lagrange multipliers method to optimize the satellite
computation resource allocation and a Large Language Model
(LLM) based optimizer to optimize the other variables in each
iteration. Prompts and templated parameters are designed to
enhance the LLM’s inference accuracy and generalization capa-
bility across scenarios with varying numbers of satellites and IoT
terminals. Simulation results show that our proposed LLM-based
algorithm outperforms benchmark algorithms in convergence
speed and average latency of IoT terminals.

Index TermsÐSatellite mobile edge computing, task offloading,
resource allocation, Large Language Model, Internet of Things.

I. INTRODUCTION

INTERNET of Things (IoT) terminals have driven numer-

ous intelligent applications [1]. However, terrestrial com-

munication networks fail to provide reliable communication

services for IoT terminals in remote areas, such as disaster

zones, oceans, and deserts. Low-Earth-Orbit (LEO) satellite

Mobile Edge Computing (MEC) networks can help provide

global service coverage for IoT terminals [2], [3]. Nonetheless,

achieving efficient resource allocation and task offloading

while meeting low-latency requirements remains challenging

due to limited communication and computation resources at

both satellites and terminals [4].

Minghao Sun, Jinbo Hou, and Xiaoli Chu are with the School of Electrical
and Electronic Engineering, the University of Sheffield, UK (e-mail:{msun39,
jhou9, x.chu}@sheffield.ac.uk). Zitian Zhang is with the School of Infor-
mation and Electronic Engineering, Zhejiang Gongshang University, China
(e-mail: zitian.zhang@mail.zjgsu.edu.cn). Kehai Qiu is with the Department
of Computer Science and Technology, University of Cambridge, UK (e-mail:
kq218@cam.ac.uk), and Brunel University of London. Kezhi Wang is with the
Department of Computer Science, Brunel University of London, UK(email:
kezhi.wang@brunel.ac.uk). Xiaoli Chu and Zitian Zhang are co-corresponding
authors.

This work was supported in part by the Horizon Europe Research and
Innovation Program under grants 101086219 and 101086228, the UK EPSRC
grants EP/X038971/1 and EP/Y028031/1, the Royal Society International
Exchanges Award (IEC/NSFC/242607), Innovate UK COMET project (No:
10099265) and Royal Society Industry Fellowship (IF\R2\23200104).

Some research has been conducted in this area. The authors

in [5] minimized latency and energy consumption in a satellite

MEC network by Breadth-First Search and greedy algorithms.

The latency was minimized by using the Genetic Algorithm

(GA) and Lagrange multiplier method in [6] and by employing

game theory and many-to-one matching theory in [7]. The

authors in [8] solved a weighted-sum latency minimization

problem for satellite-assisted vehicle-to-vehicle networks by

Reinforcement Learning. Under limited bandwidth, effective

power and spectrum allocation schemes are necessary to over-

come co-channel interference. However, the existing works

[5]±[8] did not consider the impact of transmission power and

spectrum allocation on the data transmission rate or latency

for offloading tasks from terrestrial terminals to satellites.

Moreover, existing algorithms suffer from issues such as lim-

ited applicability, poor generalization, and slow convergence.

Large Language Models (LLMs) have emerged as a promising

approach to solve these issues with their contextual learning

and inference abilities, which have demonstrated outstanding

optimization capability for wireless networks [9], [10].

In this paper, we aim to minimize the average latency of IoT

terminals in a multi-satellite MEC network by optimizing the

satellites’ computation resource allocation and the IoT termi-

nals’ task offloading decisions, uplink sub-channel allocation,

and transmission power allocation. Given that the formulated

problem is non-convex and challenging to solve directly, we

decompose it into two sub-problems: the computation resource

allocation problem and the joint task offloading, power al-

location, and sub-channel allocation problem. The former is

proven to be convex and can be solved using the Lagrange

multiplier method to obtain a closed-form result. For the latter,

due to its complexity, traditional optimization algorithms often

suffer from prolonged computing time [11], while existing AI

algorithms typically require substantial time for model training

or fine-tuning [12]. By harnessing the LLM’s inference and

generalization capabilities while avoiding the costs of dedi-

cated model training, we propose an LLM-based optimizer

that utilizes structured templates, pre-designed prompts, and an

example pool to solve the second subproblem. An alternating

optimization algorithm is devised based on the solutions to

both sub-problems to solve the original problem. Simulation

results are provided to evaluate the proposed algorithm for

varying numbers of satellites and IoT terminals.

2

Fig. 1. Satellite Mobile Edge Computing Network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a low-density satellite-MEC scenario in a

remote area. The network contains M LEO satellites, denoted

by S = {S1, S2, . . . , SM}, which serve N IoT terminals

sparsely distributed on the ground at fixed locations via I
orthogonal sub-channels, as shown in Fig. 1. Each satellite

has a computational capacity FSAT (in CPU cycle/s). The set

of IoT terminals is represented by T = {T1, T2, . . . , TN}. The

n-th IoT terminal Tn has a task ψn with data size εn (in bits)

and required computational density ρ (in CPU cycle/bit). Each

terminal has a local computational capacity of FIoT (in CPU

cycle/s). An IoT terminal can either process its task locally

or offload it to one of the satellites. The set of sub-channels

is denoted by A = {A1, A2, . . . , AI}. Each sub-channel has

a bandwidth of B and can be employed by multiple IoT

terminals simultaneously. One IoT terminal can use multiple

sub-channels to send the task data to one satellite and can

allocate various power across the sub-channels, with the to-

tal transmission power constrained by PIoT. The scheduling

period ∆ is assumed to be sufficiently short such that the

satellite-terminal geometry and channel fading coefficients can

be regarded as quasi-static [11]. At the beginning of each

scheduling period, the binary task offloading indicators αm,n

and sub-channel allocation indicators βn,i are updated by the

system. Specifically, αm,n = 1 if task ψn is offloaded to

satellite Sm, otherwise αm,n = 0; βn,i = 1 if sub-channel

Ai is allocated for transmitting task ψn, otherwise, βn,i = 0.

A. Transmission Model

Since the distance from a satellite to an IoT terminal is much

longer than that between any two IoT terminals, we assume

that all the IoT terminals have approximately the same distance

to the same satellite. The distance from an IoT terminal to

satellite Sm is denoted by dm and derived as [12]:

dm =
√

R2
e + (Re +Rh)2 − 2Re(Re +Rh) cos θm, (1)

θm = arccos

(

Re

Re +Rh

· cos em
)

− em, (2)

where Re and Rh represent the radius of the Earth and the

height of the satellite orbit above ground, respectively; θm is

the geocentric angle of satellite Sm, and em is the elevation

angle of Sm to an IoT terminal with lower limit emin [13].

The channel gain of sub-channel Ai between satellite Sm

and IoT terminal Tn is given by:

Gi
m,n = Gn(

c

4πfcdm
)2(|him,n|)2, (3)

where Gn is the antenna gain (in dBi) of IoT terminal Tn, fc
is the carrier frequency, c denotes the speed of light, and him,n

represents the Rician fading with factor K.

If IoT terminal Tn offloads its task to satellite Sm, i.e.,

αm,n = 1, then the data rate from Tn to Sm is given by:

Cm,n=
I

∑

i=1

B log2











1+
αm,nβn,iPn,iG

i
m,n

N
∑

n′ ̸=n

M
∑

m′=1

αm′,n′βn′,iPn′,iGi
m′,n′+N0











,

(4)

where N0 denotes the additive white Gaussian noise (AWGN)

power at the satellite receiver, and Pn,i denotes the transmis-

sion power from IoT terminal Tn in sub-channel Ai.

In the uplink, the transmission latency δTransm,n of task ψn

offloaded to satellite Sm is:

δTransm,n =
εn
Cm,n

. (5)

The downlink transmission latency is neglected since the

computation result size is typically much smaller than the

uplink task data size [6].

B. Problem Formulation

If task ψn is processed locally, the computation time is:

δIoTn =
εnρ

FIoT

, (6)

If task ψn is offloaded to satellite Sm, the computation time

is:
δSAT
m,n =

εnρ

F SAT
m,n

, (7)

where F SAT
m,n represents the computation resource (in CPU

cycle/s) of satellite Sm allocated for processing task ψn.

The latency experienced by an IoT terminal includes the

transmission latency and computation latency of its task. The

latency of terminal Tn is given by:

δn =

M
∑

m=1

αm,n(δ
SAT
m,n + δTransm,n) + (1−

M
∑

m=1

αm,n)δ
IoT
n . (8)

To minimize the average latency of all IoT terminals, we

formulate an optimization problem as follows,

min
P ,F ,α,β

1

N

N
∑

n=1

δn, (9a)

s.t. 0 ≤
I

∑

i=1

βn,iPn,i ≤ PIoT, ∀n ∈ {1, ..., N}, (9b)

0 ≤
N
∑

n=1

αm,nF
SAT
m,n ≤ FSAT, ∀m ∈ {1, ...,M}, (9c)

M
∑

m=1

αm,n ≤ 1, ∀n ∈ {1, ..., N}, (9d)

δn ≤ ∆, ∀n ∈ {1, ..., N}, (9e)

αm,n, βn,i ∈ {0, 1}, (9f)

3

where P = {Pn,i|n = 1, ..., N ; i = 1, ..., I}, F =
{FSAT

m,n |m = 1, ...,M ;n = 1, ..., N}, α = {αm,n|m =
1, ...,M ;n = 1, ..., N}, and β = {βn,i|n = 1, ..., N ; i =
1, ..., I}. Constraint (9b) limits the total power allocated by

a terminal across all sub-channels; (9c) imposes the computa-

tional capacity of each satellite; (9d) ensures that a task can be

offloaded to at most one satellite; (9e) ensures that a task must

be processed within a scheduling period; and (9f) specifies the

binary indicators.

III. ALGORITHM DESIGN

The problem in (9) is non-convex due to the discrete solu-

tion space imposed by the binary variables [11]. To address

this, it is divided into two sub-problems: the satellite computa-

tion resource allocation problem and the joint task offloading,

power allocation, and sub-channel allocation problem. We first

show that the former is convex and obtain a closed-form

solution using the Lagrange multiplier method. Then, a novel

LLM-based optimizer is proposed to solve the latter.

A. Satellite Computation Resource Allocation

For given values of α, β and P , problem (9) reduces to:

min
F

1

N

N
∑

n=1

M
∑

m=1

αm,nδ
SAT
m,n , (10)

s.t. (9c).

The second derivative of any element within the summation

in (10) with respect to F SAT
m,n is:

∂2(αm,nδ
SAT
m,n)

∂F SAT
m,n

2
=

2αm,nεnρ

F SAT
m,n

3
≥ 0, (11)

where αm,n ≥ 0, εn > 0, ρ > 0, and F SAT
m,n > 0. So

the Hessian matrix of the objective function in (10) is a

positive semi-definite matrix, and problem (10) is convex. The

Lagrangian function L(F SAT
m,n , λm) with Lagrange multiplier

λm is as follows:

L(F SAT
m,n , λm) =

1

N
(

M
∑

m=1

N
∑

n=1

αm,nδ
SAT
m,n)

+

M
∑

m=1

λm(

N
∑

n=1

αm,nF
SAT
m,n − FSAT).

(12)

Taking the partial derivatives of L(F SAT
m,n , λm) with respect to

F SAT
m,n and λm, and setting the results to zero, we have:



















∂L(F SAT
m,n , λm)

∂F SAT
m,n

= −αm,nεnρ

F SAT
m,n

2
+ λmαm,n = 0,

∂L(F SAT
m,n , λm)

∂λm
=

N
∑

n=1

αm,nF
SAT
m,n − FSAT = 0.

(13)

By solving the above equations, we obtain the optimal satellite

computation resource allocation:

F̃ SAT
m,n =

FSAT

√
εnρ

N
∑

k=1

αm,k
√
εkρ

. (14)

B. Joint task Offloading, Power Allocation and Sub-channel

Allocation

For given F , problem (9) reduces to :

min
P ,α

1

N

N
∑

n=1

δn, (15a)

s.t. 0 ≤
I

∑

i=1

Pn,i ≤ PIoT, ∀n ∈ {1, ..., N}, (15b)

(9c), (9d), (9f),

where for simplicity, the sub-channel allocation indicators βn,i
are omitted under the assumption that βn,i = 0 if Pn,i = 0
and βn,i = 1 if Pn,i > 0.

Problem (15) is still non-convex due to the binary constraint

and fractional sum terms. To solve it, we propose an LLM-

based optimizer as shown in Fig. 2 and detailed below.

The Generator Module consists of an LLM-based decision

maker that uses prompts and an example pool as inputs

to generate task offloading and power allocation solutions

as outputs. The initial prompt includes the task description

that outlines the objective based on (15), the environment

description that details the system model with key parameters

for customization, and the output format that specifies the

template for generated solutions. The example pool contains

an initial solution, i.e., the best solution to (15) among 100

randomly generated solutions, denoted by αe, Pe, and δe.

The Evaluation Module is composed of an LLM output ex-

tractor and a performance evaluation system. To avoid redun-

dant texts due to hallucinations, the LLM extractor uses a task

offloading extraction prompt and a power allocation extraction

prompt to extract the intended solutions from the output text

generated by the LLM. The performance of the extracted

solutions α and P is evaluated by substituting them into (15),

and calculating the average latency δ = (
∑N

n=1
δn)/N ; if any

constraint of (15) is violated, δ =∞.

The LLM-based iterative algorithm begins by inputting the

initial prompt and example pool into the LLM-based decision

maker. The decision maker’s output is then evaluated by

the Evaluation Module, which compares δ with the average

latency δe of the solution in the example pool and determines

how the inputs to the decision maker should be updated in the

next iteration as follows:

• If δ > δe: An expert prompt, based on domain-specific

knowledge, will be input into the Generator Module.

• If δ < δe: The extracted solutions α and P replace αe

and Pe in the example pool, respectively.

• If δ = δe: If α = αe and P = Pe, a reminder prompt

will be input into the Generator Module to prevent the

LLM from being trapped in existing solutions; otherwise,

the expert prompt will be input into the Generator Mod-

ule.

The iteration process terminates when the example pool is

not updated for ϵ consecutive iterations or when the number

of iterations reaches a preset limit. The example pool returns

the final solution to problem (15). Based on the solutions to

the two sub-problems, an alternating optimization algorithm is

4

Fig. 2. The LLM-based framework for joint optimization of task offloading, power allocation, and sub-channel allocation.

Algorithm 1 LLM-Based Alternating Optimization

Input: M , N , I , ϵ, max iterations

1: Initialize example pool (αe,P e, δe) and initial prompt

2: Set iteration counter i← 0, no update counter ← 0
3: Prompti ← initial prompt

4: repeat

5: Query LLM with Prompti and extract (αnew,P new)
6: if any constraint of (15) is violated then

7: Set δnew ←∞
8: else

9: for m = 1 :M and n = 1 : N do

10: F SAT
m,n ← (14)

11: end for

12: Compute average latency: δnew ← (8) and (9)

13: end if

14: if δnew < δe then

15: Update: (αe,P e, δe)← (αnew,P new, δnew)
16: no update counter ← 0
17: else if (αnew,P new, δnew) = (αe,P e, δe) then

18: Prompti+1 ← initial prompt::reminder prompt

19: no update counter ← no update counter +1
20: else

21: Prompti+1 ← initial prompt::expert prompt

22: no update counter ← no update counter +1
23: end if

24: i← i+ 1
25: until no update counter ≥ ϵ or i ≥ max iterations

26: return αe,P e,F, δe

devised to solve (9). The pseudo-code is shown in Algorithm

1.

Since most existing commercial LLM APIs are memoryless,

both task offloading and power allocation solutions must be

generated within a single conversation (i.e., a series of prompt-

response exchanges) with the LLM. The example pool can

help maintain continuity across iterations. Some open-source

localized models like Llama 3 can mitigate this issue, but

currently lag behind in inference performance.

IV. SIMULATION RESULTS

This section presents the performance evaluation of the pro-

posed LLM-based alternating optimization algorithm (LLM),

building on (14) and the LLM-based optimizer in Fig. 2. It

is well recognized that employing commercial LLM APIs

introduces additional network latency due to data exchanges

with cloud servers, whereas local deployment of LLMs en-

tails significant hardware and maintenance costs. Therefore,

commercial APIs are particularly suitable for edge devices

with limited computational resources, offering access to high-

performance LLMs at relatively low costs. Conversely, lo-

cal deployment ensures greater data confidentiality and, by

interacting directly with local devices, significantly reduces

communication overhead, making it preferable in latency-

sensitive and/or safety-critical scenarios. Given the substantial

hardware requirements for deploying high-performance LLMs

locally, this study utilizes different LLM models through

commercial APIs for performance evaluation. Nevertheless,

our proposed algorithm is compatible with local deployment-

based LLMs too. By testing three widely used models, GPT-

4o, LLaMA-3.1-70B, and DeepSeek-R1-0528 under the same

prompt design and algorithmic framework, we observe that

only GPT-4o successfully converged to an optimized so-

lution, where both the LLaMA-3.1-70B and DeepSeek-R1-

0528 failed to complete the algorithm due to hallucinations.

The LLaMA-3.1-70B model sometimes returned wrong di-

mensions of decision matrices, while the DeepSeek-R1-0528

model often generated non-binary values of α within the

first 5 iterations, both failing to complete the algorithm.

Therefore, GPT-4o is adopted in the following simulations due

5

to its superior reliability and reasoning performance across

iterative optimization tasks. The benchmarks for performance

comparison include the GA, where the initial population size

is set at 400 with a crossover probability of 0.5 and a mutation

probability of 0.2; the Deep Deterministic Policy Gradient

(DDPG) algorithm with a greedy exploration strategy, where

the exploration rate is 0.05, and both the Actor and Critic

networks contain three layers with the learning rate of 10−5;

Random Choice (RC), where each task has an equal proba-

bility of being processed locally or offloaded to one of the

satellites, and the other optimization variables are uniformly

distributed within their allowed value ranges; Processing All

Locally (PAL), where each IoT terminal processes its task

locally and all the variables in problem (9) are set to zero. In

the simulation, the task data size ϵn is uniformly distributed

between 0.3 MB and 0.6 MB, and other parameters are shown

in Table I unless otherwise specified.

TABLE I
SIMULATION PARAMETERS [6], [12], [13]

Notation Value Notation Value Notation Value

N0 -134dBm ρn 100cycle/bit PIoT 0.2mW

∆ 1s FIoT 0.5Gcycle/s emin 10°

B 10MHz FSAT 20Gcycle/s Re 6371km

Gn 3dBi fc 3.49GHz Rh 550km

Fig. 3. Convergence of the LLM-based algorithm for different temperature
t and different prompt (DP) wording, GA, and DDPG for M = 3, N =

10, I = 4.

Fig. 3 shows the convergence performance of the proposed

LLM-based algorithm for different values of temperature t,
which is a hyperparameter that controls the sharpness of

the LLM’s output probability distribution, and for different

prompt (DP) wording, in comparison with GA and DDPG.

Higher temperature values lead to more diverse and stochastic

outputs. Our simulations tested temperature values of 0.5,

0.7, 1, 1.3, and 1.5 and found that for t = 1.3 and 1.5, the

LLM-based algorithm failed to complete due to occasional

dimension mismatches in the generated solutions. For t = 0.5,

0.7, and 1, the LLM-based algorithms converge within 40 to

Fig. 4. Mean latency and standard deviation vs. the number of IoT terminals
for M = 3, I = 4.

Fig. 5. Average latency for different values of (N,M, I).

200 iterations, significantly faster than both DDPG and GA.

The results indicate that t = 1 offers the best balance between

convergence speed and latency minimization performance.

Therefore, in the subsequent experiments, the LLM-based

algorithm adopts t = 1. Additionally, the performance of the

LLM-based algorithm with different prompt wording is close

to that with the prompt wording defined in Fig. 2, suggesting

that the LLM-based algorithm is not sensitive to the wording

of prompts as long as the underlying intent remains consistent.

Fig. 4 shows the mean latency and standard deviation

achieved by different algorithms across 10 experimental runs

for 5, 10, 15, and 20 IoT terminals served by 3 satellites. It

shows that as the number of terminals increases, the average

latency rises for all the considered schemes. This is mainly due

to increased co-channel interference. It also shows that the pro-

posed LLM-based algorithm achieves the lowest mean latency

and smallest standard deviation for every considered number

of IoT terminals, followed by GA and DDPG. Although

DDPG has been widely used for solving non-convex problems,

it is prone to being stuck in local optima and is highly sensitive

6

to hyperparameter settings. In contrast, the proposed LLM-

based algorithm encourages broader solution exploration when

repetitive solutions are detected and avoids getting stuck in

local optima through prompt-based adaptations.

Fig. 5 shows the average latency achieved by four schemes

for different values of (N,M, I). The proposed LLM-based

algorithm consistently outperforms RC across all scenarios.

For the scenarios of (20, 6, 4), (20, 6, 8), and (20, 3, 8), as

the decision matrices contain significantly more float numbers,

increasing the likelihood of hallucinations or invalid outputs,

the LLM-based algorithm is outperformed by GA.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a novel LLM optimizer

combined with the Lagrange multiplier method to minimize

the average latency of IoT terminals in a multi-satellite

MEC network. Simulation results demonstrate that the LLM-

based alternating optimization algorithm converges signifi-

cantly faster than both GA and DDPG while obtaining a

lower average latency for the IoT terminals. The LLM-based

algorithm exhibits strong adaptability and effectively achieves

the optimization objective across varying numbers of IoT

terminals and satellites. Our results also show that for high-

dimensional scenarios, it would be necessary to adopt a

multi-agent approachÐa promising direction for future work.

In addition, we plan to investigate other practical issues in

satellite MEC networks, such as the response time of LLMs.

It is mainly determined by the latency of generating the first

token and the subsequent time required to produce the full

output text, which scales with the number of output tokens

[14].

REFERENCES

[1] F. Guo, et al., ªEnabling massive IoT toward 6G: A comprehensive
survey,º IEEE Internet of Things Journal, vol. 8, no. 15, pp. 11 891±
11 915, Aug. 2021.

[2] W.-C. Chien, et al., ªHeterogeneous space and terrestrial integrated
networks for IoT: Architecture and challenges,º IEEE Network, vol. 33,
no. 1, pp. 15±21, Feb. 2019.

[3] M. De Sanctis, et al., ªSatellite communications supporting internet of
remote things,º IEEE Internet of Things Journal, vol. 3, no. 1, pp. 113±
123, Feb. 2016.

[4] K. Zhang, et al., ªEnergy-efficient offloading for mobile edge computing
in 5G heterogeneous networks,º IEEE Access, vol. 4, pp. 5896±5907,
Aug. 2016.

[5] X. Gao, et al., ªHierarchical dynamic resource allocation for compu-
tation offloading in LEO satellite networks,º IEEE Internet of Things

Journal, vol. 11, no. 11, pp. 19 470±19 484, Feb. 2024.
[6] L. Zhao, et al., ªQoS-aware multi-hop task offloading in satellite-

terrestrial edge networks,º IEEE Internet of Things Journal, vol. 11,
no. 19, pp. 31 453±31 466, Jun. 2024.

[7] S. Zhang, et al., ªJoint computing and communication resource alloca-
tion for satellite communication networks with edge computing,º China

Communications, vol. 18, no. 7, pp. 236±252, Jul. 2021.
[8] G. Cui, et al., ªJoint offloading and resource allocation for satel-

lite assisted vehicle-to-vehicle communication,º IEEE Systems Journal,
vol. 15, no. 3, pp. 3958±3969, Sep. 2020.

[9] S. Xu, et al., ªLarge multi-modal models (LMMs) as universal foun-
dation models for AI-native wireless systems,º IEEE Network, vol. 38,
no. 5, pp. 10±20, Jul. 2024.

[10] Q. Li, et al., ªLatency-aware generative semantic communications with
pre-trained diffusion models,º IEEE Wireless Communications Letters,
vol. 13, no. 10, pp. 2652±2656, Jul. 2024.

[11] Y. Zhao, et al., ªPartial computation offloading in satellite-based three-
tier cloud-edge integration networks,º IEEE Transactions on Wireless

Communications, vol. 23, no. 2, pp. 836±847, Jun. 2024.

[12] Z. Zhao, et al., ªFederated deep recurrent Q-learning for task partitioning
and resource allocation in satellite mobile edge computing assisted
industrial IoT,º IEEE Internet of Things Journal, vol. 11, no. 15, pp.
26 444±26 458, May 2024.

[13] J.M. Gongora-Torres, et al., ªLink budget analysis for LEO satellites
based on the statistics of the elevation angle,º IEEE Access, vol. 10, pp.
14 518±14 528, Jan. 2022.

[14] H. Zhou, et al., ªGenerative AI as a service in 6G edge-cloud: Generation
task offloading by in-context learning,º IEEE Wireless Communications

Letters, vol. 14, no. 3, pp. 711±715, Mar. 2025.

