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Reconceptualizing cognitive listening

Sven L. Mattys

Research on 'cognitive listening' has grown exponentially in recent years. Lack-
ing, however, is a conceptual framework to organize the abundance of data from
the hearing, cognitive, and linguistic sciences. We offer the data-resource-
language (DRL) framework that draws from the notions of data-limited and
resource-limited processes to provide a roadmap for understanding the interac-
tion between auditory sensitivity, cognitive resources, and linguistic knowledge
during speech perception, especially in adverse conditions. The DRL framework
explains how these three sets of abilities predict performance and resource en-
gagement as a function of signal quality. It also provides a platform for character-
izing similarities and differences in how normal-hearing, impaired-hearing, and
non-native listeners process speech in challenging conditions.

Listening as a cognitive activity

We live in a world of noise, whether it is the sound of traffic or competing speech in a crowded
restaurant. Some listeners can transition seamlessly between these environments unencum-
bered by the noise and distraction. Others may struggle with even moderate acoustic challenges
and find them effortful and hard to overcome.

Attempts have been made to characterize the contribution of listener characteristics to speech
perception in challenging conditions. For instance, in the 'ease of language understanding'
(ELU) model [1-4], working memory (see Glossary) capacity is thought to support degraded
speech perception through a process that links the signal and long-term linguistic memory.
Similarly, the ‘framework for understanding effortful listening' (FUEL) [5] maps out the dynamic
relations between task demands, motivation, and listening effort within a demand-capacity
framework that is inspired by the capacity model of attention [6]. The 'model of listening
engagement' (MoLE) [7] adds a focus on subjective experiences such as enjoyment and bore-
dom, and emphasizes how these experiences interact with cognitive resources and execu-
tive control to determine whether an individual successfully engages with listening. These
conceptualizations and others have benefited from, and contributed to, fields known as audi-
tory cognitive science [8], cognitive hearing science [9,10], and cognitive audiology [11].
These fields share the assumption that cognition 'kicks in' [12] when listening conditions are
challenging, an approach that is encapsulated by the term cognitive listening. We take a
broad definition of cognition as a set of mental operations that include the subcomponents
of working memory (short-term phonological storage and executive control) and attention con-
trol (selective attention and inhibition).

Despite these advances, both real-world experience and empirical data indicate that, when sig-
nal degradation is severe, there may not be enough acoustic information that 'get through' to
rescue comprehension, no matter how much cognitive resource is applied to the task [13-15].
Likewise, cognition may not be substantially engaged when the signal is minimally degraded
and performance is high [3,16]. These observations underscore the need for a framework that
both captures the operational parameters of cognitive engagement across the continuum of
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signal quality and offers alternative contributors to performance in conditions where cognitive
abilities only have a secondary role.

Some 50 years ago, Norman and Bobrow [17] introduced two terms that are relevant to this ob-
jective and are key components of our proposal. They used the term resource-limited process
to describe conditions in which the application of additional cognitive resources can bring im-
provement in performance. By contrast, the term data-limited process was used to describe
conditions in which the input is so degraded that no amount of additional cognitive resource
can improve performance. Although speech perception was not the focus of Norman and
Bobrow's concern at the time, their terminology can help us to formalize the types of challenges
that listeners encounter on a daily basis, such as acoustic masking, accented speech, and spec-
trally degraded speech experienced through a cochlear implant.

Alongside Norman and Bobrow's terms, we draw upon the notions of resource availability
(cognitive abilities that an individual possesses in a finite amount) and resource engagement
(the extent to which those abilities are allocated to a task) to offer a framework that aims to
characterize the relationship between perceptual abilities, cognitive resources, and linguistic
knowledge across the full range of signal quality, from severely degraded to intact — a contin-
uum that is also often referred to as listening demand. The notions of resource availability
and engagement are essential for understanding how cognitive processes interact with listen-
ing demands (Box 1).

The goals of the framework are to (i) identify the listener-specific abilities (perceptual, cognitive,
and linguistic) that best predict speech understanding, (i) specify the range of signal quality in
which each of these abilities is most likely to predict performance, and (jii) differentiate between
conditions where resource engagement is likely to be associated with improved performance
and conditions where it is not.

Box 1. Resource availability and engagement within the DRL framework

The dual concepts of effort and resources, that are central to Norman and Bobrow's formulation [17], are captured by the
definition of effort as intentional allocation of cognitive resources to overcome obstacles for successful completion of a lis-
tening task [5]. In this regard, we note that effort is not a unitary concept because it encompasses both the subjective
sense of effort (that is tied closely to an individual's judgment of the difficulty of accomplishing a task) and the objective
sense of effort, for example as measured by the size of the task-evoked pupil response (TEPR). Although the two senses
of effort are closely aligned [7,101], it is the objective sense that is intended by most researchers, and it is this sense that we
use in the DRL framework.

We consider resources in terms of working memory, processing speed, and executive function [102], and these functions
collectively define resource availability. As is often argued [6,48,49], resource availability (i.e., capacity) is limited, such that
the allocation of resources to one demanding task or set of operations leaves fewer resources available for the simulta-
neous conduct of other demanding tasks or operations. This principle underlies Kahneman's articulation of his general re-
source model of attention [6] upon which Norman and Bobrow's definitions are implicitly based. It is also a principle
adopted by the DRL framework. When the DRL framework references increased resource engagement within the re-
source-limited region of task performance, we postulate that resource engagement is constrained both by the resources
available to an individual per se and by their decision to allocate these limited resources to the task. Factors affecting this
decision include the importance of the task to the individual, their motivation to perform the task as well as they can
(perhaps based on a reward), and the belief that the task is manageable — engaging additional resources is likely to bring
a successful return on the investment [71,103].

Although the DRL considers perceptual, cognitive, and linguistic abilities as separable sources of individual differences, lin-
guistic challenges may draw on domain-general cognitive resources when speech is particularly complex [68]. That is, al-
though resource capacity and linguistic ability are fixed, cognitive resources may be dynamically recruited to support
linguistic abilities.
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Glossary

Coghnitive listening: the intentional and
sometimes effortful process of attending
to, interpreting, and comprehending
spoken language, particularly in
challenging listening environments.
Listening is said to be cognitive because
itinvolves attention and working memory
processes alongside purely auditory or
linguistic processes.

Cognitive resources: cognitive
fundamentals such as working memory,
processing speed, and executive
functions that an individual possesses in
a finite amount (resource availability) and
that can be allocated to a listening task.
Controlling resource allocation is
volitional and usually effortful.
Data-limited process: an operation
that is constrained by the quality or
quantity of the available input data (and
perceptual processes) rather than by the
availability or engagement of cognitive
resources. Engagement of cognitive
resources in this processing region is
unlikely to improve listening
performance.

Language-limited process: an
operation that is supported primarily by
linguistic abilities rather than by
perceptual and cognitive processes. In
this processing region, listening
performance is predicated primarily
based on vocabulary knowledge,
syntactic fluency, and narrative
comprehension.

Learning: the process of acquiring and
modifying knowledge through
experience, resulting in enduring
changes in mental representations.
Within the DRL, short-term and long-
term adaptation to signal degradation
leads to improved listening performance,
region boundary shifts, and perceptual
recalibration relevant to hearing-aid and
cochlear-implant tuning. The extent of
these changes may depend on the type
of degradation, as described in Box 2.
Resource-limited process: an
operation that is supported and
constrained by the availability of
cognitive resources such as attention
and working memory. In this processing
region, engaging cognitive resources to
perform a listening task is usually effortful
but leads to improved performance.
Signal degradation: any distortion of
the speech signal that reduces its
intelligibility. Signal degradation can be
intrinsic (e.g., accented, disordered,
filtered speech, speech heard through a
cochlear implant) or extrinsic



Trends in Cognitive Sciences

Relevance of the data-limited/resource-limited framework for speech perception
research

Atheory of speech processing in natural listening conditions must provide an account of how per-
ception, cognition, and linguistic knowledge interact to achieve an observed level of performance.
To date, no theory offers an account that fully integrates all three components. Norman and
Bobrow's framework is well suited to describing how two of those components — perception
and cognition — constrain performance as a function of signal quality. Each specific degree of sig-
nal degradation can be represented by a unique proportion of data-limited and resource-limited
processes. When speech is severely degraded, recognition performance is unlikely to exceed the
ability of our auditory system to decode the impoverished signal. Dedicating more cognitive re-
sources to the task is unlikely to yield further improvement. In its purest form, this data-limited
scenario can be illustrated by the relative robustness of pure-tone audiometry tests: below-
threshold tones are unlikely to be detected whether or not the listener applies additional cognitive
resources to the task — the signal (data) is simply not sufficiently strong to benefit from enhanced
attention or memory processes [18].

When signal quality is moderate, allocating additional cognitive resources to the task can improve
performance, at least to the extent that those resources are available. These are cases where
there are sufficient sensory data to allow cognitive processes such as working memory and atten-
tional focus to play a supporting role in integrating and interpreting the degraded speech frag-
ments [19]. This resource-limited scenario can be illustrated by the observation that individuals
with good working memory capacity are generally better at coping with moderate noise than
are individuals with poorer working memory capacity [20,21].

The effect of signal quality on the trade-off between data-limited and resource-limited processes
is supported by empirical evidence. For example, the data show that working memory capacity
positively correlates with the ability of a listener to track two simultaneous talkers when the talkers
are spectrally or spatially separated (resource-limited), but not when they overlap spectrally and
spatially (data-limited) [13]. Likewise, the hearing acuity of older adults better predicts lowpass-
filtered (data-limited) than unfiltered (resource-limited) speech perception, whereas working
memory capacity shows the opposite pattern [14]. The contribution of cognitive processes to
the perception of degraded speech can also be tested by manipulating the amount of processing
time that is available to the listeners during the task. For instance, when speech is moderately de-
graded (resource-limited) through noise-vocoding, the insertion of silent pauses at linguistically
salient points within rapid (compressed) speech improves recall performance, presumably be-
cause the additional processing time allows listeners to use cognitive processes to 'catch up'
with the impoverished input. However, when the speech is heavily degraded (data-limited), the
insertion of silent pauses has a smaller impact on recall [15].

The distinction between data-limited and resource-limited regions along the signal quality contin-
uum is important because it establishes a symbolic boundary between what is reducible to audi-
tory perception and what can be genuinely construed as cognitive listening [22]. The above
evidence shows that the data-limited/resource-limited framework can explain a wide range of lis-
tening behaviors when signal quality varies from severely to moderately degraded. However, this
two-component distinction is silent about the drivers of performance at the upper end of signal
quality, where speech is intelligible and performance, although still variable, is high [23-26]. In
that region, the data converge in showing a decreased contribution of cognitive abilities to perfor-
mance [3,16]. This pattern is also evident in individuals with mild cognitive impairment who, rela-
tive to typically developing listeners, are less affected by their impaired cognition when processing
intelligible speech than when processing speech in noise [27], which suggests that cognition
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(e.g., background noise, competing
talkers). It can lead to evenly distributed
degradation across the signal

(e.g., broadband steady-state noise,
high-N babble noise) or irregular
degradation (e.g., amplitude-modulated
noise, a single competing talker).
Task-evoked pupil response
(TEPR): changes in pupil size from
baseline during auditory stimulus

(e.9., speech) processing that are
thought to reflect engagement of
cognitive resources. This metric is
captured using an eye-tracking
technique termed pupillometry.
Working memory: a limited-capacity
system that temporarily holds and
manipulates auditory and linguistic
information and plays a crucial role in
active listening, learning, and reasoning.
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makes a smaller contribution to intact than to degraded speech processing. However, the factors
that do predict performance variability in high-intelligibility conditions remain unspecified.

A tripartite data-limited, resource-limited, language-limited (DRL) framework
Our claim is that, at the high end of the signal quality continuum, listening performance is primarily
determined by individual differences in linguistic abilities — in other words, it is a language-limited
process. On the assumption that substantial variability in speech perception performance per-
sists even in favorable signal quality conditions [15,28,29], we predict that performance will
reach an asymptote at a higher level of accuracy for individuals with more complex and nuanced
knowledge of the language. Although differences in auditory acuity and cognitive abilities may still
afford some explanatory power, their role in accounting for performance differences would be
smaller than that of individual differences in factors such as vocabulary knowledge and syntactic
fluency. Linguistic factors are predicted to be particularly significant drivers of performance in nat-
uralistic tasks (e.g., narrative comprehension) because performance asymptotes on such tasks
are likely to occur well below ceiling level. In these conditions, which represent the majority of
real-life communication, more complex processes are required, and these are a crucial source
of individual differences [30].

The link between individual differences in linguistic abilities and speech comprehension has been
documented over decades of language-processing research [31,32]. However, this literature is
rarely used to inform speech-in-noise research because the evidence is derived primarily from ex-
periments using speech heard in quiet conditions. Conversely, the speech-in-noise literature has
deliberately focused on non-linguistic determinants of performance such as hearing sensitivity
and cognitive capacities [33], and has assumed a linguistic level-field for convenience (at least
within a native-language population). We are not claiming that linguistic abilities can account for
performance differences only when the signal is highly intelligible. Indeed, we know that vocabulary
knowledge [34,35] and semantic context [36,37] play crucial roles in the resource-limited region
because the use of contextual cues from linguistic information draws upon predictive processes
that require cognitive resources [38]. Our claim, instead, is that linguistic abilities are comparatively
better predictors of performance under optimal listening conditions, and non-native language users
serve as a prominent example. In very poor signal quality conditions, listeners might very well at-
tempt to recruit linguistic abilities, but the DRL predicts that such abilities would not have sufficient
signal to work with to contribute to performance in a significant way. Likewise, we are not claiming
that cognitive abilities do not play any role in intelligible speech processing because a link between
working memory and syntactic parsing has been reported [39-41], but instead that cognitive abil-
ities play a comparatively greater role when the signal is moderately degraded.

Figure 1A illustrates our tripartite conceptualization of the individual drivers of speech perception.
A crucial aspect of this framework is the identification of prominent processing regions (percep-
tual, cognitive, linguistic) at different levels of signal quality (low, moderate, high). In the DRL
framework, the signal quality dimension represents an objective and quantifiable stimulus charac-
teristic [e.g., sound level, signal-to-noise ratio (SNR), number of vocoded bands], whereas the
performance function is an approximation of successful perception averaged across listeners.
The absolute values and boundaries between processing regions are not specified because
they are likely to depend on the nature of the degradation and listener characteristics (Box 2
and later sections for examples). However, they are arranged in a predictable order as signal qual-
ity changes from low to high.

This fixed order, which is the defining feature of the DRL framework, allows us to generate testable
predictions about the best-fitting constellation of performance predictors as a function of speech
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Figure 1. Drivers of listening performance within the data-resource-language (DRL) framework. (A) The top panel
illustrates the relative contributions of individual differences in perceptual, cognitive, and linguistic abilities to task performance
as a function of signal quality. When speech quality is data-limited (low signal quality), speech recognition performance is low
and driven mostly by the perceptual abilities of the listener. When speech quality improves (moderate signal quality),
performance increases and the allocation of additional cognitive resources, within the scope of the cognitive abilities of the
listener, begins to contribute to performance (the resource-limited region). When speech reaches a high level of clarity
(high signal quality), performance is high (the language-limited region) and individual differences are constrained more by
linguistic abilities than by perceptual or cognitive abilities. The color gradient in the lower band of the figure highlights the
secondary contribution of all abilities across the signal quality continuum. The bottom panel shows a typical signal quality/
performance curve (in black, left y axis), where the confidence ribbon illustrates individual differences along the signal
quality continuum. The three processing regions are highlighted. The gray curve (right y axis) shows the expected inverted
U-shaped resource-engagement function relative to signal quality. Moving from right to left, resource engagement is low in
the language-limited region and increases as signal quality decreases in the resource-limited region, and reaches a peak
at the midpoint of this region. Resource engagement declines when the signal degrades further in the data-limited region,
which suggests disengagement when additional investment is unlikely to enhance performance. (B) Examples of how the
DRL framework can be modified to generate predictions about other populations of interest. Hypothetical contributions of
perceptual, cognitive, and linguistic abilities are shown for hearing-impaired listeners (top panel) and non-native listeners
(bottom panel).

degradation. In low signal quality conditions, the DRL posits that the performance of an individual
on a battery of basic auditory perception tests (e.g., pure-tone audiometry, gap detection, temporal
discrimination) should better predict listening performance than their results on cognitive
(e.g., working memory, attention, processing speed) or linguistic tests (e.g., vocabulary, syntactic
fluency). In moderate signal quality conditions, cognitive tests should be the dominant predictors
and, in high signal quality conditions, linguistic tests should be the dominant predictors.

An important consideration for assessing the aforementioned predictions is the choice of the ap-
propriate tests for each set of abilities [20,42-44]. Because psychometric tests often impose a
load on dimensions other than the one they are designed to measure, structural equation model-
ing could be used to extract a latent variable for each set of tests, and those latent variables,
rather than the test scores themselves, would be used as predictors of performance at various
points on the signal quality continuum. This procedure, which has been used to compare auditory
and cognitive predictors of speech recognition performance in various age groups [45-47], would
maximize distinctiveness between predictors and guard against the challenges of reducing broad
constructs (perception, cognition, language) to the narrower scope of individual tests.

Because it essentially operates as a dynamic sliding scale between three dominant processing

modes imposed on the listeners by changes in signal quality, the framework can also be used
to test whether meaningful discontinuities on the speech quality continuum (e.g., a positive vs
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Box 2. Signal degradation and adaptation within the DRL framework

For the sake of simplicity, the DRL framework treats signal quality as a unitary concept. However, signal degradation can
take different forms [104], and these may affect the relative contributions of the DRL processing regions. For instance,
compared to the mostly energetic nature of broadband steady-state maskers, fluctuating noise often affords glimpses
of the target signal. Successful exploitation of such glimpses has been shown to involve attention control and working
memory [10,105]. Likewise, maskers with informational content are likely to engage both attention control and linguistic
abilities [106]. Thus, the boundaries between DRL regions are likely to be modulated by the type of signal degradation
in ways that can be tested empirically.

The nature of the degradation also has implications for how perceptual processes and cognitive resources interact during
learning. Speech that is intrinsically degraded (e.g., accented, noise-vocoded, disordered) often provides systematic dis-
tortions that are learnable through knowledge-driven perceptual adaptation and acoustic-to-phonetic remapping
[19,107-110]. By contrast, speech that is degraded extrinsically by a competing sound source (e.g., noise, competing
talkers) involves more random distortions and is therefore less readily learnable [108,111]. Distinct learning curves have
been found for the two types of degradation [112,113]. Differences in learnability should affect the DRL in predictable ways.
For example, intrinsic degradation should have a greater impact than extrinsic degradation on region shifts during learning,
and the data-limited region should shrink more markedly in the course of learning speech with intrinsic rather than extrinsic
degradation.

It is less clear whether exposure to intrinsic degradation should lead to a greater role for the resource-limited region. If per-
ceptual adaptation requires only limited involvement of attentional processes [114], learning should be relatively impervious
to individual differences in attention control. Therefore, adaptation to intrinsic degradation should be relatively independent
of individual differences in attention control within the resource-limited region. However, if adaptation is strongly
underpinned by attentional processes [115], individual differences in attention control should influence how well listeners
adapt to intrinsic degradation, and thus increase the relative contribution of the resource-limited region. Whether the in-
volvement of the resource-limited region changes during exposure to intrinsic degradation therefore depends on theoret-
ical assumptions about the mechanisms that underlie perceptual adaptation. This question also has clinical implications.
Because the signal produced by a cochlear implant constitutes a paradigmatic case of intrinsic degradation, understand-
ing the role of attention (and cognition in general) will be crucial to establish the possible contribution of cognitive resources
to auditory plasticity and reorganization in cochlear-implanted users.

negative SNR) might coincide with tipping points between processing modes and how those
tipping points shift as a function of stimulus characteristics (examples are given in Box 2).
Likewise, the DRL can be used to reinterpret existing data on hearing-impaired and non-
native listeners, as described in later sections, and serve as a catalyst for novel questions
(see Outstanding questions).

Four aspects set the DRL apart from other models: (i) DRL considers the combined influence of
individual differences in perceptual, cognitive, and linguistic abilities on performance. (i) DRL
regards the degree of signal degradation as a primary factor that shapes how such individual dif-
ferences play out. (i) Although other models emphasize recognition performance (e.g., ELU) or
resource engagement (e.g., FUEL, MoLE), DRL makes predictions about how both recognition
performance and resource engagement vary as a function of signal quality. (iv) DRL makes spe-
cific predictions about the conditions in which resource engagement is mostly likely to affect
speech recognition performance (as described in the following section).

Resource engagement within the DRL framework

An inherent assumption of the DRL framework is that operations performed on the sensory input
must compete with each other within a limited capacity system. A degraded input requires a
greater draw on the available capacity (or resources) than would be needed if the input was
clear, and fewer resources are available to conduct higher-level operations on that input or on
a concurrent task [5,6,48-50]. The postulated relation between resource engagement and signal
clarity is depicted in Figure 1A (gray curve, right y axis). As illustrated, resource engagement and
intelligibility do not covary in a linear fashion [16,51,52] and instead follow an inverted U-shaped
curve [16,53,54]. The DRL formalizes this relationship by predicting that the link between

6 Trendsin Cognitive Sciences, Month 2025, Vol. xx, No. xx
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resource engagement and performance should be strongest in the resource-limited region,
whereas performance would be less dependent on cognitive resources when a task is data-
limited or language-limited.

The task-evoked pupil response (TEPR) has been proposed as a near real-time physiological
index of resource engagement that can be measured independently of task performance [55].
Note that TEPRs may not map directly onto everyday listening difficulties such as perceived effort
or fatigue [56,57], and care should be taken when interpreting individual differences using this
method [58]. However, TEPRs are now widely used as a laboratory index of resource engage-
ment during listening owing to its sensitivity to task demand and capacity limits [59,60], especially
when combined with other measures [61].

Resource engagement in the resource-limited region

The DRL framework predicts that resource engagement is likely to be highest at the center of the
resource-limited region. This claim is supported by the extant literature that reveals a peak in
TEPR at ~50% intelligibility [16,58,60], indicating that resources are applied as listeners attempt
to process a signal within a moderately degraded range. The resource-limited region is also the
one in which motivation is most likely to positively translate into increased resource engagement
and better performance [5,62]. In other words, this is a region where effort invested 'pays off'. The
motivation of a listener to understand a severely degraded signal may be high at first, but it is likely
to decline if no improvement in performance is achieved. Therefore, interventions that seek to
modulate resource engagement via motivation (e.g., reward) should be most effective when ap-
plied in conditions of moderate signal quality compared to low or high signal quality.

Resource engagement in the language-limited region

Research on the contribution of cognitive resources to the perception of intelligible speech has
produced mixed results. On the one hand, the TEPR and its variability decrease at a favorable
SNR [53,54]. Similarly, the TEPR no longer covaries with SNR once performance becomes as-
ymptotic [16]. On the other hand, there is some evidence for continued changes in resource en-
gagement in that region. For example, TEPRs continue to decrease as signal clarity improves,
even when analyses are restricted to trials with 100% accuracy [63], and this could reflect the re-
duced cost of revisiting and repairing the input as signal quality improves [64,65]. Evidence for re-
duced resource engagement with increasing clarity of supra-threshold speech has also been
obtained using the dual task paradigm [66,67].

Despite the evidence of a link between TEPR and signal quality within the region of asymptotic
performance, it is important to note that TEPR changes in that region are relatively small com-
pared to changes in the resource-limited region [63]. This suggests that, although changes in sig-
nal quality within the language-limited region may affect resource engagement, they do so to a
lesser extent than in the resource-limited region, as postulated by the DRL framework. TEPR
changes within the language-limited region are also likely to reflect differences in the ease with
which linguistic and discourse processes are completed at a supra-threshold level [68,69].

Resource engagement in the data-limited region

When the signal quality is so poor that no amount of effort can restore comprehension, studies
have correspondingly shown smaller TEPRs than in the resource-limited region [53,54]. The
low predictive power of cognitive abilities in that region can reflect either an unsuccessful attempt
of the listener to use their cognitive resources or disengagement from a task that is perceived to
be too difficult to be worth the effort. The latter option is in accord with the claim in the field of
neuroeconomics that individuals will engage effort to perform a task only if they believe that this
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effort is likely to yield some degree of success or 'return on investment' [33]. Therefore, research
on motivational factors in speech perception [58,70-75] offers a promising avenue for under-
standing the relationship between resource engagement and task performance across the signal
quality continuum [76]. For example, listeners who report giving up (low motivation) when the sig-
nal is highly degraded have smaller pupil dilations than listeners who report not giving up (high
motivation) [77]. The DRL provides a basis for contextualizing the debate on whether the link be-
tween motivation, resource engagement, and performance applies across all levels of task diffi-
culty, or applies primarily in moderately difficult listening conditions [5,71,78].

Applying the DRL framework to specific populations

Hearing-impaired listeners

It is well documented that individuals with hearing impairment struggle with speech in noise [36].
In this population, poorer access to data because of reduced hearing sensitivity means that the
data-limited region should extend to the right along the signal quality continuum (Figure 1B,
upper panel). In turn, DRL predicts greater involvement of cognitive and linguistic abilities at higher
(moderate-to-high) levels of signal quality, as depicted by a rightward shift of those two regions.
Cognitive resources have indeed been shown to be engaged even in favorable signal quality con-
ditions in individuals with hearing loss [53], and this represents a rightward shift of the tipping point
between the data-limited and resource-limited regions. A consequence of this shift is that hear-
ing-impaired listeners can only successfully operate within the language-limited region in highly
clear signal quality conditions.

These predictions imply that listening conditions that would be resource-limited for normal-
hearing individuals may be data-limited for hearing-impaired individuals [79], and listening condi-
tions that would be language-limited for normal-hearing individuals may be resource-limited for
hearing-impaired individuals. This could explain why working memory capacity is often found to
be a better predictor of speech perception in noise among hearing-impaired than in normal-
hearing individuals [43]. Given that highly degraded listening conditions are rarely encountered
by older adults with hearing loss in everyday life [80], these listeners may be confined to a more
permanent state of operating within an effortful and resource-limited region. This situation may
be contrasted with listeners with normal hearing, who can afford to be more sparing in their
use of cognitive resources in service of higher-level linguistic processing of the input [81-84]. It
is thus not surprising to hear reports of exhaustion and mental fatigue by individuals with impaired
hearing. For them, the everyday communicative world is one of sustained resource-intensive
listening [5,85,86].

For hearing-impaired listeners who use hearing aids, the DRL proposes that the resulting boost in
signal quality could propel listeners from operating within a data-limited region, where cognitive
support is ineffective, to operating within a resource-limited region, where cognitive resources
can contribute meaningfully to speech recognition performance. This prediction is supported
by data showing that cognitive abilities make a significant contribution to aided speech under-
standing [47] compared to the dominance of hearing factors, such as hearing thresholds, in un-
aided speech understanding [46,87]. In other words, by promoting effective mapping between
the improved sensory input and lexical representations through learning, aided hearing could
shift the boundary between those two regions to the left, and thus decrease instances of unre-
warded effort and subsequent fatigue. Indeed, compared to unaided listeners, hearing-
impaired listeners who are provided with a hearing aid show improvement in cognitive function,
especially in working memory capacity [88]. By implication, we predict that cognitive support to
speech recognition is stronger for hearing-impaired listeners who successfully acclimate to a
hearing device.

8 Trendsin Cognitive Sciences, Month 2025, Vol. xx, No. xx
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Non-native listeners

A special case of language-limited processes must be considered when investigating the chal-
lenges experienced by individuals with non-native knowledge of the language. Non-native lis-
teners often show greater vulnerability to signal degradation, the so-called non-native speech-
in-noise disadvantage [89-92]. In this group, incomplete linguistic knowledge makes it difficult
to successfully fill in the gaps created by signal degradation by using linguistic top-down knowl-
edge, a process that is often seen as a hallmark of native listening [93]. This is particularly prob-
lematic for older non-native adults, where reduced working memory and age-related hearing
impairments further challenge cognition and perception [94,95]. In the DRL framework, we
argue that the incomplete linguistic knowledge that characterizes non-native listeners results in
a language-limited region that extends leftward (Figure 1B, lower panel). Thus, for non-native lis-
teners, individual differences in linguistic knowledge (of the non-native language) should be a
stronger predictor of performance across a much broader range of signal quality conditions
than for native listeners. The resource-limited region will also likely cover a broader range because
cognitive abilities such as working memory and attentional control are recruited to compensate
for the lack of linguistic support. This claim is supported by evidence for widespread cognitive re-
source engagement in high-intelligibility conditions in non-native listeners [96-99]. A potential
consequence of the greater overlap between the resource-limited region and the language-
limited regions could be more cases where resource engagement fails to translate into improved
performance [100].

Given the high degree of variability in language proficiency among non-native listeners,
there is ample scope to evaluate individual differences within this population. We predict that
non-native speakers with superior linguistic knowledge will show a narrower language-limited
region than speakers with lower proficiency. There will thus be a reduced overlap between
the resource-limited and language-limited regions relative to their less-proficient counter-
parts. Indeed, by analogy to the impact of wearing a hearing aid on cognitive enhancement
in hearing-impaired listeners, the DRL predicts that progressing from lower to higher profi-
ciency in the course of learning a second language would amount to narrowing of the relative
involvement of linguistic processes and engagement of cognitive resources where they are
most impactful (i.e., in moderate signal quality conditions). These predictions, as well as
those pertaining to hearing-impaired listeners, could be tested using the latent-variable
approach described earlier, and contrasted constellations of predictors are expected to be
found at different levels of signal quality for normal-hearing, impaired hearing, and non-
native listeners.

Concluding remarks

The field of hearing science can benefit from reconceptualization of cognitive listening by embrac-
ing and developing the notions of data-limited and resource-limited processes postulated by
Norman and Bobrow [17] within an account that considers a full range of signal quality. We
offer the DRL framework, which expands upon those notions and brings linguistic abilities to
the fore, with a focus on current theoretical challenges in speech perception research. The frame-
work partitions the listening experience into three zones of preferential processes (perceptual,
cognitive, linguistic) as a function of signal quality (low, moderate, high). In doing so, it provides
testable predictions about performance and resource engagement that can be used to reinter-
pret existing data, generate hypotheses, and ask novel questions (Table 1).

The DRL framework also presents opportunities for further exploration in clinical practice and
training. From the perspective of the listener, the DRL emphasizes learning as a means of shifting
boundaries between processing regions to strategically allocate cognitive resources whenever
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Outstanding questions

Can listeners be trained to identify when
they are operating within a data-limited
region, in other words when speech is
beyond their ability to perceive even if
they invest additional resources? If so,
can listeners learn to modulate resource
engagement to preserve cognitive re-
sources for other tasks?

How do the different measures of
resource engagement such as
subjective ratings, TEPRs, and
electroencephalography (EEG)/fMRI
relate to each other? If these
measures capture distinct
subdomains of the broader notion of
resource engagement, how can
these subdomains be partitioned?

Can the investigation of resource
engagement tell us something about
the  mechanisms that underlie
adaptation to target/masker segregation
over time? An improvement in listening
performance in the course of a session
could be accompanied by either a
decrease or an increase in effort. The
former might indicate that adaptation is
largely perceptual and cognitively cost-
free, whereas the latter might indicate
that adaptation involves active executive
functions and is cognitively costly.

Can the DRL scale up to predict suc-
cessful turn-taking in conversation?
Turn-taking is often thought to rely on
a combination of acoustic/prosodic
cues and higher-order linguistic predic-
tion. The DRL posits that the relative
weights of these mechanisms may de-
pend on the quality of the signal, and
display greater reliance on acoustic/
prosodic cues in the data-limited region
and greater reliance on linguistic predic-
tion in the language-limited region.

How do the features described in the
DRL operate for young children at var-
ious stages of linguistic and cognitive
development? Do well-known devel-
opmental milestones coincide with
meaningful shifts in tipping points be-
tween the three DRL regions?

How can the DRL be used to make pre-
dictions about age-related changes in lis-
tening performance and resource
engagement? Given the known contrast
between preserved linguistic knowledge
and decline in auditory sensitivity and
cognitive  functions, how are the
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such a shift is likely to pay off. If a listener is made aware through training that a process is data-
limited, that person may learn to refrain from investing resources, and thereby limit the cumulative
toll of sustained effortful listening and redirecting resources to other activities. Conversely, if a

Table 1. Overview of processing regions, evidence, and predictions within the DRL framework

Signal quality
region

Low signal quality
Data-limited
region

Moderate signal
quality
Resource-limited
region

High signal quality
Language-limited
region

Predicted dominant abilities

Perceptual abilities dominate.
Cognitive and linguistic
processes cannot
substantially improve
performance because the
input is too impoverished.

Cognitive abilities dominate.
Listeners can rescue
moderately degraded input
by using cognitive
resources; investing effort
'pays off.'

Linguistic abilities dominate.
Input is sufficiently clear that
residual variability primarily
reflects differences in
vocabulary, syntax, and
discourse processing skills.

Examples of
predictors/tests

Pure-tone audiometry
thresholds, gap detection,
modulation detection,
frequency discrimination,
temporal processing.

Working memory span,
executive functions,
auditory attention,
processing speed.

Vocabulary size, syntactic
fluency.

10 Trendsin Cognitive Sciences, Month 2025, Vol. xx, No. xx

Converging evidence

Hearing acuity predicts recognition of
lowpass-filtered words better than
working memory does [14].

For older adults with hearing loss,
hearing thresholds dominate as
predictors of speech recognition
when speech is unaided [46,87].
Pupillometry shows reduced TEPR in
severely versus moderately
degraded conditions [16,53,54].
Working memory is a less dominant
predictor of performance when
target and masker overlap
spectrally/spatially [13].

The benefit of top-down audiovisual
integration on speech perception is
minimal when the auditory signal is
severely degraded [116].

Speech-in-noise performance
correlates with working memory
capacity when signal degradation is
moderate [13,20,21].

The addition of processing pauses in
vocoded speech benefits intelligibility
only if degradation through vocoding
is moderate [15].

Pupillometry shows highest TEPR at
~50% intelligibility, consistent with
peak cognitive effectiveness
[16,53,54].

When the audibility of older adults is
restored through spectral shaping,
cognitive latent variables emerge as a
dominant predictor [47].

Positive SNRs have larger effects on
the intelligibility of sentences than of
isolated words, suggesting greater
use of sentence-level information in
favorable conditions [117].
Pupillometry shows decreased TEPR
once performance asymptotes,
showing less involvement of
cognitive functions [16,53,54].
Persistent individual variability in
intelligibility in high signal quality
conditions [15,28-30] despite low
cognitive resource engagement [16],
suggesting possible contribution of
differences in linguistic functions.

boundaries between the DRL regions
(and associated resource engagement)
expected to change as we age?

Predictions

Structural equation modeling (SEM)
latent variables for perceptual tests
should explain relatively more
variance than latent variables for
cognitive or linguistic tests.

The data-limited region is expected
to extend rightward for listeners with
impaired hearing, such that
perceptual predictors remain strong
even at moderate signal quality.
Performance should show a low
correlation with resource
engagement (e.g., TEPR); task per-
formance should remain largely
independent of any motivational
manipulation.

Turn-taking in conversation
[118,119] should rely more heavily
on acoustic cues (e.g., prosody)
than discourse predictability.
Perceptual training [120] should be
maximally effective in this region.

SEM latent variables for cognitive
tests should explain relatively more
variance than latent variables for
perceptual or linguistic tests.
Motivational manipulations should
modulate TEPR and improve
performance to the greatest extent.
Individuals with cognitive
impairments should be most
affected in this region.

Cognitive training should be
maximally effective in this region.

SEM latent variables for linguistic tests
should explain relatively more variance
than latent variables for perceptual or
cognitive tests.

The language-limited region is
expected to extend leftward for
non-native listeners, such that linguistic
predictors remain strong even at
moderate signal quality.

Because listening is achieved with
minimal cognitive resources,
motivational manipulations should not
significantly contribute to performance
improvement.

Language training should be maximally
effective in this region, especially for
second-language (L2) listeners.
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listener is aware that the task is resource-limited, that person may increase their engagement of
cognitive resources, resulting in greater comprehension of the spoken content. The DRL concep-
tualization also presents a mechanism (narrowing reliance on the language-limited region) by
which non-native listeners can improve speech perception through honing their linguistic abilities.
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