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Research on 'cognitive listening' has grown exponentially in recent years. Lack-

ing, however, is a conceptual framework to organize the abundance of data from 

the hearing, cognitive, and linguistic sciences. We offer the data-resource-

language (DRL) framework that draws from the notions of data-limited and 

resource-limited processes to provide a roadmap for understanding the interac-

tion between auditory sensitivity, cognitive resources, and linguistic knowledge 

during speech perception, especially in adverse conditions. The DRL framework 

explains how these three sets of abilities predict performance and resource en-

gagement as a function of signal quality. It also provides a platform for character-

izing similarities and differences in how normal-hearing, impaired-hearing, and 

non-native listeners process speech in challenging conditions. 
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Listening as a cognitive activity 

We live in a world of noise, whether it is the sound of traffic or competing speech in a crowded 

restaurant. Some listeners can transition seamlessly between these environments unencum-

bered by the noise and distraction. Others may struggle with even moderate acoustic challenges 

and find them effortful and hard to overcome. 

Attempts have been made to characterize the contribution of listener characteristics to speech 

perception in challenging conditions. For instance, in the 'ease of language understanding' 

(ELU) model [1–4], working memory (see Glossary) capacity is thought to support degraded 

speech perception through a process that links the signal and long-term linguistic memory. 

Similarly, the 'framework for understanding effortful listening' (FUEL) [5] maps out the dynamic 

relations between task demands, motivation, and listening effort within a demand-capacity 

framework that is inspired by the capacity model of attention [6]. The 'model of listening 

engagement' (MoLE) [7] adds a focus on subjective experiences such as enjoyment and bore-

dom, and emphasizes how these experiences interact with cognitive resources and execu-

tive control to determine whether an individual successfully engages with listening. These 

conceptualizations and others have benefited from, and contributed to, fields known as audi-

tory cognitive science [8], cognitive hearing science [9,10], and cognitive audiology [11]. 

These fields share the assumption that cognition 'kicks in' [12] when listening conditions are 

challenging, an approach that is encapsulated by the term cognitive listening.  We  take  a  

broad definition of cognition as a set of mental operations that include the subcomponents 

of working memory (short-term phonological storage and executive control) and attention con-

trol (selective attention and inhibiti on).

Despite these advances, both real-world experience and empirical data indicate that, when sig-

nal degradation is severe, there may not be enough acoustic information that 'get through' to 

rescue comprehension, no matter how much cognitive resource is applied to the task [13–15]. 

Likewise, cognition may not be substantially engaged when the signal is minimally degraded 

and performance is high [3,16]. These observations underscore the need for a framework that 

both captures the operational parameters of cognitive engagement across the continuum of

Highlights 

It is rare that speech is heard in ideal lis-

tening conditions because we com-

monly face acoustic challenges such as 

everyday background noise. Listening 

challenges are also faced by individuals 

with hearing impairment and those who 
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them. 
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conditions such as a noisy background, 

accented speech, and hearing loss is 
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signal quality and offers alternative contributors to performance in conditions where cognitive 

abilities only have a secondary role.
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Some 50 years ago, Norman and Bobrow [17] introduced two terms that are relevant to this ob-

jective and are key components of our proposal. They used the term resource-limited process 

to describe conditions in which the application of additional cognitive resources can bring im-

provement in performance. By contrast, the term data-limited process was used to describe 

conditions in which the input is so degraded that no amount of additional cognitive resource 

can improve performance. Although speech perception was not the focus of Norman and 

Bobrow's concern at the time, their terminology can help us to formalize the types of challenges 

that listeners encounter on a daily basis, such as acoustic masking, accented speech, and spec-

trally degraded speech experienced through a cochlear implant. 

Alongside Norman and Bobrow's terms, we draw upon the notions of resource availability 

(cognitive abilities that an individual possesses in a finite amount) and resource engagement 

(the extent to which those abilities are allocated to a task) to offer a framework that aims to 

characterize the relationship between perceptual abilities, cognitive resources, and linguistic 

knowledge across the full range of signal quality, from severely degraded to intact – a  contin-

uum that is also often referred to as listening demand. The notions of resource availability 

and engagement are essential for understanding how cognitive processes interact with listen-

ing demands (Box 1). 

The goals of the framework are to (i) identify the listener-specific abilities (perceptual, cognitive, 

and linguistic) that best predict speech understanding, (ii) specify the range of signal quality in 

which each of these abilities is most likely to predict performance, and (iii) differentiate between 

conditions where resource engagement is likely to be associated with improved performance 

and conditions where it is not. 

Box 1. Resource availability and engagement within the DRL framework 

The dual concepts of effort and resources, that are central to Norman and Bobrow's formulation [17], are captured by the 

definition of effort as intentional allocation of cognitive resources to overcome obstacles for successful completion of a lis-

tening task [5]. In this regard, we note that effort is not a unitary concept because it encompasses both the subjective 

sense of effort (that is tied closely to an individual's judgment of the difficulty of accomplishing a task) and the objective 

sense of effort, for example as measured by the size of the task-evoked pupil response (TEPR). Although the two senses 

of effort are closely aligned [7,101], it is the objective sense that is intended by most researchers, and it is this sense that we 

use in the DRL framework. 

We consider resources in terms of working memory, processing speed, and executive function [102], and these functions 

collectively define resource availability. As is often argued [6,48,49], resource availability (i.e., capacity) is limited, such that 

the allocation of resources to one demanding task or set of operations leaves fewer resources available for the simulta-

neous conduct of other demanding tasks or operations. This principle underlies Kahneman's articulation of his general re-

source model of attention [6] upon which Norman and Bobrow's definitions are implicitly based. It is also a principle 

adopted by the DRL framework. When the DRL framework references increased resource engagement within the re-

source-limited region of task performance, we postulate that resource engagement is constrained both by the resources 

available to an individual per se and by their decision to allocate these limited resources to the task. Factors affecting this 

decision include the importance of the task to the individual, their motivation to perform the task as well as they can 

(perhaps based on a reward), and the belief that the task is manageable – engaging additional resources is likely to bring 

a successful return on the investment [71,103]. 

Although the DRL considers perceptual, cognitive, and linguistic abilities as separable sources of individual differences, lin-

guistic challenges may draw on domain-general cognitive resources when speech is particularly complex [68]. That is, al-

though resource capacity and linguistic ability are fixed, cognitive resources may be dynamically recruited to support 

linguistic abilities. 

Glossary 

Cognitive listening: the intentional and 

sometimes effortful process of attending 

to, interpreting, and comprehending 

spoken language, particularly in 

challenging listening environments. 

Listening is said to be cognitive because 

it involves attention and working memory 

processes alongside purely auditory or 

linguistic processes. 

Cognitive resources: cognitive 

fundamentals such as working memory, 

processing speed, and executive 

functions that an individual possesses in 

a finite amount (resource availability) and 

that can be allocated to a listening task. 

Controlling resource allocation is 

volitional and usually effortful. 

Data-limited process: an operation 

that is constrained by the quality or 

quantity of the available input data (and 

perceptual processes) rather than by the 

availability or engagement of cognitive 

resources. Engagement of cognitive 

resources in this processing region is 

unlikely to improve listening 

performance. 

Language-limited process: an 

operation that is supported primarily by 

linguistic abilities rather than by 

perceptual and cognitive processes. In 

this processing region, listening 

performance is predicated primarily 

based on vocabulary knowledge, 

syntactic fluency, and narrative 

comprehension. 

Learning: the process of acquiring and 

modifying knowledge through 

experience, resulting in enduring 

changes in mental representations. 

Within the DRL, short-term and long-

term adaptation to signal degradation 

leads to improved listening performance, 

region boundary shifts, and perceptual 

recalibration relevant to hearing-aid and 

cochlear-implant tuning. The extent of 

these changes may depend on the type 

of degradation, as described in Box 2. 

Resource-limited process: an 

operation that is supported and 

constrained by the availability of 

cognitive resources such as attention 

and working memory. In this processing 

region, engaging cognitive resources to 

perform a listening task is usually effortful 

but leads to improved performance. 

Signal degradation: any distortion of 

the speech signal that reduces its 

intelligibility. Signal degradation can be 

intrinsic (e.g., accented, disordered, 

filtered speech, speech heard through a 

cochlear implant) or extrinsic
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Task-evoked pupil response 

(TEPR): changes in pupil size from 

baseline during auditory stimulus 

(e.g., speech) processing that are 

thought to reflect engagement of 

cognitive resources. This metric is 

captured using an eye-tracking 

technique termed pupillometry. 

Working memory: a  limited-capacity  

system that temporarily holds and 

manipulates auditory and linguistic 

information and plays a crucial role in 

active listening, learning, and reasonin g.

(e.g., background noise, competing 

talkers). It can lead to evenly distributed 

degradation across the signal 

(e.g., broadband steady-state noise, 

high-N babble noise) or irregular 

degradation (e.g., amplitude-modulated 

noise, a single competing talker). 
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Relevance of the data-limited/resource-limited framework for speech perception 

research 

A theory of speech processing in natural listening conditions must provide an account of how per-

ception, cognition, and linguistic knowledge interact to achieve an observed level of performance. 

To date, no theory offers an account that fully integrates all three components. Norman and 

Bobrow's framework is well suited to describing how two of those components – perception 

and cognition – constrain performance as a function of signal quality. Each specific degree of sig-

nal degradation can be represented by a unique proportion of data-limited and resource-limited 

processes. When speech is severely degraded, recognition performance is unlikely to exceed the 

ability of our auditory system to decode the impoverished signal. Dedicating more cognitive re-

sources to the task is unlikely to yield further improvement. In its purest form, this data-limited 

scenario can be illustrated by the relative robustness of pure-tone audiometry tests: below-

threshold tones are unlikely to be detected whether or not the listener applies additional cognitive 

resources to the task – the signal (data) is simply not sufficiently strong to benefit from enhanced 

attention or memory processes [18]. 

When signal quality is moderate, allocating additional cognitive resources to the task can improve 

performance, at least to the extent that those resources are available. These are cases where 

there are sufficient sensory data to allow cognitive processes such as working memory and atten-

tional focus to play a supporting role in integrating and interpreting the degraded speech frag-

ments [19]. This resource-limited scenario can be illustrated by the observation that individuals 

with good working memory capacity are generally better at coping with moderate noise than 

are individuals with poorer working memory capacity [20,21]. 

The effect of signal quality on the trade-off between data-limited and resource-limited processes 

is supported by empirical evidence. For example, the data show that working memory capacity 

positively correlates with the ability of a listener to track two simultaneous talkers when the talkers 

are spectrally or spatially separated (resource-limited), but not when they overlap spectrally and 

spatially (data-limited) [13]. Likewise, the hearing acuity of older adults better predicts lowpass-

filtered (data-limited) than unfiltered (resource-limited) speech perception, whereas working 

memory capacity shows the opposite pattern [14]. The contribution of cognitive processes to 

the perception of degraded speech can also be tested by manipulating the amount of processing 

time that is available to the listeners during the task. For instance, when speech is moderately de-

graded (resource-limited) through noise-vocoding, the insertion of silent pauses at linguistically 

salient points within rapid (compressed) speech improves recall performance, presumably be-

cause the additional processing time allows listeners to use cognitive processes to 'catch up' 

with the impoverished input. However, when the speech is heavily degraded (data-limited), the 

insertion of silent pauses has a smaller impact on recall [15]. 

The distinction between data-limited and resource-limited regions along the signal quality contin-

uum is important because it establishes a symbolic boundary between what is reducible to audi-

tory perception and what can be genuinely construed as cognitive listening [22]. The above 

evidence shows that the data-limited/resource-limited framework can explain a wide range of lis-

tening behaviors when signal quality varies from severely to moderately degraded. However, this 

two-component distinction is silent about the drivers of performance at the upper end of signal 

quality, where speech is intelligible and performance, although still variable, is high [23–26]. In 

that region, the data converge in showing a decreased contribution of cognitive abilities to perfor-

mance [3,16]. This pattern is also evident in individuals with mild cognitive impairment who, rela-

tive to typically developing listeners, are less affected by their impaired cognition when processing 

intelligible speech than when processing speech in noise [27], which suggests that cognition
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makes a smaller contribution to intact than to degraded speech processing. However, the factors 

that do predict performance variability in high-intelligibility conditions remain unspecified. 

Trends in Cognitive Sciences
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A tripartite data-limited, resource-limited, language-limited (DRL) framework 

Our claim is that, at the high end of the signal quality continuum, listening performance is primarily 

determined by individual differences in linguistic abilities – in other words, it is a language-limited 

process. On the assumption that substantial variability in speech perception performance per-

sists even in favorable signal quality conditions [15,28,29], we predict that performance will 

reach an asymptote at a higher level of accuracy for individuals with more complex and nuanced 

knowledge of the language. Although differences in auditory acuity and cognitive abilities may still 

afford some explanatory power, their role in accounting for performance differences would be 

smaller than that of individual differences in factors such as vocabulary knowledge and syntactic 

fluency. Linguistic factors are predicted to be particularly significant drivers of performance in nat-

uralistic tasks (e.g., narrative comprehension) because performance asymptotes on such tasks 

are likely to occur well below ceiling level. In these conditions, which represent the majority of 

real-life communication, more complex processes are required, and these are a crucial source 

of individual differences [30]. 

The link between individual differences in linguistic abilities and speech comprehension has been 

documented over decades of language-processing research [31,32]. However, this literature is 

rarely used to inform speech-in-noise research because the evidence is derived primarily from ex-

periments using speech heard in quiet conditions. Conversely, the speech-in-noise literature has 

deliberately focused on non-linguistic determinants of performance such as hearing sensitivity 

and cognitive capacities [33], and has assumed a linguistic level-field for convenience (at least 

within a native-language population). We are not claiming that linguistic abilities can account for 

performance differences only when the signal is highly intelligible. Indeed, we know that vocabulary 

knowledge [34,35] and semantic context [36,37] play crucial roles in the resource-limited region 

because the use of contextual cues from linguistic information draws upon predictive processes 

that require cognitive resources [38]. Our claim, instead, is that linguistic abilities are comparatively 

better predictors of performance under optimal listening conditions, and non-native language users 

serve as a prominent example. In very poor signal quality conditions, listeners might very well at-

tempt to recruit linguistic abilities, but the DRL predicts that such abilities would not have sufficient 

signal to work with to contribute to performance in a significant way. Likewise, we are not claiming 

that cognitive abilities do not play any role in intelligible speech processing because a link between 

working memory and syntactic parsing has been reported [39–41], but instead that cognitive abil-

ities play a comparatively greater role when the signal is moderately degraded. 

Figure 1A illustrates our tripartite conceptualization of the individual drivers of speech perception. 

A crucial aspect of this framework is the identification of prominent processing regions (percep-

tual, cognitive, linguistic) at different levels of signal quality (low, moderate, high). In the DRL 

framework, the signal quality dimension represents an objective and quantifiable stimulus charac-

teristic [e.g., sound level, signal-to-noise ratio (SNR), number of vocoded bands], whereas the 

performance function is an approximation of successful perception averaged across listeners. 

The absolute values and boundaries between processing regions are not specified because 

they are likely to depend on the nature of the degradation and listener characteristics (Box 2 

and later sections for examples). However, they are arranged in a predictable order as signal qual-

ity changes from low to high.

This fixed order, which is the defining feature of the DRL framework, allows us to generate testable 

predictions about the best-fitting constellation of performance predictors as a function of speech
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degradation. In low signal quality conditions, the DRL posits that the performance of an individual 

on a battery of basic auditory perception tests (e.g., pure-tone audiometry, gap detection, temporal 

discrimination) should better predict listening performance than their results on cognitive 

(e.g., working memory, attention, processing speed) or linguistic tests (e.g., vocabulary, syntactic 

fluency). In moderate signal quality conditions, cognitive tests should be the dominant predictors 

and, in high signal quality conditions, linguistic tests should be the dominant predictors. 

Trends in Cognitive Sciences
OPEN ACCESS
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Figure 1. Drivers of listening performance within the data-resource-language (DRL) framework. (A) The top panel 

illustrates the relative contributions of individual differences in perceptual, cognitive, and linguistic abilities to task performance 

as a function of signal quality. When speech quality is data-limited (low signal quality), speech recognition performance is low 

and driven mostly by the perceptual abilities of the listener. When speech quality improves (moderate signal quality), 

performance increases and the allocation of additional cognitive resources, within the scope of the cognitive abilities of the 

listener, begins to contribute to performance (the resource-limited region). When speech reaches a high level of clarity 

(high signal quality), performance is high (the language-limited region) and individual differences are constrained more by 

linguistic abilities than by perceptual or cognitive abilities. The color gradient in the lower band of the figure highlights the 

secondary contribution of all abilities across the signal quality continuum. The bottom panel shows a typical signal quality/ 

performance curve (in black, left y axis), where the confidence ribbon illustrates individual differences along the signal 

quality continuum. The three processing regions are highlighted. The gray curve (right y axis) shows the expected inverted 

U-shaped resource-engagement function relative to signal quality. Moving from right to left, resource engagement is low in 

the language-limited region and increases as signal quality decreases in the resource-limited region, and reaches a peak 

at the midpoint of this region. Resource engagement declines when the signal degrades further in the data-limited region, 

which suggests disengagement when additional investment is unlikely to enhance performance. (B) Examples of how the 

DRL framework can be modified to generate predictions about other populations of interest. Hypothetical contributions of 

perceptual, cognitive, and linguistic abilities are shown for hearing-impaired listeners (top panel) and non-native listeners 

(bottom panel).

An important consideration for assessing the aforementioned predictions is the choice of the ap-

propriate tests for each set of abilities [20,42–44]. Because psychometric tests often impose a 

load on dimensions other than the one they are designed to measure, structural equation model-

ing could be used to extract a latent variable for each set of tests, and those latent variables, 

rather than the test scores themselves, would be used as predictors of performance at various 

points on the signal quality continuum. This procedure, which has been used to compare auditory 

and cognitive predictors of speech recognition performance in various age groups [45–47], would 

maximize distinctiveness between predictors and guard against the challenges of reducing broad 

constructs (perception, cognition, language) to the narrower scope of individual tests. 

Because it essentially operates as a dynamic sliding scale between three dominant processing 

modes imposed on the listeners by changes in signal quality, the framework can also be used 

to test whether meaningful discontinuities on the speech quality continuum (e.g., a positive vs
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negative SNR) might coincide with tipping points between processing modes and how those 

tipping points shift as a function of stimulus characteristics (examples are given in Box 2). 

Likewise, the DRL can be used to reinterpret existing data on hearing-impaired and non-

native listeners, as described in later sections, and serve as a catalyst for novel questions 

(see Outstanding questions). 

Trends in Cognitive Sciences
OPEN ACCESS

Box 2. Signal degradation and adaptation within the DRL framework 

For the sake of simplicity, the DRL framework treats signal quality as a unitary concept. However, signal degradation can 

take different forms [104], and these may affect the relative contributions of the DRL processing regions. For instance, 

compared to the mostly energetic nature of broadband steady-state maskers, fluctuating noise often affords glimpses 

of the target signal. Successful exploitation of such glimpses has been shown to involve attention control and working 

memory [10,105]. Likewise, maskers with informational content are likely to engage both attention control and linguistic 

abilities [106]. Thus, the boundaries between DRL regions are likely to be modulated by the type of signal degradation 

in ways that can be tested empirically. 

The nature of the degradation also has implications for how perceptual processes and cognitive resources interact during 

learning. Speech that is intrinsically degraded (e.g., accented, noise-vocoded, disordered) often provides systematic dis-

tortions that are learnable through knowledge-driven perceptual adaptation and acoustic-to-phonetic remapping 

[19,107–110]. By contrast, speech that is degraded extrinsically by a competing sound source (e.g., noise, competing 

talkers) involves more random distortions and is therefore less readily learnable [108,111]. Distinct learning curves have 

been found for the two types of degradation [112,113]. Differences in learnability should affect the DRL in predictable ways. 

For example, intrinsic degradation should have a greater impact than extrinsic degradation on region shifts during learning, 

and the data-limited region should shrink more markedly in the course of learning speech with intrinsic rather than extrinsic 

degradation. 

It is less clear whether exposure to intrinsic degradation should lead to a greater role for the resource-limited region. If per-

ceptual adaptation requires only limited involvement of attentional processes [114], learning should be relatively impervious 

to individual differences in attention control. Therefore, adaptation to intrinsic degradation should be relatively independent 

of individual differences in attention control within the resource-limited region. However, if adaptation is strongly 

underpinned by attentional processes [115], individual differences in attention control should influence how well listeners 

adapt to intrinsic degradation, and thus increase the relative contribution of the resource-limited region. Whether the in-

volvement of the resource-limited region changes during exposure to intrinsic degradation therefore depends on theoret-

ical assumptions about the mechanisms that underlie perceptual adaptation. This question also has clinical implications. 

Because the signal produced by a cochlear implant constitutes a paradigmatic case of intrinsic degradation, understand-

ing the role of attention (and cognition in general) will be crucial to establish the possible contribution of cognitive resources 

to auditory plasticity and reorganization in cochlear-implanted users. 

Four aspects set the DRL apart from other models: (i) DRL considers the combined influence of 

individual differences in perceptual, cognitive, and linguistic abilities on performance. (ii) DRL 

regards the degree of signal degradation as a primary factor that shapes how such individual dif-

ferences play out. (iii) Although other models emphasize recognition performance (e.g., ELU) or 

resource engagement (e.g., FUEL, MoLE), DRL makes predictions about how both recognition 

performance and resource engagement vary as a function of signal quality. (iv) DRL makes spe-

cific predictions about the conditions in which resource engagement is mostly likely to affect 

speech recognition performance (as described in the following section). 

Resource engagement within the DRL framework 

An inherent assumption of the DRL framework is that operations performed on the sensory input 

must compete with each other within a limited capacity system. A degraded input requires a 

greater draw on the available capacity (or resources) than would be needed if the input was 

clear, and fewer resources are available to conduct higher-level operations on that input or on 

a concurrent task [5,6,48–50]. The postulated relation between resource engagement and signal 

clarity is depicted in Figure 1A (gray curve, right y axis). As illustrated, resource engagement and 

intelligibility do not covary in a linear fashion [16,51,52] and instead follow an inverted U-shaped 

curve [16,53,54]. The DRL formalizes this relationship by predicting that the link between
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resource engagement and performance should be strongest in the resource-limited region, 

whereas performance would be less dependent on cognitive resources when a task is data-

limited or language-limited. 

Trends in Cognitive Sciences
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The task-evoked pupil response (TEPR) has been proposed as a near real-time physiological 

index of resource engagement that can be measured independently of task performance [55]. 

Note that TEPRs may not map directly onto everyday listening difficulties such as perceived effort 

or fatigue [56,57], and care should be taken when interpreting individual differences using this 

method [58]. However, TEPRs are now widely used as a laboratory index of resource engage-

ment during listening owing to its sensitivity to task demand and capacity limits [59,60], especially 

when combined with other measures [61]. 

Resource engagement in the resource-limited region 

The DRL framework predicts that resource engagement is likely to be highest at the center of the 

resource-limited region. This claim is supported by the extant literature that reveals a peak in 

TEPR at ~50% intelligibility [16,58,60], indicating that resources are applied as listeners attempt 

to process a signal within a moderately degraded range. The resource-limited region is also the 

one in which motivation is most likely to positively translate into increased resource engagement 

and better performance [5,62]. In other words, this is a region where effort invested 'pays off'. The 

motivation of a listener to understand a severely degraded signal may be high at first, but it is likely 

to decline if no improvement in performance is achieved. Therefore, interventions that seek to 

modulate resource engagement via motivation (e.g., reward) should be most effective when ap-

plied in conditions of moderate signal quality compared to low or high signal quality. 

Resource engagement in the language-limited region 

Research on the contribution of cognitive resources to the perception of intelligible speech has 

produced mixed results. On the one hand, the TEPR and its variability decrease at a favorable 

SNR [53,54]. Similarly, the TEPR no longer covaries with SNR once performance becomes as-

ymptotic [16]. On the other hand, there is some evidence for continued changes in resource en-

gagement in that region. For example, TEPRs continue to decrease as signal clarity improves, 

even when analyses are restricted to trials with 100% accuracy [63], and this could reflect the re-

duced cost of revisiting and repairing the input as signal quality improves [64,65]. Evidence for re-

duced resource engagement with increasing clarity of supra-threshold speech has also been 

obtained using the dual task paradigm [66,67]. 

Despite the evidence of a link between TEPR and signal quality within the region of asymptotic 

performance, it is important to note that TEPR changes in that region are relatively small com-

pared to changes in the resource-limited region [63]. This suggests that, although changes in sig-

nal quality within the language-limited region may affect resource engagement, they do so to a 

lesser extent than in the resource-limited region, as postulated by the DRL framework. TEPR 

changes within the language-limited region are also likely to reflect differences in the ease with 

which linguistic and discourse processes are completed at a supra-threshold level [68,69]. 

Resource engagement in the data-limited region 

When the signal quality is so poor that no amount of effort can restore comprehension, studies 

have correspondingly shown smaller TEPRs than in the resource-limited region [53,54]. The 

low predictive power of cognitive abilities in that region can reflect either an unsuccessful attempt 

of the listener to use their cognitive resources or disengagement from a task that is perceived to 

be too difficult to be worth the effort. The latter option is in accord with the claim in the field of 

neuroeconomics that individuals will engage effort to perform a task only if they believe that this
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effort is likely to yield some degree of success or 'return on investment' [33]. Therefore, research 

on motivational factors in speech perception [58,70–75] offers a promising avenue for under-

standing the relationship between resource engagement and task performance across the signal 

quality continuum [76]. For example, listeners who report giving up (low motivation) when the sig-

nal is highly degraded have smaller pupil dilations than listeners who report not giving up (high 

motivation) [77]. The DRL provides a basis for contextualizing the debate on whether the link be-

tween motivation, resource engagement, and performance applies across all levels of task diffi-

culty, or applies primarily in moderately difficult listening conditions [5,71,78]. 

Trends in Cognitive Sciences
OPEN ACCESS

Applying the DRL framework to specific populations 

Hearing-impaired listeners 

It is well documented that individuals with hearing impairment struggle with speech in noise [36]. 

In this population, poorer access to data because of reduced hearing sensitivity means that the 

data-limited region should extend to the right along the signal quality continuum (Figure 1B, 

upper panel). In turn, DRL predicts greater involvement of cognitive and linguistic abilities at higher 

(moderate-to-high) levels of signal quality, as depicted by a rightward shift of those two regions. 

Cognitive resources have indeed been shown to be engaged even in favorable signal quality con-

ditions in individuals with hearing loss [53], and this represents a rightward shift of the tipping point 

between the data-limited and resource-limited regions. A consequence of this shift is that hear-

ing-impaired listeners can only successfully operate within the language-limited region in highly 

clear signal quality conditions. 

These predictions imply that listening conditions that would be resource-limited for normal-

hearing individuals may be data-limited for hearing-impaired individuals [79], and listening condi-

tions that would be language-limited for normal-hearing individuals may be resource-limited for 

hearing-impaired individuals. This could explain why working memory capacity is often found to 

be a better predictor of speech perception in noise among hearing-impaired than in normal-

hearing individuals [43]. Given that highly degraded listening conditions are rarely encountered 

by older adults with hearing loss in everyday life [80], these listeners may be confined to a more 

permanent state of operating within an effortful and resource-limited region. This situation may 

be contrasted with listeners with normal hearing, who can afford to be more sparing in their 

use of cognitive resources in service of higher-level linguistic processing of the input [81–84]. It 

is thus not surprising to hear reports of exhaustion and mental fatigue by individuals with impaired 

hearing. For them, the everyday communicative world is one of sustained resource-intensive 

listening [5,85,86]. 

For hearing-impaired listeners who use hearing aids, the DRL proposes that the resulting boost in 

signal quality could propel listeners from operating within a data-limited region, where cognitive 

support is ineffective, to operating within a resource-limited region, where cognitive resources 

can contribute meaningfully to speech recognition performance. This prediction is supported 

by data showing that cognitive abilities make a significant contribution to aided speech under-

standing [47] compared to the dominance of hearing factors, such as hearing thresholds, in un-

aided speech understanding [46,87]. In other words, by promoting effective mapping between 

the improved sensory input and lexical representations through learning, aided hearing could 

shift the boundary between those two regions to the left, and thus decrease instances of unre-

warded effort and subsequent fatigue. Indeed, compared to unaided listeners, hearing-

impaired listeners who are provided with a hearing aid show improvement in cognitive function, 

especially in working memory capacity [88]. By implication, we predict that cognitive support to 

speech recognition is stronger for hearing-impaired listeners who successfully acclimate to a 

hearing device.

8 Trends in Cognitive Sciences, Month 2025, Vol. xx, No. xx



Trends in Cognitive Sciences
OPEN ACCESS

Non-native listeners 

A special case of language-limited processes must be considered when investigating the chal-

lenges experienced by individuals with non-native knowledge of the language. Non-native lis-

teners often show greater vulnerability to signal degradation, the so-called non-native speech-

in-noise disadvantage [89–92]. In this group, incomplete linguistic knowledge makes it difficult 

to successfully fill in the gaps created by signal degradation by using linguistic top-down knowl-

edge, a process that is often seen as a hallmark of native listening [93]. This is particularly prob-

lematic for older non-native adults, where reduced working memory and age-related hearing 

impairments further challenge cognition and perception [94,95]. In the DRL framework, we 

argue that the incomplete linguistic knowledge that characterizes non-native listeners results in 

a language-limited region that extends leftward (Figure 1B, lower panel). Thus, for non-native lis-

teners, individual differences in linguistic knowledge (of the non-native language) should be a 

stronger predictor of performance across a much broader range of signal quality conditions 

than for native listeners. The resource-limited region will also likely cover a broader range because 

cognitive abilities such as working memory and attentional control are recruited to compensate 

for the lack of linguistic support. This claim is supported by evidence for widespread cognitive re-

source engagement in high-intelligibility conditions in non-native listeners [96–99]. A potential 

consequence of the greater overlap between the resource-limited region and the language-

limited regions could be more cases where resource engagement fails to translate into improved 

performance [100]. 

Given the high degree of variability in language proficiency among non-native listeners, 

there is ample scope to evaluate individual differences within this population. We predict that 

non-native speakers with superior linguistic knowledge will show a narrower language-limited 

region than speakers with lower proficiency. There will thus be a reduced overlap between 

the resource-limited and language-limited regions relative to their less-proficient counter-

parts. Indeed, by analogy to the impact of wearing a hearing aid on cognitive enhancement 

in hearing-impaired listeners, the DRL predicts that progressing from lower to higher profi-

ciency in the course of learning a second language would amount to narrowing of the relative 

involvement of linguistic processes and engagement of cognitive resources where they are 

most impactful (i.e., in moderate signal quality conditions). These predictions, as well as 

those pertaining to hearing-impaired listeners, could be tested using the latent-variable 

approach described earlier, and contrasted constellations of predictors are expected to be 

found at different levels of signal quality for normal-hearing, impaired hearing, and non-

native listeners. 

Concluding remarks 

The field of hearing science can benefit from reconceptualization of cognitive listening by embrac-

ing and developing the notions of data-limited and resource-limited processes postulated by 

Norman and Bobrow [17] within an account that considers a full range of signal quality. We 

offer the DRL framework, which expands upon those notions and brings linguistic abilities to 

the fore, with a focus on current theoretical challenges in speech perception research. The frame-

work partitions the listening experience into three zones of preferential processes (perceptual, 

cognitive, linguistic) as a function of signal quality (low, moderate, high). In doing so, it provides 

testable predictions about performance and resource engagement that can be used to reinter-

pret existing data, generate hypotheses, and ask novel questions (Table 1).

The DRL framework also presents opportunities for further exploration in clinical practice and 

training. From the perspective of the listener, the DRL emphasizes learning as a means of shifting 

boundaries between processing regions to strategically allocate cognitive resources whenever

Outstanding questions 

Can listeners be trained to identify when 

they are operating within a data-limited 

region, in other words when speech is 

beyond their ability to perceive even if 

they invest additional resources? If so, 

can listeners learn to modulate resource 

engagement to preserve cognitive re-

sources for other tasks? 

How do the different measures of 

resource engagement such as 

subjective ratings, TEPRs, and 

electroencephalography (EEG)/fMRI 

relate to each other? If these 

measures capture distinct 

subdomains of the broader notion of 

resource engagement, how can 

these subdomains be partitioned? 

Can the investigation of resource 

engagement tell us something about 

the mechanisms that underlie 

adaptation to target/masker segregation 

over time? An improvement in listening 

performance in the course of a session 

could be accompanied by either a 

decrease or an increase in effort. The 

former might indicate that adaptation is 

largely perceptual and cognitively cost-

free, whereas the latter might indicate 

that adaptation involves active executive 

functions and is cognitively costly. 

Can  the  DRL  scale  up  to  predict  suc-

cessful turn-taking in conversation? 

Turn-taking is often thought to rely on 

a combination of acoustic/prosodic 

cues and higher-order linguistic predic-

tion. The DRL posits that the relative 

weights of these mechanisms may de-

pend on the quality of the signal, and 

display greater reliance on acoustic/ 

prosodic cues in the data-limited region 

and greater reliance on linguistic predic-

tion in the language-limited region.

How do the features described in the 

DRL operate for young children at var-

ious stages of linguistic and cognitive 

development? Do well-known devel-

opmental milestones coincide with 

meaningful shifts in tipping points be-

tween the three DRL regions? 

How can the DRL be used to make pre-

dictions about age-related changes in lis-

tening performance and resource 

engagement? Given the known contrast 

between preserved linguistic knowledge 

and decline in auditory sensitivity and 

cognitive functions, how are the
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such a shift is likely to pay off. If a listener is made aware through training that a process is data-

limited, that person may learn to refrain from investing resources, and thereby limit the cumulative 

toll of sustained effortful listening and redirecting resources to other activities. Conversely, if a

boundaries between the DRL regions 

(and associated resource engagement) 

expected to change as we age?
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Table 1. Overview of processing regions, evidence, and predictions within the DRL framework 

Signal quality 

region 

Predicted dominant abilities Examples of 

predictors/tests 

Converging evidence Predictions 

Low signal quality 

Data-limited 

region 

Perceptual abilities dominate. 

Cognitive and linguistic 

processes cannot 

substantially improve 

performance because the 

input is too impoverished. 

Pure-tone audiometry 

thresholds, gap detection, 

modulation detection, 

frequency discrimination, 

temporal processing. 

Hearing acuity predicts recognition of 

lowpass-filtered words better than 

working memory does [14]. 

For older adults with hearing loss, 

hearing thresholds dominate as 

predictors of speech recognition 

when speech is unaided [46,87]. 

Pupillometry shows reduced TEPR in 

severely versus moderately 

degraded conditions [16,53,54]. 

Working memory is a less dominant 

predictor of performance when 

target and masker overlap 

spectrally/spatially [13]. 

The benefit of top-down audiovisual 

integration on speech perception is 

minimal when the auditory signal is 

severely degraded [116]. 

Structural equation modeling (SEM) 

latent variables for perceptual tests 

should explain relatively more 

variance than latent variables for 

cognitive or linguistic tests. 

The data-limited region is expected 

to extend rightward for listeners with 

impaired hearing, such that 

perceptual predictors remain strong 

even at moderate signal quality. 

Performance should show a low 

correlation with resource 

engagement (e.g., TEPR); task per-

formance should remain largely 

independent of any motivational 

manipulation. 

Turn-taking in conversation 

[118,119] should rely more heavily 

on acoustic cues (e.g., prosody) 

than discourse predictability. 

Perceptual training [120] should be 

maximally effective in this region. 

Moderate signal 

quality 

Resource-limited 

region 

Cognitive abilities dominate. 

Listeners can rescue 

moderately degraded input 

by using cognitive 

resources; investing effort 

'pays off.' 

Working memory span, 

executive functions, 

auditory attention, 

processing speed. 

Speech-in-noise performance 

correlates with working memory 

capacity when signal degradation is 

moderate [13,20,21]. 

The addition of processing pauses in 

vocoded speech benefits intelligibility 

only if degradation through vocoding 

is moderate [15]. 

Pupillometry shows highest TEPR at 

~50% intelligibility, consistent with 

peak cognitive effectiveness 

[16,53,54]. 

When the audibility of older adults is 

restored through spectral shaping, 

cognitive latent variables emerge as a 

dominant predictor [47]. 

SEM latent variables for cognitive 

tests should explain relatively more 

variance than latent variables for 

perceptual or linguistic tests. 

Motivational manipulations should 

modulate TEPR and improve 

performance to the greatest extent. 

Individuals with cognitive 

impairments should be most 

affected in this region. 

Cognitive training should be 

maximally effective in this region. 

High signal quality 

Language-limited 

region 

Linguistic abilities dominate. 

Input is sufficiently clear that 

residual variability primarily 

reflects differences in 

vocabulary, syntax, and 

discourse processing skills. 

Vocabulary size, syntactic 

fluency. 

Positive SNRs have larger effects on 

the intelligibility of sentences than of 

isolated words, suggesting greater 

use of sentence-level information in 

favorable conditions [117]. 

Pupillometry shows decreased TEPR 

once performance asymptotes, 

showing less involvement of 

cognitive functions [16,53,54]. 

Persistent individual variability in 

intelligibility in high signal quality 

conditions [15,28–30] despite low 

cognitive resource engagement [16], 

suggesting possible contribution of 

differences in linguistic functions. 

SEM latent variables for linguistic tests 

should explain relatively more variance 

than latent variables for perceptual or 

cognitive tests. 

The language-limited region is 

expected to extend leftward for 

non-native listeners, such that linguistic 

predictors remain strong even at 

moderate signal quality. 

Because listening is achieved with 

minimal cognitive resources, 

motivational manipulations should not 

significantly contribute to performance 

improvement. 

Language training should be maximally 

effective in this region, especially for 

second-language (L2) listeners.
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listener is aware that the task is resource-limited, that person may increase their engagement of 

cognitive resources, resulting in greater comprehension of the spoken content. The DRL concep-

tualization also presents a mechanism (narrowing reliance on the language-limited region) by 

which non-native listeners can improve speech perception through honing their linguistic abilities.

Trends in Cognitive Sciences
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