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We present a methodology for inferring the molecular weight distribution (MWD) of polydisperse linear
polymers from their linear rheology using machine learning techniques. Specifically, we use a state-of-the-
art tube model to generate large datasets of artificially produced rheology data. These are used to train
neural networks (NNs) to make accurate MWD predictions from frequency-sweep rheology measurements.
We target distributions relevant to commercial polymers, so broad polydisperse MWDs are prioritised. To
simplify the data format for the NN, we fit Maxwell modes to the rheology with pre-defined relaxation
times and hence parameterise the rheology using the mode amplitudes; correspondingly we propose a MWD
parameterisation using the sum of several log-Gaussian sub-distributions with logarithmically spaced mean
molecular weights and identical dispersities. We assess the methodology’s performance by predicting molecular
weight distributions using experimental polystyrene (PS) rheology data from literature. Good agreement
with gel permeation chromatography (GPC) data is found where available, and where it is not, the prediction
captures known molecular weight statistics (such as weight-average molecular weight and dispersity) even if
the precise shape of the MWD is not known. The findings here lay the groundwork for future developments
concerning the inversion of this tube model for other polymeric materials. The ability to infer the MWD from
rheology would traditionally be prohibited by the mathematical complexity of state-of-the-art tube models,

but we bypass this issue with our machine learning methodology.

I. INTRODUCTION

All commercial polymeric materials are polydisperse,
and their molecular weight distribution is a key factor
in determining material properties and commercial use.
Gel permeation chromatography (GPC) is the standard
technique used to measure the MWD, but this has some
drawbacks: GPC can be expensive, time-consuming, and
occasionally require the use of toxic solvents. Also, very
high molecular weight components of a polymer melt are
sometimes not detected by GPC despite having profound
effects on the material’s mechanical properties. These
factors limit the use of GPC for high-volume tasks such
as rapid characterisation of varied feedstock e.g. as might
be required during mechanical recycling. Therefore, we
present a new method for acquiring the MWD from the
melt rheology of the polymer, bypassing the need to per-
form a GPC measurement. Rheology data are rich in
molecular information and can be acquired more eas-
ily than GPC data in most cases. Specifically, the data
we use are the dynamic moduli acquired in a frequency-
sweep experiment.

The possibility of inferring molecular weight informa-
tion from the melt rheology is greatly assisted by the
extensive work that has been done to predict rheology
from molecular structure. The tube model of de Gennes
[1] and Doi and Edwards [2], leading to the modern forms
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of the tube model [3], has achieved great success in mod-
elling linear rheology from material parameters and the
molecular weight distribution (MWD). This was achieved
by simplifying the complex dynamics of polymer melts to
a model of the escape of a test polymer chain within a
tube-like confinement, representing entanglement inter-
actions with the surrounding chains. This allows mod-
elling of the viscoelastic behaviour of polymer melts and
extraction of the storage and loss moduli (G’ and G”).
There are three dominant mechanisms of chain motion
that lead to stress relaxation, all resulting from the ran-
dom thermal motion by which the chains explore the
surrounding space. The first mechanism is reptation, a
lateral movement of the chain along its path to allow
the chain to exit its confinement tube. The timescale
of reptation is dependent on the one-dimensional dif-
fusion along the tube, and scales with the number of
chain segments cubed. This sensitivity underpins a sig-
nificant component of the link between rheology and the
MWD. The second mechanism is contour length fluctu-
ation (CLF) [4, 5], where the ends of the chain escape
the tube by Brownian motion-induced fluctuation of path
length along the tube. The chain coils and uncoils, re-
peatedly exiting and entering the end of the tube, hence
releasing stress from the chain ends, and also reducing
the distance the chain needs to diffuse during reptation.
The third mechanism is constraint release (CR), where
the motion of the chains surrounding a given test chain
release entanglements, allowing stress relaxation via local
rearrangements of the tube [6].

The early tube models neglected some complexity of
the interactions between reptation, CLF and CR. Nev-
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ertheless, these models yield accurate results for the
linear rheological behaviour of monodisperse polymers.
Here, CLFs and CR modify the scaling of the reptation
time with chain length, typically giving a scaling of N34
for well-entangled polymers with a detailed, quantitative
model being provided by Likhtman and Mcleish [7].

Polydisperse melts are more challenging to model,
since relaxation times between chains can vary signifi-
cantly, which strongly enhances the effects of CR. Tu-
minello and others [8-11] developed the ‘double repta-
tion’ model to account for the direct effects of CR on
stress relaxation. Double reptation has significant advan-
tages over earlier models for polydisperse polymers and
performs well for well-entangled polymers with smooth
MWDs. However, it fails to fully capture the entire relax-
ation behaviour as it does not fully take into account the
effect that vastly different chain lengths can have on each
other. Double reptation assumes that the reptation time
of chains of a given length in a polydisperse polymer is
unchanged from that in a monodisperse melt of the same
chain length. In practice, the fast relaxation of short
chains often enables an acceleration in the relaxation of
adjacent long and short chains, leading to a propagation
of additional relaxation acceleration within the stressed
polymer melt. This is seen experimentally where long
chains are mixed with those of significantly lower molec-
ular mass; the relaxation time is often decreased in these
binary blends [12-15], contradicting double reptation re-
sults. Recent studies focussing on relaxation mechanisms
in such bidisperse melts [14-19] have culminated in the
nested-tube model of Das and Read [3], designed to en-
code the previous work in a predictive algorithm for the
linear rheology of fully polydisperse linear polymers. We
make use of this model in the present work.

Previous work has also addressed the problem we tar-
get here, predicting the MWD from the rheology, with
some studies yielding excellent results. Early studies
used the viscosity of the polymer melt to infer the av-
erage molecular weight [20]. Later work aimed to use
the predictive capabilities of various tube models by
reversing the mathematical machinery, for instance in
the case of double reptation inverting the integral over
the relaxation functions of the component chain lengths.
This has been attempted with double reptation and its
subsequent variations [8, 21-27]. Although the integral
inversion is a strictly ill-posed problem, analytical so-
lutions can be found through regularisation techniques
[28]. However, as discussed, there are fundamental weak-
nesses to many of the models that underpin these in-
ferences. For instance, the previously discussed weak-
nesses of double reptation pose issues for binary MWDs
and those with well-separated bi-modal shapes. There-
fore, despite good agreement with experimental MWD
findings in some cases, there is a limit to the generality
and flexibility of these methods. Other models, such as
the ‘dual-constraint’ model of Pattamaprom and Larson
[29], do consider the more complex behaviour of CR in
the relaxation. The use of this model has enabled good

progress in predicting MWDs with large polydispersity
[30]. However, this study also has limited generalisability
because it requires pre-defining the shape of the MWD
peaks as either log-Gaussian or generalised exponential
(GEX), a necessity introduced by the mathematical com-
plexity that comes with increased model accuracy. This
is a symptom of the non-feasibility of the direct inversion
of the model and the non-linearity of the relationship be-
tween the rheology and the MWD [28; 30].

Here we propose an alternative inference method al-
lowed both by new developments in rheological modelling
and by the recent acceleration of so-called ‘artificial intel-
ligence’ methods. Specifically, we suggest combining the
nested-tube model of Das and Read [3] with the use of
machine learning for complex pattern recognition and in-
ference. This state-of-the-art tube model takes all three
relaxation mechanisms into account as well as the com-
plex interplay between them. The model considers a
nested tube structure with a detailed approach to the
dynamic dilution of the tube within which the polymer
chain relaxes, and how the tube interacts with the rates
of the reptation, CR, and CLF relaxation mechanisms.
Testing of this model has yielded excellent agreement
with linear rheological data for a wide range of poly-
disperse melts, and it is designed to be flexible to varied
materials and MWDs. It is also usefully encoded in an
open-access software tool [31] named LP2R, so we can
now rapidly predict G’ and G” accurately for a wide
range of polymers of arbitrary polydispersity. Further
evidence that the LP2R tool can accurately model the
rheology of the PS samples included here can be found in
Figure S3 of the supplementary information, where the
tube model output matches the experimental rheology
very well. The model cannot be mathematically inverted
but does allow the in-silico production of large quanti-
ties of accurate rheological data from arbitrarily polydis-
perse MWDs, allowing the production of large training
datasets for machine learning. Hence, we rely on ma-
chine learning as a tool to invert the multidimensional
non-linear relationship between MWD and linear rheol-
ogy.

We present results obtained from an initial test of our
methodology to validate the use of neural networks for
this task. Results are shown for several polystyrene (PS)
samples obtained from the literature. PS is selected as
an initial target due to the availability of testing data,
its rheology being well-characterised, and the large fre-
quency range that can be observed due to the mate-
rial’s compatibility with time-temperature superposition
(TTS) [32] in a part of its dynamic regime. However,
the only restriction on the use of this method for a much
wider set of polymers is the accuracy of the Das and Read
[3] tube model. The prediction of rheology for PS has
been well tested, and fortunately for polyethylene (PE)
and polypropylene (PP), as well as many others, the rhe-
ology is also predicted accurately. This enables a simple
translation of this methodology to these materials, which
will be a goal of future work.
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In contrast to previous attempts to predict the MWD
from rheology, we use neural networks (NNs) to make
the prediction. This is partly out of necessity, due to the
infeasibility of the inversion of the rheological model we
use. It is also partly out of an opportunity for flexibility
and efficiency. Once a NN model is trained, predictions
can be made very quickly, usually in a few seconds or
less on a standard computer. This avoids using time
to perform a potentially complex mathematical proce-
dure. Also, many pre-trained NNs,; specialised for specific
tasks (e.g. certain molecular weight ranges), can be used
in parallel. This offers flexibility and cross-examination
methods not available in previous attempts, where the
mathematical inversion of the model would usually be de-
terministic given some particular rheological data. The
training of a NN requires large quantities of labelled data
to make predictions, which is a limiting factor in their use
for physical science applications. This work uses the dis-
cussed developments in rheological modelling to bypass
this issue by relying entirely on artificial training data.
The absence of experimental training data requires trust
in the underlying model, but it allows for the use of an
arbitrarily large dataset with minimal additional labour.

It is worth noting here that as with many numeri-
cal minimisation procedures, the result of NN training
is not deterministic, and repeated training with identical
parameters does not necessarily lead to identical mod-
els. Therefore, there is some variation in the accuracy of
MWD prediction amongst the different NNs. The impli-
cations of the extent to which this variation appears are
discussed further when results are presented.

Convolutional neural networks (CNNs) are NNs that
employ the use of one or more convolutional layers and
are the type of network used here [33]. These layers ex-
tract feature maps from the input data, which are then
fed into dense fully connected layers. In these layers,
the output from each node in a layer is fed into each
node in the subsequent layer, allowing a highly non-linear
mapping to be made. In the past CNNs have been suc-
cessfully applied in various tasks, most notably image
recognition [34, 35] because they offer a more efficient
method for extracting the most crucial data in an image,
such as spatial information, without the complexity of
a huge number of inputs and therefore connections in a
fully-connected network. Our application is very different
from these, but we have found success in implementing
two-dimensional convolutional layers in our models, with
performance improvements compared to the use of only
fully-connected dense layers.

The result of this work is a methodology that allows
the use of NN’s to bypass the difficulties in reversing
forward-prediction rheology models and remains robust
to challenges faced with experimental data. The details
of how datasets were produced, how MWDs and rheol-
ogy have been parameterised, and how models have been
trained are detailed in Sec. II. The experimental data
acquired for testing of the trained models are detailed
in Sec. III, and the comparison of predictions with these

data are shown in Sec. IV. We conclude with a summary
and discussion of the possible future developments that
this work may allow.

1. METHODOLOGY

The challenge of training a NN to perform the inver-
sion task required for this study is centred around opti-
mal methods of dataset generation and parameterisation.
We aim to train a model that quantifies the mapping be-
tween the melt rheology and MWD, which requires care-
ful consideration of how the data is presented to the algo-
rithm. Here we begin by discussing the method used to
represent the shape of the MWD, which we require to be
computationally simple yet flexible. This is followed by a
similarly motivated parameterisation of the viscoelastic
response of the polymer melt using discrete relaxation
spectra. The relationship between melt rheology and the
MWD is complex and non-linear, and we do not wish to
further this complexity with poor data structure. This is
followed by a discussion of the composition of the training
dataset and the specifications of neural network training
used to produce the results presented here.

A. MWD Parameterisation

The priority for a MWD parameterisation is to avoid
needless complexity whilst maintaining flexibility. As
an example, the MWD could be represented by a large
number of points forming a curve, as with GPC data,
but this would be an inefficient use of computational re-
sources, and the accuracy of each predicted parameter
would likely suffer.

The alternative method we have implemented involves
reconstructing the MWD as the sum of several log-
Gaussian sub-distributions, each with the same small dis-
persity. Each sub-distribution is fixed to a specific mean
molecular weight, evenly spaced across the logarithmic
mass axis. As a result, the only variable parameter for
each sub-distribution is its relative weight, simplifying
the parametrisation to a set of variables ¢;, representing
the volume fraction of each sub-distribution. Hence, the
MWD is represented as

Ny
dw [ 1 (log M — p;)?
dlogM — Z¢ Lm P (‘ 207 )] » )

where Ny is the number of sub-distributions, o is the
standard deviation of the sub-distribution (the same
value for all 7). p; is the mean of log M for the ith sub-
distribution. The sub-distributions are uniformly spaced
in logarithmic molecular weight. These two parameters
can be calculated from the desired polydispersity index
(PDI) and weight-average molecular weight Myy; of the
sub-distribution as
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o = /log(PDI), 2)

i = log(Mw,;) — o (3)

As an initial test, we first check whether this parame-
terisation is able to represent a reasonable range of candi-
date MWDs. Two examples of GPC MWD data fitted by
this method (using a simple least squares fit) are shown
in Figure 1.

As illustrated in this example, if a sufficient number of
sub-distributions are used to cover the target mass range
completely, various MWDs can be represented simply by
adjusting the ¢; values.

It is relevant to discuss the PDI of each sub-
distribution, as this highlights a known limitation of this
method. There is a minimum level of dispersity that can
be represented with this system; when a melt is near-
monodisperse, or is a blend of a small number of monodis-
perse components, each peak in the true MWD has a
lower PDI than the sub-distributions of Eq. 1. In prac-
tice, the effective minimum peak PDI we can reliably fit
is slightly above the PDI of the sub-distributions — 1.165
here — because the lack of flexibility in the positioning
of individual peaks becomes an issue. To be specific, if
the true MWD has a narrow peak sitting in between the
values of p; for two adjacent values of i, then our method
will attempt to represent the peak using a weighted sum
of those two sub-distributions, which naturally gives a
peak with larger dispersity. However, we do not consider
this a major drawback of this method as we are targeting
industrially relevant MWDs, which are not produced in
a manner that results in monodisperse distributions (e.g.
through polymerisation with a well-controlled termina-
tion processes), but instead are usually more broad, with
a PDI value of at least 2.

Moreover, the dispersity of each sub-distribution pro-
vides a natural regularisation of our method. For broadly
polydisperse materials, it is doubtful whether rheology
data contains sufficient information to distinguish fine-
scale variations in MWD. Evidence for this can be found
in Figure S1 and Figure S3 of the supplementary in-
formation. It is shown that reducing the dispersity of
the sub-distributions so that the overall MWD is more
“spiky” has very little effect on the rheology. Therefore,
if a greater number of more narrow sub-distributions are
used, many different combinations of the ¢; variables
could produce very similar rheology, making their in-
ference from rheology more mathematically challenging.
The chosen dispersity of the sub-distributions therefore
provides a natural smoothing of the predicted MWDs,
i.e. a regularisation.

Through trial-and-error testing of different sub-
distribution dispersities and molecular weights, a set of
28 log-Gaussian sub-distributions was chosen. The de-
cided parameters resulted in My values uniformly dis-
tributed in logarithmic molecular weight from 8.85 x 10*

4

g/mol to 8.85 x 105 g/mol and each with a PDI of 1.165.
This set provides the flexibility to fit a wide variety of
MWDs and it covers the range of molecular weights that
are most commonly seen in commercial polymers such as
PS, PE, and PP. Once these specific choices are fixed,
each molecular weight distribution is parameterised fully
by the set of values of ¢;. These are therefore the param-
eters used to represent the MWD to the neural network.

It would be possible to alter the parameterisation of
the sub-distributions (e.g. number of distributions, their
PDI, and the covered molecular weight range) for dif-
ferent or more specific applications. However, care is
required to ensure a sensible relationship between the
number of sub-distributions, the dispersity of each, and
the molecular weight range. The goal is to have a suitable
minimum dispersity for the chosen application, whilst
maintaining overlap between adjacent sub-distributions
such that their sum can produce a smooth MWD. As
discussed, we also anticipate that it would not provide
any benefit to increase the number of sub-distributions,
and reduce their dispersity much beyond the values used
here, due to the resolution of the information it is possi-
ble to extract from the rheology of broadly polydisperse
materials.

B. Relaxation Spectrum for Input Data

The data upon which we wish to make predictions are
the linear rheology data of a polymer melt, represented
by the storage and loss moduli over a particular frequency
range. A key issue foreseen in the practical application
of this work is that the rheology data from different ex-
perimental setups is unlikely to be in a consistent format
(e.g. spacing of data points on the frequency axis may
vary between different laboratories). Hence, the format-
ting of data must be standardised for presentation to the
neural network. We propose a solution where the rheol-
ogy is fitted with a discrete relaxation spectrum given by
the multi-mode Maxwell model, using

N,
G(t) =) gje ", (4)
j=1

Vel :NT 9;(wt;) 5
)= 2 [ o) ©)
N.
" N Yi(wT))
=2 @ “

By using a fixed spectrum of N, relaxation times 7,
i.e. the same values of 7; for all input data, we can fit the
logarithmic form of the data with the magnitude of each
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FIG. 1: Examples of fitting a sum of log-Gaussian distributions to GPC MWD data. These example MWDs are
non-log-Gaussian uni-modal distributions.

mode g; as variables. In practice, we choose the relax-
ation times 7; to be uniformly spaced on a logarithmic
axis. We use a least squares fit, using the logarithm of the
mode magnitudes, log(g;), as fitting parameters. This
avoids prioritising different regions of the rheology pref-
erentially as the loss and storage moduli cover many or-
ders of magnitude. Then the rheology can be represented
simply in the form of these mode magnitudes (log(g;))
and the frequency domain is made constant for all data,
greatly simplifying the input to the NN model.

In order to capture shifts in the relaxation spectrum of
polymer melts as MWD is varied, we have found it advan-
tageous to use a high density of 7; values, typically with a
large number of 7; per decade. One potential issue when
using large densities of Maxwell modes such as this is that
adjacent modes can become redundant when the rheol-
ogy data of interest could be accurately fit with a lower
density of modes. This leads to oscillatory behaviour
where the redundant modes are given very small ampli-
tudes compared to their neighbours. This behaviour is il-
lustrated in Figure S4 of the supplementary information.
This results in large differences in the set of variables
log(g;) from small deviations in the rheology, hindering
the NN’s ability to easily recognise patterns. To counter-
act this, we have implemented a smoothing regularisation
in the cost function for the fitting of the Maxwell modes,
to penalise solutions with oscillating log(g;) values. The
cost function includes the discrete approximation of the
second derivative of the logarithm of the modal magni-
tudes, log(g;) as

5
® Original Data
1.4 9 — Fitted Curve
10 105
M (g/mol)
= 2
X = D | (10g Gl (1) — Tog Gy, ()
k=1
+ (10g Gl (1) = log Gy ()| (7)
N,—1
+ A2 (*%')27
j=2
z; = log(gj-1) +10g(gj+1) — 2log(g;), j#1,Nr, (8)

where N, is the number of discrete wy frequency values
for which there is rheology data. A is a regularisation
parameter used to prioritise smoothness relative to the
most accurate fit. A is set to be proportional to the square
root, of the density of rheology data points on the loga-
rithmic frequency space, p,,, to ensure that the priority is
maintained for different data sources. This is because as
Pw increases, the number of terms in the first sum, and
therefore the priority of reducing the least squares fit of
the data, increases proportionally. To counteract this, A2
also increases proportionally to p, to balance the prior-
ities of the two components of the cost function. It is
worth noting that there are multiple ways to regularise
the Maxwell modes so that the oscillatory behaviour is
diminished and a solution can be found quickly. How-
ever, once a suitable regularisation is found, the most
important factor is consistency, i.e. to keep using the
same method both across the training dataset and when
fitting a spectrum to experimental data. The NN must
only be made to interpolate within its training parame-
ter space, so always maintaining the same regularisation
method to fit the Maxwell modes is essential.

For the present study, we select the N, relaxation times
to be between a maximum of 10* s and a minimum of
1079 s with a density of eight modes per decade, evenly
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distributed on a logarithmic scale. This was selected to
account for the maximum frequency range of the data
that we will investigate here of approximately 1073 <
w < 10° (rad/s).

For this choice of Maxwell mode density, we set the
regularisation parameter A to be

A= 0.4/ps, (9)

where the density of rheology data points is
N,

logg Wmax — 10g;¢ Wmin

Pu (10)

A proportionality constant of approximately 0.4 was
found to yield good results and is used throughout this
work.

Once these specific choices are fixed, the rheology data
is parameterised fully by the set of values of log(g;).
These are therefore the parameters used to represent the
rheology data to the neural network.

In summary, the data we present to the NN model
is of the following form. MWD data are represented by
volume fractions ¢; of the log-Gaussian sub-distributions.
Rheology data are represented by a set of Maxwell mode
amplitudes log(g;). The task of the neural network is to
learn the non-linear relationship between the values of
¢; and log(g;). Once trained, the NN should be able to
predict a set of ¢;, given the log(g;) provided as input,
i.e. to predict MWD from rheology.

C. Training Dataset

For training the NN, each piece of data represents one
material with a given MWD and linear rheology, and so
comprises the set of Maxwell mode amplitudes labelled
by the MWD volume fractions. Neural networks are ex-
cellent interpolation machines but less reliable in extrap-
olation beyond the space of the training set. Hence, the
challenge in dataset production is to ensure enough vari-
ability in ‘seen’ examples for the model to reliably in-
terpolate for ‘unseen’ data. We wish to do this whilst
maintaining flexibility towards, for instance, abnormal
MWD shapes.

For a general-purpose training dataset, we wish to in-
clude distributions spanning the expected mass range we
are targeting and a variety of forms of MWD that can
be represented with the parameter system. To do this,
we combine data from MWDs that have been artificially
generated in multiple ways.

The first components are unimodal and bimodal log-
Gaussian distributions with a range of random mean
molecular weights and dispersities. For these distribu-
tions, the lower limit for dispersity was selected to be
the dispersity of each sub-distribution in Eq. 1, which was
1.165, as otherwise the near-monodisperse distributions
would not be accurately represented by the parameter
system. The upper limit for the dispersity was chosen

to be 10.0, to allow most distributions in the dataset to
be broad, as seen with commercial polymers, with some
being very broad. The molecular weight ranges were set
in terms of number of entanglements Z, as 3 < Z < 500,
which for the PS parameters we have used is approx-
imately equivalent to 3.9 x 10* < My < 6.4 x 10°
(g/mol). For the bimodal distributions, an additional
restriction was placed on the relationship between the
molecular weight of the short and long peaks, where
H;)/ng > QM;}I}OM to ensure that the two peaks are rea-
sonably separated.

We also wish to include other MWD shapes to train
the model on less commonly encountered distributions, to
improve the parameter space the NN is trained on. To
achieve this, we have used a Monte-Carlo algorithm to
randomly produce molecular weight distributions. This
approach is based on a Metropolis-Hastings algorithm
and is covered in detail in Appendix A. Here, we de-
sign a pseudo-energy function E({¢;}) for the MWD,
based on the weights ¢; in Eq. 1, such that the prob-
ability of randomly generating a given MWD is propor-
tional to e~ U D). Terms in E({¢;}) ensure smoothness
of the MWD, enforce tails decaying towards zero, and
favour distributions in which a given number of the ¢; are
small. By tuning the corresponding parameters, the ran-
dom generation can be tuned to generate distributions
with certain desired characteristics and avoid unrealis-
tic ones. This method allows us to control the general
characteristics of the distributions while maintaining the
variability that is required to train a capable NN.

The design of the dataset used to train the 28-log-
Gaussian system comprises the uni- and bi-modal fit-
ted MWDs, along with three datasets generated using
the Monte-Carlo algorithm according to different shape
characteristics, simply named ‘medium’, ‘narrow’ and
‘broad’; see Appendix A for more details on these divi-
sions. An illustration of the dataset composition is shown
in Figure 2. The final dataset therefore consists of these
approximately 800000 entries of MWD data, each given
by the 28 ¢; values, accompanied by the relaxation spec-
tra of the related rheology. For each of the generated
MWDs, rheology was predicted using the LP2R software
tool using parameters appropriate for polystyrene. The
parameters used are detailed in Table I.

Another factor that was found to be important in the
creation of the training datasets was including a level
of noise to improve the robustness towards experimen-
tal data. In the early stages of development, NNs were
trained using datasets with no such noise added. These
models could accurately predict the MWD from tube-
model (artificial) rheology, but had extremely poor per-
formance when tested on experimental data. This is il-
lustrative of the general point that it is important to
ensure that the trained NN has encountered variability
that may be present in real data. NNs typically inter-
polate well within the parameter space of the training
set, but are poor at extrapolation: hence the presented
parameter space should include degrees of freedom that
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FIG. 2: Hlustration showing the general composition of
the training datasets used for the training of models on
the sum-of-log-Gaussian parameter system.

TABLE I: Input parameters used for generating the full
rheology of PS at 180°C using LP2R [31].

Parameter Value

Frequency ratio V2

Maximum w range 1078 <w <108 rad/s
Kuhn segment mass, Mg 720.0 g/mol
Entanglement mass, M. 12870.0 g/mol
Plateau modulus, G% 2.2 x 10° Pa
Entanglement time, 7. 22x107%s

Glassy modulus, G 1.2 x 10° Pa

Glassy relaxation time, 7 1.3x107% s
Stretching exponent, g4 0.390

represent the full extent of the expected noise level. Rhe-
ology experiments, even when performed expertly, are
vulnerable to noise, and here we consider three types of
noise. One is the random fluctuation of each individual
data point as can be seen in any experiment. To account
for this we add random values distributed normally with
mean zero and some standard deviation to the logarithm
of the storage and loss moduli. Standard deviation val-
ues between 0.005 and 0.1 were tested, with a value of
0.07 being used in the final training datasets. The sec-
ond is vertical displacement of the rheology curves on
the logarithmic axis due to variation in rheometer cali-
bration and sample loading. To account for this we add
a random number with zero mean and non-zero standard
deviation (a value of 0.2 is used here) to the logarithm of
the storage and loss moduli, but this time choosing the
same random number for all data points.

Finally, we wished to introduce robustness towards
variations in range of frequency measurements and TTS
procedure. The fitting of Maxwell modes does present

the rheology in a regular format to the NN, but the fit
is sensitive to the range of experimentally measured fre-
quencies. This is to be expected, as when the relaxation
time of a certain Maxwell mode falls outside the timescale
of the deformation of the material, that mode becomes re-
dundant to the fit. Therefore, for each MWD in the train-
ing set, we randomly select the frequency range of the
rheology data that the Maxwell modes are fitted to, so
the training set contains examples of Maxwell modes for
a full spectrum of frequency ranges. To achieve this, we
randomly select the minimum and maximum frequency
for the rheology data so that 3 x 10™% < wpi, < 7x 1073
(rad/s), and 4 x 10" < wpax <5 x 10° (rad/s). This of-
ten leaves many Maxwell modes where the inverse of the
relaxation time 7; falls outside the range of frequencies
of the rheology curve. When these modes fall consider-
ably outside the experimental data range, they will not
influence the fit, and are to some extent not meaning-
ful. However, the smoothness regularisation ensures that
their behaviour is predictable, so the NN can learn to
distinguish these modes from the ones representing more
significant timescales.

For each MWD in our training set, it would be possible
to apply several different realisations of the above three
types of “noise” and so generate multiple entries in the
training set for each individual MWD. However, when
adding each new entry to the training set, if there is a
choice between repeating a previously used MWD with
a new realisation of noise, or instead producing a wholly
new MWD with noise, we believe it is likely better always
to use a new MWD because this will maximise the span
of the multi-dimensional parameter space that the NN is
trained on. Hence each entry in our training set is for a
unique MWD with a single realisation of the noise.

Although the training and application of the resulting
NNs is quick, training dataset production is more de-
manding. To produce the 800000 entries of raw rheology
data (before the addition of noise or Maxwell mode fit-
ting), 160 parallel jobs required approximately 24 hours
each. Noise application was completed by a single job
taking approximately 30 minutes. Maxwell mode fitting
then required a wall-clock time of 4 hours when run across
160 processors. It is likely that the size of the dataset
used here is larger than that needed to achieve compara-
ble results, but our philosophy for this initial test was to
ensure that the dataset size was not a restriction to per-
formance. Although this process is resource-intensive,
the bulk of the computational cost is in producing the
raw rheology data. This means that once this dataset
was complete, it can be used to optimise noise levels,
Maxwell mode parameters and NN specifications, which
are comparatively cheaper.

D. Neural Network Specifications

Results shown here have been produced with nine
CNNs, each trained with the same architecture, parame-
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ters and dataset. We have used models with two convo-
lutional layers, each with 32 kernels. A batch normalisa-
tion is applied to the output of each convolutional layer
to stabilise training and accelerate convergence. The con-
volutional layers are followed by several dense layers (ten
are used in the models shown here), with 256 or 512 neu-
rons per layer. We use the ReLU (Rectified Linear Unit)
[36] activation function for each layer, and the Adam
[37] optimisation function. The other network param-
eters [38, 39] found to give the best results were: ini-
tial learning rate of 1073, learning rate reduction factor
of 0.75, learning rate reduction patience of 10 epochs,
minimum learning rate of 1078, early stop delta (min-
imum required change in loss required such that early
stop is not triggered) of 10~7, early stop patience of 50
epochs, and batch size of 256. We have used the Ten-
sorflow package [40] in Python to create and train these
models. Training was undertaken on ARC4, part of the
High Performance Computing facilities at the University
of Leeds, UK. Each NN model took approximately 20
minutes to train using maximum requested compute re-
sources of a single NVIDIA V100 32Gbytes card, 10 CPU
cores and 48GB system memory. Once trained, NNs can
be deployed on non-specialised computers in a matter of
seconds.

I1l. EXPERIMENTAL DATA

Data have been acquired from freely available sources
such as the Reptate [41] data files, and by extracting
data from figures in the literature. The temperatures for
which the rheology data are obtained vary between sam-
ples, but the NN models have been trained exclusively on
PS data at 180°C. Therefore, we shift all the experimen-
tal data to the same temperature; we do this using the
WLF time-temperature shifting (see Appendix B) [42].
This simple shift would also be required to make a NN
prediction for any new rheology data with any measure-
ment temperature other than 180°C. The measurement
temperatures and frequency ranges observed for each of
the polydisperse PS samples are shown in Table II.

A. Initial Comparison of Rheology Data

When we shift the rheology curves from the measure-
ment temperatures associated with each rheology dataset
to the reference temperature of 180°C, we can compare
the curves for the storage and loss modulus, as seen in
Figure 3. We see a range of viscoelastic responses dis-
playing the variability in the samples. Also evident is
that the frequency ranges of the rheology for the various
samples are not consistent, which is hardly surprising
for data acquired from multiple laboratories. As noted
above, we can account for this variability in the data by
introducing the same variability in the NN training data.
However, we also note that this variability may also in-

fluence the quality of the MWD predictions, as chains of
different lengths relax on different timescales and there-
fore have a greater influence at some frequencies than
others. Hence, the measured frequency range dictates,
to some extent, the range of molecular weights for which
the rheology data carry information so that inference of
MWD can be made, as explored by Wasserman [22].

Figure 3 also shows the high-frequency response of the
samples (for those with sufficient frequency ranges). This
region shows the response of the material related to the
transition to sub-tube-diameter Rouse relaxation, and
the tail of the glassy response. This should be MWD-
independent [28] for molecular weights sufficiently larger
than the entanglement molecular weight M, (here taken
to be M, = 12870 g/mol). This criterion is satisfied by
all the samples.

However, we see that there is variability of rheology
data in this frequency range between the samples, espe-
cially for the samples PS2 and PScom in the G” curves.
The cause of this lack of agreement is not known to us,
but it could be due to polymer degradation, microstruc-
ture differences such as tacticity, contaminants such as
residual solvents or additives (which might particularly
be present in industrial grade samples), or possibly a
small offset between the actual and recorded measure-
ment temperature. Although the differences observed in
this high-frequency region are in themselves small and on
their own will not have a large direct influence on MWD
prediction, the variability could be a symptom of deeper
issues with the rheology data. It is plausible that the rest
of the rheology curve, where the moduli have greater in-
fluence on the inferred MWD, could be influenced by the
same factors that give rise to the observed discrepancies
at high frequency. We do not know the cause of the dis-
crepancy, and it seems reasonable to assume that such
variations will realistically be present in practical data.
Hence, we believe the data is of a high enough quality
to provide insights into the performance of the models
we have trained and the effects that such differences may
have on their predictions.

B. Molecular Weight Distributions

We wish to predict the MWD of the PS samples and
use GPC measurements to evaluate these predictions.
GPC data are available for all but three of the samples
(M1, M2 and PScom). The summary statistics for each of
the MWDs are shown in Table III. For M1 and M2, GPC
data is not available because these two samples were cre-
ated as mixtures of near-monodisperse PS standards [43].
The mean molecular weights and the relative weights of
each component in the mixtures are known so we can in-
fer the overall MWD from these components. We do this
by assuming that the total MWD is the sum of narrow
log-Gaussian distributions with My, values and relative
weights as given for each of the PS standards in the mix-
ture by Wasserman and Graessley [43].
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TABLE II: List of PS samples used for model validation and source where data was acquired. Also, the recorded
rheology measurement temperatures are stated, along with the frequency ranges when the data was shifted to the
reference temperature of 180°C.

Label Source Temp(°C) Wmin (rad/s) Wmax (rad/s) log; g Wmax — 10819 Wmin
PS1 BASF Laboratory via Reptate files [41] 170 3.72x 1072 1.85 x 10° 7.70
PS2 BASF Laboratory via Reptate files [41] 170 1.18 x 1073 1.85 x 10° 8.20
PS3 BASF Laboratory via Reptate files [41] 170 5.46 x 107* 1.85 x 10° 8.53
M1 Wasserman and Graessley [43] 150 8.61 x 10™* 1.16 x 10° 8.13
M2 Wasserman and Graessley [43] 150 9.60 x 10™* 1.82 x 10° 8.28
PSA Sugimoto et al. [44] 160 5.70 x 1072 1.65 x 10" 3.46
A1PS Ferri and Lomellini [45] 200 1.20 x 1072 7.86 x 107 4.82
PScom Wasserman and Graessley [43] 150 2.24 x 1073 1.06 x 10° 7.68
PS8 Montfort et al. [46] 160 1.72 x 1073 9.02 x 10? 5.72
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FIG. 3: a) Storage and b) loss modulus data respectively for PS samples shifted to 180°C, with ¢) and d)
High-frequency glassy response which should be independent of MWD.

There is a choice to be made as to what value of PDI

to assume for each of the component PS standards. In
reality, it is likely that each component will have a nar-
row dispersity, and that the true MWD is “spiky” with
multiple peaks. For example, if we assume a PDI of 1.05
for each component, this gives rise to the grey-shaded
MWDs with multiple peaks shown in Figure 4. How-
ever, we recognise that, for many-component mixtures,

the rheology is wholly insensitive to the fine-grained de-
tails of the MWD: it is impossible to distinguish the rhe-
ology of such a “spiky” MWD from that of a smoothed-
out distribution for which we assume the PDI of each of
the component PS standards to be broader. Evidence for
this can be found in Figure S3 of the supplementary ma-
terial. Certainly, our methodology, in which the MWD is
assumed to be the sum of log-Gaussian sub-distributions



MWD from Linear Rheology

with PDI= 1.165 for each, is not capable of resolving
such narrow peaks. We do not believe it is possible to
reliably infer such peaks from rheology for multicompo-
nent mixtures where the components are closely spaced.
Hence, for a fair comparison of the output of our method
with the “true” MWDs of M1 and M2, we consider a
“smoothed” effective MWD for each sample in which the
PDI of each of the component PS standards is chosen
so as to eliminate oscillations in the MWD curve. We
find that choosing a PDI of 1.165 for each of the PS
standards (the same as we use in Eq. 1) gives rise to a
suitably smoothed curve. This smoothed curve is also
shown as the solid red line in Figure 4. The calculated
PDI of each of the two distributions is also dependent on
the assumed dispersity of the components. By assum-
ing a component dispersity of 1.165, M1 is calculated to
have an overall PDI= 2.70 and for M2 the new value is
2.99. The weight-average molecular weights of the dis-
tributions are unchanged from the values presented in
Table III to the given level of precision. We see that the
MWDs of M1 and M2 are almost identical, except for a
slightly larger high molecular weight tail for M2.

No GPC data is available for PScom, making direct
verification of the predictions difficult. However, the
sample is known to have My = 321 kg/mol and PDI
= 1.87 and is assumed to be approximately characterised
by a log-Gaussian MWD. Das and Read showed that this
assumption can produce good agreement with the exper-
imental rheology using their tube model [3].

The molecular weight distribution for each of the sam-
ples can be seen in Figure 5. Most of the samples have
quite similar broad uni-modal MWDs. The exceptions
are PS1 and PS3, with a narrow uni-modal shape for
PS1 and a tri-modal shape for PS3. These two samples
do not represent the type of broad MWD that is the fo-
cus of this work, but they still provide useful information
about the limitations of the NN system developed. Our
methodology is designed to be flexible to much more vari-
able and complex MWD shapes than are shown here, but
the availability of testing data is a limiting factor. Due
to the lack of good testing data for these distributions,
we cannot test the full capabilities of our methodology,
but the NN models are trained to be suitable for, e.g.,
bi-modal polydisperse MWDs and those with lower My
values. Similar results should be possible for these distri-
butions as for uni-modal polydisperse MWDs, provided
the frequency range of the rheology is suitable.

IV. RESULTS AND DISCUSSION

To evaluate the performance of the NN models in pre-
dicting the MWD of the PS samples, a selection of NN
models trained with identical parameters and training
datasets was used. Because of the random nature of NN
training, each model gives different results. For each sam-
ple, the best and worst predictions (as measured by the
root mean square error, RMSE, detailed below) will be

10

TABLE III: Weight-average molecular weight (M)
and polydispersity index (PDI) for each of the PS
samples, and whether GPC data exists for the sample in
question. Where GPC data does not exist, the method
of MWD comparison is discussed in main body. *For
M1 and M2, the summary statistics are here calculated
using only the weight-average molecular weights and the
relative weights of the discrete PS standards’ of each,
without assuming a dispersity for each component.

Label Mw (g/mol) PDI GPC Exists
PS1 3.20 x 10° 1.18 Y
PS2 2.74 x 10° 2.72 Y
PS3 4.07 x 10° 2.82 Y
M1* 3.57 x 10° 2.32 N
M2* 3.99 x 10° 2.57 N
PSA 2.56 x 10° 2.16 Y
A1PS 1.64 x 10° 1.59 Y
PScom 3.21 x 10° 1.87 N
PS8 4.03 x 10° 2.70 Y

shown from the nine total models trained on the same
dataset.

The results for PS2, PSA, A1PS and PS8 are shown in
Figure 6. It is worth noting at this point that the rheol-
ogy data for the PSA, A1PS and PS8 samples include
considerably smaller frequency ranges than the other
samples, so a lower performance and greater variabil-
ity in the output prediction could be expected. How-
ever, despite this, all three of these samples were well
predicted by the NNs and did not show significant differ-
ences between the nine models. Errors in the PS2 pre-
diction are consistent in each of the nine models tested,
with a low variability in the prediction relative to some
of the other samples. This may be related in some way
to the described inconsistency in the high-frequency rhe-
ology, which was especially prevalent in PS2. If some
systematic error is present in the rheology, then this con-
sistent error in the prediction relative to the GPC would
be observed. Pattamaprom et al [30] also made predic-
tions on the rheology of PS2, and a very similar shape
of MWD was produced as shown in Figure S7 of the
supplementary material. It is worth noting here that
when a different measurement temperature of 180°C is
assumed for PS2, the inferred MWD matches the GPC
data much more closely. This does not necessarily in-
dicate that the experimental temperature was actually
10°C higher, but instead only that the rheology is closer
to the tube-model prediction when different material pa-
rameters are used, reiterating the possibility of sample
contamination, degradation or some other discrepancy.

The predictions for the M1 and M2 samples are shown
in Figure 7. Among the nine models, there was little
variation in performance. The best predictions for both
are excellent, although it is not surprising how similar
the two predictions are given the similarity of the sam-
ples. The main difference between the two samples is
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FIG. 4: Composite approximated MWDs for the two PS mixtures a) M1 and b) M2, with the MWD that was used
shown as a solid red line and the component log-Gaussian curves shown as dashed lines, each with PDI = 1.165.
Dots represent the My, values and relative weights of the PS standards in the mixture. Grey shaded region shows
MWD if each PS standard is assumed to have a lower PDI = 1.05.
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FIG. 5: Overlaid MWD data for all PS samples. The
data are acquired from GPC measurements where
available, and reconstructed from other information for
M1, M2, and PScom. Discussion of these three samples
is in the main text.

at the highest molecular weights: two components with
My values of approximately 3.8 x 106 g/mol and 4.5x 106
g/mol are introduced into the M2 sample. These changes
give a small shoulder in the true MWD not present in
the M1 sample. This feature is partially reflected in the
MWD predictions from our methodology, which do not
predict a distinct shoulder but do elongate the high My,
tail relative to M1 predictions. Here we are at the limit
of the detail that can be resolved by our method: the
shoulder itself is in fact a distinct, near monodisperse
component, and as we have noted our method is not de-
signed to resolve these. This is again comparable to the
prediction by Pattamaprom et al. [30] for this sample,
as shown in Figure S7 of the supplementary material.

We also recall Figure 4, which illustrates that the ‘true’

MWDs for these two samples may in fact contain multi-
ple peaks, depending on the dispersity assumed for the
PS standards from which the samples are constructed.
Our prediction results provide insight into the limits of
the resolution of information within the rheology. Al-
though our MWD parameterisation system could in prin-
ciple produce an MWD with more defined narrow peaks,
it does not. This is likely because the rheology of a MWD
with multiple narrow, closely spaced, individual peaks is
indiscernible from that of the smoother MWD we have
used. Setting aside this ambiguity in the true MWD, and
assuming the distribution is in fact smooth, the predic-
tions for the M1 and M2 samples are the most accurate
from among the samples presented in this work. This is
notable and encouraging because these samples are the
two for which the MW composition is most accurately
known, since they are constructed from PS standards
rather than having MWD measured by GPC.

As shown previously, the PS1 and PS3 samples
have uni- and tri-modal MWDs respectively with near-
monodisperse peaks. These narrow distributions are
rarely used in industrial polymers and have not been tar-
geted by the work in this study. The MWD parameterisa-
tion system used here has a minimum possible PDI given
by the individual sub-distributions. However, it is still
prudent to test the ability of the NNs to recognise these
MWDs. The results for these samples are shown in Fig-
ure 8. Despite the impossibility of accurately matching
the exact MWDs for these samples, the NN produces im-
pressive results. For both samples, the predicted MWDs
are in the correct location on the molecular weight axis
and approximately follow the best shape feasible for each.
Furthermore, the best and worst models predict similar
results, showing good consistency across models, imply-
ing a true recognition of mean molecular weight and not
random chance.

The sample for which we possess the least informa-
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FIG. 6: a) Lowest and b) Highest RMSE predictions for PS2, PSA, A1PS and PS8.
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FIG. 9: a) Lowest and b) Highest RMSE predictions for PScom, measured against the MWD reconstructed from
known statistics and an assumed log-Gaussian shape.

tion is PScom. The recorded mean molecular weight
My = 321 kg/mol and PDI = 1.87 are known. We
assume a log-Gaussian distribution when comparing the
prediction given by the NN models with the ‘true’ MWD.
The results are shown in Figure 9, with a moderate agree-
ment when the RMSE is lowest. However, the result with
the highest RMSE was noticeably different than the as-
sumed log-Gaussian shape, and as shown in Figure 10,
there is a definite trend in the predictions of all nine mod-
els. Although there is some variation, which is expected,
the trend is that the models do not predict a simple log-
Gaussian MWD shape. It is worth noting that the high-
frequency rheology of PScom was, along with PS2, not in
agreement with the other samples, so this result may not
be sufficient to credibly diagnose an alternative shape for
the MWD. It does, however, highlight the power of this
methodology in characterisation of the MWD from rhe-
ology, where the question is now raised of whether the as-
sumption of a log-Gaussian MWD is valid. As we do not
have GPC data to compare the prediction to directly, it
is worth comparing the statistics of the predicted MWD
with those provided. The best prediction for PScom gave
My = 327 kg/mol, which matches the true value of 321
kg/mol well within the typical precision of GPC mea-
surements. The PDI for this prediction was 10.46. This
is very different to the true value because there is a long
non-zero low molecular weight tail present in many of the
predictions, which, although it has little effect on My,
or the shape of the main peak, significantly affects M,,.
However, when the predictions of any molecular weight
below 5 kg/mol are ignored, the predicted PDI becomes
2.35, which is much closer to the given value of 1.87.
The predicted My is unchanged to the level of precision
given. This issue with the low molecular weight tail is
something we wish to address with future work, as it can
give misleading summary statistics that do not represent
the true shape of the MWD.

We quantify the quality of our predictions through two
measures, the results of which are presented in Table IV.
The root mean square error (RMSE) is a measure of
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FIG. 10: All nine predictions of the reconstructed
MWD for the sample PScom with the assumed
log-Gaussian shape. Similar plots for all other samples
are shown in Figure S2 of the supplementary material.

the deviation of our predictions from the experimentally
measured MWD. The RMSE was calculated by first in-
terpolating the distributions onto a common molecular
weight axis, identical for each sample. It is then calcu-
lated as:

(11)

where N is the number of data points on the common
mass axis, wi™? the experimental value of dW/dlog M,
and w, is the value predicted by the NN. Table IV shows
the maximum and minimum RMSE across the nine NN
models, together with the mean value across all models.
The Standard Deviation (Std Dev) is instead a measure
of the consistency of prediction between the NN models,
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and is evaluated as:

N NN~

1 1 _
Std Dev = Sl w— Zm: (wm —w5)2.  (12)

— \| Nnn
Ny is the number of neural network models, w]* is a
point on the MWD curve for the mth NN model, and w,
is the mean value at a point z on the mass axis of the
predictions across the models used.

As expected from their sharply-peaked MWDs, PS1
and PS3 produced the largest errors as measured by
RMSE. It is notable also that these two samples give
larger values of Std Dev. This is most likely because
MWDs with narrow peaks are not well-represented by
the parameter system of log-Gaussian sub-distributions.
The NN recognises the approximate location of the peaks
on the molecular weight axis, but there are no configu-
rations of the sub-distributions that accurately give the
MWD shapes for these samples. Therefore we suppose
that this high variability is a result of the exaggeration of
small differences in NN prediction by the discretisation of
the mean molecular weights of the sub-distributions. As
a result, there is less consistency in the NN predictions.

PS2 had the largest RMSE of the remaining samples,
which, as discussed, is likely due to a systematic error
in the GPC or rheology data. A1PS, PS8, PScom and
PSA closely followed with good predictive performance,
especially for the lowest-RMSE predictions. M1 and M2
gave the lowest errors and some of the lowest standard
deviations in their results, indicating an excellent char-
acterisation of the sample’s MWD from the rheology.

It is a common theme among the predictions we
present that the general shape and mean molecular
weight are predicted accurately. However, where the
predictions struggle is with the shape and extent of low
molecular weight, low-volume-fraction tails of the distri-
bution, as seen with samples PS2, PSA, M1 and M2.
These tails (comprising polymer chains only just long
enough to be entangled) have a relatively small impact
on the rheology and are, therefore, inherently more diffi-
cult to detect or quantify. This is noted as a limitation
of this methodology.

As an additional test of the ability of the NNs to invert
a state-of-the-art rheological model, we have checked the
reversibility of our predictions. We used the Das and
Read tube model to predict the rheology for the highest
and lowest RMSE MWDs predicted by the NNs for each
of the PS samples. The comparison of these predictions
with the experimental rheology data can be found in Fig-
ure Sh and Figure S6 of the supplementary material. In
most cases, the tube model output follows the experimen-
tal rheology very closely, with slight differences between
the rheology for the two MWDs used for each sample.
This is good evidence that the NN predictions are con-
sistent with the tube model and each NN has “learned”
a feasible relationship between the MWD and rheology.
The two cases where the model-generated and experi-
mental rheology do not match to the same level are for
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TABLE IV: RMSEs and mean standard deviation of
RMSEs for nine models used for each PS sample.

Label RMSEniean RMSEnin RMSEnax Std Dev
PS1 0.1777 0.1736 0.1818 0.00665
PS2 0.0367 0.0330 0.0404 0.00417
PS3 0.0772 0.0703 0.0830 0.01215
M1 0.0100 0.0082 0.0134 0.00407
M2 0.0132 0.0085 0.0170 0.00515
PSA 0.0222 0.0181 0.0269 0.00360

A1PS 0.0311 0.0188 0.0378 0.00577

PScom 0.0262 0.0169 0.0355 0.00689
PS8 0.0289 0.0256 0.0311 0.00480

PS1 and PS3. This is likely due to the discussed incom-
patibility of these MWDs with the parameter system we
have used, where the dispersity of each sub-distribution

is too large to accurately describe the more narrow peaks
of these two MWDs.

V. SUMMARY AND OUTLOOK

We have presented a method for inferring the MWD of
polydisperse polymer melts using neural networks trained
on large, artificially generated linear rheology data. We
use the nested tube structure model of Das and Read [3]
to produce the training data. The predictions match the
known MWDs of the nine test PS samples well.

Key developments in this work are: (i) the introduc-
tion of a new method of MWD prediction, using neu-
ral networks (NNs) as a means to ‘invert’ the forward
prediction of rheology from MWD using a well tested
model; (ii) the treatment of the data input to the NNs,
specifically in representing MWDs as a sum over log-
Gaussian sub-distributions and rheology as a sum over
regularised Maxwell modes; and (iii) the creation of
suitable datasets, accounting for reasonable variation in
MWD, together with expected experimental noise and
variability in frequency range of data. Together, these
developments simplify the task demanded of the model
and make it robust to different challenges encountered
with experimental data.

Our NN method differs from previous approaches to
this problem in the ability to be flexible, which is enabled
by the above parameterisation of the MWD we have de-
veloped. Previous approaches often use rigid constraints,
such as assumed MWD shapes (e.g. log-Gaussian or gen-
eralised exponential), to simplify the inversion. These
constraints are often not representative of the true MWD
and can cause non-optimal inference outcomes. Also, al-
though the training of NNs is often resource intensive,
this cost is only incurred once during model development.
Once trained, inference requires only a single pass of data
through the NN, which is far faster than the repetitive
solving of a model during a more traditional least-squares
optimisation process.
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The need for the use of machine learning techniques
was partly due to the infeasibility of reversing the tube
model of Das and Read using analytical mathematical
methods. We have shown here that using the inference
capabilities of modern NNs, we can forego this challenge
and reverse the model to make accurate MWD inferences.
Hence, the methodology detailed here is limited primar-
ily by the forward predictive capabilities of current mod-
els. This is an improvement on previous attempts at
predicting the MWD from rheology, where an additional
restriction is the ability to reverse the model using more
traditional methods.

A further limitation on any MWD inference method
is the amount of MWD information that is uniquely in-
ferrable from the rheology data. Some consideration of
the limits of molecular weight inference given a particu-
lar rheology frequency range has been presented in the
past [22]. This involved using the expected relaxation
timescales of various molecular weights to estimate the
frequency where the signature of certain chain lengths
can be detected in the rheology data. A possible di-
rection for future research could be to incorporate these
ideas into future NN systems. This would manifest prac-
tically as, along with the MWD prediction, providing
limits on the ‘known’ molecular weight range with re-
laxation timescales that are firmly within the frequency
range of the input rheology. It may nevertheless still be
possible to approximate the distribution of chain lengths
outside this range as the effect these chains have on the
rheology is not confined to only one frequency.

In this work we have focussed primarily on relatively
broad MWDs, and we have noted that for such distri-
butions there is a limit on the resolution of fine-grained
detail of the MWD: we are not able to resolve closely
spaced sharp peaks, and we suspect that there is not
sufficient information available in the rheology to distin-
guish such a distribution from a smoothed-out equivalent.
Nevertheless, if the MWD comprises a small number of
well-separated narrow peaks, there may still be sufficient
information present in the rheology to resolve both their
position and width, by constructing a different set of NN
models specifically designed for this purpose. This (albeit
speculative) consideration highlights that the resolution
limit of MWD inference from rheology may depend on
the nature of the MWD itself.

The advantages of the tube model used here lie pri-
marily in the more precise treatment of melts containing
vastly different chain lengths at the extremes of polydis-
persity. Unfortunately, we have not as yet been able to
test our methodology on the type of polymer melt for
which this advantage is most clear, for example, bimodal
polydisperse MWDs. This is due to the lack of availabil-
ity of this type of experimental data for testing purposes.
Nevertheless, trials on synthetic test data indicate that
it should be possible to infer the MWDs for this type of
distribution, provided that the relaxation timescales of
these chain lengths fall within the frequency domain of
the rheology data.
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There are also no inherent challenges with translat-
ing this technique to other polymers, such as PE or PP,
which are the most abundantly used in modern society.
Forward prediction of the linear rheology for these ma-
terials is well-tested, with only small alterations to ma-
terial parameters [3]. The main complication involved
with these materials is the incompatibility with TTS
due to non-proportional scaling of different relaxation
timescales with temperature. The result is that we ob-
serve a more limited frequency range, which will have
some adverse effects on prediction accuracy at the ex-
tremes of molecular weight. However, we have seen, for
example, with PSA, A1PS and PS8, that high-quality
predictions are still made when the frequency range is
limited, although the molecular weight range of accurate
predictions may be limited.

This work has fulfilled the purpose of a proof-of-
concept for the use of NNs to reverse the predictions of
advanced rheological models and to extract MWD infor-
mation. This development allows the inference of molecu-
lar weight from rheology using state-of-the-art tube mod-
els, which would not be possible using traditional math-
ematical methods. The noted key developments serve as
valuable insights for future work, with the goal of ex-
panding the capabilities of the NN system.

The main priority of future work should be to extend
compatibility to other polymeric materials such as PE
and PP, which together represent a large fraction of the
global polymer industry. For such polymers, it seems
plausible to extract the molecular weight distribution
when the architecture is linear. There are two main lim-
itations in this regard. Firstly, it is typical that for such
polymers the linear rheology is measured over only a few
decades, since time-temperature superposition is limited
by crystallisation. This may reduce the information that
can be inferred from the measurements, and so reduce the
quality of predictions, especially for large PDI. Secondly,
such polymers also often contain comonomers, for exam-
ple to introduce short chain branching which improves
performance in final application. The rheology param-
eters of entanglement spacing, entanglement time and
modulus typically vary with comonomer content, see e.g.
[47]. Thus, the method needs to be flexible with respect
to changing such parameters. We defer such considera-
tions to future work.

A further issue is that polymers such as PE, and to
some extent PP, also often contain long chain branch-
ing. Here, the forward problem of predicting rheology
from molecular architectures is well discussed in the liter-
ature, see e.g. [28] for a summary. Hence, synthetic data
for training neural networks could readily be generated.
The problem is whether there is sufficient information
present in linear rheology alone to tease apart the para-
metric complexity of branched polymers. In our view it
is impossible to uniquely determine branched architec-
tures from linear rheology alone, since the same rheology
can be produced from multiple combinations of different
structures. Extra information must be brought to bear
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on the problem, for example by restricting the set of ar-
chitectures considered within a certain class, or within
the distribution implied by a given reaction chemistry
such that there are only a small number of unknown pa-
rameters to determine. This would, for example, be the
case for idealised single site catalysis [28]. This would be
an interesting topic for further study.

ACKNOWLEDGMENTS

The work of Robert Elliott, Luisa Cutillo, Johan
Mattsson and Daniel Read forms part of the research
programme of DPI, project #861. This work was under-
taken on ARC4, part of the High Performance Comput-
ing facilities at the University of Leeds, UK.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are
openly available at https://doi.org/10.5518/1689,
reference number [48].

SUPPLEMENTARY MATERIAL

The supplementary material for this article includes
figures which may be of value to the interested reader.
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are supporting data for arguments made here that the
rheology of an MWD with closely-spaced narrow peaks
is extremely similar to that from a “smoothed-out” equiv-
alent.

Appendix A: Monte Carlo Dataset Generation

Here we describe the method used to randomly gener-
ate molecular weight distributions of variable shape for
use in the training dataset. A completely random selec-
tion of ¢; in Eq. 1 would produce unrealistic and non-
relevant distributions. Instead, we have implemented
a Monte-Carlo system based on a Metropolis-Hastings
algorithm designed to guide the choice of ¢; towards
smoother, more realistic distributions. The method
is based on a pseudo-energy function E({¢;}) for the
MWD, using the weights ¢; in Eq. 1. Here we have cho-
sen to use a function of form
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E({¢:}) = AZ V(i — di—1)?

+BNg(¢1 + 3 + ox, 1 +0%,) (Al
Ng—12

+CNy Y 45
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A, B and C are input parameters. The first term
sums over the difference between adjacent ¢ values, and
therefore penalises “spiky” distributions, and prioritises
smoothness in accepted distributions. Note that al-
though A, B and C are constants, the prefactor on each
term is the relevant constant multiplied by Ny, hence
there is no factor of 1/N, to normalise the first sum.
The second term is a sum of the ¢ values representing
the sub-distributions with the two smallest, and the two
largest, mean molecular weights. This penalises distribu-
tions where there are many polymers at the extremes of
the considered molecular weight range. The third term
sums over the first Ny — 12 values of ¢7, which are the
¢; sub-distribution volume fractions sorted in order of
ascending magnitude. Hence the third term in E({¢;})
sums over the ¢ values of smaller magnitude, excluding
the largest 12. This term is designed so that the ¢ values
quickly move away from their initial condition of identi-
cal magnitude, and MWDs are not favoured if many of
the sub-distributions are large and therefore similar in
magnitude.

Each discrete step of the algorithm works by proposing
a change to the MWD, and this change is accepted or
rejected with a probability P of the form

P — 6_ [E({¢i}proposed)_E({¢i}Cllrrent)} . (A2)

On every subsequent step, two random indices = and y
are selected, and a random number ¢ is generated uni-
formly between the limits 0 and some maximum step size

A defined as

_SF

A=
Ny

(A3)

where SF is a step fraction, which is set as an input pa-
rameter to the algorithm. The random step § is added
to the first selected ¢ value ¢, and subtracted from ¢,;
this preserves normalisation. Another input parameter
is a ‘zero move probability’ ZMP. When randomly gen-
erating J, there is a probability ZMP that § will be set
as |¢y|. Thus, ¢, will be set to zero, and ¢, will be set
to |¢z| + |¢y|. This was implemented in the algorithm
to make the process more dynamic and prevent stagna-
tion near local minima in the energy function, and allow
¢ values to exist at magnitudes of 0, which rarely hap-
pens due to the random nature of the proposed change
d. When the proposed state is decided, E({¢;}proposed)
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TABLE V: Parameter values used to generate the MC
components of the 800 000-entry training dataset.

Dataset Component A B C SF? Burn-in ZMPP

MC1 Medium 15.0 20.0 1.0 0.5 1000 0.25
MC2 Broad 60.0 10.0 1.0 0.5 1000 0.25
MC3 Narrow 5.0 20.0 1.0 0.5 1000 0.25

& Step fraction
b Zero move probability

is calculated, and compared to the current energy. If any
¢; value is negative, the energy is set to be infinite, and
therefore the state is never accepted.

There is a ‘burn-in’ phase, to allow the algorithm to
escape its initial condition before MWDs are saved. Fol-
lowing the burn in period, every tenth MWD is saved.
There is also a system for preventing the algorithm from
getting stuck. The program running the algorithm caches
the last 100 accepted states {¢;}. If proposed moves are
not accepted for 50 successive steps, the current state is
reverted back to the oldest state in the cache.

Figure 2 shows the composition of the final dataset and
that there were three different characteristics of MWD
that were included. Table V shows the parameters used
to produce these characteristics, the major difference be-
tween them being the magnitude of A (smoothness). Fig-
ure 11 shows some representative MWDs generated by
the algorithm with each of the characteristics included
in the final dataset. These distributions give an intuition
for the range of MWD shape and molecular weight range
that the NN will be trained on.

Appendix B: WLF Shift

To shift PS rheology from a given measurement tem-
perature to the NN operating temperature of 180°C, we
use the Williams-Landel-Ferry (WLF) equation using the
form presented in the Reptate software [41] with param-
eters suitable for most PS samples. The two shift param-
eters are calculated as

—Bl(T — TT)
By +T,)(Bs+T)’

log,gar = ( (B1)

(14 aT)(T, +273.15)
br = (1+ oT,)(T + 273.15)’ (B2)

where By = 651.9, By = —52.24, log;y a = —3.161 from
Boudara et al. [41], T is the measurement temperature
in degrees Celsius, and T, is the reference temperature,
in this case 180°C. To shift rheology data from T to
T,, we divide the G’ and G data by br and multiply
the frequency coordinates by ar to perform the required
vertical and horizontal shift respectively.
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