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Abstract

We present a methodology for inferring the molecular weight distribution (MWD) of polydisperse linear polymers from their linear rheology
using machine learning techniques. Specifically, we use a state-of-the-art tube model to generate large datasets of artificially produced rheol-
ogy data. These are used to train neural networks (NNs) to make accurate MWD predictions from frequency-sweep rheology measurements.
We target distributions relevant to commercial polymers, so broad polydisperse MWDs are prioritized. To simplify the data format for the
NN, we fit Maxwell modes to the rheology with predefined relaxation times and, hence, parameterize the rheology using the mode ampli-
tudes; correspondingly, we propose MWD parameterization using the sum of several log-Gaussian subdistributions with logarithmically
spaced mean molecular weights and identical dispersities. We assess the methodology’s performance by predicting MWDs using experimen-
tal polystyrene rheology data from the literature. Good agreement with gel permeation chromatography data is found where available, and
where it is not, the prediction captures known molecular weight statistics (such as weight-average molecular weight and dispersity) even if the
precise shape of the MWD is not known. The findings here lay the groundwork for future developments concerning the inversion of this tube
model for other polymeric materials. The ability to infer the MWD from rheology would traditionally be prohibited by the mathematical com-
plexity of state-of-the-art tube models, but we bypass this issue with our machine learning methodology. © 2025 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https:/
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1122/8.0001063

. INTRODUCTION

All commercial polymeric materials are polydisperse, and
their molecular weight distribution (MWD) is a key factor in
determining material properties and commercial use. Gel per-
meation chromatography (GPC) is the standard technique
used to measure the MWD, but this has some drawbacks:
GPC can be expensive, time-consuming, and occasionally
require the use of toxic solvents. Also, very high molecular
weight components of a polymer melt are sometimes not
detected by GPC despite having profound effects on the
material’s mechanical properties. These factors limit the use
of GPC for high-volume tasks, such as rapid characterization
of varied feedstock, e.g., as might be required during
mechanical recycling. Therefore, we present a new method
for acquiring the MWD from the melt rheology of the
polymer, bypassing the need to perform a GPC measure-
ment. Rheology data are rich in molecular information and
can be acquired more easily than GPC data in most cases.
Specifically, the data we use are the dynamic moduli
acquired in a frequency-sweep experiment.

The possibility of inferring molecular weight information
from the melt rheology is greatly assisted by the extensive
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work that has been done to predict rtheology from a molecu-
lar structure. The tube model of de Gennes [1] and Doi and §
Edwards [2], leading to the modern forms of the tube modelg
[3], has achieved great success in modeling linear rheology &
from material parameters and the MWD. This was achieved
by simplifying the complex dynamics of polymer melts to a
model of the escape of a test polymer chain within a tubelike
confinement, representing entanglement interactions with the
surrounding chains. This allows modeling of the viscoelastic
behavior of polymer melts and extraction of the storage and
loss moduli (G’ and G”). There are three dominant mecha-
nisms of chain motion that lead to stress relaxation, all result-
ing from the random thermal motion by which the chains
explore the surrounding space. The first mechanism is repta-
tion, a lateral movement of the chain along its path to allow
the chain to exit its confinement tube. The time scale of
reptation is dependent on the one-dimensional diffusion
along the tube and scales with the number of chain segments
cubed. This sensitivity underpins a significant component of
the link between rheology and the MWD. The second mech-
anism is contour length fluctuation (CLF) [4,5], where the
ends of the chain escape the tube by Brownian
motion-induced fluctuation of path length along the tube.
The chain coils and uncoils, repeatedly exiting and entering
the end of the tube, hence releasing stress from the chain
ends, and also reducing the distance the chain needs to
diffuse during reptation. The third mechanism is constraint
release (CR), where the motion of the chains surrounding a
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given test chain releases entanglements, allowing stress relax-
ation via local rearrangements of the tube [6].

The early tube models neglected some complexity of the
interactions between reptation, CLF, and CR. Nevertheless,
these models yield accurate results for the linear rheological
behavior of monodisperse polymers. Here, CLFs and CR
modify the scaling of the reptation time with chain length,
typically giving a scaling of N** for well-entangled polymers
with a detailed, quantitative model being provided by
Likhtman and McLeish [7].

Polydisperse melts are more challenging to model since
relaxation times between chains can vary significantly, which
strongly enhances the effects of CR. Tuminello and others
[8-11] developed the “double reptation” model to account
for the direct effects of CR on stress relaxation. Double repta-
tion has significant advantages over earlier models for poly-
disperse polymers and performs well for well-entangled
polymers with smooth MWDs. However, it fails to fully
capture the entire relaxation behavior as it does not fully take
into account the effect that vastly different chain lengths can
have on each other. Double reptation assumes that the repta-
tion time of chains of a given length in a polydisperse
polymer is unchanged from that in a monodisperse melt of
the same chain length. In practice, the fast relaxation of short
chains often enables an acceleration in the relaxation of adja-
cent long and short chains, leading to a propagation of addi-
tional relaxation acceleration within the stressed polymer
melt. This is seen experimentally where long chains are
mixed with those of significantly lower molecular mass; the
relaxation time is often decreased in these binary blends
[12-15], contradicting double reptation results. Recent
studies focusing on relaxation mechanisms in such bidisperse
melts [14-19] have culminated in the nested-tube model of
Das and Read [3], designed to encode the previous work in a
predictive algorithm for the linear rheology of fully polydis-
perse linear polymers. We make use of this model in the
present work.

Previous work has also addressed the problem we target
here, predicting the MWD from the rheology, with some
studies yielding excellent results. Early studies used the vis-
cosity of the polymer melt to infer the average molecular
weight [20]. Later work aimed to use the predictive capabili-
ties of various tube models by reversing the mathematical
machinery, for instance, in the case of double reptation
inverting the integral over the relaxation functions of the
component chain lengths. This has been attempted with
double reptation and its subsequent variations [8,21-27].
Although the integral inversion is a strictly ill-posed
problem, analytical solutions can be found through regulari-
zation techniques [28]. However, as discussed, there are fun-
damental weaknesses to many of the models that underpin
these inferences. For instance, the previously discussed
weaknesses of double reptation pose issues for binary
MWDs and those with well-separated bimodal shapes.
Therefore, despite good agreement with experimental MWD
findings in some cases, there is a limit to the generality and
flexibility of these methods. Other models, such as the “dual-
constraint” model of Pattamaprom and Larson [29], do con-
sider the more complex behavior of CR in the relaxation.

The use of this model has enabled good progress in predict-
ing MWDs with large polydispersity [30]. However, this
study also has limited generalizability because it requires pre-
defining the shape of the MWD peaks as either log-Gaussian
or generalized exponential (GEX), a necessity introduced by
the mathematical complexity that comes with increased
model accuracy. This is a symptom of the nonfeasibility of
the direct inversion of the model and the nonlinearity of the
relationship between the rheology and the MWD [28,30].

Here, we propose an alternative inference method allowed
both by new developments in rheological modeling and by
the recent acceleration of so-called “artificial intelligence”
methods. Specifically, we suggest combining the nested-tube
model of Das and Read [3] with the use of machine learning
for complex pattern recognition and inference. This
state-of-the-art tube model takes all three relaxation mecha-
nisms into account as well as the complex interplay between
them. The model considers a nested-tube structure with a
detailed approach to the dynamic dilution of the tube within
which the polymer chain relaxes, and how the tube interacts
with the rates of the reptation, CR, and CLF relaxation mech-
anisms. Testing of this model has yielded excellent agree-
ment with linear rheological data for a wide range of
polydisperse melts, and it is designed to be flexible to varied
materials and MWDs. It is also usefully encoded in an open-
access software tool' named LP2R, so we can now rapidly
predict G’ and G” accurately for a wide range of polymers of
arbitrary polydispersity. Further evidence that the LP2R tool 8
can accurately model the rheology of the polystyrene (PS)%C’)
samples included here can be found in Fig. S3 of the%
supplementary material, where the tube-model output
matches the experimental rheology very well. The model &
cannot be mathematically inverted but does allow the in g
silico production of large quantities of accurate rheological
data from arbitrarily polydisperse MWDs, allowing the pro-
duction of large training datasets for machine learning.
Hence, we rely on machine learning as a tool to invert the
multidimensional nonlinear relationship between MWD and
linear rheology.

We present results obtained from an initial test of our
methodology to validate the use of neural networks for this
task. Results are shown for several PS samples obtained from
the literature. PS is selected as an initial target due to the
availability of testing data, its rheology being well-
characterized, and the large frequency range that can be
observed due to the material’s compatibility with time-
temperature superposition (TTS) [31] in a part of its dynamic
regime. However, the only restriction on the use of this
method for a much wider set of polymers is the accuracy of
the Das and Read [3] tube model. The prediction of rheology
for PS has been well tested, and fortunately for polyethylene
(PE) and polypropylene (PP), as well as many others, the
rheology is also predicted accurately. This enables a simple

'Das, C., and D. J. Read, “Linear rheology of linear polydisperse polymers™;
https:/chinmaydaslds.github.io/LP2R/ (accessed 18 April 2024).
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translation of this methodology to these materials, which will
be a goal of future work.

In contrast to previous attempts to predict the MWD from
rheology, we use neural networks (NNs) to make the predic-
tion. This is partly out of necessity due to the infeasibility of
the inversion of the rheological model we use. It is also
partly out of an opportunity for flexibility and efficiency.
Once a NN model is trained, predictions can be made very
quickly, usually in a few seconds or less on a standard com-
puter. This avoids using time to perform a potentially
complex mathematical procedure. Also, many pretrained
NNs, specialized for specific tasks (e.g., certain molecular
weight ranges), can be used in parallel. This offers flexibility
and cross-examination methods not available in previous
attempts, where the mathematical inversion of the model
would usually be deterministic given some particular rheo-
logical data. The training of a NN requires large quantities of
labeled data to make predictions, which is a limiting factor in
their use for physical science applications. This work uses
the discussed developments in rheological modeling to
bypass this issue by relying entirely on artificial training
data. The absence of experimental training data requires trust
in the underlying model, but it allows for the use of an arbi-
trarily large dataset with minimal additional labor.

It is worth noting here that as with many numerical minimi-
zation procedures, the result of NN training is not determinis-
tic, and repeated training with identical parameters does not
necessarily lead to identical models. Therefore, there is some
variation in the accuracy of MWD prediction among the differ-
ent NNs. The implications of the extent to which this variation
appears are discussed further when results are presented.

Convolutional neural networks (CNNs) are NNs that
employ the use of one or more convolutional layers and are
the type of network used here [32]. These layers extract
feature maps from the input data, which are then fed into
dense fully connected layers. In these layers, the output from
each node in a layer is fed into each node in the subsequent
layer, allowing a highly nonlinear mapping to be made. In
the past, CNNs have been successfully applied in various
tasks, most notably image recognition [33,34] because they
offer a more efficient method for extracting the most crucial
data in an image, such as spatial information, without the
complexity of a huge number of inputs and therefore connec-
tions in a fully connected network. Our application is very
different from these, but we have found success in imple-
menting two-dimensional convolutional layers in our models,
with performance improvements compared to the use of only
fully connected dense layers.

The result of this work is a methodology that allows the
use of NN’s to bypass the difficulties in reversing forward-
prediction rheology models and remains robust to challenges
faced with experimental data. The details of how datasets
were produced, how MWDs and rheology have been parame-
terized, and how models have been trained are detailed in
Sec. II. The experimental data acquired for testing of the
trained models are detailed in Sec. III, and the comparison of
predictions with these data is shown in Sec. IV. We conclude
with a summary and discussion of the possible future devel-
opments that this work may allow.

Il. METHODOLOGY

The challenge of training a NN to perform the inversion
task required for this study is centered around optimal
methods of dataset generation and parameterization. We aim
to train a model that quantifies the mapping between the melt
rheology and MWD, which requires careful consideration of
how the data are presented to the algorithm. Here, we begin
by discussing the method used to represent the shape of the
MWD, which we require to be computationally simple yet
flexible. This is followed by a similarly motivated parameter-
ization of the viscoelastic response of the polymer melt using
discrete relaxation spectra. The relationship between melt
rheology and the MWD is complex and nonlinear, and we do
not wish to further this complexity with a poor data structure.
This is followed by a discussion of the composition of the
training dataset and the specifications of NN training used to
produce the results presented here.

A. MWD parameterization

The priority for a MWD parameterization is to avoid
needless complexity while maintaining flexibility. As an
example, the MWD could be represented by a large number
of points forming a curve, as with GPC data, but this would
be an inefficient use of computational resources, and the
accuracy of each predicted parameter would likely suffer.

The alternative method we have implemented involves
reconstructing the MWD as the sum of several log-Gaussian 8
subdistributions, each with the same small dispersity. Each sub- g
distribution is fixed to a specific mean molecular weight, evenly &
spaced across the logarithmic mass axis. As a result, the only $
variable parameter for each subdistribution is its relative weight, &
simplifying the parameterization to a set of variables ¢;, repre- &
senting the volume fraction of each subdistribution. Hence, the
MWD is represented as

aw & 1 (logM — u,)*
m—Z@L—mexp(‘Tﬂ’ .

where Ny is the number of subdistributions and o is the stan-
dard deviation of the subdistribution (the same value for all
i). u; is the mean of logM for the ith subdistribution. The
subdistributions are uniformly spaced in logarithmic molecu-
lar weight. These two parameters can be calculated from the
desired polydispersity index (PDI) and weight-average
molecular weight MW,,- of the subdistribution as

o = +/log (PDI), 2)

S 0'2
pi = log(Mw;) == (3)

Q0¥

As an initial test, we first check whether this parameteriza-
tion is able to represent a reasonable range of candidate
MWDs. Two examples of GPC MWD data fitted by this
method (using a simple least squares fit) are shown in Fig. 1.

As illustrated in this example, if a sufficient number of
subdistributions are used to cover the target mass range
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FIG. 1. Examples of fitting a sum of log-Gaussian distributions to GPC MWD data. These example MWDs are nonlog-Gaussian unimodal distributions.

completely, various MWDs can be represented simply by
adjusting the ¢, values.

It is relevant to discuss the PDI of each subdistribution, as
this highlights a known limitation of this method. There is a
minimum level of dispersity that can be represented with this
system; when a melt is near-monodisperse, or is a blend of a
small number of monodisperse components, each peak in the
true MWD has a lower PDI than the subdistributions of
Eq. (1). In practice, the effective minimum peak PDI we can
reliably fit is slightly above the PDI of the subdistributions
—1.165 here—because the lack of flexibility in the position-
ing of individual peaks becomes an issue. To be specific, if
the true MWD has a narrow peak sitting in between the
values of y; for two adjacent values of i, then our method
will attempt to represent the peak using a weighted sum of
those two subdistributions, which naturally gives a peak with
larger dispersity. However, we do not consider this a major
drawback of this method as we are targeting industrially rele-
vant MWDs, which are not produced in a manner that results
in monodisperse distributions (e.g., through polymerization
with well-controlled termination processes), but instead are
usually more broad, with a PDI value of at least 2.

Moreover, the dispersity of each subdistribution provides
a natural regularization of our method. For broadly polydis-
perse materials, it is doubtful whether rheology data contain
sufficient information to distinguish fine-scale variations in
MWD. Evidence for this can be found in Figs. S1 and S3 of
the supplementary material. It is shown that reducing the dis-
persity of the subdistributions so that the overall MWD is
more “spiky” has very little effect on the rheology.
Therefore, if a greater number of more narrow subdistribu-
tions are used, many different combinations of the ¢; vari-
ables could produce very similar rheology, making their
inference from rheology more mathematically challenging.
The chosen dispersity of the subdistributions, therefore, pro-
vides a natural smoothing of the predicted MWDs, i.e., a
regularization.

Through trial-and-error testing of different subdistribution
dispersities and molecular weights, a set of 28 log-Gaussian
subdistributions was chosen. The decided parameters resulted
in My values uniformly distributed in logarithmic molecular

weight from 8.85 x 10! g/mol to 8.85 x 10° g/mol and each
with a PDI of 1.165. This set provides the flexibility to fit a
wide variety of MWDs, and it covers the range of molecular
weights that are most commonly seen in commercial poly-
mers, such as PS, PE, and PP. Once these specific choices
are fixed, each MWD is parameterized fully by the set of
values of ¢;. These are, therefore, the parameters used to rep-
resent the MWD to the NN.

It would be possible to alter the parameterization of the
subdistributions (e.g., number of distributions, their PDI, and 8
the covered molecular weight range) for different or moregc’)
specific applications. However, care is required to ensure a%
sensible relationship between the number of subdistributions, §
the dispersity of each, and the molecular weight range. The &
goal is to have a suitable minimum dispersity for the chosen &
application, while maintaining an overlap between adjacent
subdistributions such that their sum can produce a smooth
MWD. As discussed, we also anticipate that it would not
provide any benefit to increase the number of subdistribu-
tions, and reduce their dispersity much beyond the values
used here, due to the resolution of the information it is possi-
ble to extract from the rheology of broadly polydisperse
materials.

B. Relaxation spectrum for input data

The data upon which we wish to make predictions are the
linear rheology data of a polymer melt, represented by the
storage and loss moduli over a particular frequency range. A
key issue foreseen in the practical application of this work is
that the rheology data from different experimental setups is
unlikely to be in a consistent format (e.g., spacing of data
points on the frequency axis may vary between different lab-
oratories). Hence, the formatting of data must be standardized
for presentation to the NN. We propose a solution where the
rheology is fitted with a discrete relaxation spectrum given
by the multimode Maxwell model, using

Nr
G => ge ', “)
j=1

J
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N, 2
/ : gj(wTj)
Gl =Y L1 5
() ;Ww#] (5)
G”(co) _ ﬁf: gj(wTj) (6)
= 1+ (7]

By using a fixed spectrum of N, relaxation times z;, i.e.,
the same values of 7; for all input data, we can fit the loga-
rithmic form of the data with the magnitude of each mode g;
as variables. In practice, we choose the relaxation times 7; to
be uniformly spaced on a logarithmic axis. We use a
least-squares fit, using the logarithm of the mode magni-
tudes, log(g;), as fitting parameters. This avoids prioritizing
different regions of the rheology preferentially as the loss and
storage moduli cover many orders of magnitude. Then, the
rheology can be represented simply in the form of these
mode magnitudes (log(g;)), and the frequency domain is
made constant for all data, greatly simplifying the input to
the NN model.

In order to capture shifts in the relaxation spectrum of
polymer melts as MWD is varied, we have found it advanta-
geous to use a high density of z; values, typically with a
large number of 7; per decade. One potential issue when
using large densities of Maxwell modes such as this is that
adjacent modes can become redundant when the rheology
data of interest could be accurately fit with a lower density of
modes. This leads to oscillatory behavior where the redun-
dant modes are given very small amplitudes compared to
their neighbors. This behavior is illustrated in Fig. S4 of the
supplementary material. This results in large differences in
the set of variables log (g;) from small deviations in the rhe-
ology, hindering the NN’s ability to easily recognize pat-
terns. To counteract this, we have implemented a smoothing
regularization in the cost function for the fitting of the
Maxwell modes to penalize solutions with oscillating log (g;)
values. The cost function includes the discrete approximation
of the second derivative of the logarithm of the modal mag-
nitudes, log (g;), as

No

AR = Z [(log ngp(wk) — log G-/ﬁ’(wk)>2

k=1

) N1

{m%m%m%mﬂhﬁZ@%m
j=2

x; = log(gj—1) +1og(gjr1) —2log(g), Jj# LN, (8)

where N, is the number of discrete w; frequency values for
which there are rheology data. A is a regularization parameter
used to prioritize smoothness relative to the most accurate fit.
A is set to be proportional to the square root of the density of
rheology data points on the logarithmic frequency space, p,,,
to ensure that the priority is maintained for different data
sources. This is because as p,, increases, the number of terms
in the first sum, and therefore the priority of reducing the
least-squares fit of the data, increases proportionally. To

counteract this, A> also increases proportionally to p, to
balance the priorities of the two components of the cost func-
tion. It is worth noting that there are multiple ways to regular-
ize the Maxwell modes so that the oscillatory behavior is
diminished and a solution can be found quickly. However,
once a suitable regularization is found, the most important
factor is consistency, i.e., to keep using the same method
both across the training dataset and when fitting a spectrum
to experimental data. The NN must only be made to interpo-
late within its training parameter space, so always maintain-
ing the same regularization method to fit the Maxwell modes
is essential.

For the present study, we select the N, relaxation times to
be between a maximum of 10*s and a minimum of 107®s
with a density of eight modes per decade, evenly distributed
on a logarithmic scale. This was selected to account for the
maximum frequency range of the data that we will investigate
here of approximately 107 < @ < 10° (rad/s).

For this choice of Maxwell mode density, we set the regu-
larization parameter A to be

A =0.4/p,, )

where the density of rheology data points is

No

logo ®max — 10219 Omin

Po (10)

A proportionality constant of approximately 0.4 was found to
yield good results and is used throughout this work.

Once these specific choices are fixed, the rheology data &
are parameterized fully by the set of values of log (g)). These§
are, therefore, the parameters used to represent the rheology &
data to the NN.

In summary, the data we present to the NN model are of
the following form. MWD data are represented by volume
fractions ¢; of the log-Gaussian subdistributions. Rheology
data are represented by a set of Maxwell mode amplitudes
log (g;). The task of the NN is to learn the nonlinear relation-
ship between the values of ¢; and log (g;). Once trained, the
NN should be able to predict a set of ¢;, given the log (g;)
provided as input, i.e., to predict MWD from rheology.

202 1990100 62

C. Training dataset

For training the NN, each piece of data represents one
material with a given MWD and linear rheology, and so
comprises the set of Maxwell mode amplitudes labeled by
the MWD volume fractions. NNs are excellent interpolation
machines but less reliable in extrapolation beyond the space
of the training set. Hence, the challenge in dataset production
is to ensure enough variability in “seen” examples for the
model to reliably interpolate for “unseen” data. We wish to
do this while maintaining flexibility toward, for instance,
abnormal MWD shapes.

For a general-purpose training dataset, we wish to include
distributions spanning the expected mass range we are target-
ing and a variety of forms of MWD that can be represented
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with the parameter system. To do this, we combine data from
MWDs that have been artificially generated in multiple ways.

The first components are unimodal and bimodal
log-Gaussian distributions with a range of random mean
molecular weights and dispersities. For these distributions,
the lower limit for dispersity was selected to be the dispersity
of each subdistribution in Eq. (1), which was 1.165, as other-
wise the near-monodisperse distributions would not be accu-
rately represented by the parameter system. The upper limit
for the dispersity was chosen to be 10.0, to allow most distri-
butions in the dataset to be broad, as seen with commercial
polymers, with some being very broad. The molecular
weight ranges were set in terms of the number of entangle-
ments Z, as 3 < Z < 500, which for the PS parameters we
have used is approximately equivalent to
3.9 x 10* < My < 6.4 x 10° (g/mol). For the bimodal dis-
tributions, an additional restriction was placed on the rela-
tionship between the molecular weight of the short and long

peaks, where Mlv?,ng > 2MSWh°n to ensure that the two peaks
are reasonably separated.

We also wish to include other MWD shapes to train the
model on less commonly encountered distributions, to
improve the parameter space the NN is trained on. To
achieve this, we have used a Monte Carlo (MC) algorithm to
randomly produce MWDs. This approach is based on a
Metropolis—Hastings algorithm and is covered in detail in
Appendix A. Here, we design a pseudoenergy function
E({¢;}) for the MWD, based on the weights ¢, in Eq. (1),
such that the probability of randomly generating a given
MWD is proportional to e 2{#}. Terms in E({¢,}) ensure
smoothness of the MWD, enforce tails decaying toward zero,
and favor distributions in which a given number of the ¢; are
small. By tuning the corresponding parameters, the random
generation can be tuned to generate distributions with certain
desired characteristics and avoid unrealistic ones. This
method allows us to control the general characteristics of the
distributions while maintaining the variability that is required
to train a capable NN.

The design of the dataset used to train the 28-log-Gaussian
system comprises the uni- and bimodal fitted MWDs, along
with three datasets generated using the MC algorithm accord-
ing to different shape characteristics, simply named
“medium,” “narrow,” and “broad”; see Appendix A for more
details on these divisions. An illustration of the dataset compo-
sition is shown in Fig. 2. The final dataset, therefore, consists
of these approximately 800000 entries of MWD data, each
given by the 28 ¢, values, accompanied by the relaxation
spectra of the related rheology. For each of the generated
MWDs, rheology was predicted using the LP2R software tool
using parameters appropriate for polystyrene. The parameters
used are detailed in Table 1.

Another factor that was found to be important in the crea-
tion of the training datasets was including a level of noise to
improve the robustness toward experimental data. In the early
stages of development, NNs were trained using datasets with
no such noise added. These models could accurately predict
the MWD from tube-model (artificial) rheology, but had
extremely poor performance when tested on experimental

— ~ 200000

:l» ~ 100000
MC 3 - Narrow — ~ 100000

~ 800000 —

— ~ 200000

— ~ 200000

FIG. 2. Illustration showing the general composition of the training datasets
used for the training of models on the sum-of-log-Gaussian parameter
system.

data. This is illustrative of the general point that it is impor-
tant to ensure that the trained NN has encountered variability
that may be present in real data. NNs typically interpolate
well within the parameter space of the training set, but are
poor at extrapolation: hence, the presented parameter space
should include degrees of freedom that represent the full
extent of the expected noise level. Rheology experiments,
even when performed expertly, are vulnerable to noise, and y
here, we consider three types of noise. One is the random%‘?
fluctuation of each individual data point as can be seen in &
any experiment. To account for this, we add random values S
distributed normally with mean zero and some standard devi-
ation to the logarithm of the storage and loss moduli.
Standard deviation values between 0.005 and 0.1 were
tested, with a value of 0.07 being used in the final training
datasets. The second is vertical displacement of the rheology
curves on the logarithmic axis due to variation in rheometer
calibration and sample loading. To account for this, we add a
random number with zero mean and nonzero standard devia-
tion (a value of 0.2 is used here) to the logarithm of the
storage and loss moduli, but this time choosing the same
random number for all data points.

Finally, we wished to introduce robustness toward varia-
tions in the range of frequency measurements and the TTS

10°20'vL G

TABLE 1. Input parameters used for generating the full rheology of PS at
180 °C using LP2R (see footnote 1).

Parameter Value
Frequency ratio V2
Maximum o range 107 < < 10° rad/s
Kuhn segment mass, Mg 720.0 g/mol
Entanglement mass, M, 12 870.0 g/mol
Plateau modulus, G%, 2.2x10°Pa
Entanglement time, 7, 22x107%s
Glassy modulus, G, 1.2x10°Pa
Glassy relaxation time, 7, 13x107%s
Stretching exponent, S, 0.390
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procedure. The fitting of Maxwell modes does present the
rheology in a regular format to the NN, but the fit is sensitive
to the range of experimentally measured frequencies. This is
to be expected, as when the relaxation time of a certain
Maxwell mode falls outside the time scale of the deformation
of the material, that mode becomes redundant to the fit.
Therefore, for each MWD in the training set, we randomly
select the frequency range of the rheology data that the
Maxwell modes are fitted to, so the training set contains
examples of Maxwell modes for a full spectrum of frequency
ranges. To achieve this, we randomly select the minimum
and maximum frequency for the rheology data so that
3% 107* < min < 7 % 1073 (rad/s) and 4 x 10! < @me < 5
x 10° (rad/s). This often leaves many Maxwell modes where
the inverse of the relaxation time 7; falls outside the range of
frequencies of the rheology curve. When these modes fall
considerably outside the experimental data range, they will
not influence the fit and are to some extent not meaningful.
However, the smoothness regularization ensures that their
behavior is predictable, so the NN can learn to distinguish
these modes from the ones representing more significant time
scales.

For each MWD in our training set, it would be possible to
apply several different realizations of the above three types of
“noise” and so generate multiple entries in the training set
for each individual MWD. However, when adding each new
entry to the training set, if there is a choice between repeating
a previously used MWD with a new realization of noise, or
instead producing a wholly new MWD with noise, we
believe that it is likely better always to use a new MWD
because this will maximize the span of the multidimensional
parameter space that the NN is trained on. Hence, each entry
in our training set is for a unique MWD with a single realiza-
tion of the noise.

Although the training and application of the resulting NNs
are quick, training dataset production is more demanding. To
produce the 800 000 entries of raw rheology data (before the
addition of noise or Maxwell mode fitting), 160 parallel jobs
required approximately 24h each. Noise application was
completed by a single job taking approximately 30 min.
Maxwell mode fitting then required a wall-clock time of 4 h
when run across 160 processors. It is likely that the size of
the dataset used here is larger than that needed to achieve
comparable results, but our philosophy for this initial test
was to ensure that the dataset size was not a restriction to per-
formance. Although this process is resource intensive, the
bulk of the computational cost is in producing the raw rheol-
ogy data. This means that once this dataset was complete, it
can be used to optimize noise levels, Maxwell mode parame-
ters, and NN specifications, which are comparatively
cheaper.

D. Neural network specifications

Results shown here have been produced with nine CNNss,
each trained with the same architecture, parameters, and
dataset. We have used models with two convolutional layers,
each with 32 kernels. A batch normalization is applied to the
output of each convolutional layer to stabilize training and

accelerate convergence. The convolutional layers are fol-
lowed by several dense layers (ten are used in the models
shown here), with 256 or 512 neurons per layer. We use the
ReLU (Rectified Linear Unit) activation function for each
layer and the Adam optimization function. The other network
parameters [35,36] found to give the best results were: an
initial learning rate of 1073, a learning rate reduction factor
of 0.75, a learning rate reduction patience of 10 epochs, a
minimum learning rate of 1073, an early stop delta
(minimum required change in loss required such that early
stop is not triggered) of 1077, an early stop patience of 50
epochs, and a batch size of 256. We have used the
Tensorflow package [45] in Python to create and train these
models. Training was undertaken on ARC4, part of the High
Performance Computing facilities at the University of Leeds,
UK. Each NN model took approximately 20 min to train
using maximum requested compute resources of a single
NVIDIA V100 32Gbytes card, 10 CPU cores, and 48 GB
system memory. Once trained, NNs can be deployed on non-
specialized computers in a matter of seconds.

lll. EXPERIMENTAL DATA

Data have been acquired from freely available sources,
such as the Reptate [37] data files, and by extracting data
from figures in the literature. The temperatures for which the
rheology data are obtained vary between samples, but the
NN models have been trained exclusively on PS data at
180°C. Therefore, we shift all the experimental data to the§
same temperature; we do this using the Williams—Landel—%
Ferry (WLF) time-temperature shifting (see Appendix B)%
[38]. This simple shift would also be required to make a NN 2
prediction for any new rheology data with any measurement 8
temperature other than 180°C. The measurement tempera-g‘
tures and frequency ranges observed for each of the polydis-
perse PS samples are shown in Table II.

A. Initial comparison of rheology data

When we shift the rheology curves from the measurement
temperatures associated with each rheology dataset to the ref-
erence temperature of 180 °C, we can compare the curves for
the storage and loss modulus, as seen in Fig. 3. We see a
range of viscoelastic responses displaying the variability in
the samples. Also evident is that the frequency ranges of the
rheology for the various samples are not consistent, which is
hardly surprising for data acquired from multiple laboratories.
As noted above, we can account for this variability in the
data by introducing the same variability in the NN training
data. However, we also note that this variability may also
influence the quality of the MWD predictions, as chains of
different lengths relax on different time scales and, therefore,
have a greater influence at some frequencies than others.
Hence, the measured frequency range dictates, to some
extent, the range of molecular weights for which the rheol-
ogy data carry information so that inference of MWD can be
made, as explored by Wasserman [22].

Figure 3 also shows the high-frequency response of the
samples (for those with sufficient frequency ranges). This
region shows the response of the material related to the
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TABLE II. List of PS samples used for model validation and source where data were acquired. Also, the recorded rheology measurement temperatures are
stated, along with the frequency ranges when the data were shifted to the reference temperature of 180 °C.

Label Source Temp (°C) Wi (rad/s) Wmax (rad/s) logy ®Wmax — 10g1( @min
PS1 BASF Laboratory via Reptate files [37] 170 3.72%x 1073 1.85x10° 7.70
PS2 BASF Laboratory via Reptate files [37] 170 1.18x 1072 1.85x10° 8.20
PS3 BASF Laboratory via Reptate files [37] 170 5.46x 1074 1.85%10° 8.53
Ml Wasserman and Graessley [39] 150 8.61x107* 1.16 x 10° 8.13
M2 Wasserman and Graessley [39] 150 9.60x107* 1.82x10° 8.28
PSA Sugimoto et al. [40] 160 570x 1073 1.65% 10" 3.46
A1PS Ferri and Lomellini [41] 200 1.20x 1072 7.86 x 10? 4.82
PScom Wasserman and Graessley [39] 150 224x1073 1.06 x 10° 7.68
PS8 Montfort et al. [42] 160 1.72%x1073 9.02 x 10° 5.72

transition to subtube-diameter Rouse relaxation and the tail of
the glassy response. This should be MWD-independent [28]
for molecular weights sufficiently larger than the entanglement
molecular weight M, (here taken to be M, = 12870 g/mol).
This criterion is satisfied by all the samples.

However, we see that there is variability of rheology data
in this frequency range between the samples, especially for
the samples PS2 and PScom in the G” curves. The cause of
this lack of agreement is not known to us, but it could be due
to polymer degradation; microstructure differences, such as
tacticity; contaminants, such as residual solvents or additives
(which might particularly be present in industrial grade
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samples); or possibly a small offset between the actual and
recorded measurement temperature. Although the differences
observed in this high-frequency region are in themselves
small and on their own will not have a large direct influence
on MWD prediction, the variability could be a symptom of
deeper issues with the rheology data. It is plausible that the
rest of the rheology curve, where the moduli have a greater
influence on the inferred MWD, could be influenced by the
same factors that give rise to the observed discrepancies at
high frequency. We do not know the cause of the discrep-
ancy, and it seems reasonable to assume that such variations
will realistically be present in practical data. Hence, we
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FIG. 3. (a) Storage and (b) loss modulus data, respectively, for PS samples shifted to 180 °C, with (c) and (d) high-frequency glassy response, which should

be independent of MWD.
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believe that the data are of high enough quality to provide
insights into the performance of the models we have trained
and the effects that such differences may have on their
predictions.

B. Molecular weight distributions

We wish to predict the MWD of the PS samples and use
GPC measurements to evaluate these predictions. GPC data
are available for all but three of the samples (M1, M2, and
PScom). The summary statistics for each of the MWDs are
shown in Table III. For M1 and M2, GPC data are not avail-
able because these two samples were created as mixtures of
near-monodisperse PS standards [39]. The mean molecular
weights and the relative weights of each component in the
mixtures are known so we can infer the overall MWD from
these components. We do this by assuming that the total
MWD is the sum of narrow log-Gaussian distributions with
My values and relative weights as given for each of the PS
standards in the mixture by Wasserman and Graessley [39].

There is a choice to be made as to what value of PDI to
assume for each of the component PS standards. In reality, it
is likely that each component will have a narrow dispersity,
and that the true MWD is “spiky” with multiple peaks. For
example, if we assume a PDI of 1.05 for each component,
this gives rise to the gray-shaded MWDs with multiple peaks
shown in Fig. 4. However, we recognize that, for many-
component mixtures, the rheology is wholly insensitive to
the fine-grained details of the MWD: it is impossible to dis-
tinguish the rheology of such a “spiky” MWD from that of a
smoothed-out distribution for which we assume the PDI of
each of the component PS standards to be broader. Evidence
for this can be found in Fig. S3 of the supplementary
material. Certainly, our methodology, in which the MWD is
assumed to be the sum of log-Gaussian subdistributions with
PDI = 1.165 for each, is not capable of resolving such
narrow peaks. We do not believe that it is possible to reliably
infer such peaks from rheology for multicomponent mixtures
where the components are closely spaced. Hence, for a fair
comparison of the output of our method with the “true”

TABLE III. Weight-average molecular weight (My) and the PDI for each
of the PS samples, and whether GPC data exist for the sample in question.
Where GPC data do not exist, the method of MWD comparison is discussed
in the main body.

Label My (g/mol) PDI GPC exists
PS1 3.20%10° 1.18 Y
PS2 274%10° 272 Y
PS3 4.07x10° 2.82 Y
MI1? 3.57x10° 2.32 N
M2? 3.99x10° 2.57 N
PSA 2.56% 10° 2.16 Y
A1PS 1.64x 10° 1.59 Y
PScom 321%x10° 1.87 N
PS8 4.03x10° 2.70 Y

For M1 and M2, the summary statistics are here calculated using only the
weight-average molecular weights and the relative weights of the discrete PS
standards’ of each, without assuming a dispersity for each component.

MWDs of M1 and M2, we consider a “smoothed” effective
MWD for each sample in which the PDI of each of the com-
ponent PS standards is chosen so as to eliminate oscillations
in the MWD curve. We find that choosing a PDI of 1.165 for
each of the PS standards [the same as we use in Eq. (1)]
gives rise to a suitably smoothed curve. This smoothed curve
is also shown as the solid red line in Fig. 4. The calculated
PDI of each of the two distributions is also dependent on the
assumed dispersity of the components. By assuming a com-
ponent dispersity of 1.165, M1 is calculated to have an
overall PDI = 2.70, and for M2, the new value is 2.99. The
weight-average molecular weights of the distributions are
unchanged from the values presented in Table III to the
given level of precision. We see that the MWDs of M1 and
M2 are almost identical, except for a slightly larger high
molecular weight tail for M2.

No GPC data are available for PScom, making direct veri-
fication of the predictions difficult. However, the sample is
known to have My = 321kg/mol and PDI = 1.87 and is
assumed to be approximately characterized by a
log-Gaussian MWD. Das and Read showed that this assump-
tion can produce good agreement with the experimental rhe-
ology using their tube model [3].

The MWD for each of the samples can be seen in Fig. 5.
Most of the samples have quite similar broad unimodal
MWDs. The exceptions are PS1 and PS3, with a narrow
unimodal shape for PS1 and a trimodal shape for PS3. These
two samples do not represent the type of broad MWD that is 8
the focus of this work, but they still provide useful informa- g
tion about the limitations of the NN system developed. Our
methodology is designed to be flexible to much more vari-
able and complex MWD shapes than are shown here, but the &
availability of testing data is a limiting factor. Due to the lack &
of good testing data for these distributions, we cannot test the
full capabilities of our methodology, but the NN models are
trained to be suitable for, e.g., bimodal polydisperse MWDs
and those with lower My, values. Similar results should be
possible for these distributions as for unimodal polydisperse
MWDs, provided the frequency range of the rheology is
suitable.
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IV. RESULTS AND DISCUSSION

To evaluate the performance of the NN models in predict-
ing the MWD of the PS samples, a selection of NN models
trained with identical parameters and training datasets was
used. Because of the random nature of NN training, each
model gives different results. For each sample, the best and
worst predictions (as measured by the root mean square
error, RMSE, detailed below) will be shown from the nine
total models trained on the same dataset.

The results for PS2, PSA, A1PS, and PS8 are shown in
Fig. 6. It is worth noting at this point that the rheology data
for the PSA, AIPS, and PS8 samples include considerably
smaller frequency ranges than the other samples, so a lower
performance and a greater variability in the output prediction
could be expected. However, despite this, all three of these
samples were well predicted by the NNs and did not show
significant differences between the nine models. Errors in the
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FIG. 4. Composite approximated MWDs for the two PS mixtures (a) M1 and (b) M2, with the MWD that was used shown as a solid red line and the compo-
nent log-Gaussian curves shown as dashed lines, each with PDI = 1.165. Dots represent the My values and relative weights of the PS standards in the mixture.
The gray shaded region shows MWD if each PS standard is assumed to have a lower PDI = 1.05.

PS2 prediction are consistent in each of the nine models
tested, with a low variability in the prediction relative to
some of the other samples. This may be related in some way
to the described inconsistency in the high-frequency rheol-
ogy, which was especially prevalent in PS2. If some system-
atic error is present in the rheology, then this consistent error
in the prediction relative to the GPC would be observed.
Pattamaprom et al. [30] also made predictions on the rheol-
ogy of PS2, and a very similar shape of MWD was produced
as shown in Fig. S7 of the supplementary material. It is
worth noting here that when a different measurement temper-
ature of 180°C is assumed for PS2, the inferred MWD
matches the GPC data much more closely. This does not nec-
essarily indicate that the experimental temperature was actu-
ally 10 °C higher, but instead only that the rheology is closer
to the tube-model prediction when different material parame-
ters are used, reiterating the possibility of sample contamina-
tion, degradation, or some other discrepancy.

The predictions for the M1 and M2 samples are shown in
Fig. 7. Among the nine models, there was little variation in

M (g/mol)

FIG. 5. Overlaid MWD data for all PS samples. The data are acquired from
GPC measurements where available and reconstructed from other informa-
tion for M1, M2, and PScom. A discussion of these three samples is in the
main text.

performance. The best predictions for both are excellent,
although it is not surprising how similar the two predictions are
given the similarity of the samples. The main difference between
the two samples is at the highest molecular weights: two compo-
nents with My values of approximately 3.8 x 10° g/mol and
4.5 x 10% g/mol are introduced into the M2 sample. These
changes give a small shoulder in the true MWD not present in
the M1 sample. This feature is partially reflected in the MWD
predictions from our methodology, which do not predict a dis- 8
tinct shoulder but do elongate the high My tail relative to M1 §
predictions. Here, we are at the limit of the detail that can be%
resolved by our method: the shoulder itself is, in fact, a distinct, 3
near-monodisperse component, and as we have noted, ourg
method is not designed to resolve these. This is again compara- &
ble to the prediction by Pattamaprom et al. [30] for this sample,
as shown in Fig. S7 of the supplementary material.

We also recall Fig. 4, which illustrates that the “true”
MWDs for these two samples may, in fact, contain multiple
peaks, depending on the dispersity assumed for the PS stan-
dards from which the samples are constructed. Our prediction
results provide insight into the limits of the resolution of
information within the rheology. Although our MWD param-
eterization system could, in principle, produce an MWD with
more defined narrow peaks, it does not. This is likely
because the rheology of a MWD with multiple narrow,
closely spaced, individual peaks is indiscernible from that of
the smoother MWD we have used. Setting aside this ambigu-
ity in the true MWD, and assuming the distribution is, in
fact, smooth, the predictions for the M1 and M2 samples are
the most accurate from among the samples presented in this
work. This is notable and encouraging because these samples
are the two for which the MW composition is most accu-
rately known since they are constructed from PS standards
rather than having MWD measured by GPC.

As shown previously, the PS1 and PS3 samples have uni-
and trimodal MWDs, respectively, with near-monodisperse
peaks. These narrow distributions are rarely used in industrial
polymers and have not been targeted by the work in this
study. The MWD parameterization system used here has a
minimum possible PDI given by the individual
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FIG. 6. (a) Lowest and (b) highest RMSE predictions for PS2, PSA, A1PS, and PSS.
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FIG. 7. (a) Lowest and (b) highest RMSE predictions for M1 and M2.

subdistributions. However, it is still prudent to test the ability
of the NNs to recognize these MWDs. The results for these
samples are shown in Fig. 8. Despite the impossibility of accu-
rately matching the exact MWDs for these samples, the NN
produces impressive results. For both samples, the predicted
MWDs are in the correct location on the molecular weight
axis and approximately follow the best shape feasible for each.
Furthermore, the best and worst models predict similar results,
showing good consistency across models, implying a true rec-
ognition of mean molecular weight and not random chance.
The sample for which we possess the least information is
PScom. The recorded mean molecular weight My = 321 kg/
mol and PDI = 1.87 are known. We assume a log-Gaussian
distribution when comparing the prediction given by the NN
models with the “true” MWD. The results are shown in
Fig. 9, with a moderate agreement when the RMSE is the
lowest. However, the result with the highest RMSE was
noticeably different from the assumed log-Gaussian shape,
and as shown in Fig. 10, there is a definite trend in the pre-
dictions of all nine models. Although there is some variation,
which is expected, the trend is that the models do not predict
a simple log-Gaussian MWD shape. It is worth noting that
the high-frequency rheology of PScom was, along with PS2,
not in agreement with the other samples, so this result may
not be sufficient to credibly diagnose an alternative shape for
the MWD. It does, however, highlight the power of this
methodology in characterization of the MWD from rheology,
where the question is now raised of whether the assumption
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of a log-Gaussian MWD is valid. As we do not have GPC &
data to compare the prediction to directly, it is worth compar- &
ing the statistics of the predicted MWD with those provided.
The best prediction for PScom gave My = 327 kg/mol,
which matches the true value of 321 kg/mol well within the
typical precision of GPC measurements. The PDI for this
prediction was 10.46. This is very different to the true value
because there is a long nonzero low molecular weight tail
present in many of the predictions, which, although it has
little effect on My or the shape of the main peak, signifi-
cantly affects M,. However, when the predictions of any
molecular weight below 5 kg/mol are ignored, the predicted
PDI becomes 2.35, which is much closer to the given value
of 1.87. The predicted My is unchanged to the level of preci-
sion given. This issue with the low molecular weight tail is
something we wish to address with future work, as it can
give misleading summary statistics that do not represent the
true shape of the MWD.

We quantify the quality of our predictions through two mea-
sures, the results of which are presented in Table IV. The
RMSE is a measure of the deviation of our predictions from the
experimentally measured MWD. The RMSE was calculated by
first interpolating the distributions onto a common molecular
weight axis, identical for each sample. It is then calculated as

N
RMSE = %Z (wiata — ),

X

Y
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FIG. 8. (a) Lowest and (b) highest RMSE predictions for PS1 and PS3.

where N is the number of data points on the common mass
axis, wga‘a the experimental value of dW/dlog M, and w, the
value predicted by the NN. Table IV shows the maximum
and minimum RMSE across the nine NN models, together
with the mean value across all models. The Standard
Deviation (Std Dev) is instead a measure of the consistency
of prediction between the NN models and is evaluated as
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Nyn is the number of NN models, wY' i
MWD curve for the mth NN model, and w; is the meang
value at a point x on the mass axis of the predictions across &
the models used.

As expected from their sharply peaked MWDs, PS1 and
PS3 produced the largest errors as measured by RMSE. It is
notable also that these two samples give larger values of Std
Dev. This is most likely because MWDs with narrow peaks
are not well-represented by the parameter system of
log-Gaussian subdistributions. The NN recognizes the
approximate location of the peaks on the molecular weight

0.5 1 — Reconstructed MWD PScom
Predicted MWD
0.4+
0.31
0.21
0.11 \
(b) \ A i\’
0.0 f=FerrrmmpmsEn=m RS
102 103 10* 105 106 107
M (g/mol)

FIG. 9. (a) Lowest and (b) highest RMSE predictions for PScom, measured against the MWD reconstructed from known statistics and an assumed

log-Gaussian shape.
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FIG. 10. All nine predictions of the reconstructed MWD for the sample
PScom with the assumed log-Gaussian shape. Similar plots for all other
samples are shown in Fig. S2 of the supplementary material.

axis, but there are no configurations of the subdistributions
that accurately give the MWD shapes for these samples.
Therefore, we suppose that this high variability is a result of
the exaggeration of small differences in the NN prediction by
the discretization of the mean molecular weights of the sub-
distributions. As a result, there is less consistency in the NN
predictions.

PS2 had the largest RMSE of the remaining samples,
which, as discussed, is likely due to a systematic error in the
GPC or rheology data. AIPS, PS8, PScom, and PSA closely
followed with good predictive performance, especially for
the lowest RMSE predictions. M1 and M2 gave the lowest
errors and some of the lowest standard deviations in their
results, indicating an excellent characterization of the
sample’s MWD from the rheology.

It is a common theme among the predictions we present
that the general shape and the mean molecular weight are
predicted accurately. However, where the predictions struggle
is with the shape and extent of low molecular weight,
low-volume-fraction tails of the distribution, as seen with
samples PS2, PSA, M1, and M2. These tails (comprising
polymer chains only just long enough to be entangled) have
a relatively small impact on the rheology and are, therefore,
inherently more difficult to detect or quantify. This is noted
as a limitation of this methodology.

TABLE IV. RMSEs and the mean standard deviation of RMSEs for nine
models used for each PS sample.

Label RMSEpean RMSEwin RMSEMax Std Dev
PS1 0.1777 0.1736 0.1818 0.006 65
PS2 0.0367 0.0330 0.0404 0.004 17
PS3 0.0772 0.0703 0.0830 0.012 15
M1 0.0100 0.0082 0.0134 0.004 07
M2 0.0132 0.0085 0.0170 0.005 15
PSA 0.0222 0.0181 0.0269 0.003 60
A1PS 0.0311 0.0188 0.0378 0.00577
PScom 0.0262 0.0169 0.0355 0.006 89
PS8 0.0289 0.0256 0.0311 0.004 80

As an additional test of the ability of the NNs to invert a
state-of-the-art rheological model, we have checked the
reversibility of our predictions. We used the Das and Read
tube model to predict the rheology for the highest and lowest
RMSE MWDs predicted by the NNs for each of the PS
samples. The comparison of these predictions with the exper-
imental rheology data can be found in Figs. S5 and S6 of the
supplementary material. In most cases, the tube-model output
follows the experimental rheology very closely, with slight
differences between the rheology for the two MWDs used
for each sample. This is good evidence that the NN predic-
tions are consistent with the tube model, and each NN has
“learned” a feasible relationship between the MWD and rhe-
ology. The two cases where the model-generated and experi-
mental rheology do not match to the same level are for PS1
and PS3. This is likely due to the discussed incompatibility
of these MWDs with the parameter system we have used,
where the dispersity of each subdistribution is too large to
accurately describe the more narrow peaks of these two
MWDs.

V. SUMMARY AND OUTLOOK

We have presented a method for inferring the MWD of
polydisperse polymer melts using neural networks trained on
large, artificially generated linear rheology data. We use the
nested-tube structure model of Das and Read [3] to produce
the training data. The predictions match the known MWDs 8
of the nine test PS samples well. g

Key developments in this work are (i) the introduction of
a new method of MWD prediction, using NNs as a means to §
“invert” the forward prediction of rheology from MWD &
using a well tested model; (i) the treatment of the data input &
to the NN, specifically in representing MWDs as a sum over
log-Gaussian subdistributions and rheology as a sum over
regularized Maxwell modes; and (iii) the creation of suitable
datasets, accounting for reasonable variation in MWD,
together with expected experimental noise and variability in
the frequency range of data. Together, these developments
simplify the task demanded of the model and make it robust
to different challenges encountered with experimental data.

Our NN method differs from previous approaches to this
problem in the ability to be flexible, which is enabled by the
above parameterization of the MWD we have developed.
Previous approaches often use rigid constraints, such as
assumed MWD shapes (e.g., log-Gaussian or GEX), to sim-
plify the inversion. These constraints are often not representa-
tive of the true MWD and can cause nonoptimal inference
outcomes. Also, although the training of NNs is often
resource intensive, this cost is only incurred once during
model development. Once trained, inference requires only a
single pass of data through the NN, which is far faster than
the repetitive solving of a model during a more traditional
least-squares optimization process.

The need for the use of machine learning techniques was
partly due to the infeasibility of reversing the tube model of
Das and Read using analytical mathematical methods. We
have shown here that using the inference capabilities of
modern NNs, we can forego this challenge and reverse
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the model to make accurate MWD inferences. Hence, the
methodology detailed here is limited primarily by the
forward-predictive capabilities of current models. This is an
improvement on previous attempts at predicting the MWD
from rheology, where an additional restriction is the ability to
reverse the model using more traditional methods.

A further limitation on any MWD inference method is the
amount of MWD information that is uniquely inferrable from
the rheology data. Some consideration of the limits of molec-
ular weight inference given a particular rheology frequency
range has been presented in the past [22]. This involved
using the expected relaxation time scales of various molecu-
lar weights to estimate the frequency where the signature of
certain chain lengths can be detected in the rheology data. A
possible direction for future research could be to incorporate
these ideas into future NN systems. This would manifest
practically as, along with the MWD prediction, providing
limits on the “known” molecular weight range with relaxa-
tion time scales that are firmly within the frequency range of
the input rheology. It may nevertheless still be possible to
approximate the distribution of chain lengths outside this
range as the effect these chains have on the rheology is not
confined to only one frequency.

In this work, we have focused primarily on relatively
broad MWDs, and we have noted that for such distributions,
there is a limit on the resolution of fine-grained detail of the
MWD: we are not able to resolve closely spaced sharp peaks,
and we suspect that there is not sufficient information avail-
able in the rheology to distinguish such a distribution from a
smoothed-out equivalent. Nevertheless, if the MWD com-
prises a small number of well-separated narrow peaks, there
may still be sufficient information present in the rheology to
resolve both their position and width, by constructing a dif-
ferent set of NN models specifically designed for this
purpose. This (albeit speculative) consideration highlights
that the resolution limit of MWD inference from rheology
may depend on the nature of the MWD itself.

The advantages of the tube model used here lie primarily
in the more precise treatment of melts containing vastly dif-
ferent chain lengths at the extremes of polydispersity.
Unfortunately, we have not as yet been able to test our meth-
odology on the type of polymer melt for which this advan-
tage is most clear, for example, bimodal polydisperse
MWDs. This is due to the lack of availability of this type of
experimental data for testing purposes. Nevertheless, trials on
synthetic test data indicate that it should be possible to infer
the MWDs for this type of distribution, provided that the
relaxation time scales of these chain lengths fall within the
frequency domain of the rheology data.

There are also no inherent challenges with translating this
technique to other polymers, such as PE or PP, which are the
most abundantly used in modern society. A forward predic-
tion of the linear rheology for these materials is well tested,
with only small alterations to material parameters [3]. The
main complication involved with these materials is the incom-
patibility with TTS due to nonproportional scaling of different
relaxation time scales with temperature. The result is that we
observe a more limited frequency range, which will have some
adverse effects on prediction accuracy at the extremes of

molecular weight. However, we have seen, for example, with
PSA, A1PS, and PSS, that high-quality predictions are still
made when the frequency range is limited, although the molec-
ular weight range of accurate predictions may be limited.

This work has fulfilled the purpose of a proof-of-concept
for the use of NN to reverse the predictions of advanced rheo-
logical models and to extract MWD information. This devel-
opment allows the inference of molecular weight from
rheology using state-of-the-art tube models, which would not
be possible using traditional mathematical methods. The noted
key developments serve as valuable insights for future work,
with the goal of expanding the capabilities of the NN system.

The main priority of future work should be to extend com-
patibility to other polymeric materials, such as PE and PP,
which together represent a large fraction of the global
polymer industry. For such polymers, it seems plausible to
extract the MWD when the architecture is linear. There are
two main limitations in this regard. First, it is typical that for
such polymers, the linear rheology is measured over only a
few decades since TTS is limited by crystallization. This may
reduce the information that can be inferred from the measure-
ments and so reduce the quality of predictions, especially for
large PDI. Second, such polymers also often contain como-
nomers, for example, to introduce short chain branching,
which improves performance in final application. The rheol-
ogy parameters of entanglement spacing, entanglement time,
and modulus typically vary with comonomer content; see,
e.g., [43]. Thus, the method needs to be flexible with respect
to changing such parameters. We defer such considerations
to future work.

A further issue is that polymers, such as PE, and to some
extent PP, also often contain long chain branching. Here, the
forward problem of predicting rheology from molecular
architectures is well discussed in the literature; see, e.g., [28]
for a summary. Hence, synthetic data for training NNs could
readily be generated. The problem is whether there is suffi-
cient information present in linear rheology alone to tease
apart the parametric complexity of branched polymers. In our
view, it is impossible to uniquely determine branched archi-
tectures from linear rheology alone since the same rheology
can be produced from multiple combinations of different
structures. Extra information must be brought to bear on the
problem, for example, by restricting the set of architectures
considered within a certain class, or within the distribution
implied by a given reaction chemistry such that there are
only a small number of unknown parameters to determine.
This would, for example, be the case for idealized single site
catalysis [28]. This would be an interesting topic for further
study.
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SUPPLEMENTARY MATERIAL

See the supplementary material that includes figures,
which may be of value to the interested reader. This includes
plots in the style of Fig. 10, with all predictions shown, for
the other PS samples. Also included are supporting data for
arguments made here that the rheology of an MWD with
closely spaced narrow peaks is extremely similar to that from
a “smoothed-out” equivalent.
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APPENDIX A: MONTE CARLO DATASET
GENERATION

Here, we describe the method used to randomly generate
MWDs of a variable shape for use in the training dataset. A
completely random selection of ¢; in Eq. (1) would produce
unrealistic and nonrelevant distributions. Instead, we have
implemented a MC system based on a Metropolis—Hastings
algorithm designed to guide the choice of ¢; toward
smoother, more realistic distributions. The method is based
on a pseudoenergy function E({¢;}) for the MWD, using the
weights ¢; in Eq. (1). Here, we have chosen to use a function
of the form

Ng
Eq ) =AY \(di— ¢i)
=2

+ BNy (81 + 3+ 8,1 + 4R,
Ny—12

+CN, Z P (A1)
i=1

A, B, and C are input parameters. The first term sums over
the difference between adjacent ¢ values and, therefore,
penalizes “spiky” distributions and prioritizes smoothness in
accepted distributions. Note that although A, B, and C are
constants, the prefactor on each term is the relevant constant
multiplied by Ng; hence, there is no factor of 1/N4 to normal-
ize the first sum. The second term is a sum of the ¢ values
representing the subdistributions with the two smallest, and
the two largest, mean molecular weights. This penalizes dis-
tributions where there are many polymers at the extremes of
the considered molecular weight range. The third term sums
over the first Ny, — 12 values of ¢, which are the ¢; subdis-
tribution volume fractions sorted in order of ascending mag-
nitude. Hence, the third term in E({¢;}) sums over the ¢
values of smaller magnitude, excluding the largest 12. This
term is designed so that the ¢ values quickly move away
from their initial condition of identical magnitude, and
MWDs are not favored if many of the subdistributions are
large and, therefore, similar in magnitude.

Each discrete step of the algorithm works by proposing a
change to the MWD, and this change is accepted or rejected
with a probability P of the form

P— 67[E({¢i}p|'opu\cd)7E({(bi}currcnl)}. (A2)

At every subsequent step, two random indices x and y are
selected, and a random number 6 is generated uniformly
between the limits 0 and some maximum step size A defined
as

(A3)

where SF is a step fraction, which is set as an input parameter
to the algorithm. The random step & is added to the first
selected ¢ value ¢, and subtracted from ¢,; this preserves
normalization. Another input parameter is a ‘“zero move
probability” ZMP. When randomly generating J, there is a
probability ZMP that & will be set as |¢,[. Thus, ¢, will be
set to zero, and ¢, will be set to |¢,| + |¢,|. This was imple-
mented in the algorithm to make the process more dynamic
and prevent stagnation near local minima in the energy func-
tion and allow ¢ values to exist at magnitudes of 0, which
rarely happens due to the random nature of the proposed
change 6. When the proposed state is decided, E({ ¢;} roposea) g
is calculated and compared to the current energy. If any ¢,
value is negative, the energy is set to be infinite, and there-
fore, the state is never accepted.

There is a “burn-in” phase to allow the algorithm tog
escape its initial condition before MWDs are saved.
Following the burn-in period, every tenth MWD is saved.
There is also a system for preventing the algorithm from
getting stuck. The program running the algorithm caches the
last 100 accepted states {¢p;}. If proposed moves are not
accepted for 50 successive steps, the current state is reverted
back to the oldest state in the cache.

Figure 2 shows the composition of the final dataset and
that there were three different characteristics of MWD that
were included. Table V shows the parameters used to
produce these characteristics, the major difference between
them being the magnitude of A (smoothness). Figure 11
shows some representative MWDs generated by the algo-
rithm with each of the characteristics included in the final
dataset. These distributions give an intuition for the range of
the MWD shape and the molecular weight range that the NN
will be trained on.

0-1 G202 1890¥

TABLE V. Parameter values used to generate the MC components of the
800 000-entry training dataset.

Dataset component A B C SF Burn-in ZMP
MC1 medium 15.0 20.0 1.0 0.5 1000 0.25
MC2 broad 60.0 10.0 1.0 0.5 1000 0.25
MC3 narrow 5.0 20.0 1.0 0.5 1000 0.25
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FIG. 11. Representative example distributions for the MC-generated dataset
with parameters for (a) medium, (b) broad, and (c) narrow MWDs.

APPENDIX B: WLF SHIFT

To shift PS rheology from a given measurement tempera-
ture to the NN operating temperature of 180°C, we use the
WLF equation using the form presented in the Reptate soft-
ware [37] with parameters suitable for most PS samples. The
two shift parameters are calculated as

o _BI(T - Tr)
O B T By 1 T ®b
by — (1 +aT)T, + 273.15) (B2)

(1 +aT.)(T +273.15)°

where B; = 651.9, B, = —52.24, log,,a = —3.161 from
Boudara er al. [37], T is the measurement temperature in
degrees Celsius, and T, is the reference temperature, in this
case 180°C. To shift rheology data from T to T,, we divide
the G’ and G” data by by and multiply the frequency coordi-
nates by ar to perform the required vertical and horizontal
shift, respectively.
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