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Abstract
Network meta-analysis combines aggregate data (AgD) from multiple randomized controlled trials, assuming 
that any effect modifiers are balanced across populations. Individual participant data (IPD) meta-regression is 
the ‘gold standard’ method to relax this assumption, however IPD are frequently only available in a subset of 
studies. Multilevel network meta-regression (ML-NMR) extends IPD meta-regression to incorporate AgD 
studies whilst avoiding aggregation bias. However, implementation of this method so far has required the 
aggregate-level likelihood to have a known closed form, which has prevented application to time-to-event 
outcomes. We extend ML-NMR to individual-level likelihoods of any form, by integrating the individual-level 
likelihood function over the AgD covariate distributions to obtain the respective marginal likelihood 
contributions. We illustrate with two examples of time-to-event outcomes: modelling progression-free 
survival in newly diagnosed multiple myeloma using flexible baseline hazards with cubic M-splines, and a 
simulated comparison showing the performance of ML-NMR with little loss of precision from a full IPD 
analysis. Extending ML-NMR to general likelihoods, including for survival outcomes, greatly increases the 
applicability of the method. R and Stan code is provided, and the methods are implemented in the 
multinma R package.
Keywords: effect modification, indirect comparison, individual participant data, network meta-analysis, population 
adjustment

1 Introduction
Healthcare decision-making requires reliable estimates of the relative effectiveness of all relevant 
treatments in a given population. Standard indirect comparison and network meta-analysis meth
ods are commonly used to synthesize evidence from multiple trials, each of which may compare 
only a subset of the treatments of interest, under the assumption that there is no imbalance in 
effect-modifying variables between the trials (Bucher et al., 1997; Dias et al., 2011b; Higgins & 
Whitehead, 1996; Lu & Ades, 2004). However, when effect modification is present these methods 
may be biased. The ‘gold standard’ approach to adjust for effect modifiers and relax this assump
tion is network meta-regression with individual participant data (IPD) available for all studies 
(Berlin et al., 2002; Dias et al., 2011a; Lambert et al., 2002; Riley et al., 2010). However, this level 
of data availability is rare—particularly in contexts such as health technology assessment where 
multiple treatments are of interest. Population adjustment methods have, therefore, been proposed 
that use IPD from the subset of studies where it is available, and published aggregate data (AgD) 
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from the rest (Phillippo et al., 2016, 2018). A substantial majority of applications of population 
adjustment analyses to date involve survival or time-to-event data; one recent review found that 
72% of population adjustment analyses in technology appraisal submissions to the National 
Institute for Health and Care Excellence in England involved survival outcomes (Phillippo 
et al., 2019). However, the set of population adjustment methods that are currently applicable 
to survival outcomes are faced with significant limitations, and methods that address these limita
tions have not yet been extended to handle survival data.

Matching-adjusted indirect comparison (MAIC) is a widely used population adjustment meth
od that re-weights individuals in one IPD study to match the covariate distribution in an AgD 
study (Ishak et al., 2015; Phillippo et al., 2016; Signorovitch et al., 2010). Since IPD are only avail
able from one of the studies weights are typically estimated using the method of moments, which 
has been shown to be equivalent to an entropy-balancing approach (Phillippo et al., 2020c), al
though alternatives have been proposed (Jackson et al., 2020). While MAIC is currently the 
most widely used population adjustment method, including for survival outcomes (Phillippo 
et al., 2019), it is limited to a pairwise indirect comparison scenario with one IPD study and 
one AgD study and cannot readily be extended to incorporate larger networks of studies and treat
ments (Phillippo et al., 2016). Moreover, population-adjusted estimates can only be produced for 
the AgD study population; while this may be of interest for commercial reasons, this is not typic
ally representative of the target population for a treatment decision (Phillippo et al., 2016).

Simulated treatment comparison (STC) is an alternative approach based on regression adjust
ment, where a regression model fitted in the IPD study is used to predict outcomes on each treat
ment from the IPD study in the AgD study population (Caro & Ishak, 2010; Ishak et al., 2015; 
Phillippo et al., 2016). The typical approach is to simply ‘plug-in’ the mean covariate values to pro
duce predictions. However, when the model is nonlinear in the covariates this results in aggrega
tion bias. Moreover, when the outcome measure is noncollapsible, such as hazard ratios or odds 
ratios, this results in bias due to combining incompatible conditional and marginal effect measures 
(Phillippo et al., 2021; Remiro-Azócar et al., 2021). Simulation can be used to avoid these biases 
(Caro & Ishak, 2010), however as originally proposed this incurs additional sampling variation by 
simulating a limited number of participants in the aggregate trial. A more sophisticated form of 
STC based on G-computation via simulation from the joint covariate distribution in the AgD study 
has been developed that addresses these issues, with variance estimation handled by bootstrapping 
or embedding in a Bayesian analysis (Remiro-Azócar et al., 2022). Similar simulation-based ap
proaches have recently been published (Ren et al., 2024; Zhang et al., 2024). However, like 
MAIC, all of these approaches are only applicable to pairwise indirect comparisons and cannot 
produce estimates for target populations other than that represented by the AgD study.

Multilevel network meta-regression (ML-NMR) is a population adjustment method that extends 
IPD network meta-regression to incorporate evidence from both IPD and AgD sources (Phillippo, 
2019; Phillippo et al., 2020a). Aggregation bias is avoided by integrating the individual-level model 
over the joint covariate distribution in the AgD studies, in contrast to previous meta-regression ap
proaches (Donegan et al., 2013; Saramago et al., 2012; Sutton et al., 2008) that combine IPD and 
AgD by simply ‘plugging in’ mean covariate values from the AgD studies. Unlike MAIC and STC, 
ML-NMR can coherently synthesize evidence from networks of any size, and crucially for decision- 
making can produce population-adjusted estimates of relative or absolute effects in any target 
population of interest. Moreover, in larger networks, key assumptions regarding unobserved effect 
modifiers and effect modifier interactions can be assessed using ML-NMR, whereas these are un
testable assumptions under all approaches when performing pairwise indirect comparisons 
(Phillippo et al., 2022). ML-NMR is an extension of the standard network meta-analysis (NMA) 
framework (Dias et al., 2011b; Higgins & Whitehead, 1996; Lu & Ades, 2004), reducing to IPD 
network meta-regression if IPD are available from all studies, and to AgD NMA when no covariates 
are included in the model. Phillippo et al. (2020a) construct the aggregate-level model for ML-NMR 
in two steps: (i) deriving the aggregate likelihood from the individual likelihood, using standard re
sults on the sums of random variables and (ii) integrating the individual-level model over the cova
riate distribution in the aggregate population to form the aggregate-level model, using a general 
numerical approach based on quasi-Monte Carlo integration. However, derivation of the aggregate 
likelihood is not straightforward in general and may even be intractable, since analytic results for 
the sums of random variables are only available for some special cases (e.g. Normal, Poisson, or 
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Bernoulli distributions, Phillippo et al., (2020a), or ordered categorical distributions Phillippo 
et al., 2022). Most notably, this is the case for the analysis of survival outcomes where the aggregate 
likelihood cannot be derived analytically. As it stands, therefore, ML-NMR cannot be applied to 
survival outcomes which is a major practical limitation of the method.

In this paper, we aim to address this limitation by extending the ML-NMR framework to 
individual-level likelihoods of any general form. We begin by describing a motivating example 
comparing maintenance treatments for newly diagnosed multiple myeloma. We then set out the 
ML-NMR framework in a general form based on the likelihood contributions from different sour
ces of data. We directly integrate the individual-level likelihood function over the joint covariate 
distribution to obtain the likelihood contributions for the AgD studies. This approach does not 
require the form of the aggregate-level likelihood to be analytically tractable, or even known. 
We then use this approach to describe ML-NMR models for censored time-to-event outcomes 
with general survival and hazard functions. Finally, we demonstrate these ideas in practice: first 
with the newly diagnosed multiple myeloma example, and then with a simulated comparison 
showing performance against full IPD network meta-regression.

2 Example: newly diagnosed multiple myeloma
As a motivating example, we compare progression-free survival on lenalidomide vs. thalidomide 
maintenance treatment after autologous stem cell transplant (ASCT) for patients with newly diag
nosed multiple myeloma (Leahy & Walsh, 2019). These treatments were not compared 
head-to-head in a single randomized controlled trial, but instead were both compared separately 
to placebo in five studies, forming the evidence network shown in Figure 1. IPD are available from 
three trials of lenalidomide vs. placebo, with only published AgD available from the thalidomide 
vs. placebo trial and one further lenalidomide trial.

Summaries of four clinically relevant baseline characteristics are given in Table 1: age, inter
national staging system (ISS) stage (stage III vs. stage I–II), response post-ASCT (complete re
sponse or very good partial response vs. other), and sex (male or female). These covariates were 
considered to be potential effect modifiers in a previous analysis (Leahy & Walsh, 2019), and 
are not well-balanced across study populations which may lead to biased estimates of treatment 
effects if these are not accounted for.

This network was previously analysed by Leahy and Walsh (2019), who applied multiple MAIC 
analyses before combining in a NMA. However, there are several disadvantages with this ap
proach: in particular, only the IPD studies are adjusted and the constancy of relative effects as
sumption is still required to combine the AgD studies, and estimates can only be produced for a 
weighted-average of the AgD study populations. An analysis using ML-NMR can address these 
issues, coherently synthesizing the available evidence whilst adjusting for effect modifiers, and pro
ducing estimates relevant to specific target populations of interest.

Figure 1. Network of five studies comparing lenalidomide or thalidomide to placebo for treatment of newly 
diagnosed multiple myeloma. IPD were available from three studies, and AgD from two studies. Edge widths and 
numbers indicate the number of studies making each comparison, and the size of each node corresponds to the 
number of individuals randomized to each treatment.
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3 ML-NMR for general likelihoods
Consider a network of J randomized controlled trials, each investigating a subset Kj of K treat
ments. If IPD are available from each of the J studies, then we can estimate a standard IPD network 
meta-regression model, which may be written as

yijk ∼ πInd(θijk), (1a) 

g(θijk) = η jk(xijk) = μj + xT
ijk(β1 + β2,k) + γk, (1b) 

with IPD outcomes yijk for individuals i = 1, . . . , Njk in study j = 1, . . . , J receiving treatment k ∈ 
Kj given the likelihood distribution πInd(θijk). The link function g(·) links the likelihood parameter 
θijk to the linear predictor η jk(xijk), with covariates xijk. The parameters μj are study-specific inter
cepts, β1 and β2,k are regression coefficients for prognostic and effect modifying covariates, respect
ively, and γk are individual-level treatment effects. We set β2,1 = γ1 = 0 for the reference treatment 1.

By specifying an individual-level model (1), with a likelihood, link function, and linear predict
or, we are also specifying an individual-level likelihood function, conditional on the covariate val
ues for each individual. Letting ξ denote the set of all model parameters {μj, β1, β2,k, γk :∀ j, k}, we 
denote the individual conditional likelihood function by LCon

ijk | x(ξ; yijk, xijk). The form of this indi
vidual conditional likelihood function follows from the chosen individual-level model.

To extend the IPD network meta-regression model (1) into a ML-NMR model that incorporates 
evidence from AgD studies, we integrate the individual conditional likelihood function over the 
joint covariate distribution in an AgD study to obtain an individual marginal likelihood function, 
describing the likelihood where individual outcomes are known but individual covariates are not 
(only summary covariate distributions). Integrating the individual conditional likelihood function 
over the joint covariate distribution f jk(·) on treatment k in study j, we obtain the individual mar
ginal likelihood function

LMar
ijk (ξ; yijk) = ∫

X
LCon

ijk | x(ξ; yijk, x)f jk(x) dx, (2) 

Table 1. Baseline characteristics of studies included in the ML-NMR analysis of progression-free survival after ASCT 
for newly diagnosed multiple myeloma

Study/treatment Sample size Age (years) ISS stage III (%) Response CR/VGPR (%) Male (%)

Attal2012*

Placebo 307 54.22 (5.24) 15.96 54.07 57.98

Lenalidomide 307 54.35 (6.06) 23.78 54.72 55.37

McCarthy2012*

Placebo 229 57.39 (5.56) 18.34 71.18 55.46

Lenalidomide 231 57.93 (6.33) 27.27 62.34 52.38

Palumbo2014*

Placebo 125 54.44 (8.98) 12.00 38.40 63.20

Lenalidomide 126 53.90 (9.69) 10.32 42.06 46.03

Jackson2019

Placebo 864 64.63 (9.40) 19.21 83.10 62.15

Lenalidomide 1,137 65.17 (8.94) 24.80 82.59 61.65

Morgan2012

Placebo 410 63.92 (9.01) 36.34 71.71 61.95

Thalidomide 408 65.59 (8.38) 31.86 74.51 61.52

Note. Statistics are mean and standard deviation for the continuous covariate age, and percent for the categorical 
covariates. *Individual participant data available.
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which no longer depends on x. In other words, for an individual on treatment k in study j with 
outcome yijk, if we do not know their individual covariates xijk but only the distribution f jk(·), their 
likelihood contribution is given by (2). This integration may be performed using quasi-Monte 
Carlo integration, as described previously (Phillippo et al., 2020a). With a set of Ñ integration 
points x̃ jk drawn from f jk(·), the individual marginal likelihood function (2) is evaluated as

LMar
ijk (ξ; yijk) ≈ Ñ

−1􏽘

x̃

LCon
ijk |x(ξ; yijk, x). (3) 

In practice, it is likely that only marginal covariate summaries are available from the AgD studies 
instead of the full joint distribution f jk(·), but we can reconstruct the joint distribution given as
sumed forms for the marginal covariate distributions and the correlation matrix, for example as
suming that these are the same as those observed in the IPD studies (Phillippo et al., 2020a). 
Simulation studies with binary outcomes have found that the results of ML-NMR analyses are 
not sensitive to the assumptions used in reconstructing the joint distribution (Phillippo et al., 
2020b); we expect this result to hold for other outcomes including time-to-event.

If we have summary outcomes y†jk on a given treatment k in study j, we can attempt to derive a 
corresponding aggregate marginal likelihood function as the product of the individual marginal 
likelihood functions (2), up to a normalizing constant,

LMar
†jk (ξ; y†jk) ∝

􏽙N jk

i=1

LMar
ijk (ξ; yijk), (4) 

where the subscript † denotes quantities that have been aggregated over individuals. If the result 
can be rearranged in terms of y†jk, we can then use LMar

†jk (ξ; y†jk) to evaluate the aggregate marginal 
likelihood function. For example, we demonstrate with binary outcomes in Appendix A online 
supplementary material, where the aggregate marginal likelihood is shown to be equal to the 
Binomial likelihood used previously for ML-NMR by Phillippo et al. (2020a). Similar results 
can be obtained for categorical outcomes with a Multinomial likelihood (Phillippo, 2019) and 
count outcomes with a Poisson likelihood, again obtaining the same results as using standard re
lations on the sums of random variables. However, this may not be possible, in general.

By working directly with the likelihood contributions from each level of the model, we avoid 
having to explicitly derive the form of the aggregate likelihood. The full ML-NMR model for gen
eral likelihoods may be written using (2) and (4) as

Individual:

LCon
ijk |x(ξ; yijk, xijk) = πInd(yijk | θijk) (5a) 

g(θijk) = η jk(xijk) = μj + xT
ijk(β1 + β2,k) + γk. (5b) 

Aggregate:

LMar
ijk (ξ; yijk) = ∫

X
LCon

ijk |x(ξ; yijk, x)f jk(x) dx (5c) 

LMar
†jk (ξ; y†jk) ∝

􏽙N jk

i=1

LMar
ijk (ξ; yijk), (5d) 

where in a Bayesian analysis, prior distributions are placed over each of the parameters μj, β1, β2,k, 
and γk. For the analyses in this paper, we will use non- or weakly informative prior distributions 
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which do not unduly influence the posterior distribution, as is often desired in decision-making 
applications. However, the analyst may—and indeed should—select prior distributions that are 
appropriate for the situation at hand and assess sensitivity to reasonable alternatives as appropri
ate. Computationally, we fit these models in Stan by directly coding the log likelihood contribu
tions with a target += statement (Stan Development Team, 2023).

3.1 Application to survival analysis
We now apply this general framework to derive ML-NMR models for survival or time-to-event 
outcomes. Consider that every study provides a pair yijk = {tijk, cijk} of outcome times tijk and cen
soring indicators cijk for each individual i in study j receiving treatment k, where cijk = 1 if an in
dividual experiences the event or cijk = 0 if they are censored. For the AgD studies, these data could 
be obtained by digitizing published Kaplan–Meier curves and reconstructing the event and censor
ing times using an algorithm such as that described by Guyot et al. (2012). Individual covariate 
information xijk is available for every individual in the IPD studies, but for the AgD studies 
only the joint distribution of the covariates at baseline f jk(·) is available (likely reconstructed 
from reported marginal summaries Phillippo et al., 2020a).

The individual conditional likelihood contributions for each time tijk in the IPD are

LCon
ijk |x(ξ; tijk, cijk, xijk) = S jk(tijk |xijk)h jk(tijk |xijk)cijk , (6) 

where S jk(t | x) and h jk(t |x) are the survival and hazard functions conditional on covariates x, 
which may take any form. For illustration, a Weibull proportional hazards model has survival 
and hazard functions

S jk(t |x) = exp (−tνj exp (η jk(x))),

h jk(t |x) = νjtνj−1 exp (η jk(x)), 

where νj is a study-specific shape parameter. In practice, the choice of model may be based on mod
el fit statistics (see Section 3.2) and plausibility of extrapolations. Notice that we stratify the base
line hazard by study to respect randomization, e.g. with study-specific shape parameters νj, akin to 
the stratification of the study-specific intercepts μj in the linear predictor. Appendix B online 
supplementary material details survival and hazard functions for all survival models currently im
plemented in the multinma R package (Phillippo, 2024), including a full range of parametric pro
portional hazards and accelerated failure time models, and flexible baseline hazards models based 
on M-splines or piecewise exponentials.

Using equation (2), the individual marginal likelihood contributions for each event/censoring 
time in the AgD studies are

LMar
ijk (ξ; tijk, cijk) = ∫

X
LCon

ijk | x(ξ; tijk, cijk, x)f jk(x) dx

= ∫
X

S jk(tijk |x)h jk(tijk |x)cijk f jk(x) dx.
(7) 

We evaluate this integral using quasi-Monte Carlo integration following equation (3) as

LMar
ijk (ξ; tijk, cijk) ≈ Ñ

−1􏽘

x̃

S jk(tijk | x̃)h jk(tijk | x̃)cijk . (8) 

3.2 Model comparison
Model comparison for Bayesian network meta-analyses is typically performed using the Deviance 
Information Criterion (DIC) (Dias et al., 2011b; Spiegelhalter et al., 2002). However, the general 
ML-NMR model equation (5) may not have a closed-form aggregate-level likelihood, which 
means that the usual pD complexity penalty cannot be evaluated. Instead, the DIC may be calcu
lated using the pV penalty proposed by Gelman et al. (2013), or the Watanabe-Akaike Information 
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Criterion (WAIC) or Leave-One-Out Information Criterion (LOOIC) (Vehtari et al., 2016) can be 
used, all of which are calculated directly from the log likelihood contributions. We choose to use 
LOOIC here, as it (and its approximation WAIC) evaluates predictive performance over the entire 
posterior distribution rather than only at a point estimate and works well when the posterior is not 
approximately Normal, unlike DIC (Vehtari et al., 2016).

3.3 Assessing integration error
ML-NMR models are typically implemented using Quasi-Monte Carlo integration via Sobol’ se
quences to evaluate the integral for the aggregate-level model (Phillippo et al., 2020a). Phillippo 
et al. (2020a) previously suggested assessing the accuracy of the numerical integration by plotting 
the empirical integration error over the entire posterior distribution for increasing values of Ñ. 
Whilst this approach may be suitable when the aggregate-level model is of the form (5d) and 
can be simplified into a single integral per AgD study arm, it becomes untenable in practice 
when the aggregate-level model is of the form (5c), and there is one integral for every individual 
in each AgD study. In this case, there may be hundreds or even thousands of such individuals 
and corresponding integration error plots, and the computational burden of saving and plotting 
the cumulative integration points quickly becomes unfeasible.

Instead, we propose the algorithm in Appendix C online supplementary material to ensure that 
Ñ is sufficient using the 􏽢R convergence statistic (Vehtari et al., 2020). Based on the usual practice of 
fitting C > 1 chains in parallel (usually C = 4), we use Ñ integration points for one half of the 
chains and Ñ/2 for the other half. We then check convergence with 􏽢R within each half set and be
tween all chains together, to determine convergence of both MCMC and numerical integration.

Values of Ñ that are powers of 2 are recommended as these are expected to be particularly ef
ficient (Owen, 2013). The sufficient value of Ñ will vary depending on the model. In our experi
ence, a value of Ñ = 64 strikes a conservative balance between sufficient accuracy and increased 
runtime, and should be sufficient for many models to only require a single run. The multinma 
R package (Phillippo, 2024) implements the above algorithm (with Ñ = 64 by default) and pro
vides user-friendly warnings when the number of integration points is detected to be insufficient.

3.4 Checking model assumptions
The key assumption underlying all anchored population adjustment approaches is conditional 
constancy of relative effects, which requires that there are no unobserved effect modifiers in imbal
ance between the included study populations and between these and the target population 
(Phillippo et al., 2016). With ML-NMR, we can assess this assumption using standard techniques 
from the network meta-analysis literature, where residual heterogeneity or inconsistency may 
indicate a violation of this assumption (Phillippo et al., 2020a, 2022). Residual heterogeneity 
can be assessed using a random effects model (Dias et al., 2011b), replacing γk in equation (5) 
by a study-specific random effect δ jk ∼ N(γk, τ2), where τ is the between-studies standard devi
ation. For studies with more than two arms, a multivariate Normal random effects distribution 
is required to account for the correlation between relative effects (Dias et al., 2011b; Phillippo 
et al., 2020a). Residual inconsistency can be assessed using unrelated mean effects or 
node-splitting models (Dias, 2011c). For example, an unrelated mean effects model replaces γk 
in equation (5) by γt j1k, where t j1 is the treatment in arm 1 of study j and we set γkk = 0 for all 
k. We note that, as is the case for standard NMA, these approaches to detect residual heterogeneity 
and inconsistency may have low power. Phillippo et al. (2022) demonstrate the practical applica
tion of these techniques to ML-NMR models using the multinma R package.

In practice, we often find that there are insufficient data to estimate independent effect modifier 
interaction terms β2,k for each treatment. Where this is the case, we typically rely on the shared 
effect modifier assumption for a set of treatments T, and define the effect modifier interaction 
terms to be equal for all treatments within this set, β2,k = β2,T ∀ k ∈ T (Phillippo et al., 2016, 
2020a). This assumption is only likely to be reasonable when treatments belong to the same class, 
sharing a mode of action (Phillippo et al., 2016). Regulatory bodies as decision-makers typically 
require strong biological or clinical rationale to justify this assumption (HTA Coordination Group 
, 2024), and with such evidence this has been accepted by decision-makers (e.g. TA1013, National 
Institute for Health and Care Excellence, 2024). Phillippo et al. (2022) demonstrate how the 
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shared effect modifier assumption may be relaxed and assessed one covariate at a time, which is 
less data-intensive than fitting a model with independent interactions for all covariates at once. 
When the shared effect modifier assumption or other identifying assumptions are not plausible, 
and there are insufficient data to identify the model, then ML-NMR is restricted to producing es
timates in the aggregate study population(s)—the same as MAIC and STC.

When fitting time-to-event models, the suitability of the proportional hazards assumption (or 
the analogous accelerated failure time assumption) should be assessed. We assess this assumption 
by letting the baseline hazard vary between the arms of each study. For parametric models like the 
Weibull model, this means allowing independent shape parameters ν jk to vary by treatment arm as 
well as by study. For a flexible M-spline hazard model, this means allowing independent spline 
coefficient vectors α jk by arm as well as by study.

3.5 Producing population-average estimates for a target population
For decision-making, we must produce estimates of quantities of interest, such as population-average 
treatment effects or survival probabilities, in a target population relevant to the decision. The decision 
target population need not be represented by one of the studies in the network; indeed, it is likely best 
represented by a registry or cohort study conducted in the population of interest (Phillippo et al., 2016).

Population-average conditional treatment effects dab(P) between each pair of treatments a and b 
in a population P are produced by integrating contrasts of the linear predictor over the joint cova
riate distribution f(P)(x), which due to linearity reduces to plugging-in mean covariate values x̅(P),

dab(P) = ∫
X

(η(P)b(x) − η(P)a(x))f(P)(x) dx

= γb − γa + x̅T
(P)(β2,b − β2,a).

(9) 

The primary marginal quantity of interest is the population-average marginal survival function, 
also called the standardized survival function, from which we can also produce a range of other 
marginal estimates. The population-average marginal survival probability S̅(P)k(t) on treatment k 
in population P at time t is found by integrating the individual-level survival function S(P)k(t |x) 
over the joint covariate distribution f(P)(x) at each time t,

S̅(P)k(t) = ∫
X

S(P)k(t | x)f(P)(x) dx. (10) 

This integral can be calculated using the same quasi-Monte Carlo numerical integration approach 
described earlier, using a set of integration points drawn from the joint distribution f(P)(x), analo
gously to (3). In the likely scenario that only marginal covariate summaries are available, again we 
can reconstruct the joint covariate distribution from assumed forms for the marginal distributions 
and correlation matrix (Phillippo et al., 2020a). We also require information on the distribution of 
the baseline hazard in the target population P, that is distributions for the linear predictor intercept 
parameter μ(P) and any additional parameters of the survival function such as the Weibull shape 
parameter ν(P) or M-spline coefficients α(P). Estimates of these parameters may not be available dir
ectly for an external target population. If instead we have (reconstructed) Kaplan–Meier data avail
able for outcomes on a reference treatment in the target population (along with the summary 
covariate distribution), then these data may be included in the model as a single-arm study at the 
synthesis stage through equation (7); this will allow the parameters of the baseline hazard in this 
population to be estimated, but will not contribute information to any other model parameters. 
Otherwise, estimates may be borrowed from a study in the network where the properties of the 
baseline hazard are deemed to be representative of the target population.

From this marginal survival function, we can then produce a range of other marginal estimates. 
The corresponding population-average marginal hazard function is a weighted average of the 
individual-level hazard functions,

h̅(P)k(t) =
∫

X
S(P)k(t |x)h(P)k(t |x)f(P)k(x) dx

S̅(P)k(t)
, (11) 
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weighted by the probability of surviving to time t. Again, this integral can be calculated using 
quasi-Monte Carlo numerical integration. The corresponding population-average marginal cu
mulative hazard function is

H̅(P)k(t) = − log (S̅(P)k(t)). (12) 

Quantiles of the population-average marginal survival times are found by solving

S̅(P)k(t(α)
(P)k) = 1 − α, (13) 

to find t(α)
(P)k for the α% quantile, which can be achieved using numerical root finding.

Means or restricted means of the population-average marginal survival times are found by in
tegrating the marginal survival function up to a restricted time horizon t∗,

RMST(P)k(t∗) = ∫
t∗

0
S̅(P)k(t) dt, (14) 

with t∗ = ∞ for population-average mean marginal survival time, which is typically evaluated us
ing quadrature; we use the implementation in the flexsurv R package (Jackson, 2016).

Contrasts of the above quantities are population-average marginal treatment effects Δab(P)(t). 
For example, the ratio of population-average marginal hazard functions (11) for two treatments 
a and b forms a population-average marginal hazard ratio,

ΔHR
ab(P)(t) =

h̅(P)b(t)

h̅(P)a(t)
. (15) 

In a similar fashion, we can also create population-average median survival time ratios or differ
ences, or differences in population-average (restricted) mean survival times.

All the quantities (10)–(15) are marginal, being derived from the population-average marginal 
survival function S̅(P)k(t). These depend on the distributions of the baseline hazard and of all co
variates (not just those that are effect-modifying). Furthermore, the population-average marginal 
hazard ratios ΔHR

ab(P)(t) also vary over time; if hazards are proportional conditional on covariates 
(prognostic or effect modifying) this means that, mathematically, proportional hazards cannot 
hold at the marginal level. In contrast, dab(P) are population-average conditional treatment effects 
which depend only on the distribution of effect-modifying covariates. dab(P) are constant over time 
and do not depend on the distribution of baseline hazard or the distribution of purely prognostic 
covariates. The population-average conditional treatment effects can be interpreted as the average 
of the individual-level treatment effects in the target population P, the average effect of moving 
each individual in the population from treatment a to b. The population-average marginal treat
ment effects can be interpreted in terms of the effects of treatment on the overall marginal survival 
curve in the population.

4 Application to newly diagnosed multiple myeloma example
We now apply these methods to the network of five studies comparing lenalidomide to placebo or 
thalidomide to placebo as maintenance treatment for newly diagnosed multiple myeloma, shown 
in Figure 1 (Leahy & Walsh, 2019). The outcome of interest is progression-free survival after au
tologous stem cell transplant (ASCT). IPD as individual event/censoring times and covariates are 
available from three studies; AgD as event/censoring times from digitized Kaplan–Meier curves 
and overall covariate summaries are available from two studies.

Since we did not have access to original IPD from the three IPD studies, for illustration we in
stead constructed synthetic data that resemble the original IPD using published Kaplan–Meier 
curves and regression coefficients. This process is detailed in Appendix D online supplementary 
material.
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4.1 Newly diagnosed multiple myeloma: methods
Instead of making parametric assumptions about the form of the baseline hazard, we propose a 
novel approach using M-splines to flexibly model the baseline hazard over time. This approach 
builds on previous applications of M-splines for flexible baseline hazard models in other contexts 
(Brilleman et al., 2020; Jackson, 2023) and is described in detail in Appendix B.1.4 online 
supplementary material.

The survival and hazard functions for the M-spline model are given by

S jk(t |x) = exp (−αT
j Iκ(t, ζ j) exp (η jk(x))), (16a) 

hjk(t |x) = αT
j Mκ(t, ζ j) exp (η jk(x)), (16b) 

where αj is a study-specific vector of spline coefficients, Mκ(t, ζ j) is the M-spline basis of order κ with 
a study-specific knot sequence ζ j evaluated at time t, and Iκ(t, ζ j) is the corresponding integrated 
M-spline basis (an I-spline basis; see Appendix B.1.4 online supplementary material). The basis pol
ynomials have degree κ − 1, so a basis of order κ = 4 corresponds to a cubic M-spline basis; a piece
wise exponential baseline hazards model is a special case with degree zero (κ = 1).

To avoid overfitting, we propose a novel weighted random walk prior distribution on the 
inverse-softmax transformed spline coefficients,

αj = softmax(α∗j ), (17a) 

α∗j,l = c j,l +
􏽘l

m=1

u j,m ∀ l = 1, . . . , L + κ − 1, (17b) 

u j,l ∼ N(0, σ2
j w j,l) ∀ l = 1, . . . , L + κ − 1, (17c) 

where L is the number of internal knots, and the softmax (or multinomial logit) transform is 
softmax(α∗j ) = [1, exp (α∗j )T]T/(1 +

􏽐L+κ−1
l=1 exp (α∗j,l)). The random walk is centred around a prior 

mean vector cj that corresponds to a constant baseline hazard (see Appendix B.1.4 online 
supplementary material), borrowing an idea of Jackson (2023) who derived cj to use instead for 
the prior mean of a random effect on αj. The weights wj,l are derived from the distance between 
each pair of knots (see Appendix B.1.4 online supplementary material), following a similar ap
proach to the Bayesian P-splines proposed by Li and Cao (2022) except that we additionally nor
malize the weights to sum to 1. The weights serve to make the prior invariant to the number and 
location of the knots, even if they are unevenly spaced, and to the timescale, greatly simplifying the 
specification of a hyperprior distribution for the random walk standard deviation σj. The random 
walk standard deviation σj controls the amount of smoothing and shrinkage of the spline coeffi
cients; as σj approaches zero the baseline hazard becomes smoother (less ‘wiggly’) and approaches 
a constant baseline hazard. We allow σj to be estimated from the data, giving this a weakly inform
ative hyperprior distribution σj ∼ half-N(0, 12).

We adjust for four clinically relevant covariates considered to be potential effect modifiers by 
Leahy and Walsh (2019): age, ISS stage (stage III vs. stage I–II), response post-ASCT (complete 
response or very good partial response vs. other), and sex (male or female). The distributions of 
these covariates in each study at baseline are given in Table 1. Due to the lack of data on thalido
mide (only a single AgD study), we make the shared effect modifier assumption between the two 
active treatments in order to identify the effect modifying treatment–covariate interactions 
(Phillippo et al., 2016, 2020a). Since thalidomide and lenalidomide are in the same class of treat
ments, this assumption may be reasonable.

We fit a cubic M-spline model with seven internal knots placed at evenly spaced quantiles of the 
uncensored survival times in each study, plus boundary knots at time 0 and the last event/censor
ing time in each study. The number of knots is set to be larger than we might expect to need, since 
any potential for overfitting is avoided by shrinkage through the random walk prior. To ensure 
that seven knots are sufficient, we also fit a model with ten internal knots for comparison. We 
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assess the proportional hazards assumption by fitting models with spline coefficients α jk stratified 
by treatment arm as well as by study. We give noninformative N(0, 1002) prior distributions to 
every parameter in the linear predictor. We also fit unadjusted NMA models with the same 
M-spline baseline hazard for comparison.

Analyses were carried out in R version 4.3.1 (R Core Team, 2023) and Stan version 2.26.23 
(Carpenter et al., 2017). Analysis code and data are available from https://github.com/ 
dmphillippo/ML-NMR-general-likelihoods-paper. Two sets of analysis codes are provided: one 
that fits the models via the user-friendly multinma R package (Phillippo, 2024), making these tech
niques accessible to a broad audience; and another that fits the models by calling Stan directly, 
which is likely to be useful for those who wish to further modify or extend the code. The data 
are also available in the multinma R package along with a vignette that walks through the analysis 
(Phillippo, 2024). Using multinma, the ML-NMR models take around 1.25 hr each to fit on a 
modern laptop (Intel Core Ultra 7 165H 5 GHz, 32 GB RAM); the unadjusted NMA models 
take around 4 min each.

4.2 Newly diagnosed multiple myeloma: results
The estimated population-average survival curves in each study population are shown in Figure 2, 
overlaid with the observed (unadjusted) Kaplan–Meier curves. These show a good visual fit to the 
observed data, with the possible exception of the lenalidomide arm of Palumbo 2014 where the 
unadjusted Kaplan–Meier estimate lies consistently above the population-adjusted estimate. 
This is likely due to the slight baseline imbalance in Palumbo 2014 between arms, with the lena
lidomide arm having 17% fewer males than the placebo arm. The unadjusted Kaplan–Meier 
curves do not account for this difference, whereas the population-adjusted survival estimates 
from the ML-NMR model do. The population-average median survival times corresponding to 
these population-average survival curves are given in Table E.1 online supplementary material. 
The posterior means for the median survival estimates vary across populations between 20.75 
and 33.30 months on placebo, 26.55 and 38.44 months on thalidomide, and 44.95 and 55.92 
months on lenalidomide.

To assess whether seven knots are sufficient, we also fit a model with ten knots. Comparing the 
model fit in Table E.2 online supplementary material, we find that there is no substantial difference 
between the models. The LOOIC is slightly worse for the model with ten knots, but not substan
tially, due to a slight increase in the effective number of parameters pLOO; however, the random 
walk prior distribution is behaving as expected and controlling the overall complexity through 

Figure 2. Estimated survival curves on each treatment in each study population, under a cubic M-spline model. 
Shaded bands indicate the 50%, 80%, and 95% Credible Intervals for the survival curves (thick lines), overlaid on the 
unadjusted Kaplan–Meier curves from the treatments in each study (thin lines).
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shrinkage. This is also apparent when looking at the individual-level baseline hazard functions 
(Figure E.1 online supplementary material) and the corresponding population-average marginal 
hazard functions (Figure E.2 online supplementary material) which are very similar between mod
els. We also check the LOOIC within each study separately (Table E.3 online supplementary 
material) to ensure that no studies individually are better fit with a higher number of knots, which 
could be missed when looking overall. We conclude that seven internal knots are sufficient, both 
overall and within each study in the network.

To assess the proportional hazards assumption, we modify the M-spline model to stratify the 
spline coefficients α jk on the baseline hazard by treatment arm as well as by study. Comparing 
the overall model fit between the models with and without the proportional hazards assumption 
(Table E.4 online supplementary material), we see that the LOOIC is lower for the proportional 
hazards model. Again, we also check the LOOIC within each study separately (Table E.5 online 
supplementary material), to ensure that the proportional hazards assumption is reasonable within 
each study in the network. We conclude that the proportional hazards assumption is reasonable 
here. For comparison, we also fitted unadjusted models with no covariates (i.e. a standard network 
meta-analysis) both with and without the proportional hazards assumption. Whilst there was little 
difference in the overall model fit (Table E.6 online supplementary material), the nonproportional 
hazards model did have a substantially lower LOOIC in the Jackson 2019 study (Table E.7 online 
supplementary material). Including the covariates in the ML-NMR analysis, even though they are 
fixed and not time-varying, is sufficient to remove this proportional hazards violation, and the 
ML-NMR model is a much better overall fit than the unadjusted NMA.

The estimated population-average conditional log hazard ratios from the ML-NMR model 
(with seven internal knots and proportional hazards) are given in Table 2. Both lenalidomide 
and thalidomide are consistently estimated to be more effective than placebo in each of the study 
populations, however the 95% credible intervals for the thalidomide vs. placebo comparison cross 
zero in both AgD study populations (Jackson 2019 and Morgan 2012), where both relative effects 
vs. placebo are estimated with slightly more uncertainty. The thalidomide vs. lenalidomide relative 
effect estimates are constant across all populations (0.47, 95% CrI 0.24–0.71), due to the shared 
effect modifier assumption.

5 Simulated example
To illustrate the performance of this approach, let us consider an artificial example of simulated 
survival outcomes in a population-adjusted indirect comparison of two treatments B and C via 
a common comparator A. Since the data are simulated, we can compare the results and perform
ance of ML-NMR to a full IPD NMA and to the known true values. We simulate outcomes from a 
Weibull model including three prognostic and effect-modifying covariates (two continuous and 
one binary); full details are given in Appendix F online supplementary material.

Table 2. Estimated population-average conditional log hazard ratios and 95% Credible Intervals in each study 
population from the cubic M-spline model

Study Lenalidomide vs. placebo Thalidomide vs. placebo Thalidomide vs. lenalidomide

Attal2012 −0.59 −0.13 0.47

(−0.74, −0.45) (−0.38, 0.13) (0.23, 0.69)

McCarthy2012 −0.62 −0.16 0.47

(−0.74, −0.51) (−0.38, 0.07) (0.23, 0.69)

Palumbo2014 −0.64 −0.18 0.47

(−0.80, −0.48) (−0.44, 0.09) (0.23, 0.69)

Jackson2019 −0.69 −0.22 0.47

(−0.81, −0.57) (−0.43, −0.01) (0.23, 0.69)

Morgan2012 −0.68 −0.22 0.47

(−0.81, −0.56) (−0.42, −0.01) (0.23, 0.69)
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5.1 Simulated example: methods
We fit Exponential, Weibull, and Gompertz proportional hazards models (Appendix B.1 online 
supplementary material) in the general ML-NMR framework adjusting for all three covariates. 
We place noninformative N(0, 1002) prior distributions on every parameter in the linear predict
or, and a weakly informative half-N(0, 102) prior distribution on the Weibull and Gompertz shape 
parameters. For comparison, we also fit the corresponding IPD NMA models with IPD from both 
studies. We also carry out MAIC and STC analyses, commonly used for population-adjustment in 
this two-study scenario. For the STC, we use the simulation approach of Remiro-Azócar et al. 
(2022). Lastly, we perform a standard (nonpopulation adjusted) indirect comparison, formed 
from the log hazard ratios estimated in each study separately using a Weibull model adjusted 
only for prognostic factors, reflecting ‘best case’ common practice (i.e. correct form of parametric 
model, fully adjusted for prognostic factors).

Analyses were carried out in R version 4.3.1 (R Core Team, 2023) and Stan version 2.26.23 
(Carpenter et al., 2017). Full analysis code and data are provided at https://github.com/ 
dmphillippo/ML-NMR-general-likelihoods-paper, again in two formats: one that fits the models 
via multinma R package (Phillippo, 2024), and another that fits the models by calling Stan directly. 
Using multinma, the ML-NMR models take around 90 s each to fit on a modern laptop (Intel Core 
Ultra 7 165 H 5 GHz, 32 GB RAM); the IPD NMA models take around 4 s each.

5.2 Simulated example: results
Inspecting the LOOIC model comparison statistics in Table F.1 online supplementary material, we 
see that the Weibull model has the lowest LOOIC for both ML-NMR and IPD NMA, and the 
standard error of the difference suggests that the Weibull model is a substantially better fit than 
either the Exponential or Gompertz models in both the ML-NMR and IPD NMA scenarios. 
Comparing individual LOOIC contributions between the ML-NMR and IPD NMA models re
veals that individual observations are fitted similarly well under each model (Figure F.2 online 
supplementary material).

The estimated population-average survival curves on each treatment in each study population 
under the Weibull model fitted using ML-NMR are shown in Figure 3, overlaid on the unadjusted 
Kaplan–Meier curves. Visually, the estimated survival curves are a good fit to the observed data. 
Table 3 presents the estimated population-average conditional log hazard ratios (HRs) for each 
pairwise comparison in each population, along with the true values from the simulation. The 
ML-NMR estimates agree well with both the IPD NMA and the true values, and the B vs. A 
and C vs. A estimates within the AB and AC study populations, respectively, are unchanged in 
point estimate or standard error. Standard errors for comparisons not observed in the data are 

Figure 3. ML-NMR estimated survival curves on each treatment in each study population, under a Weibull model. 
Shaded bands indicate the 50%, 80%, and 95% Credible Intervals for the survival curves (thick lines), overlaid on the 
unadjusted Kaplan–Meier curves from the treatments in each study (thin lines).
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slightly increased (by 2%–6%) using ML-NMR compared to full IPD NMA, which is expected 
due to the reduced information available.

Due to noncollapsibility, the standard indirect comparison, MAIC, and STC analyses cannot be 
compared to the population-average conditional log hazard ratios in Table 3, as these methods can 
only estimate marginal quantities. Instead, we compare the estimated restricted mean survival 
times up until the end of follow up (t∗ = 1) on each treatment in each study population, which 
have the same interpretation as a marginal quantity under each of the five models. The MAIC 
had an approximate effective sample size of 5.4 (matching both means and variances for continu
ous covariates; 6.8 matching means only), and bootstrapping to calculate standard errors and 
credible intervals was highly unstable (45% of iterations failed). The results of the MAIC were 
therefore considered unusable and are not presented here. Restricted mean survival time estimates 
for the remaining four methods are displayed in Table 4. The results from the ML-NMR and IPD 
NMA agree closely, with nearly identical posterior means and credible intervals; the estimates of 
treatment B in the AC population and treatment C in the AB population are slightly more uncer
tain from the ML-NMR model due to the reduced information available. The STC produces simi
lar estimates to ML-NMR in the AC population, with a similar level of uncertainty. However, STC 
cannot produce estimates for all treatments in the AB population, or any other target population 
of interest to decision makers. Lastly, the standard indirect comparison produces estimates that 
are clearly biased: differences in effect modifiers between the populations are not accounted for, 
and so the difference in restricted mean survival time between treatments B and C is underesti
mated in both populations.

Examining the parameters from the ML-NMR and IPD NMA models in Table F.2 online 
supplementary material, we see that these agree closely with each other and recover the true par
ameter values well.

6 Discussion
In this paper, we extended the ML-NMR framework to handle general likelihoods where the 
aggregate-level likelihood may not have a closed form. This greatly expands the range of models 
which can be fitted, including time-to-event outcomes which are common in technology appraisals 
(Phillippo et al., 2019). As in Phillippo et al. (2020a), we began with a fully specified individual- 
level model. However, instead of explicitly deriving the form of the aggregate likelihood via stand
ard results on the sums of random variables, we proceeded by directly integrating the individual 
conditional likelihood function over the covariate distribution to obtain the individual marginal 

Table 3. Table of estimated population-average conditional log hazard ratios and 95% Credible Intervals from the 
ML-NMR model and the full IPD NMA, alongside the true log hazard ratios, in the AB and AC study populations

Comparison

Study Method B vs. A C vs. A C vs. B

AB Truth −1.62 −0.92 0.70

ML-NMR −1.53 −0.62 0.90

(−1.74, −1.30) (−1.19, −0.06) (0.28, 1.52)

IPD NMA −1.54 −0.67 0.87

(−1.76, −1.32) (−1.12, −0.23) (0.36, 1.37)

AC Truth −2.07 −1.37 0.70

ML-NMR −2.20 −1.29 0.90

(−2.76, −1.63) (−1.54, −1.05) (0.28, 1.52)

IPD NMA −2.17 −1.31 0.87

(−2.63, −1.70) (−1.54, −1.08) (0.36, 1.37)

Note. ML-NMR = multilevel network meta-regression; IPD NMA = individual participant data network meta-analysis.
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likelihood function. This is then used in one of two ways, depending on the data available, with 
different levels of generality.

Firstly, when the aggregate data consist of individual outcomes but only summary covariate in
formation (such as survival data reconstructed from Kaplan–Meier curves), the aggregate part of 
the model is fitted directly using the individual marginal likelihood contributions. In this case, the 
method is fully general: individual conditional likelihood functions of any form can be integrated 
numerically to evaluate the individual marginal likelihood function.

Secondly, when the aggregate data consist of summary outcomes and summary covariate infor
mation, the individual marginal likelihood contributions are multiplied together to obtain the ag
gregate marginal likelihood contributions for the summary outcomes. Evaluation of the aggregate 
marginal likelihood contributions requires that these can be expressed in terms of the summary 
outcomes (as demonstrated in Appendix A online supplementary material), which is only straight
forward for discrete outcomes. However, the aggregate-level likelihood has a known closed form 
for many continuous individual-level likelihoods common in practice (Phillippo et al., 2020a).

Data at different levels of aggregation are encountered across a wide range of research areas, not 
just in the healthcare decision-making context considered in this paper. The general approach that 
we propose of directly integrating an individual-level likelihood to obtain an aggregate-level like
lihood has, to our knowledge, not been considered before and is broadly applicable wherever data 
at different levels of aggregation are encountered, allowing coherent modelling across the levels of 
aggregation in a manner that avoids aggregation biases. Moreover, whilst we have used a Bayesian 
framework here, these ideas might also be applied to frequentist likelihoods or partial likelihoods, 
for example to estimate a frequentist multilevel Cox model; this is an interesting area for further 
research.

We found close agreement between the results of ML-NMR and full IPD NMA in our simulated 
example, which both successfully recovered the true values. Furthermore, the lack of IPD in the AC 
study did not greatly reduce precision for ML-NMR compared to IPD NMA; the standard errors 
of population-average log hazard ratios were the same for comparisons observed within each study 

Table 4. Table of estimated restricted mean survival times and 95% Credible Intervals on each treatment from the 
ML-NMR model, full IPD NMA, STC, and standard indirect comparison, in the AB and AC study populations

Treatment

Study Method A B C

AB ML-NMR 0.13 0.54 0.27

(0.11, 0.16) (0.49, 0.58) (0.15, 0.43)

IPD NMA 0.13 0.54 0.28

(0.11, 0.16) (0.49, 0.58) (0.17, 0.42)

STC 0.13 0.54 −
(0.11, 0.16) (0.49, 0.58)

Standard IC 0.13 0.54 0.47

(0.11, 0.16) (0.49, 0.58) (0.39, 0.56)

AC ML-NMR 0.22 0.75 0.53

(0.20, 0.25) (0.63, 0.84) (0.49, 0.58)

IPD NMA 0.22 0.74 0.53

(0.20, 0.25) (0.63, 0.82) (0.49, 0.58)

STC 0.22 0.78 0.54

(0.20, 0.25) (0.67, 0.90) (0.49, 0.58)

Standard IC 0.23 0.59 0.54

(0.20, 0.25) (0.52, 0.66) (0.49, 0.58)

Note. ML-NMR=multilevel network meta-regression; IPD NMA= individual participant data network meta-analysis; 
STC= simulated treatment comparison; IC= indirect comparison.
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population, and only slightly increased for the unobserved comparisons. The conclusions of the model 
selection process were identical, in both cases correctly selecting the Weibull model. Nevertheless, this 
scenario is only a single instance. A full simulation study could further validate the performance of 
ML-NMR for survival analysis, and investigate the impact of invalid assumptions. However, we ex
pect the conclusions of previous simulation studies on binary outcomes to apply broadly to ML-NMR 
models of general forms, including survival analysis (Phillippo et al., 2020b).

The additional IPD available to IPD NMA does offer further possibilities for analysis. For ex
ample, we required the shared effect modifier assumption in the simulated example to identify 
the ML-NMR model. In the interests of a fair comparison between ML-NMR and IPD NMA, 
both methods made use of this assumption in this analysis which was known to hold due to the 
simulated setup. However, IPD NMA could relax this assumption and estimate separate effect 
modifier interaction coefficients β2,B and β2,C. In this scenario, since we know that β2,B = β2,C, 
the standard errors for IPD NMA would have been inflated by the unnecessarily more flexible 
model. The shared effect modifier assumption was also used in the newly diagnosed multiple mye
loma example, again due to insufficient data to estimate separate treatment-covariate interactions 
for thalidomide. In this case, the assumption may be reasonable, since lenalidomide and thalido
mide both belong to the same class of treatments. However, when treatments are not in the same 
class this assumption is likely to be much less plausible (Phillippo et al., 2016 ). Even when this 
assumption does not hold, we still expect population-average estimates in the AgD study popula
tion to be unbiased (Phillippo et al., 2020b). In larger treatment networks, it can be possible to 
assess and relax the shared effect modifier assumption in ML-NMR (Phillippo et al., 2022). 
When all studies across the network report relative effect estimates within subgroups, network 
meta-interpolation has recently been proposed to combine these in a manner that relaxes the 
shared effect modifier assumption (Harari et al., 2023). Ongoing work aims to utilize subgroup 
results and regression estimates, where available from trial reports, to support the estimation of 
ML-NMR models and reduce reliance on the shared effect modifier assumption in practical 
applications.

When working with a noncollapsible treatment effect measure, such as hazard ratios or survival time 
ratios for time-to-event outcomes (or odds ratios for binary outcomes), population-average conditional 
treatment effects dab(P) and population-average marginal treatment effects Δab(P)(t) are not equal and 
have different interpretations (Daniel et al., 2021; Kahan et al., 2014). Most notably, the 
population-average marginal treatment effects Δab(P)(t) vary over time and depend on the distribution 
of all prognostic factors, effect modifiers, and baseline hazard in population P. The population-average 
conditional effects dab(P) are constant over time and do not depend on the distribution of prognostic 
factors or baseline hazard in population P. Moreover, different population adjustment methods target 
different estimands. MAIC, and STC based on simulation or G-computation, can only produce mar
ginal estimates. STC based on plugging in mean covariate values is biased for both estimands, and tar
gets neither a conditional or marginal estimand correctly. Network meta-interpolation suffers similar 
biases to plug-in means STC, targeting neither a conditional or marginal estimand correctly, and fur
thermore cannot typically produce absolute estimates (e.g. survival curves or any derivative quantities) 
which are often required in a decision-making setting. At present, ML-NMR is the only 
population-adjustment method that can produce both conditional and marginal estimates, as well 
as absolute estimates, depending on the requirements for decision-making.

Leahy and Walsh (2019) analysed the newly diagnosed multiple myeloma example using mul
tiple MAIC analyses followed by Bayesian NMA. The inherent limitations of such types of ana
lyses have been described previously (Phillippo et al., 2016). In particular, when there are 
multiple AgD studies, a choice must first be made over which AgD study population to match 
to. Then, combining the network of MAIC-adjusted studies and AgD studies in a NMA requires 
an assumption of constancy of relative effects (i.e. that there are no effect modifiers in imbalance 
between these different populations), which is precisely the assumption that a population-adjusted 
analysis seeks to relax. Finally, the resulting estimates are only applicable in a population defined 
as some weighted average of the included AgD study populations, which may not represent the 
decision target population. The ML-NMR analysis addresses each of these issues: it coherently 
combines evidence from the IPD and AgD studies, accounting for differences between the popu
lations of each study including the AgD studies, and can produce estimates in any target popula
tion for decision-making.
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In both examples that we considered, event/censoring times were available from each individual 
in the aggregate studies, e.g. reconstructed from Kaplan–Meier plots (Guyot et al., 2012). If these 
are not available but instead only conditional log hazard ratios are reported (or log survival time 
ratios for accelerated failure time models), these may be synthesized directly using a Normal like
lihood. For example, for the conditional log HR of treatment b vs. treatment a in study j the like
lihood would be N(η jb(x∗j ) − η ja(x∗j ), s2

jab), where s jab is the standard error of the log HR and x∗j is 
the vector of covariates at the reference levels used in study j. Studies with three or more arms would 
require the correlations between log HRs to be accounted for in the likelihood (Dias et al., 2011b). 
The limitation of this approach is the reported log hazard ratios must be adjusted in the same man
ner as the rest of the ML-NMR model. In theory, it should be possible to instead synthesize reported 
marginal summary outcomes such as marginal median survival times or marginal (restricted) mean 
survival times by application of Equations (13) and (14). This remains an area for further research.

We have only considered adjusting for covariates measured at baseline: time-varying covariates 
were not considered since it is likely that, in the aggregate studies, summary covariate information 
is available only available at baseline and not throughout follow-up. The inclusion of time-varying 
covariates in a survival model is often an attempt to correct for observed nonproportionality (i.e. 
failure of the proportional hazards or accelerated failure time assumption). However, such prob
lems may be symptomatic of other issues such as omitted covariates, an incorrect functional form 
for a covariate, or using an inappropriate model form (e.g. a proportional hazards model when an 
accelerated failure time model would be more appropriate) (Therneau & Grambsch, 2000). 
Notably, the solutions for these issues can be dealt with within the ML-NMR framework we 
have described, without requiring further information on time-varying covariates. Indeed, in 
the newly diagnosed multiple myeloma example, we found evidence for nonproportional hazards 
in one study when fitting an unadjusted NMA, but adjusting for baseline covariates in the 
ML-NMR analysis was sufficient to remove this.

Stratifying the baseline hazard by study is imperative for respecting randomization within stud
ies, in the same way that we must stratify the intercepts by study in the linear predictor. In this 
paper, we considered further stratifying the baseline hazard by treatment arm as a way to detect 
nonproportionality. If nonproportionality is still present after covariate adjustment, however, the 
model with baseline hazards stratified by study and treatment arm is of limited use for prediction 
of absolute effects, since survival curves (and all the ensuing summaries) can only be produced for 
treatments already observed in a population. Instead, the models considered here can be extended 
to incorporate a regression model on the shape of the baseline hazard. This opens up a further rich 
and flexible class of models, where departures from nonproportionality can be modelled and ab
solute predictions can once again be made for any treatment in any population. Such models are 
already implemented in the multinma R package (Phillippo, 2024).

For the newly diagnosed multiple myeloma example we used M-splines to flexibly model the 
baseline hazard, which is the first time that such a model has been applied to network meta- 
analysis of survival outcomes. We proposed a novel random walk prior distribution for the 
inverse-softmax transformed spline coefficients, which controls the level of smoothing and avoids 
overfitting through shrinkage. This may be applied to M-spline models in any context and has sev
eral advantages over previous approaches. Brilleman et al. (2020) used a Dirichlet prior directly on 
the spline coefficients, but this does not induce any smoothing or shrinkage and requires careful 
selection of the number and position of the knots. Jackson (2023) used a random effect on the 
inverse-softmax transformed spline coefficients, centred around a constant baseline hazard, aim
ing to induce shrinkage and avoid overfitting; however, we found that in practice this did not 
achieve sufficient shrinkage, with the model complexity and ‘wiggliness’ continuing to increase 
as the number of knots increased, leading to overfitting. Our random walk prior distribution 
does induce sufficient shrinkage to avoid overfitting, as demonstrated in the example, allowing 
the analyst to simply choose a ‘large enough’ number of knots and have the model shrink to an 
appropriate complexity based on the data. Li and Cao (2022) proposed Bayesian P-splines using 
a weighted (zero mean) random walk to allow for unevenly-spaced knots and make the prior in
variant to knot positioning; we further normalized the knots to also make the prior invariant to the 
number of knots and timescale. This greatly simplifies specification of a hyperprior for the random 
walk standard deviation, since this no longer depends on the number of knots or the timescale, and 
ensures that unevenly-spaced knots do not affect smoothing or shrinkage behaviour.
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Extending the ML-NMR framework to general likelihoods greatly increases the applicability of 
this approach, including to the very common scenario of population adjustment for survival out
comes. The Stan code that we have developed and provided in the supplementary materials is 
modular, and all that is required to fit a range of alternative models in the ML-NMR framework 
is to specify the form of the survival and hazard functions for the individual-level model. Once 
these have been specified, the numerical integration step to obtain the individual marginal likeli
hood remains the same, and is automatically implemented in the Stan code. Whilst not described 
here, it is also straightforward to account for left censoring, interval censoring, and left truncation 
(delayed entry) in this framework in the standard manner by considering the appropriate contri
butions from the survival function (e.g. as summarized by Brilleman et al., 2020), and all of these 
are implemented in the multinma R package (Phillippo, 2024). The multinma R package provides 
a user-friendly interface to implementing ML-NMR, AgD NMA, and IPD NMA models for a wide 
range of data types, supporting the uptake of these methods by analysts in practical applications.
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