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Abstract

Network meta-analysis combines aggregate data (AgD) from multiple randomized controlled trials, assuming
that any effect modifiers are balanced across populations. Individual participant data (IPD) meta-regression is
the ‘gold standard” method to relax this assumption, however IPD are frequently only available in a subset of
studies. Multilevel network meta-regression (ML-NMR) extends IPD meta-regression to incorporate AgD
studies whilst avoiding aggregation bias. However, implementation of this method so far has required the
aggregate-level likelihood to have a known closed form, which has prevented application to time-to-event
outcomes. We extend ML-NMR to individual-level likelihoods of any form, by integrating the individual-level
likelihood function over the AgD covariate distributions to obtain the respective marginal likelihood
contributions. We illustrate with two examples of time-to-event outcomes: modelling progression-free
survival in newly diagnosed multiple myeloma using flexible baseline hazards with cubic M-splines, and a
simulated comparison showing the performance of ML-NMR with little loss of precision from a full IPD
analysis. Extending ML-NMR to general likelihoods, including for survival outcomes, greatly increases the
applicability of the method. R and Stan code is provided, and the methods are implemented in the
multinma R package.

Keywords: effect modification, indirect comparison, individual participant data, network meta-analysis, population
adjustment

1 Introduction

Healthcare decision-making requires reliable estimates of the relative effectiveness of all relevant
treatments in a given population. Standard indirect comparison and network meta-analysis meth-
ods are commonly used to synthesize evidence from multiple trials, each of which may compare
only a subset of the treatments of interest, under the assumption that there is no imbalance in
effect-modifying variables between the trials (Bucher et al., 1997; Dias et al., 2011b; Higgins &
Whitehead, 1996; Lu & Ades, 2004). However, when effect modification is present these methods
may be biased. The ‘gold standard’ approach to adjust for effect modifiers and relax this assump-
tion is network meta-regression with individual participant data (IPD) available for all studies
(Berlin et al., 2002; Dias et al., 2011a; Lambert et al., 2002; Riley et al., 2010). However, this level
of data availability is rare—particularly in contexts such as health technology assessment where
multiple treatments are of interest. Population adjustment methods have, therefore, been proposed
that use IPD from the subset of studies where it is available, and published aggregate data (AgD)
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from the rest (Phillippo et al., 2016, 2018). A substantial majority of applications of population
adjustment analyses to date involve survival or time-to-event data; one recent review found that
72% of population adjustment analyses in technology appraisal submissions to the National
Institute for Health and Care Excellence in England involved survival outcomes (Phillippo
et al., 2019). However, the set of population adjustment methods that are currently applicable
to survival outcomes are faced with significant limitations, and methods that address these limita-
tions have not yet been extended to handle survival data.

Matching-adjusted indirect comparison (MAIC) is a widely used population adjustment meth-
od that re-weights individuals in one IPD study to match the covariate distribution in an AgD
study (Ishak et al., 20135; Phillippo et al., 2016; Signorovitch et al., 2010). Since IPD are only avail-
able from one of the studies weights are typically estimated using the method of moments, which
has been shown to be equivalent to an entropy-balancing approach (Phillippo et al., 2020c), al-
though alternatives have been proposed (Jackson et al., 2020). While MAIC is currently the
most widely used population adjustment method, including for survival outcomes (Phillippo
et al., 2019), it is limited to a pairwise indirect comparison scenario with one IPD study and
one AgD study and cannot readily be extended to incorporate larger networks of studies and treat-
ments (Phillippo et al., 2016). Moreover, population-adjusted estimates can only be produced for
the AgD study population; while this may be of interest for commercial reasons, this is not typic-
ally representative of the target population for a treatment decision (Phillippo et al., 2016).

Simulated treatment comparison (STC) is an alternative approach based on regression adjust-
ment, where a regression model fitted in the IPD study is used to predict outcomes on each treat-
ment from the IPD study in the AgD study population (Caro & Ishak, 2010; Ishak et al., 2015;
Phillippo et al., 2016). The typical approach is to simply ‘plug-in’ the mean covariate values to pro-
duce predictions. However, when the model is nonlinear in the covariates this results in aggrega-
tion bias. Moreover, when the outcome measure is noncollapsible, such as hazard ratios or odds
ratios, this results in bias due to combining incompatible conditional and marginal effect measures
(Phillippo et al., 2021; Remiro-Azocar et al., 2021). Simulation can be used to avoid these biases
(Caro & Ishak, 2010), however as originally proposed this incurs additional sampling variation by
simulating a limited number of participants in the aggregate trial. A more sophisticated form of
STC based on G-computation via simulation from the joint covariate distribution in the AgD study
has been developed that addresses these issues, with variance estimation handled by bootstrapping
or embedding in a Bayesian analysis (Remiro-Azdcar et al., 2022). Similar simulation-based ap-
proaches have recently been published (Ren et al., 2024; Zhang et al., 2024). However, like
MAIC, all of these approaches are only applicable to pairwise indirect comparisons and cannot
produce estimates for target populations other than that represented by the AgD study.

Multilevel network meta-regression (ML-NMR) is a population adjustment method that extends
IPD network meta-regression to incorporate evidence from both IPD and AgD sources (Phillippo,
2019; Phillippo et al., 2020a). Aggregation bias is avoided by integrating the individual-level model
over the joint covariate distribution in the AgD studies, in contrast to previous meta-regression ap-
proaches (Donegan et al., 2013; Saramago et al., 2012; Sutton et al., 2008) that combine IPD and
AgD by simply ‘plugging in’ mean covariate values from the AgD studies. Unlike MAIC and STC,
ML-NMR can coherently synthesize evidence from networks of any size, and crucially for decision-
making can produce population-adjusted estimates of relative or absolute effects in any target
population of interest. Moreover, in larger networks, key assumptions regarding unobserved effect
modifiers and effect modifier interactions can be assessed using ML-NMR, whereas these are un-
testable assumptions under all approaches when performing pairwise indirect comparisons
(Phillippo et al., 2022). ML-NMR is an extension of the standard network meta-analysis (NMA)
framework (Dias et al., 2011b; Higgins & Whitehead, 1996; Lu & Ades, 2004), reducing to IPD
network meta-regression if IPD are available from all studies, and to AgD NMA when no covariates
areincluded in the model. Phillippo et al. (2020a) construct the aggregate-level model for ML-NMR
in two steps: (i) deriving the aggregate likelihood from the individual likelihood, using standard re-
sults on the sums of random variables and (ii) integrating the individual-level model over the cova-
riate distribution in the aggregate population to form the aggregate-level model, using a general
numerical approach based on quasi-Monte Carlo integration. However, derivation of the aggregate
likelihood is not straightforward in general and may even be intractable, since analytic results for
the sums of random variables are only available for some special cases (e.g. Normal, Poisson, or
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Figure 1. Network of five studies comparing lenalidomide or thalidomide to placebo for treatment of newly
diagnosed multiple myeloma. IPD were available from three studies, and AgD from two studies. Edge widths and
numbers indicate the number of studies making each comparison, and the size of each node corresponds to the
number of individuals randomized to each treatment.

Bernoulli distributions, Phillippo et al., (2020a), or ordered categorical distributions Phillippo
etal.,2022). Most notably, this is the case for the analysis of survival outcomes where the aggregate
likelihood cannot be derived analytically. As it stands, therefore, ML-NMR cannot be applied to
survival outcomes which is a major practical limitation of the method.

In this paper, we aim to address this limitation by extending the ML-NMR framework to
individual-level likelihoods of any general form. We begin by describing a motivating example
comparing maintenance treatments for newly diagnosed multiple myeloma. We then set out the
ML-NMR framework in a general form based on the likelihood contributions from different sour-
ces of data. We directly integrate the individual-level likelihood function over the joint covariate
distribution to obtain the likelihood contributions for the AgD studies. This approach does not
require the form of the aggregate-level likelihood to be analytically tractable, or even known.
We then use this approach to describe ML-NMR models for censored time-to-event outcomes
with general survival and hazard functions. Finally, we demonstrate these ideas in practice: first
with the newly diagnosed multiple myeloma example, and then with a simulated comparison
showing performance against full IPD network meta-regression.

2 Example: newly diagnosed multiple myeloma

As a motivating example, we compare progression-free survival on lenalidomide vs. thalidomide
maintenance treatment after autologous stem cell transplant (ASCT) for patients with newly diag-
nosed multiple myeloma (Leahy & Walsh, 2019). These treatments were not compared
head-to-head in a single randomized controlled trial, but instead were both compared separately
to placebo in five studies, forming the evidence network shown in Figure 1. IPD are available from
three trials of lenalidomide vs. placebo, with only published AgD available from the thalidomide
vs. placebo trial and one further lenalidomide trial.

Summaries of four clinically relevant baseline characteristics are given in Table 1: age, inter-
national staging system (ISS) stage (stage III vs. stage I-II), response post-ASCT (complete re-
sponse or very good partial response vs. other), and sex (male or female). These covariates were
considered to be potential effect modifiers in a previous analysis (Leahy & Walsh, 2019), and
are not well-balanced across study populations which may lead to biased estimates of treatment
effects if these are not accounted for.

This network was previously analysed by Leahy and Walsh (2019), who applied multiple MAIC
analyses before combining in a NMA. However, there are several disadvantages with this ap-
proach: in particular, only the IPD studies are adjusted and the constancy of relative effects as-
sumption is still required to combine the AgD studies, and estimates can only be produced for a
weighted-average of the AgD study populations. An analysis using ML-NMR can address these
issues, coherently synthesizing the available evidence whilst adjusting for effect modifiers, and pro-
ducing estimates relevant to specific target populations of interest.
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Table 1. Baseline characteristics of studies included in the ML-NMR analysis of progression-free survival after ASCT
for newly diagnosed multiple myeloma

Study/treatment  Sample size ~ Age (years) ISS stage Il (%)  Response CR/VGPR (%)  Male (%)

Attal2012*
Placebo 307 54.22 (5.24) 15.96 54.07 57.98
Lenalidomide 307 54.35 (6.06) 23.78 54.72 55.37
McCarthy2012*
Placebo 229 57.39 (5.56) 18.34 71.18 55.46
Lenalidomide 231 57.93 (6.33) 27.27 62.34 52.38
Palumbo2014*
Placebo 125 54.44 (8.98) 12.00 38.40 63.20
Lenalidomide 126 53.90 (9.69) 10.32 42.06 46.03
Jackson2019
Placebo 864 64.63 (9.40) 19.21 83.10 62.15
Lenalidomide 1,137 65.17 (8.94) 24.80 82.59 61.65
Morgan2012
Placebo 410 63.92 (9.01) 36.34 71.71 61.95
Thalidomide 408 65.59 (8.38) 31.86 74.51 61.52

Note. Statistics are mean and standard deviation for the continuous covariate age, and percent for the categorical
covariates. *Individual participant data available.

3 ML-NMR for general likelihoods

Consider a network of J randomized controlled trials, each investigating a subset #; of K treat-
ments. If IPD are available from each of the ] studies, then we can estimate a standard IPD network
meta-regression model, which may be written as

Yiik ~ Tind (Gijk )5 (1a)

80;r) = 1 (i) = 1 + x5 By + o) + Vs (1b)

with IPD outcomes y;;, for individuals i=1, ..., Ny instudyj=1, ..., ] receiving treatment k €
A'; given the likelihood distribution 7y,4(6;3). The link function g(-) links the likelihood parameter
Ojjx. to the linear predictor (%), with covariates x;y.. The parameters y; are study-specific inter-
cepts, B, and f3, ;, are regression coefficients for prognostic and effect modifying covariates, respect-
ively, and y;, are individual-level treatment effects. We set §, ; = y; = O for the reference treatment 1.

By specifying an individual-level model (1), with a likelihood, link function, and linear predict-
or, we are also specifying an individual-level likelihood function, conditional on the covariate val-
ues for each individual. Letting ¢ denote the set of all model parameters {u;, By, B 5 71 : V¥ j, K}, we
denote the individual conditional likelihood function by Lg,f(’?x(;“; Yiik> %). The form of this indi-
vidual conditional likelihood function follows from the chosen individual-level model.

To extend the IPD network meta-regression model (1) into a ML-NMR model that incorporates
evidence from AgD studies, we integrate the individual conditional likelihood function over the
joint covariate distribution in an AgD study to obtain an individual marginal likelihood function,
describing the likelihood where individual outcomes are known but individual covariates are not
(only summary covariate distributions). Integrating the individual conditional likelihood function
over the joint covariate distribution fj(-) on treatment & in study j, we obtain the individual mar-
ginal likelihood function

LY ) = [ LSETE v 1)) dix, )
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which no longer depends on x. In other words, for an individual on treatment k in study j with
outcome y;j, if we do not know their individual covariates x;;, but only the distribution f(-), their
likelihood contribution is given by (2). This integration may be performed using quasi-Monte
Carlo integration, as described previously (Phillippo et al., 2020a). With a set of N integration
points X, drawn from f,(-), the individual marginal likelihood function (2) is evaluated as

Ly (& yin) » N ZLS,:’}; & Yik» %) (3)

In practice, it is likely that only marginal covariate summaries are available from the AgD studies
instead of the full joint distribution fj(-), but we can reconstruct the joint distribution given as-
sumed forms for the marginal covariate distributions and the correlation matrix, for example as-
suming that these are the same as those observed in the IPD studies (Phillippo et al., 2020a).
Simulation studies with binary outcomes have found that the results of ML-NMR analyses are
not sensitive to the assumptions used in reconstructing the joint distribution (Phillippo et al.,
2020b); we expect this result to hold for other outcomes including time-to-event.

If we have summary outcomes y,;, on a given treatment R in study 7, we can attempt to derive a
corresponding aggregate marginal likelihood function as the product of the individual marginal
likelihood functions (2), up to a normalizing constant,

Nk

Ll:/zl'lzr(é Yojke) 1_[ Lﬁar(é‘; Yiik)s (4)
i=1

where the subscript o denotes quantities that have been aggregated over individuals. If the result
can be rearranged in terms of y, ., we can then use LI:/II.Z‘(&; ¥.ji) to evaluate the aggregate marginal

likelihood function. For example, we demonstrate with binary outcomes in Appendix A online
supplementary material, where the aggregate marginal likelihood is shown to be equal to the
Binomial likelihood used previously for ML-NMR by Phillippo et al. (2020a). Similar results
can be obtained for categorical outcomes with a Multinomial likelihood (Phillippo, 2019) and
count outcomes with a Poisson likelihood, again obtaining the same results as using standard re-
lations on the sums of random variables. However, this may not be possible, in general.

By working directly with the likelihood contributions from each level of the model, we avoid
having to explicitly derive the form of the aggregate likelihood. The full ML-NMR model for gen-
eral likelihoods may be written using (2) and (4) as

Individual:
LEgr A& Yiier Xiie) = Tiaa (Vi | Oie) (5a)
8Oi1) = n (i) = 1 + 23, (By + B ) + v (5b)
Aggregate:

Mar

1/k é:’ yl/k / Ll/klx é’ Yijks X ffk (SC)
N

LY (& yje) o H LY (& yiie)s (5d)

where in a Bayesian analysis, prior distributions are placed over each of the parameters w;, £, 8, 1.,
and y,,. For the analyses in this paper, we will use non- or weakly informative prior distributions
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which do not unduly influence the posterior distribution, as is often desired in decision-making
applications. However, the analyst may—and indeed should—select prior distributions that are
appropriate for the situation at hand and assess sensitivity to reasonable alternatives as appropri-
ate. Computationally, we fit these models in Stan by directly coding the log likelihood contribu-
tions with a target += statement (Stan Development Team, 2023).

3.1 Application to survival analysis
We now apply this general framework to derive ML-NMR models for survival or time-to-event
outcomes. Consider that every study provides a pair y;;, = {t;i, c;i} of outcome times #;;, and cen-
soring indicators ¢, for each individual i in study j receiving treatment k, where ¢;; =1 if an in-
dividual experiences the event or ¢;;, = 0 if they are censored. For the AgD studies, these data could
be obtained by digitizing published Kaplan—-Meier curves and reconstructing the event and censor-
ing times using an algorithm such as that described by Guyot et al. (2012). Individual covariate
information x;;, is available for every individual in the IPD studies, but for the AgD studies
only the joint distribution of the covariates at baseline fj(-) is available (likely reconstructed
from reported marginal summaries Phillippo et al., 2020a).
The individual conditional likelihood contributions for each time t;;, in the IPD are

L,(,-:f?x(f; Lijks Cikr Xije) = S jn (i | X ) e (L | 2350 ) (6)
where S (| x) and b j,(¢| x) are the survival and hazard functions conditional on covariates x,
which may take any form. For illustration, a Weibull proportional hazards model has survival
and hazard functions

Sjk(t]x) = exp (=" exp (1, (x))),

b (2] x) = vit" ™! exp (n,(%)),

where v; is a study-specific shape parameter. In practice, the choice of model may be based on mod-
el fit statistics (see Section 3.2) and plausibility of extrapolations. Notice that we stratify the base-
line hazard by study to respect randomization, e.g. with study-specific shape parameters v;, akin to
the stratification of the study-specific intercepts y; in the linear predictor. Appendix B online
supplementary material details survival and hazard functions for all survival models currently im-
plemented in the multinma R package (Phillippo, 2024), including a full range of parametric pro-
portional hazards and accelerated failure time models, and flexible baseline hazards models based
on M-splines or piecewise exponentials.

Using equation (2), the individual marginal likelihood contributions for each event/censoring
time in the AgD studies are

M C
Ll-,-kar(é Litks Cijk) = /x L,-,-;:‘Hx(f; Liiks Cijks x)f/k(x) dx

(7)
=/3£ Sie(tije | )b jr(tiin | ) f i (x) dox.
We evaluate this integral using quasi-Monte Carlo integration following equation (3) as
. <1 . i
Lﬁa (& tijes cijp) ® N ZS/k(ti/’k [ X)h 1. (L0 | %)™ (8)
X

3.2 Model comparison

Model comparison for Bayesian network meta-analyses is typically performed using the Deviance
Information Criterion (DIC) (Dias et al., 2011b; Spiegelhalter et al., 2002). However, the general
ML-NMR model equation (5) may not have a closed-form aggregate-level likelihood, which
means that the usual pp complexity penalty cannot be evaluated. Instead, the DIC may be calcu-
lated using the py penalty proposed by Gelman et al. (2013), or the Watanabe-Akaike Information
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Criterion (WAIC) or Leave-One-Out Information Criterion (LOOIC) (Vehtari et al., 2016) can be
used, all of which are calculated directly from the log likelihood contributions. We choose to use
LOOIC here, as it (and its approximation WAIC) evaluates predictive performance over the entire
posterior distribution rather than only at a point estimate and works well when the posterior is not
approximately Normal, unlike DIC (Vehtari et al., 2016).

3.3 Assessing integration error

ML-NMR models are typically implemented using Quasi-Monte Carlo integration via Sobol’ se-
quences to evaluate the integral for the aggregate-level model (Phillippo et al., 2020a). Phillippo
etal. (2020a) previously suggested assessing the accuracy of the numerical integration by plotting
the empirical integration error over the entire posterior distribution for increasing values of N.
Whilst this approach may be suitable when the aggregate-level model is of the form (5d) and
can be simplified into a single integral per AgD study arm, it becomes untenable in practice
when the aggregate-level model is of the form (5¢), and there is one integral for every individual
in each AgD study. In this case, there may be hundreds or even thousands of such individuals
and corresponding integration error plots, and the computational burden of saving and plotting
the cumulative integration points quickly becomes unfeasible.

Instead, we propose th the algorithm in Appendix C online supplementary material to ensure that
Nis sufﬁc1ent using the R convergence statistic (Vehtari et al., 2020). Based on the usual practice of
fitting C> 1 chains in parallel (usually C=4), we use N integration points for one half of the
chains and N/2 for the other half. We then check convergence with R within each half set and be-
tween all chains together, to determine convergence of both MCMC and numerical integration.

Values of N that are powers of 2 are recommended as these are expected to be particularly ef-
ficient (Owen, 2013). The sufficient value of N will vary depending on the model. In our experi-
ence, a value of N = 64 strikes a conservative balance between sufficient accuracy and increased
runtime, and should be sufficient for many models to only require a single run. The multinma
R package (Phillippo, 2024) implements the above algorithm (with N = 64 by default) and pro-
vides user-friendly warnings when the number of integration points is detected to be insufficient.

3.4 Checking model assumptions

The key assumption underlying all anchored population adjustment approaches is conditional
constancy of relative effects, which requires that there are no unobserved effect modifiers in imbal-
ance between the included study populations and between these and the target population
(Phillippo et al., 2016). With ML-NMR, we can assess this assumption using standard techniques
from the network meta-analysis literature, where residual heterogeneity or inconsistency may
indicate a violation of this assumption (Phillippo et al., 2020a, 2022). Residual heterogeneity
can be assessed using a random effects model (Dias et al., 2011b), replacing y, in equation (5)
by a study-specific random effect 5, ~ N(yy, 72), where 7 is the between-studies standard devi-
ation. For studies with more than two arms, a multivariate Normal random effects distribution
is required to account for the correlation between relative effects (Dias et al., 2011b; Phillippo
et al.,, 2020a). Residual inconsistency can be assessed using unrelated mean effects or
node-splitting models (Dias, 2011c). For example, an unrelated mean effects model replaces y,
in equation (5) by ,. e where ¢;; is the treatment in arm 1 of study j and we set y;, =0 for all
k. We note that, as is the case for standard NMA, these approaches to detect residual heterogeneity
and inconsistency may have low power. Phllhppo et al. (2022) demonstrate the practical applica-
tion of these techniques to ML-NMR models using the multinma R package.

In practice, we often find that there are insufficient data to estimate independent effect modifier
interaction terms f, ;, for each treatment. Where this is the case, we typically rely on the shared
effect modifier assumption for a set of treatments 7, and define the effect modifier interaction
terms to be equal for all treatments within this set, £, , =8, » V k € 7 (Phillippo et al., 2016,
2020a). This assumption is only likely to be reasonable when treatments belong to the same class,
sharing a mode of action (Phillippo et al., 2016). Regulatory bodies as decision-makers typically
require strong biological or clinical rationale to justify this assumption (HTA Coordination Group
,2024), and with such evidence this has been accepted by decision-makers (e.g. TA1013, National
Institute for Health and Care Excellence, 2024). Phillippo et al. (2022) demonstrate how the
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shared effect modifier assumption may be relaxed and assessed one covariate at a time, which is
less data-intensive than fitting a model with independent interactions for all covariates at once.
When the shared effect modifier assumption or other identifying assumptions are not plausible,
and there are insufficient data to identify the model, then ML-NMR is restricted to producing es-
timates in the aggregate study population(s)—the same as MAIC and STC.

When fitting time-to-event models, the suitability of the proportional hazards assumption (or
the analogous accelerated failure time assumption) should be assessed. We assess this assumption
by letting the baseline hazard vary between the arms of each study. For parametric models like the
Weibull model, this means allowing independent shape parameters v, to vary by treatment arm as
well as by study. For a flexible M-spline hazard model, this means allowing independent spline
coefficient vectors aj, by arm as well as by study.

3.5 Producing population-average estimates for a target population
For decision-making, we must produce estimates of quantities of interest, such as population-average
treatment effects or survival probabilities, in a target population relevant to the decision. The decision
target population need not be represented by one of the studies in the network; indeed, it is likely best
represented by a registry or cohort study conducted in the population of interest (Phillippo et al., 2016).
Population-average conditional treatment effects d,,p) between each pair of treatments @ and b
in a population P are produced by integrating contrasts of the linear predictor over the joint cova-
riate distribution f(p)(x), which due to linearity reduces to plugging-in mean covariate values Xp),

dapp) =L (1) (%) = 1p)a (%)) fip) (%) dox (9)
=9 = Va + X(p)(Bop — Pra)-

The primary marginal quantity of interest is the population-average marginal survival function,
also called the standardized survival function, from which we can also produce a range of other
marginal estimates. The population-average marginal survival probability Spy(#) on treatment k
in population P at time ¢ is found by integrating the individual-level survival function Sip. (2] x)
over the joint covariate distribution f(p)(x) at each time ¢,

Silt) = [ St 2)in ) i (10)

This integral can be calculated using the same quasi-Monte Carlo numerical integration approach
described earlier, using a set of integration points drawn from the joint distribution fp)(x), analo-
gously to (3). In the likely scenario that only marginal covariate summaries are available, again we
can reconstruct the joint covariate distribution from assumed forms for the marginal distributions
and correlation matrix (Phillippo et al., 2020a). We also require information on the distribution of
the baseline hazard in the target population P, that is distributions for the linear predictor intercept
parameter 4 p, and any additional parameters of the survival function such as the Weibull shape
parameter v(p) or M-spline coefficients ap). Estimates of these parameters may not be available dir-
ectly for an external target population. If instead we have (reconstructed) Kaplan—-Meier data avail-
able for outcomes on a reference treatment in the target population (along with the summary
covariate distribution), then these data may be included in the model as a single-arm study at the
synthesis stage through equation (7); this will allow the parameters of the baseline hazard in this
population to be estimated, but will not contribute information to any other model parameters.
Otherwise, estimates may be borrowed from a study in the network where the properties of the
baseline hazard are deemed to be representative of the target population.

From this marginal survival function, we can then produce a range of other marginal estimates.
The corresponding population-average marginal hazard function is a weighted average of the
individual-level hazard functions,

hpy(t) :/x Sey(t x)lg((mk(t | %)f () (%) dx’ "

pk(t)
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weighted by the probability of surviving to time #. Again, this integral can be calculated using
quasi-Monte Carlo numerical integration. The corresponding population-average marginal cu-
mulative hazard function is

Hp(t) = —log (S(P)k(t))- (12)

Quantiles of the population-average marginal survival times are found by solving
Sipk(tipy) =1 = a; (13)

to find tz;i))k for the a% quantile, which can be achieved using numerical root finding.
Means or restricted means of the population-average marginal survival times are found by in-
tegrating the marginal survival function up to a restricted time horizon #*,

*

RMST(p)k(t*) = Og(p)k(t) dt, (14)

with #* = oo for population-average mean marginal survival time, which is typically evaluated us-
ing quadrature; we use the implementation in the flexsurv R package (Jackson, 2016).

Contrasts of the above quantities are population-average marginal treatment effects A p) ().
For example, the ratio of population-average marginal hazard functions (11) for two treatments
a and b forms a population-average marginal hazard ratio,

Ag}(lp)(t) = (15)

In a similar fashion, we can also create population-average median survival time ratios or differ-
ences, or differences in population-average (restricted) mean survival times.

All the quantities (10)—(15) are marginal, being derived from the population-average marginal
survival function S'(p)k(t). These depend on the distributions of the baseline hazard and of all co-
variates (not just those that are effect-modifying). Furthermore, the population-average marginal
hazard ratios A?blz‘,,)(t) also vary over time; if hazards are proportional conditional on covariates
(prognostic or effect modifying) this means that, mathematically, proportional hazards cannot
hold at the marginal level. In contrast, dp) are population-average conditional treatment effects
which depend only on the distribution of effect-modifying covariates. d,pp) are constant over time
and do not depend on the distribution of baseline hazard or the distribution of purely prognostic
covariates. The population-average conditional treatment effects can be interpreted as the average
of the individual-level treatment effects in the target population P, the average effect of moving
each individual in the population from treatment a to b. The population-average marginal treat-
ment effects can be interpreted in terms of the effects of treatment on the overall marginal survival
curve in the population.

4 Application to newly diagnosed multiple myeloma example

We now apply these methods to the network of five studies comparing lenalidomide to placebo or
thalidomide to placebo as maintenance treatment for newly diagnosed multiple myeloma, shown
in Figure 1 (Leahy & Walsh, 2019). The outcome of interest is progression-free survival after au-
tologous stem cell transplant (ASCT). IPD as individual event/censoring times and covariates are
available from three studies; AgD as event/censoring times from digitized Kaplan—Meier curves
and overall covariate summaries are available from two studies.

Since we did not have access to original IPD from the three IPD studies, for illustration we in-
stead constructed synthetic data that resemble the original IPD using published Kaplan—Meier
curves and regression coefficients. This process is detailed in Appendix D online supplementary
material.
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4.1 Newly diagnosed multiple myeloma: methods

Instead of making parametric assumptions about the form of the baseline hazard, we propose a
novel approach using M-splines to flexibly model the baseline hazard over time. This approach
builds on previous applications of M-splines for flexible baseline hazard models in other contexts
(Brilleman et al., 2020; Jackson, 2023) and is described in detail in Appendix B.1.4 online
supplementary material.

The survival and hazard functions for the M-spline model are given by

Sjk(t] %) = exp (—a;Lc(t, {j) exp (1, (%)), (16a)
h i (t | x) = @ M(t, &;) exp (13 (%)), (16b)

where a; is a study-specific vector of spline coefficients, M (t, {;) is the M-spline basis of order x with
a study-specific knot sequence ¢; evaluated at time #, and I, (¢, ¢;) is the corresponding integrated
M-spline basis (an I-spline basis; see Appendix B.1.4 online supplementary material). The basis pol-
ynomials have degree x — 1, so a basis of order x = 4 corresponds to a cubic M-spline basis; a piece-
wise exponential baseline hazards model is a special case with degree zero (x = 1).

To avoid overfitting, we propose a novel weighted random walk prior distribution on the
inverse-softmax transformed spline coefficients,

a; = softmax(a;), (17a)
i

(17,1:6;',14‘2”1‘,"1 vi=1,...,L+x-1, (17b)
m=1

ujy~NO,o7w;) VI=1,. ... ,L+x-1, (17¢)

where L is the number of internal knots, and the softmax (or multinomial logit) transform is
softmax(af) = [1, exp (&)']"/(1 + Z,L:]"_I exp (a};)). The random walk is centred around a prior
mean vector ¢; that corresponds to a constant baseline hazard (see Appendix B.1.4 online
supplementary material), borrowing an idea of Jackson (2023) who derived ¢; to use instead for
the prior mean of a random effect on a;. The weights w; are derived from the distance between
each pair of knots (see Appendix B.1.4 online supplementary material), following a similar ap-
proach to the Bayesian P-splines proposed by Li and Cao (2022) except that we additionally nor-
malize the weights to sum to 1. The weights serve to make the prior invariant to the number and
location of the knots, even if they are unevenly spaced, and to the timescale, greatly simplifying the
specification of a hyperprior distribution for the random walk standard deviation o;. The random
walk standard deviation g; controls the amount of smoothing and shrinkage of the spline coeffi-
cients; as g; approaches zero the baseline hazard becomes smoother (less ‘wiggly’) and approaches
a constant baseline hazard. We allow g; to be estimated from the data, giving this a weakly inform-
ative hyperprior distribution g; ~ half-N(0, 12).

We adjust for four clinically relevant covariates considered to be potential effect modifiers by
Leahy and Walsh (2019): age, ISS stage (stage III vs. stage I-II), response post-ASCT (complete
response or very good partial response vs. other), and sex (male or female). The distributions of
these covariates in each study at baseline are given in Table 1. Due to the lack of data on thalido-
mide (only a single AgD study), we make the shared effect modifier assumption between the two
active treatments in order to identify the effect modifying treatment—covariate interactions
(Phillippo et al., 2016, 2020a). Since thalidomide and lenalidomide are in the same class of treat-
ments, this assumption may be reasonable.

We fit a cubic M-spline model with seven internal knots placed at evenly spaced quantiles of the
uncensored survival times in each study, plus boundary knots at time 0 and the last event/censor-
ing time in each study. The number of knots is set to be larger than we might expect to need, since
any potential for overfitting is avoided by shrinkage through the random walk prior. To ensure
that seven knots are sufficient, we also fit a model with ten internal knots for comparison. We
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Figure 2. Estimated survival curves on each treatment in each study population, under a cubic M-spline model.
Shaded bands indicate the 50%, 80%), and 95% Credible Intervals for the survival curves (thick lines), overlaid on the
unadjusted Kaplan—Meier curves from the treatments in each study (thin lines).

assess the proportional hazards assumption by fitting models with spline coefficients a . stratified
by treatment arm as well as by study. We give noninformative N(0, 1002) prior distributions to
every parameter in the linear predictor. We also fit unadjusted NMA models with the same
M-spline baseline hazard for comparison.

Analyses were carried out in R version 4.3.1 (R Core Team, 2023) and Stan version 2.26.23
(Carpenter et al., 2017). Analysis code and data are available from https:/github.com/
dmphillippo/ML-NMR-general-likelihoods-paper. Two sets of analysis codes are provided: one
that fits the models via the user-friendly multinma R package (Phillippo, 2024), making these tech-
niques accessible to a broad audience; and another that fits the models by calling Stan directly,
which is likely to be useful for those who wish to further modify or extend the code. The data
are also available in the multinma R package along with a vignette that walks through the analysis
(Phillippo, 2024). Using multinma, the ML-NMR models take around 1.25 hr each to fit on a
modern laptop (Intel Core Ultra 7 165H 5 GHz, 32 GB RAM); the unadjusted NMA models
take around 4 min each.

4.2 Newly diagnosed multiple myeloma: results

The estimated population-average survival curves in each study population are shown in Figure 2,
overlaid with the observed (unadjusted) Kaplan-Meier curves. These show a good visual fit to the
observed data, with the possible exception of the lenalidomide arm of Palumbo 2014 where the
unadjusted Kaplan—Meier estimate lies consistently above the population-adjusted estimate.
This is likely due to the slight baseline imbalance in Palumbo 2014 between arms, with the lena-
lidomide arm having 17% fewer males than the placebo arm. The unadjusted Kaplan—-Meier
curves do not account for this difference, whereas the population-adjusted survival estimates
from the ML-NMR model do. The population-average median survival times corresponding to
these population-average survival curves are given in Table E.1 online supplementary material.
The posterior means for the median survival estimates vary across populations between 20.75
and 33.30 months on placebo, 26.55 and 38.44 months on thalidomide, and 44.95 and 55.92
months on lenalidomide.

To assess whether seven knots are sufficient, we also fit a model with ten knots. Comparing the
model fitin Table E.2 online supplementary material, we find that there is no substantial difference
between the models. The LOOIC is slightly worse for the model with ten knots, but not substan-
tially, due to a slight increase in the effective number of parameters proo; however, the random
walk prior distribution is behaving as expected and controlling the overall complexity through
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Table 2. Estimated population-average conditional log hazard ratios and 95% Credible Intervals in each study
population from the cubic M-spline model

Study Lenalidomide vs. placebo Thalidomide vs. placebo Thalidomide vs. lenalidomide
Attal2012 -0.59 -0.13 0.47
(=0.74, —0.45) (~0.38, 0.13) (0.23, 0.69)
McCarthy2012 -0.62 -0.16 0.47
(=0.74, —0.51) (~0.38, 0.07) (0.23, 0.69)
Palumbo2014 -0.64 -0.18 0.47
(=0.80, —0.48) (=0.44, 0.09) (0.23, 0.69)
Jackson2019 -0.69 -0.22 0.47
(=0.81, —0.57) (=0.43, —0.01) (0.23, 0.69)
Morgan2012 -0.68 -0.22 0.47
(=0.81, —0.56) (=0.42, —0.01) (0.23, 0.69)

shrinkage. This is also apparent when looking at the individual-level baseline hazard functions
(Figure E.1 online supplementary material) and the corresponding population-average marginal
hazard functions (Figure E.2 online supplementary material) which are very similar between mod-
els. We also check the LOOIC within each study separately (Table E.3 online supplementary
material) to ensure that no studies individually are better fit with a higher number of knots, which
could be missed when looking overall. We conclude that seven internal knots are sufficient, both
overall and within each study in the network.

To assess the proportional hazards assumption, we modify the M-spline model to stratify the
spline coefficients @ ; on the baseline hazard by treatment arm as well as by study. Comparing
the overall model fit between the models with and without the proportional hazards assumption
(Table E.4 online supplementary material), we see that the LOOIC is lower for the proportional
hazards model. Again, we also check the LOOIC within each study separately (Table E.5 online
supplementary material), to ensure that the proportional hazards assumption is reasonable within
each study in the network. We conclude that the proportional hazards assumption is reasonable
here. For comparison, we also fitted unadjusted models with no covariates (i.e. a standard network
meta-analysis) both with and without the proportional hazards assumption. Whilst there was little
difference in the overall model fit (Table E.6 online supplementary material), the nonproportional
hazards model did have a substantially lower LOOIC in the Jackson 2019 study (Table E.7 online
supplementary material). Including the covariates in the ML-NMR analysis, even though they are
fixed and not time-varying, is sufficient to remove this proportional hazards violation, and the
ML-NMR model is a much better overall fit than the unadjusted NMA.

The estimated population-average conditional log hazard ratios from the ML-NMR model
(with seven internal knots and proportional hazards) are given in Table 2. Both lenalidomide
and thalidomide are consistently estimated to be more effective than placebo in each of the study
populations, however the 95% credible intervals for the thalidomide vs. placebo comparison cross
zero in both AgD study populations (Jackson 2019 and Morgan 2012), where both relative effects
vs. placebo are estimated with slightly more uncertainty. The thalidomide vs. lenalidomide relative
effect estimates are constant across all populations (0.47, 95% CrI 0.24-0.71), due to the shared
effect modifier assumption.

5 Simulated example

To illustrate the performance of this approach, let us consider an artificial example of simulated
survival outcomes in a population-adjusted indirect comparison of two treatments B and C via
a common comparator A. Since the data are simulated, we can compare the results and perform-
ance of ML-NMR to a full IPD NMA and to the known true values. We simulate outcomes from a
Weibull model including three prognostic and effect-modifying covariates (two continuous and
one binary); full details are given in Appendix F online supplementary material.
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Figure 3. ML-NMR estimated survival curves on each treatment in each study population, under a Weibull model.
Shaded bands indicate the 50%, 80%), and 95% Credible Intervals for the survival curves (thick lines), overlaid on the
unadjusted Kaplan—Meier curves from the treatments in each study (thin lines).

5.1 Simulated example: methods

We fit Exponential, Weibull, and Gompertz proportional hazards models (Appendix B.1 online
supplementary material) in the general ML-NMR framework adjusting for all three covariates.
We place noninformative N(0, 100?) prior distributions on every parameter in the linear predict-
or, and a weakly informative half-N(0, 102) prior distribution on the Weibull and Gompertz shape
parameters. For comparison, we also fit the corresponding IPD NMA models with IPD from both
studies. We also carry out MAIC and STC analyses, commonly used for population-adjustment in
this two-study scenario. For the STC, we use the simulation approach of Remiro-Azocar et al.
(2022). Lastly, we perform a standard (nonpopulation adjusted) indirect comparison, formed
from the log hazard ratios estimated in each study separately using a Weibull model adjusted
only for prognostic factors, reflecting ‘best case’ common practice (i.e. correct form of parametric
model, fully adjusted for prognostic factors).

Analyses were carried out in R version 4.3.1 (R Core Team, 2023) and Stan version 2.26.23
(Carpenter et al., 2017). Full analysis code and data are provided at https:/github.com/
dmphillippo/ML-NMR-general-likelihoods-paper, again in two formats: one that fits the models
via multinma R package (Phillippo, 2024), and another that fits the models by calling Stan directly.
Using multinma, the ML-NMR models take around 90 s each to fit on a modern laptop (Intel Core
Ultra 7 165 H 5 GHz, 32 GB RAM); the IPD NMA models take around 4 s each.

5.2 Simulated example: results

Inspecting the LOOIC model comparison statistics in Table F.1 online supplementary material, we
see that the Weibull model has the lowest LOOIC for both ML-NMR and IPD NMA, and the
standard error of the difference suggests that the Weibull model is a substantially better fit than
either the Exponential or Gompertz models in both the ML-NMR and IPD NMA scenarios.
Comparing individual LOOIC contributions between the ML-NMR and IPD NMA models re-
veals that individual observations are fitted similarly well under each model (Figure F.2 online
supplementary material).

The estimated population-average survival curves on each treatment in each study population
under the Weibull model fitted using ML-NMR are shown in Figure 3, overlaid on the unadjusted
Kaplan—-Meier curves. Visually, the estimated survival curves are a good fit to the observed data.
Table 3 presents the estimated population-average conditional log hazard ratios (HRs) for each
pairwise comparison in each population, along with the true values from the simulation. The
ML-NMR estimates agree well with both the IPD NMA and the true values, and the B vs. A
and C vs. A estimates within the AB and AC study populations, respectively, are unchanged in
point estimate or standard error. Standard errors for comparisons not observed in the data are
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Table 3. Table of estimated population-average conditional log hazard ratios and 95% Credible Intervals from the
ML-NMR model and the full IPD NMA, alongside the true log hazard ratios, in the AB and AC study populations

Comparison
Study Method Bvs.A Cvs. A Cvs.B
AB Truth -1.62 -0.92 0.70
ML-NMR -1.53 —0.62 0.90
(-1.74, -1.30) (-1.19, —0.06) (0.28,1.52)
IPD NMA -1.54 —-0.67 0.87
(-1.76, —1.32) (-1.12, -0.23) (0.36,1.37)
AC Truth -2.07 -1.37 0.70
ML-NMR -2.20 -1.29 0.90
(-2.76, -1.63) (—1.54, -1.05) (0.28,1.52)
IPD NMA -2.17 -1.31 0.87
(=2.63, -1.70) (—1.54, -1.08) (0.36,1.37)

Note. ML-NMR = multilevel network meta-regression; IPD NMA = individual participant data network meta-analysis.

slightly increased (by 2%—6%) using ML-NMR compared to full IPD NMA, which is expected
due to the reduced information available.

Due to noncollapsibility, the standard indirect comparison, MAIC, and STC analyses cannot be
compared to the population-average conditional log hazard ratios in Table 3, as these methods can
only estimate marginal quantities. Instead, we compare the estimated restricted mean survival
times up until the end of follow up (#* = 1) on each treatment in each study population, which
have the same interpretation as a marginal quantity under each of the five models. The MAIC
had an approximate effective sample size of 5.4 (matching both means and variances for continu-
ous covariates; 6.8 matching means only), and bootstrapping to calculate standard errors and
credible intervals was highly unstable (45% of iterations failed). The results of the MAIC were
therefore considered unusable and are not presented here. Restricted mean survival time estimates
for the remaining four methods are displayed in Table 4. The results from the ML-NMR and IPD
NMA agree closely, with nearly identical posterior means and credible intervals; the estimates of
treatment B in the AC population and treatment C in the AB population are slightly more uncer-
tain from the ML-NMR model due to the reduced information available. The STC produces simi-
lar estimates to ML-NMR in the AC population, with a similar level of uncertainty. However, STC
cannot produce estimates for all treatments in the AB population, or any other target population
of interest to decision makers. Lastly, the standard indirect comparison produces estimates that
are clearly biased: differences in effect modifiers between the populations are not accounted for,
and so the difference in restricted mean survival time between treatments B and C is underesti-
mated in both populations.

Examining the parameters from the ML-NMR and IPD NMA models in Table F.2 online
supplementary material, we see that these agree closely with each other and recover the true par-
ameter values well.

6 Discussion

In this paper, we extended the ML-NMR framework to handle general likelihoods where the
aggregate-level likelihood may not have a closed form. This greatly expands the range of models
which can be fitted, including time-to-event outcomes which are common in technology appraisals
(Phillippo et al., 2019). As in Phillippo et al. (2020a), we began with a fully specified individual-
level model. However, instead of explicitly deriving the form of the aggregate likelihood via stand-
ard results on the sums of random variables, we proceeded by directly integrating the individual
conditional likelihood function over the covariate distribution to obtain the individual marginal
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Table 4. Table of estimated restricted mean survival times and 95% Credible Intervals on each treatment from the
ML-NMR model, full IPD NMA, STC, and standard indirect comparison, in the AB and AC study populations

Treatment
Study Method A B C
AB ML-NMR 0.13 0.54 0.27
(0.11, 0.16) (0.49, 0.58) (0.15, 0.43)
IPD NMA 0.13 0.54 0.28
(0.11, 0.16) (0.49, 0.58) (0.17, 0.42)
STC 0.13 0.54 —
(0.11, 0.16) (0.49, 0.58)
Standard IC 0.13 0.54 0.47
(0.11, 0.16) (0.49, 0.58) (0.39, 0.56)
AC ML-NMR 0.22 0.75 0.53
(0.20, 0.25) (0.63, 0.84) (0.49, 0.58)
IPD NMA 0.22 0.74 0.53
(0.20, 0.25) (0.63, 0.82) (0.49, 0.58)
STC 0.22 0.78 0.54
(0.20, 0.25) (0.67, 0.90) (0.49, 0.58)
Standard IC 0.23 0.59 0.54
(0.20, 0.25) (0.52, 0.66) (0.49, 0.58)

Note. ML-NMR=multilevel network meta-regression; IPD NMA= individual participant data network meta-analysis;
STC= simulated treatment comparison; [C= indirect comparison.

likelihood function. This is then used in one of two ways, depending on the data available, with
different levels of generality.

Firstly, when the aggregate data consist of individual outcomes but only summary covariate in-
formation (such as survival data reconstructed from Kaplan—Meier curves), the aggregate part of
the model is fitted directly using the individual marginal likelihood contributions. In this case, the
method is fully general: individual conditional likelihood functions of any form can be integrated
numerically to evaluate the individual marginal likelihood function.

Secondly, when the aggregate data consist of summary outcomes and summary covariate infor-
mation, the individual marginal likelihood contributions are multiplied together to obtain the ag-
gregate marginal likelihood contributions for the summary outcomes. Evaluation of the aggregate
marginal likelihood contributions requires that these can be expressed in terms of the summary
outcomes (as demonstrated in Appendix A online supplementary material), which is only straight-
forward for discrete outcomes. However, the aggregate-level likelihood has a known closed form
for many continuous individual-level likelihoods common in practice (Phillippo et al., 2020a).

Data at different levels of aggregation are encountered across a wide range of research areas, not
just in the healthcare decision-making context considered in this paper. The general approach that
we propose of directly integrating an individual-level likelihood to obtain an aggregate-level like-
lihood has, to our knowledge, not been considered before and is broadly applicable wherever data
at different levels of aggregation are encountered, allowing coherent modelling across the levels of
aggregation in a manner that avoids aggregation biases. Moreover, whilst we have used a Bayesian
framework here, these ideas might also be applied to frequentist likelihoods or partial likelihoods,
for example to estimate a frequentist multilevel Cox model; this is an interesting area for further
research.

We found close agreement between the results of ML-NMR and full IPD NMA in our simulated
example, which both successfully recovered the true values. Furthermore, the lack of IPD in the AC
study did not greatly reduce precision for ML-NMR compared to IPD NMA; the standard errors
of population-average log hazard ratios were the same for comparisons observed within each study
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population, and only slightly increased for the unobserved comparisons. The conclusions of the model
selection process were identical, in both cases correctly selecting the Weibull model. Nevertheless, this
scenario is only a single instance. A full simulation study could further validate the performance of
ML-NMR for survival analysis, and investigate the impact of invalid assumptions. However, we ex-
pect the conclusions of previous simulation studies on binary outcomes to apply broadly to ML-NMR
models of general forms, including survival analysis (Phillippo et al., 2020b).

The additional IPD available to IPD NMA does offer further possibilities for analysis. For ex-
ample, we required the shared effect modifier assumption in the simulated example to identify
the ML-NMR model. In the interests of a fair comparison between ML-NMR and IPD NMA,
both methods made use of this assumption in this analysis which was known to hold due to the
simulated setup. However, IPD NMA could relax this assumption and estimate separate effect
modifier interaction coefficients f, p and f, c. In this scenario, since we know that g, 3 =, ,
the standard errors for IPD NMA would have been inflated by the unnecessarily more flexible
model. The shared effect modifier assumption was also used in the newly diagnosed multiple mye-
loma example, again due to insufficient data to estimate separate treatment-covariate interactions
for thalidomide. In this case, the assumption may be reasonable, since lenalidomide and thalido-
mide both belong to the same class of treatments. However, when treatments are not in the same
class this assumption is likely to be much less plausible (Phillippo et al., 2016 ). Even when this
assumption does not hold, we still expect population-average estimates in the AgD study popula-
tion to be unbiased (Phillippo et al., 2020b). In larger treatment networks, it can be possible to
assess and relax the shared effect modifier assumption in ML-NMR (Phillippo et al., 2022).
When all studies across the network report relative effect estimates within subgroups, network
meta-interpolation has recently been proposed to combine these in a manner that relaxes the
shared effect modifier assumption (Harari et al., 2023). Ongoing work aims to utilize subgroup
results and regression estimates, where available from trial reports, to support the estimation of
ML-NMR models and reduce reliance on the shared effect modifier assumption in practical
applications.

When working with a noncollapsible treatment effect measure, such as hazard ratios or survival time
ratios for time-to-event outcomes (or odds ratios for binary outcomes), population-average conditional
treatment effects d,p) and population-average marginal treatment effects A (p)(2) are not equal and
have different interpretations (Daniel et al., 2021; Kahan et al., 2014). Most notably, the
population-average marginal treatment effects A, (p)(£) vary over time and depend on the distribution
of all prognostic factors, effect modifiers, and baseline hazard in population P. The population-average
conditional effects d,;py are constant over time and do not depend on the distribution of prognostic
factors or baseline hazard in population P. Moreover, different population adjustment methods target
different estimands. MAIC, and STC based on simulation or G-computation, can only produce mar-
ginal estimates. STC based on plugging in mean covariate values is biased for both estimands, and tar-
gets neither a conditional or marginal estimand correctly. Network meta-interpolation suffers similar
biases to plug-in means STC, targeting neither a conditional or marginal estimand correctly, and fur-
thermore cannot typically produce absolute estimates (e.g. survival curves or any derivative quantities)
which are often required in a decision-making setting. At present, ML-NMR is the only
population-adjustment method that can produce both conditional and marginal estimates, as well
as absolute estimates, depending on the requirements for decision-making.

Leahy and Walsh (2019) analysed the newly diagnosed multiple myeloma example using mul-
tiple MAIC analyses followed by Bayesian NMA. The inherent limitations of such types of ana-
lyses have been described previously (Phillippo et al., 2016). In particular, when there are
multiple AgD studies, a choice must first be made over which AgD study population to match
to. Then, combining the network of MAIC-adjusted studies and AgD studies in a NMA requires
an assumption of constancy of relative effects (i.e. that there are no effect modifiers in imbalance
between these different populations), which is precisely the assumption that a population-adjusted
analysis seeks to relax. Finally, the resulting estimates are only applicable in a population defined
as some weighted average of the included AgD study populations, which may not represent the
decision target population. The ML-NMR analysis addresses each of these issues: it coherently
combines evidence from the IPD and AgD studies, accounting for differences between the popu-
lations of each study including the AgD studies, and can produce estimates in any target popula-
tion for decision-making.
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In both examples that we considered, event/censoring times were available from each individual
in the aggregate studies, e.g. reconstructed from Kaplan—Meier plots (Guyot et al., 2012). If these
are not available but instead only conditional log hazard ratios are reported (or log survival time
ratios for accelerated failure time models), these may be synthesized directly using a Normal like-
lihood. For example, for the conditional log HR of treatment b vs. treatment a in study ; the like-
lihood would be N(i7,(x}) — n,(x7), s%ab), where sy, is the standard error of the log HR and 7 is
the vector of covariates at the reference levels used in study . Studies with three or more arms would
require the correlations between log HRs to be accounted for in the likelihood (Dias et al., 2011b).
The limitation of this approach is the reported log hazard ratios must be adjusted in the same man-
ner as the rest of the ML-NMR model. In theory, it should be possible to instead synthesize reported
marginal summary outcomes such as marginal median survival times or marginal (restricted) mean
survival times by application of Equations (13) and (14). This remains an area for further research.

We have only considered adjusting for covariates measured at baseline: time-varying covariates
were not considered since it is likely that, in the aggregate studies, summary covariate information
is available only available at baseline and not throughout follow-up. The inclusion of time-varying
covariates in a survival model is often an attempt to correct for observed nonproportionality (i.e.
failure of the proportional hazards or accelerated failure time assumption). However, such prob-
lems may be symptomatic of other issues such as omitted covariates, an incorrect functional form
for a covariate, or using an inappropriate model form (e.g. a proportional hazards model when an
accelerated failure time model would be more appropriate) (Therneau & Grambsch, 2000).
Notably, the solutions for these issues can be dealt with within the ML-NMR framework we
have described, without requiring further information on time-varying covariates. Indeed, in
the newly diagnosed multiple myeloma example, we found evidence for nonproportional hazards
in one study when fitting an unadjusted NMA, but adjusting for baseline covariates in the
ML-NMR analysis was sufficient to remove this.

Stratifying the baseline hazard by study is imperative for respecting randomization within stud-
ies, in the same way that we must stratify the intercepts by study in the linear predictor. In this
paper, we considered further stratifying the baseline hazard by treatment arm as a way to detect
nonproportionality. If nonproportionality is still present after covariate adjustment, however, the
model with baseline hazards stratified by study and treatment arm is of limited use for prediction
of absolute effects, since survival curves (and all the ensuing summaries) can only be produced for
treatments already observed in a population. Instead, the models considered here can be extended
to incorporate a regression model on the shape of the baseline hazard. This opens up a further rich
and flexible class of models, where departures from nonproportionality can be modelled and ab-
solute predictions can once again be made for any treatment in any population. Such models are
already implemented in the multinma R package (Phillippo, 2024).

For the newly diagnosed multiple myeloma example we used M-splines to flexibly model the
baseline hazard, which is the first time that such a model has been applied to network meta-
analysis of survival outcomes. We proposed a novel random walk prior distribution for the
inverse-softmax transformed spline coefficients, which controls the level of smoothing and avoids
overfitting through shrinkage. This may be applied to M-spline models in any context and has sev-
eral advantages over previous approaches. Brilleman et al. (2020) used a Dirichlet prior directly on
the spline coefficients, but this does not induce any smoothing or shrinkage and requires careful
selection of the number and position of the knots. Jackson (2023) used a random effect on the
inverse-softmax transformed spline coefficients, centred around a constant baseline hazard, aim-
ing to induce shrinkage and avoid overfitting; however, we found that in practice this did not
achieve sufficient shrinkage, with the model complexity and ‘wiggliness’ continuing to increase
as the number of knots increased, leading to overfitting. Our random walk prior distribution
does induce sufficient shrinkage to avoid overfitting, as demonstrated in the example, allowing
the analyst to simply choose a ‘large enough’ number of knots and have the model shrink to an
appropriate complexity based on the data. Li and Cao (2022) proposed Bayesian P-splines using
a weighted (zero mean) random walk to allow for unevenly-spaced knots and make the prior in-
variant to knot positioning; we further normalized the knots to also make the prior invariant to the
number of knots and timescale. This greatly simplifies specification of a hyperprior for the random
walk standard deviation, since this no longer depends on the number of knots or the timescale, and
ensures that unevenly-spaced knots do not affect smoothing or shrinkage behaviour.
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Extending the ML-NMR framework to general likelihoods greatly increases the applicability of
this approach, including to the very common scenario of population adjustment for survival out-
comes. The Stan code that we have developed and provided in the supplementary materials is
modular, and all that is required to fit a range of alternative models in the ML-NMR framework
is to specify the form of the survival and hazard functions for the individual-level model. Once
these have been specified, the numerical integration step to obtain the individual marginal likeli-
hood remains the same, and is automatically implemented in the Stan code. Whilst not described
here, it is also straightforward to account for left censoring, interval censoring, and left truncation
(delayed entry) in this framework in the standard manner by considering the appropriate contri-
butions from the survival function (e.g. as summarized by Brilleman et al., 2020), and all of these
are implemented in the multinma R package (Phillippo, 2024). The multinma R package provides
a user-friendly interface to implementing ML-NMR, AgD NMA, and IPD NMA models for a wide
range of data types, supporting the uptake of these methods by analysts in practical applications.

Conflicts of interest: None declared.

Funding

This work was supported by the UK Medical Research Council, under grant numbers MR/
P015298/1, MR/R025223/1, and MR/W016648/1.

Data availability

Analysis code and data are available from https:/github.com/dmphillippo/ML-NMR-general-
likelihoods-paper.

Supplementary material

Supplementary material is available online at Journal of the Royal Statistical Society: Series A.

References

Berlin J. A., Santanna J., Schmid C. H., Szczech L. A., & Feldman H. 1. (2002). Individual patient- versus group-
level data meta-regressions for the investigation of treatment effect modifiers: Ecological bias rears its ugly
head. Statistics in Medicine, 21(3), 371-387. https://doi.org/10.1002/sim.1023

Brilleman S. L., Elci E. M., Novik J. B., & Wolfe R. (2020). ‘Bayesian survival analysis using the rstanarm R pack-
age’, arxiv, arxiv:2002.09633, preprint: not peer reviewed. https:/doi.org/10.48550/arXiv.2002.09633

Bucher H. C., Guyatt G. H., Griffith L. E., & Walter S. D. (1997). The results of direct and indirect treatment
comparisons in meta-analysis of randomized controlled trials. Journal of Clinical Epidemiology, 50(6),
683-691. https:/doi.org/10.1016/50895-4356(97)00049-8

CaroJ. J., & Ishak K. J. (2010). No head-to-head trial? Simulate the missing arms. PharmacoEconomics, 28(10),
957-967. https://doi.org/10.2165/11537420-000000000-00000

Carpenter B., Gelman A., Hoffman M. D., Lee D., Goodrich B., Betancourt M., Brubaker M., Guo J., Li P., &
Riddell A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1),
1-32. https://doi.org/10.18637/jss.v076.i101

Daniel R., Zhang J., & Farewell D. (2021). Making apples from oranges: Comparing noncollapsible effect esti-
mators and their standard errors after adjustment for different covariate sets. Biometrical Journal, 63(3),
528-557.ISSN 1521-4036. https:/doi.org/10.1002/bimj.v63.3

Dias S., Sutton A. J., Welton N. J., & Ades A. E. (2011a). NICE DSU technical support document 3:
Heterogeneity: Subgroups, meta-regression, bias and bias-adjustment (Technical Report). National
Institute for Health and Care Excellence. http:/www.nicedsu.org.uk

Dias S., Welton N. J., Sutton A. J., & Ades A. E. (2011b). NICE DSU technical support document 2: A generalised
linear modelling framework for pair-wise and network meta-analysis of randomised controlled trials
(Technical Report). National Institute for Health and Care Excellence. http:/www.nicedsu.org.uk

Dias S., Welton N. J., Sutton A. J., Caldwell D. M., Lu G., & Ades A. E. (2011c). NICE DSU technical support
document 4: Inconsistency in networks of evidence based on randomised controlled trials (Technical Report).
National Institute for Health and Care Excellence. http:/www.nicedsu.org.uk.

Donegan S., Williamson P., D’Alessandro U., Garner P., & Smith C. T. (2013). Combining individual patient data
and aggregate data in mixed treatment comparison meta-analysis: Individual patient data may be beneficial if
only for a subset of trials. Statistics in Medicine, 32(6), 914-930. https:/doi.org/10.1002/sim.5584

G20z 1890190 67 U0 1sanb Aq //950£8/69 LIeub/esssil/ea01° 0L /10p/a|o1ie-a0ueApe/esssiljwoo dno-olwepese//:sdiy woll papeojumod


https://github.com/dmphillippo/ML-NMR-general-likelihoods-paper
https://github.com/dmphillippo/ML-NMR-general-likelihoods-paper
http://academic.oup.com/jrsssa/article-lookup/doi/10.1093/jrsssa/qnaf169#supplementary-data
https://doi.org/10.1002/sim.1023
https://doi.org/10.48550/arXiv.2002.09633
https://doi.org/10.1016/S0895-4356(97)00049-8
https://doi.org/10.2165/11537420-000000000-00000
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1002/bimj.v63.3
http://www.nicedsu.org.uk
http://www.nicedsu.org.uk
http://www.nicedsu.org.uk
https://doi.org/10.1002/sim.5584

J R Stat Soc Series A: Statistics in Society, 2025, Vol. XX, No. XX 19

Gelman A., Carlin J. B., Stern H. S., Dunson D. B., Vehtari A., & Rubin D. B. (2013). Bayesian data analysis. 3rd
ed.). Chapman & Hall/CRC Texts in Statistical Science. (CRC Press. ISBN 9781439898208.

Guyot P., Ades A. E., Ouwens M. J. N. M., & Welton N. J. (2012). Enhanced secondary analysis of survival data:
Reconstructing the data from published Kaplan-Meier survival curves. BMC Medical Research Methodology,
12(1), article number 9. https:/doi.org/10.1186/1471-2288-12-9

Harari O., Soltanifar M., Cappelleri J. C., Verhoek A., Ouwens M., Daly C., & Heeg B. (2023). Network meta-
interpolation: Effect modification adjustment in network meta-analysis using subgroup analyses. Research
Synthesis Methods, 14(2), 211-233. ISSN 1759-2887. https:/doi.org/10.1002/jrsm.1608

Higgins J. P. T., & Whitehead A. (1996). Borrowing strength from external trials in a meta-analysis. Statistics in
Medicine, 15(24), 2733-2749. https:/doi.org/10.1002/(ISSN)1097-0258

HTA Coordination Group (2024). Practical guideline for quantitative evidence synthesis: Direct and indirect
comparisons (Technical Report). European Commission. https:/health.ec.europa.eu/publications/practical-
guideline-quantitative-evidence-synthesis-direct-and-indirect-comparisons_en.

Ishak K. J., Proskorovsky L., & Benedict A. (2015). Simulation and matching-based approaches for indirect com-
parison of treatments. PharmacoEconomics, 33(6), 537-549. https:/doi.org/10.1007/s40273-015-0271-1

Jackson C. (2023). survextrap: A package for flexible and transparent survival extrapolation. BMC Medical Research
Methodology, 23(1), article number 282. ISSN 1471-2288. https:/doi.org/10.1186/s12874-023-02094-1

Jackson C. H. (2016). flexsurv: A platform for parametric survival modeling in R. Journal of Statistical Software,
70(8), 1-33. https://doi.org/10.18637/jss.v070.i08

Jackson D., Rhodes K., & Ouwens M. (2020). Alternative weighting schemes when performing matching-adjusted
indirect comparisons. Research Synthesis Methods, 12(3), 333-346. https:/doi.org/10.1002/jrsm.1466

Kahan B. C., Jairath V., Doré C. J., & Morris T. P. (2014). The risks and rewards of covariate adjustment in
randomized trials: An assessment of 12 outcomes from 8 studies. Trials, 15(1), article number 139. https:/
doi.org/10.1186/1745-6215-15-139

Lambert P. C., Sutton A. J., Abrams K. R., & Jones D. R. (2002). A comparison of summary patient-level cova-
riates in meta-regression with individual patient data meta-analysis. Journal of Clinical Epidemiology, 55(1),
86-94. https://doi.org/10.1016/S0895-4356(01)00414-0

Leahy J., & Walsh C. (2019). Assessing the impact of a matching-adjusted indirect comparison in a Bayesian net-
work meta-analysis. Research Synthesis Methods, 10(4), 546-568. https:/doi.org/10.1002/jrsm.1372

LiZ.,& Cao].(2022). ‘General p-splines for non-uniform b-splines’, arxiv, arxiv:2201.06808, preprint: not peer
reviewed. https:/doi.org/10.48550/arXiv.2201.06808

Lu G. B., & Ades A. E. (2004). Combination of direct and indirect evidence in mixed treatment comparisons.
Statistics in Medicine, 23(20), 3105-3124. https:/doi.org/10.1002/sim.1875

National Institute for Health and Care Excellence (2024). TA1013: Quizartinib for induction, consolidation and
maintenance treatment of newly diagnosed FLT3-ITD-positive acute myeloid leukaemia. Committee papers,
National Institute for Health and Care Excellence, https:/www.nice.org.uk/guidance/tal013/.

Owen A. B. (2013). Monte Carlo theory, methods and examples. https://artowen.su.domains/mc/.

Phillippo D. M. (2019). Calibration of Treatment Effects in Network Meta-Analysis using Individual Patient
Data [PhD thesis]. University of Bristol. https:/research-information.bris.ac.uk/.

Phillippo D. M. (2024). multinma: Network Meta-Analysis of Individual and Aggregate Data in Stan. https://
cran.r-project.org/package=multinma. R package.

Phillippo D. M., Ades A. E., Dias S., Palmer S., Abrams K. R., & Welton N. ]J. (2016). NICE DSU technical sup-
port document 18: Methods for population-adjusted indirect comparisons in submission to NICE (Technical
Report). National Institute for Health and Care Excellence. http:/www.nicedsu.org.uk.

Phillippo D. M., Ades A. E., Dias S., Palmer S., Abrams K. R., & Welton N. J. (2018). Methods for
population-adjusted indirect comparisons in health technology appraisal. Medical Decision Making, 38(2),
200-211. https:/doi.org/10.1177/0272989X17725740

Phillippo D. M., Dias S., Ades A. E., Belger M., Brnabic A., Saure D., Schymura Y., & Welton N. J. (2022).
Validating the assumptions of population adjustment: Application of multilevel network meta-regression
to a network of treatments for plaque psoriasis. Medical Decision Making, 43(1), 53-67. https:/doi.org/
10.1177/0272989X221117162

Phillippo D. M., Dias S., Ades A. E., Belger M., Brnabic A., Schacht A., Saure D., Kadziola Z., & Welton N. J.
(2020a). Multilevel network meta-regression for population-adjusted treatment comparisons. Journal of the
Royal Statistical Society: Series A (Statistics in Society), 183(3), 1189-1210. https://doi.org/10.1111/rssa. 12579

Phillippo D. M., Dias S., Ades A. E., & Welton N. J. (2020b). Assessing the performance of population adjust-
ment methods for anchored indirect comparisons: A simulation study. Statistics in Medicine, 39(30),
4885-4911. https://doi.org/10.1002/sim.8759

Phillippo D. M., Dias S., Ades A. E., & Welton N. J. (2020c). Equivalence of entropy balancing and the method of
moments for matching-adjusted indirect comparison. Research Synthesis Methods, 11(4), 568-572. https://
doi.org/10.1002/jrsm.1416

G20z 1890190 67 U0 1sanb Aq //950£8/69 LIeub/esssil/ea01° 0L /10p/a|o1ie-a0ueApe/esssiljwoo dno-olwepese//:sdiy woll papeojumod


https://doi.org/10.1186/1471-2288-12-9
https://doi.org/10.1002/jrsm.1608
https://doi.org/10.1002/(ISSN)1097-0258
https://health.ec.europa.eu/publications/practical-guideline-quantitative-evidence-synthesis-direct-and-indirect-comparisons_en
https://health.ec.europa.eu/publications/practical-guideline-quantitative-evidence-synthesis-direct-and-indirect-comparisons_en
https://doi.org/10.1007/s40273-015-0271-1
https://doi.org/10.1186/s12874-023-02094-1
https://doi.org/10.18637/jss.v070.i08
https://doi.org/10.1002/jrsm.1466
https://doi.org/10.1186/1745-6215-15-139
https://doi.org/10.1186/1745-6215-15-139
https://doi.org/10.1016/S0895-4356(01)00414-0
https://doi.org/10.1002/jrsm.1372
https://doi.org/10.48550/arXiv.2201.06808
https://doi.org/10.1002/sim.1875
https://www.nice.org.uk/guidance/ta1013/
https://artowen.su.domains/mc/
https://research-information.bris.ac.uk/
https://cran.r-project.org/package=multinma
https://cran.r-project.org/package=multinma
http://www.nicedsu.org.uk
https://doi.org/10.1177/0272989X17725740
https://doi.org/10.1177/0272989X221117162
https://doi.org/10.1177/0272989X221117162
https://doi.org/10.1111/rssa.12579
https://doi.org/10.1002/sim.8759
https://doi.org/10.1002/jrsm.1416
https://doi.org/10.1002/jrsm.1416

20 Phillippo et al.

Phillippo D. M., Dias S., Ades A. E., & Welton N. J. (2021). Target estimands for efficient decision making:
Response to comments on “assessing the performance of population adjustment methods for anchored indir-
ect comparisons: A simulation study”. Statistics in Medicine, 40(11), 2759-2763. https:/doi.org/10.1002/
sim.8965

Phillippo D. M., Dias S., Elsada A., Ades A. E., & Welton N. J. (2019). Population adjustment methods for in-
direct comparisons: A review of national institute for health and care excellence technology appraisals.
International Journal of Technology Assessment in Health Care, 35(03), 221-228. https:/doi.org/10.1017/
50266462319000333

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. https:/www.R-project.org/.

Remiro-Azocar A., Heath A., & Baio G. (2021). Conflating marginal and conditional treatment effects:
Comments on “assessing the performance of population adjustment methods for anchored indirect compar-
isons: A simulation study”. Statistics in Medicine, 40(11), 2753-2758. https:/doi.org/10.1002/sim.8857

Remiro-Azocar A., Heath A., & Baio G. (2022). Parametric g-computation for compatible indirect treatment
comparisons with limited individual patient data. Research Synthesis Methods, 13(6), 716-744. https:/doi.
org/10.1002/jrsm.1565

Ren S., Ren S., Welton N. J., & Strong M. (2024). Advancing unanchored simulated treatment comparisons: A
novel implementation and simulation study. Research Synthesis Methods, 15(4), 657-670. 1SSN 1759-2887.
https:/doi.org/10.1002/jrsm.1718

Riley R. D., Lambert P. C., & Abo-Zaid G. (2010). Meta-analysis of individual participant data: Rationale, con-
duct, and reporting. British Medical Journal, 340(feb05 1), ¢221. https:/doi.org/10.1136/bmj.c221

Saramago P., Sutton A. J., Cooper N. J., & Manca A. (2012). Mixed treatment comparisons using aggregate and
individual participant level data. Statistics in Medicine, 31(28),3516-3536. https:/doi.org/10.1002/sim.5442

Signorovitch J. E., Wu E. Q., Yu A. P., Gerrits C. M., Kantor E., Bao Y. J., Gupta S. R., & Mulani P. M. (2010).
Comparative effectiveness without head-to-head trials a method for matching-adjusted indirect comparisons
applied to psoriasis treatment with adalimumab or etanercept. PharmacoEconomics, 28(10), 935-945.
https:/doi.org/10.2165/11538370-000000000-00000

Spiegelhalter D. J., Best N. G., Carlin B. P., & van der Linde A. (2002). Bayesian measures of model complexity
and fit. Journal of the Royal Statistical Society: Series B, Statistical Methodology, 64(4), 583-639. https:/doi.
org/10.1111/1467-9868.00353

Stan Development Team (2023). Stan Language Reference Manual, https:/mc-stan.org/users/documentation/

Sutton A. J., Kendrick D., & Coupland C. A. C. (2008). Meta-analysis of individual- and aggregate-level data.
Statistics in Medicine, 27(5), 651-669. https:/doi.org/10.1002/sim.2916

Therneau T. M., & Grambsch P. M. (2000). Modeling survival data: Extending the Cox model. Statistics for biol-
ogy and health. Springer-Verlag. ISBN 0387987843.

Vehtari A., Gelman A., & Gabry J. (2016). Practical Bayesian model evaluation using leave-one-out cross-
validation and WAIC. Statistics and Computing, 27(5), 1413-1432. https:/doi.org/10.1007/s11222-016-
9696-4

Vehtari A., Gelman A., Simpson D., Carpenter B., & Biirkner P.-C. (2020). Rank-normalization, folding, and lo-
calization: An improved R for assessing convergence of MCMC. Bayesian Analysis, 16(2), 667-718. https://
doi.org/10.1214/20-ba1221

Zhang L., Bujkiewicz S., & Jackson D. (2024). Four alternative methodologies for simulated treatment compari-
son: How could the use of simulation be re-invigorated? Research Synthesis Methods, 15(2), 227-241. ISSN
1759-2887. https://doi.org/10.1002/jrsm.1681

G20z 1890190 67 U0 1sanb Aq //950£8/69 LIeub/esssil/ea01° 0L /10p/a|o1ie-a0ueApe/esssiljwoo dno-olwepese//:sdiy woll papeojumod


https://doi.org/10.1002/sim.8965
https://doi.org/10.1002/sim.8965
https://doi.org/10.1017/S0266462319000333
https://doi.org/10.1017/S0266462319000333
https://www.R-project.org/
https://doi.org/10.1002/sim.8857
https://doi.org/10.1002/jrsm.1565
https://doi.org/10.1002/jrsm.1565
https://doi.org/10.1002/jrsm.1718
https://doi.org/10.1136/bmj.c221
https://doi.org/10.1002/sim.5442
https://doi.org/10.2165/11538370-000000000-00000
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1111/1467-9868.00353
https://mc-stan.org/users/documentation/
https://doi.org/10.1002/sim.2916
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1214/20-ba1221
https://doi.org/10.1214/20-ba1221
https://doi.org/10.1002/jrsm.1681

	Multilevel network meta-regression for general likelihoods: synthesis of individual and aggregate data with applications to survival analysis
	Conflicts of interest
	References


