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Abstract
Efficient functioning of the prokaryotic translational system depends on a steady supply
of aminoacylated tRNAs to be delivered to translating ribosomes via ternary complex. As
such, tRNA synthetases play a crucial role in maintaining efficient and accurate transla-
tion in the cell, as they are responsible for aminoacylating the correct amino acid to its
corresponding tRNA. Moreover, the kinetic rate at which they perform this reaction will
dictate the overall rate of supply of aminoacylated tRNAs to the ribosome and will have
consequences for the average translational speed of ribosomes in the cell. In this work,
I develop an empirical kinetic model for the 20 aminoacyl tRNA synthetase enzymes
in E. coli enabling the study of the effects of tRNA charging dynamics on translational
efficiency. The model is parametrised based on in vitro experimental measurements of
substrate Km and kcat values for both pyrophosphate exchange and aminoacylation. The
model also reproduces the burst kinetics observed in class I enzymes and the transfer
rates measured in single turnover experiments. Stochastic simulation of in vivo transla-
tion shows the kinetic model is able to support the tRNA charging demand resulting from
translation in exponentially growing E. coli cells at a variety of different doubling times.
This work provides a basis for the theoretical study of the amino acid starvation and the
stringent response, as well as the complex behaviour of tRNA charging and translational
dynamics in response to cellular stresses.

Author summary
Elucidating the complex interplay between tRNA charging by aminoacyl tRNA syn-
thetases and the overall ribosomal demand for tRNAs will have important consequences
for understanding the effects of amino acid starvation and the stringent response. Here
I introduce an empirical kinetic model of the 20 E. coli tRNA synthetases and examine
tRNA charging dynamics during exponential growth. The results show that the model is
in good agreement with a variety of experimental observations, such as tRNA charging
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fractions, average translational speed of the ribosome, and measured total cellular tRNA
abundances.

Introduction
Understanding the functioning of the translational machinery in bacteria has the potential to
impact a wide variety of fields in microbiology, such as understanding the effects of antibiotics
which target ribosomes or aminoacyl tRNA synthetases, or in the development of efficient cell
free protein synthesis systems. A key aspect of the protein translational apparatus of all cells
is the aminoacylation of tRNAs, where amino acids are covalently linked to tRNAs for subse-
quent delivery to translating ribosomes. This action, sometimes referred to as tRNA charging,
is performed via one of the 20 aminoacyl tRNA synthetases which are responsible for ensur-
ing accuracy in the translation of the genetic code by covalently linking the correct amino
acid to the correct tRNA. However, in order to theoretically and computationally study how
tRNA synthetases affect the translational process, the creation of a model of tRNA charging by
tRNA synthetases is required.

Since roughly the mid 1960’s, there has been tremendous work on elucidating the kinetic
mechanism of tRNA charging by aminoacyl tRNA synthetases (AARS). Pioneering experi-
mental work on AARSs started with the examination of their pyrophosphate exchange kinet-
ics [1]. Using radio labelled pyrophosphate, researchers monitored the conversion of radioac-
tive pyrophosphate into radioactive ATP by AARSs which could be isolated using thin-layer
chromatography. Later work began to look at both pyrophosphate exchange kinetics and
the overall aminoacylation reaction by radio labelling the amino acid and monitoring the
production of radioactive aa-tRNAs [2]. These experiments started to provide data on the
kinetic behaviour of different AARSs, specifically the kcat and Km values of the three differ-
ent substrates (amino acid, ATP, and tRNA) along with details of the overall steady-state
kinetics. Subsequent kinetic experiments examined the behaviour of several AARSs under
single-turnover conditions (i.e. where enzyme is in excess over tRNA), allowing estimations
of the kinetic rates of amino acid transfer to the tRNA (ktran) and of the overall chemistry
step (kchem), which is a composite rate that includes the formation of amino acid adenylate
complex along with the transfer step and formation of aminoacylated tRNA [3].

This work, together with structural data of AARSs in complex with various substrates, has
allowed a fairly descriptive picture to emerge of the kinetic steps which take place on these
enzymes and a classification into two main classes based on their observed kinetic properties
[4,5]. Class I AARSs are mostly monomeric and usually display burst kinetics of aminoacyl
tRNA (aa-tRNA) formation, while Class II AARSs are dimers and display no burst kinetics.
Here burst kinetics describes a property of the enzyme in which there is an initial burst of
aa-tRNA production at a rate greater then the kcat of the enzyme followed by the steady state
aa-tRNA production rate. Table A in S1 Text summarises the classes for each of the AARS
enzymes in E. Coli.

While experimental measurements of AARS enzymes have had sufficient time to develop
over the last 50-60 years, there has been limited attempts to computationally model, or repro-
duce empirically, the experimental observations of AARS kinetics. Airas [6,7] used experi-
mental observations of tRNA charging kinetics for class I argRS and ileRS to estimate a set
of best fit kinetic parameters for a theoretical model. However, it is unclear if these models
reproduce burst kinetics for these enzymes. On the other hand, Santra and Bagchi [8] pro-
vide ODE models of tRNA charging kinetics for both class I and class II AARS enzymes where
their kinetic models are able to demonstrate burst and non-burst kinetics. In this work, the
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authors consider product release as the rate limiting step in a model of Class I cysRS kinet-
ics, which reproduced the burst kinetics reported in Zhang et al. [9]. For class II enzymes,
they introduce an amino acid activation pathway in the presence of tRNA which was much
slower than the activation in the absence of tRNA [8]. This resulted in steady state kinetics
that displayed no pre-steady state burst. However, despite the success of their model in repro-
ducing burst kinetics, it is unclear if their models would accurately reproduce experimentally
observed Km measurements for the substrates.

More recently, Choi and Covert have attempted to develop a Michaelis–Menten model for
all 20 E. coli aminoacyl tRNA synthetases [10]. Their model is developed based on a review
of the experimental literature of in vitro kcat and Km measurements, which have been subse-
quently optimised to support the translation speed required to double the E. coli proteome in
a model of the E. coli cell cycle [11]. While such a model should potentially reproduce experi-
mentally observed Km measurements for the substrates, it ignores subtle features of the AARS
enzymes such as burst kinetics.

The goal of this work is to develop an empirical kinetic model, similar to the models of
Airas and/or Santra and Bagchi, which details the individual kinetic steps of aminoacylation
reaction whilst also reproducing burst kinetics and experimentally observed Km measure-
ments for the substrates. The development of an empirical model of AARS kinetics can be
useful for several reasons. First, in a bacterial cell such as E. coli, several important questions
remain regarding tRNA charging and turnover by AARSs during ribosome elongation on
messenger RNA (mRNA). One such question relates to the effect on tRNA charging during
amino acid starvation and the activation of the stringent response. Work by Elf et al. exam-
ined a simple model of tRNA charging competition between different tRNA isoacceptors after
amino acid starvation [12,13]. However, a more detailed model that also accounts for Km val-
ues of amino acid can also look at, for example, regimes just at the threshold of starvation,
where there may also be subtle effects on the charging levels of tRNAs [13].

The paper is outlined as follows. First, I create an empirical kinetic model for all 20
aminoacyl tRNA synthetases of E. coli which recapitulate their observed kinetic properties
in vitro. Here, the observed kinetic properties are their kcat, Km, and single turnover rates
ktran and kchem. Second, using these models combined with proteomics data for E. coli grow-
ing under controlled chemostat conditions in the exponential phase, I demonstrate that the
observed in vitro kinetic rates (kcat and Km) are roughly in line with the kcat values that would
be required to supply charged tRNAs to elongating ribosomes in vivo, with a few enzymes
requiring a small adjustment (by a factor of 2 on average) to their kcat. This is in contrast
to the recent model of Choi and Covert [10] where the Authors report that the majority of
enzymes require, on average, a 7-fold increase in their kcat values to support observed in vivo
charging rates. Finally, I discuss some of the issues in creating a Michaelis–Menten model
of tRNA synthetases, and compare my results with the recent model reported by Choi and
Covert [10].

Methods
Aminoacyl tRNA synthetase kinetic model construction
Development of an empirical model of AARS kinetics requires two main steps; first a descrip-
tion of the individual kinetic steps involved in the charging of tRNAs with amino acids, and
second, a method for fitting the kinetic rates such that the experimentally observed kinetic
properties of the enzyme are reproduced by the model. Amino acid charging of tRNAs by
aminoacyl tRNA synthetases occurs via a two step mechanism consisting of amino acid acti-
vation (Eq 1) and amino acid transfer (Eq 2), as described below. It is critically important to
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note that both of these steps are catalytic events and hence each have their own kcat and Km
values for the reactions. In the first step, amino acid and ATP bind to the enzyme, forming an
amino acid adenylate (AMP-aa), followed by release of pyrophosphate (activation) [4,5]. The
amino acid adenylate reaction can occur with or without tRNA present on the enzyme, except
in the three class I enzymes argRS, gluRS and glnRS, which specifically require tRNA to be
present for activation to occur [4]. In the second step, the amino acid is transferred from the
adenylate to the tRNA to form the charged aa-tRNA (transfer) [4,5]. While the basic reaction
scheme of the two-step process is described by Eqs. 1 and 2, this does not form a complete
kinetic picture of the individual reactions (binding of ATP, dissociation of pyrophosphate
etc.) which occur, nor the kinetic order of these events.

E +ATP + aa → E ⋅AMP – aa + PPi (1)
E ⋅AMP – aa + tRNA → E + aa – tRNA +AMP (2)

In the next sections I give details on the individual kinetic steps that I consider in my
model for both monomeric class I, dimeric class I, and dimeric class II AARS enzymes. In
addition, I discuss the mathematical procedures used to calculate observed kinetic proper-
ties of the enzyme, (i.e. kcat, Km, kchem, ktran), and describe the general steps used to iden-
tify kinetic parameters for the model. Additional discussion of more technical informa-
tion regarding the search of the multi-dimensional kinetic parameter space can be found in
S1 Text.

Kinetic reaction scheme for monomeric class I tRNA synthetases. For the monomeric
class I aminoacyl tRNA synthetases (cysRS, argRS, valRS, ileRS, leuRS, glnRS, and gluRS), I
use the reaction scheme depicted in Fig 1a to model the full aminoacylation reaction. I also
model the class I dimers tyrRS and trpRS using this scheme since tyrRS was shown to have
half of sites activity [14,15] while trpRS was shown to bind tRNA asymmetrically across the
dimer interface [16]. This asymmetric binding of tRNA in tyrRS implies that only one site
of the dimer can be active at a time and thus essentially functions as a monomeric unit. The
labelled states Si with i∈ [0, 15] represent different states of the AARS enzyme, with S0 rep-
resenting the AARS enzyme free of all substrates. Specific details on each state of the enzyme,
along with the labelled kinetic rates, are given by Fig C in S1 Text. All of the labelled kinetic
rates in the diagram have both a forward and a backward rate (e.g. k2f and k2b), and I label dis-
sociation constants for substrate binding reactions as K2d = k2b/k2f. Only the general kinetic
binding and chemical reaction steps are considered, and any conformational changes of the
enzyme itself are ignored in the kinetic reaction scheme. Any editing reactions where the
enzyme checks for mis-charged tRNAs are also not considered in this kinetic model.

While the reaction scheme may seem overly complicated, the following examples illustrate
why all of these steps are required in order for the model to reproduce Km values across both
pyrophosphate exchange and aminoacylation experiments. Previous work on a detailed exper-
imental analysis of isoleucine tRNA synthetase kinetics from S. aureus by Pope and colleagues
[18] has shown that in the presence of tRNA, amino acid, and ATP, all three substrates bind
to the enzyme in a random order before undergoing adenylate formation and aa-tRNA for-
mation. As such, I have allowed the random binding of these substrates to occur and have also
allowed adenylate to form with or without tRNA present (except for argRS, gluRS, and glnRS).
If the kinetic steps of the model are simplified to consider an ordered binding of tRNA, amino
acid, and ATP to the enzyme, then the predicted Km for tRNA in the aminoacylation reac-
tion is often drastically lower (usually by a factor of 10 or more) than what is measured exper-
imentally. However, if a random binding of the three substrates is considered, as shown in
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Fig 1. Kinetic reaction scheme for class I and class II tRNA synthetases. (A) Detailed map of the reaction pathway for monomeric class I AARS enzymes. The states of
the enzyme Si are given in the legend on the right with abbreviations E = AARS enzyme, T = ATP, M = AMP, P = PPi, D = AA Adenylate, R = tRNA, and R* = AA-tRNA
denoting the charged tRNA. For example, state S0 corresponds to the enzyme free of all substrates while S5 corresponds to the enzyme with bound amino acid adenylate.
The two main catalytic events, activation of the amino acid to form amino acid adenylate plus pyrophosphate (activation), and transfer of the amino acid from the adeny-
late to the tRNA (transfer) are labelled. Red arrows denote reaction steps where a substrate associates to the enzyme. (B) The reaction pathway for class I dimer metRS
and class II AARS enzymes follows the kinetic flip-flop mechanism reported in Guth et al. [17]. Here, the same kinetic steps in site 1 of the dimer occur as in the class
I enzymes followed by a subsequent activation event in site 2 while charged aa-tRNA in site 1 remains bound. After activation in site 2, aa-tRNA is released from site 1.
States with substrate bound in the first and second site are separated by a slash, e.g. state S15 with charged tRNA in the first site and AA is bound to the second catalytic
site is denoted as ER*/A.

https://doi.org/10.1371/journal.pcbi.1013353.g001
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Fig 1A, then the predicted Km for tRNA can be easily parameterised to be within the range of
Km values measured experimentally, demonstrating the importance of having the full reac-
tion scheme shown in Fig 1. Additionally, when tRNA is bound to the enzyme, I have also
allowed for pyrophosphate release to occur either before or after transfer of the amino acid to
the tRNA (path S10→ S11→ S13 vs. path S10→ S12→ S13). Without this dual pathway, Kms for
ATP and amino acid in the aminoacylation reaction are often drastically lower than what is
measured experimentally. This same problem was also noticed by Pope and colleagues when
constructing a kinetic model of ileRS from S. aureus [18] which caused them to propose a
similar mechanism of amino acid transfer prior to pyrophosphate release. Moreover, several
other experimentalists have postulated that pyrophosphate may stay bound during the amino
acid transfer step in some AARSs [19]. Finally, the reaction path S14→ S15→ S0 in which
ATP binds to the enzyme prior to the release of the aa-tRNA product ensures that the AARS
enzyme is not kinetically inhibited in the presence of cellular concentrations of AMP (esti-
mated 125-250 𝜇M [20]) and/or pyrophosphate (estimated 250-500 𝜇M [21,22]). As ATP is
at a higher concentration than AMP in the cell (9 mM [20]), this path allows for ATP binding
to compete with AMP and drive release of charged tRNA.

Kinetic reaction scheme for dimeric class II tRNA synthetases. For the dimeric class II
AARS enzymes (serRS, thrRS, proRS, hisRS, aspRS, asnRS, lysRS, alaRS, glyRS and pheRS),
as well as the dimeric class I metRS, I use the reaction scheme depicted in Fig 1A and 1B
to model the aminoacylation reaction. Here, I assume that the dimeric enzymes follow the
flip-flop kinetic model as described in Guth et al. [17] for hisRS. The flip-flop kinetic model
assumes amino acid adenylate is formed and transferred to a tRNA at site 1 of the enzyme fol-
lowing the kinetic steps of a class I enzyme (Fig 1A). Afterwards, the charged tRNA remains
bound to site 1 while an additional amino acid adenylate is formed at site 2 as shown in
Fig 1B. Subsequently, the charged tRNA is released from site 1 while an uncharged tRNA
is recruited to site 2. I allow the charged tRNA at site 1 to be released after activation of the
amino acid at site 2, regardless of whether tRNA is bound at site 2.

Identification of kinetic parameters for the model. For the reaction scheme of class
I AARS in Fig 1A, there are 48 kinetic parameters that must be chosen, with the goal that
the resulting kinetics predicted by the model (specifically the Km and kcat for the enzymes
substrates) match experimental observations. At first, the prospect of identifying a set of 48
parameters which will reproduce experimental values of Km and kcat seems impossible, even
with experimental input. However, the complexity of fitting the parameters can be drasti-
cally reduced if one performs the fitting in three separate stages and allows some parame-
ters, such as the rate of formation of the adenylate in the presence or absence or tRNA, to be
identical with each other. Moreover, tRNA, amino acid, and ATP have usually had their dis-
sociation constants (Kd) to AARS enzymes measured, which allows for further complexity
reductions.

The specific idea that I propose to use to identify the kinetic parameters has two parts.
The first is to exploit the fact that experimentalists perform three separate assays to eluci-
date the kinetic properties of AARSs; (1) the pyrophosphate exchange assay, (2) the single
turnover kinetics assay, and (3) the aminoacylation assay. While the aminoacylation assay
examines the entire process (and thus depends on all 48 kinetic parameters), the pyrophos-
phate exchange and single turnover kinetics only examine a subsection of the reaction scheme
and thus only depend on a subset of the kinetic parameters. Fig 2A illustrates the kinetic
scheme for the pyrophosphate exchange (12 kinetic parameters), while Fig 2B shows the
scheme for the single turnover assay measuring the transfer rate ktran (8 kinetic parameters).
Thus, by fitting first the single turnover reaction, followed by the pyrophosphate exchange,
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Fig 2. Computer simulation of pyrophosphate exchange and single turnover kinetics. (A) Reaction scheme used to simulate pyrophosphate exchange kinetics and, (B)
reaction scheme used to simulate single turnover kinetics involving the transfer step. State notation follows that of Fig 1. (C) Example Woolf-Hanes plot and the resulting
values of Katp

m and kcat from a computer simulation of pyrophosphate exchange for E. coli cysRS. (D) Example plot from a computer simulation of single turnover kinetics
for E. coli cysRS. Black squares represent data points from the computer simulation while the red curve gives the best fit exponential y(t) = A(1 – exp(–ktrant)) to the
data.

https://doi.org/10.1371/journal.pcbi.1013353.g002

one can slowly constrain parameters resulting in a smaller number to be varied in the final fit-
ting of the aminoacylation assay. The second part relies on the observation that only a few of
the kinetic parameters have an effect on the Km or kcat of the enzyme. For example, while the
pyrophosphate exchange assay depends on 12 kinetic parameters, it can be shown through
systematic variation of pairs of parameters that only 4 have a major effect on Km or kcat (see
Fig B in S1 Text). While this implies that one can have a free choice for the other parame-
ters, this is not how the fitting is done. Instead, the remaining parameters that have little or no
effect on Km or kcat are chosen based on experimental measurements of dissociation constants
(see S1 Spreadsheet which lists Kd measurements for each enzyme).

In many cases, the substrate parameters (either Kd or kon and koff) have been determined
for a number of AARSs by e.g. fluorescence quenching [23] or pre-steady state kinetic mea-
surements [24]. Kinetic parameters from these experimental measurements have been used in
the models where available. For example, Bovee et al. [24] report a kon and koff for threonine
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binding to thrRS:ATP of 0.024 𝜇M–1s–1 and 3.2 s–1, respectively. I found that direct use of
these kinetic parameters results in a good correspondence between the model and experimen-
tal steady state values of Kaa

m for both pyrophosphate exchange and aminoacylation. Parame-
ters with limited or no experimental data are varied following the algorithm in S1 Text until
the kinetic properties of the enzyme predicted by the model (kcat, Km for each substrate, and
ktrans, kchem) match target values. These target values are typically the average of experimental
data measurements, with outliers removed. The result is a set of parameters that reproduce the
observed Km and kcat values for the enzyme, as well as any other kinetic behaviours, such as
burst kinetics for the class I enzymes.

Calculation of kcat and Km in the kinetic model. As discussed above, there are three
different experimental assays which examine different aspects of AARS kinetics. The first,
pyrophosphate exchange, involves introducing radio labelled pyrophosphate to a mixture of
ATP, amino acid, and enzyme with the reaction occurring according to the scheme shown in
Fig 2A. ATP is then isolated by thin layer chromatography and its specific activity measured.
Thus, this assay indirectly measures the rate of activation of the amino acid by measurement
of the reverse process, i.e. the conversion of radioactive pyrophosphate and adenylate back
to radioactive ATP and amino acid. The assay measures kcat and Km for both ATP and amino
acid by fixing the concentration of one at saturating conditions then varying the concentra-
tion of the other. Cole and Schimmel [25] showed that the concentration of radioactive ATP
(denoted ATP*) can be written as

d[ATP∗]
dt

=V [PP∗][PP] –V [ATP∗][ATP] , (3)

where V is the speed of the pyrophosphate exchange reaction. At t = 0 the amount of radioac-
tive ATP is zero, and one obtains the relation for the initial speed of the conversion reaction
as

d[ATP∗]
dt

∣
t=0
=V [PP∗][PP] ∣t=0 =Vs(0) , (4)

where s(t) is the specific activity of the pyrophosphate. Thus, one can directly simulate using
either a stochastic or ODE based model the reaction scheme for pyrophosphate exchange
using initial conditions matching experimental protocol. These initial conditions are usu-
ally [PP] = 2 mM, [ATP] = 5 mM, [AA] = 0.5 – 1 mM, with initial enzyme concentration
[E] = 1– 10 nM with a specific activity of s = 0.02. Varying either the initial ATP, PP, or amino
acid concentrations while keeping the remaining substrates fixed, I simulate the pyrophos-
phate exchange scheme (Fig 2A) using the stochastic Gillespie algorithm. For each concen-
tration of the varying substrate, the reaction kinetics are simulated 10 times, and the average
and standard deviation of the initial reaction velocity V is computed. I then plot the velocity
and concentration data using a Woolf-Hanes plot, which plots substrate concentration over
the velocity versus substrate concentration. Linear regression is used to produce the best fit
line (y =mx+ b) and the slope of this line ism = 1/kcat while the line intercept is b =Km/kcat.
Fig 2C shows an example of a Km and kcat calculation resulting from a computer simulation of
pyrophosphate exchange for E. coli cysRS. The procedure is automated such that a parameter
search can be employed by calling a function that returns kcat and Km and their standard error
given initial substrate concentrations and a set of kinetic parameters. A near identical proce-
dure can be done for the aminoacylation reaction schemes (Fig 1) where the production rate
of aa-tRNA is monitored. Typical initial concentrations for the aminoacylation reactions are
[ATP] = 5 mM, [AA] = 0.5 – 1 mM, [tRNA] = 10 𝜇M, and [E] = 1 – 10 nM.
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For the single turnover kinetics assay, the computer simulation and experiment measure-
ments are slightly different. Here, the assay first pre-forms enzyme bound with adenylate
(state S5 in Figs 1 and 2B) and then isolates this enzyme complex. The adenylate contains a
radio-labelled amino acid which will subsequently be transferred to a tRNA.The assay then
proceeds with measuring this transfer rate under single turnover conditions, i.e. where con-
centration of the enzyme bound with radioactive adenylate is roughly 10x greater then the
concentration of tRNA. Charged tRNAs are isolated at varying time points using thin-layer
chromatography and the data are fit to the exponential function,

y(t) =A(1 – exp(–Bt)) , (5)

with B = ktran. In order to compare the model with this experiment, I simulate the tRNA
charging reaction using the reaction scheme in Fig 2B and typical concentrations used in
experiments ([tRNA] = 5 𝜇M, and [E ∶Ad] = 50 𝜇M). The formation of aa-tRNA as a function
of time is output, and the results are fit to Eq 5. A similar single turnover assay which mixes
ATP, amino acid, tRNA and enzyme simultaneously with enzyme 10x tRNA concentration
can be used to measure the overall chemistry step kchem. The inverse of kchem approximates the
average time required for the enzyme to bind all substrates, activate an amino acid, and trans-
fer the amino acid to tRNA. Most single turnover assays observe that kchem ≈ ktran suggest-
ing that binding of substrate and activation of the amino acid is fast compared with the final
transfer step. Thus, kchem can be used to confirm that the kinetic rates for substrate binding
and amino acid activation in the model are sufficiently fast.

Computational simulations of in vivo translation and tRNA charging
Previously I developed a stochastic model of in vivo prokaryotic translation which takes
into account protein synthesis on the full transcriptome present in an E. coli cell [26,27].
For example, in a typical E. coli cell which has a doubling time of 𝜏 = 60 min, the model
accounts for the protein synthesis occurring by roughly 15000 ribosomes on a transcrip-
tome of roughly 2 million nucleotides of mRNA. In addition, the model also accounts for
competition between mRNAs for available ribosomes as well as the competition for the
A-site on the ribosome between different tRNA isoacceptors. Finally, since the translational
model [26] takes into account each of the known individual kinetic steps in the translation
process, the resulting elongation rate of the ribosomes emerges as a result of the codon bias
in the mRNA and the concentration of tRNAs in ternary complex. Thus my model is capa-
ble of predicting the resulting change to the ribosome elongation rate that would result from
any alteration to tRNA charging rates. The base code used in this work can be downloaded
from Github at github.com/edykeman/ribofold and kinetic parameters used for the ribosome
elongation steps can be found in [26]. Predictions of tRNA charging kinetics by AARS
enzymes are incorporated into the stochastic ribosome model from [26] using the kinetic
scheme in Fig 1. The individual kinetic parameters used in the model can be found in
Tables B, C, and D in S1 Text. The translational model can also be run using a simplified
Michaelis–Menten model for aminoacylation kinetics. Parameters used for the kcat and
Km values are listed in Table I in S1 Text, with the optimized tRNA numbers for use with
the Michaelis–Menten model given in Table J in S1 Text. Software used in the simula-
tions can be downloaded from http://www-users.york.ac.uk/~ecd502/ or from Github at
edykeman/ribosome-aars.
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Construction of E. coli transcriptome
To construct the transcriptome for the stochastic model of translation, I have used mRNA-
seq measurements from Li et al. [28] which give experimental measurements of the overall
average numbers of individual mRNAs (in RPKM units) in the transcriptome. This infor-
mation can be used to back construct a snapshot of the average transcriptome that would
be observed in exponentially growing E. coli cells. To do this, I normalise the RPKM values
(nR(i)) for each mRNA type i, i.e.

x(i) = nR(i)∑j nR(j) , (6)

where the sum is over all mRNAs in the RNA-seq data. Then, I calculate the total number of
mRNAs of each type via

n(i) = 𝛼x(i) , (7)

where 𝛼 is a constant. The value 𝛼 is chosen such that the total nucleotide content of the tran-
scriptome approximately reproduces what has been estimated by Bremer and Dennis [29]
for E. coli cells growing exponentially at growth rates of 𝜇 = 0.41, 0.69, 1.04, and 1.73 h–1, i.e.
doubling times 𝜏 = 100, 60, 40, and 21 min. As a check, I calculate the codon bias in the pre-
dicted transcriptome and compare with the codon usage that was measured by a separate
experiment reported in Dong et al. [30]. Tab C in S1 Spreadsheet shows that there is excellent
agreement between the codon usage in the transcriptome versus what was measured in Dong
et al.

Construction of violin plots
Consider a set of nmeasurements yi with i∈ [1,n], each with an associated measurement
error 𝜎i. Using this data set, I construct a violin plot p(y) with p(y)∈ [0, 1] via

p(y) = 1
A

n∑
i
exp(–(y – yi)2

2𝜎2
i
) , (8)

where the constant A is chosen such that

A =

n∑
i

√
2𝜋𝜎i

1 = ∫
∞

–∞ p(y)dy . (9)

The function p(y) can thus be considered as a probability density, where input of a par-
ticular value y gives an estimate of the probability that an experiment would measure this
value. In the case of the proteomics data points, where no error value 𝜎 is usually given, I use
a default 20% error value for the measurement.

Results
Empirical kinetic model of E. coli tRNA synthetases
I begin by discussing the kinetic models that have been constructed using the procedure
in Methods for class I cysRS and class II hisRS enzymes from E. Coli. Cysteine tRNA syn-
thetase is a monomeric class I enzyme which displays burst kinetics, while hisRS is a class II

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013353 August 12, 2025 10/ 30

https://doi.org/10.1371/journal.pcbi.1013353


ID: pcbi.1013353 — 2025/8/14 — page 11 — #11

PLOS COMPUTATIONAL BIOLOGY Empirical model of aminoacylation kinetics

enzyme which displays no burst kinetics in the pre-steady state. The kinetic properties of both
enzymes (kcat,Km and kchem, ktran from single turnover assays) have been extensively measured
in vitro by several different groups.

Table 1 gives the in vitromeasurements of kcat and Km values for E. coli cysRS. Using this
data, consensus Km and kcat values for the pyrophosphate exchange and aminoacylation assays
can be estimated and, using the procedure outlined in Methods, a set of kinetic parameters
which reasonably reproduce these values can be determined. Specifically for pyrophosphate
exchange, the kinetic model gives values of Kaa

m = 27𝜇M, Katp
m = 279𝜇M, and kcat = 85 s–1.

Similarly for aminoacylation, the kinetic model gives values of Kaa
m = 16𝜇M, Ktrna

m = 1.05𝜇M,
and kcat = 2.96 s–1. Comparing with experiment, one can see that these values are within the
range of those that have been measured experimentally (Fig 3A). Moreover, the identified
parameters and kinetic model for cysRS reproduces the observed burst kinetics (Fig 3B) as
well as the observed ktran and kchem values in simulations of single turnover kinetics (Fig 3C
and 3D).

As with cysRS, Table 2 gives the in vitromeasurements of kcat and Km values for E. coli
hisRS. In this case, my fitting procedure (see Methods and S1 Text) has identified kinetic
parameters for the kinetic model which, for pyrophosphate exchange, give values of Kaa

m =

37𝜇M, Katp
m = 498𝜇M, and kcat = 130 s–1. Similarly for aminoacylation, the kinetic model gives

values of Kaa
m = 7.7𝜇M, Ktrna

m = 0.44𝜇M, and kcat = 7.2 s–1. As with cysRS, one can see that
these values are within the range of those that have been measured experimentally for hisRS
(Fig 4A). In addition, the identified parameters and kinetic model for hisRS results in no burst
of charged his-tRNAhis (Fig 4B) as well as the observed ktran and kchem values in simulations of
single turnover kinetics (Fig 4C and 4D).

As with cysRS and hisRS, I have also parametrised the remaining 18 tRNA synthetases
from E. coli by identifying a set of kinetic parameters that reproduce experimental measure-
ments for kcat and Km. Kinetic rates for each of the enzymes can be found in Tables B, C,

Table 1. In vitro measurements of E. coli cysRS Km and 𝐤cat values. The experimental measurements for three
separate kinetic assays are reported for the Class I cysRS aminoacyl-tRNA synthetase enzyme. PMID denotes
the PubMed ID for the reference source of the data. Abbreviations are, PP = pyrophosphate exchange, AA =
aminoacylation, ST = single turnover transfer, and SC = single turnover overall chemistry. Units for 𝐤cat are in
s–1 and Km are in 𝝁M.
PMID Reaction Substrate kcat Km (kcat/Km) Kch/Ktr Temp Date
12662918 PP ATP 91± 40 290± 60 0.3138 37 2003
12974627 PP ATP 142± 1.2 250± 2 0.5600 37 2003
30642164 PP ATP 95± 4 271± 13 0.3506 37 2019
12662918 PP CYS 79± 45 22± 11 3.5909 37 2003
12974627 PP CYS 99.6± 7.8 31± 7 3.2129 37 2003
30642164 PP CYS 88± 7 27± 3 3.2593 37 2019
14679218 AA ATP 4.4± 0.34 338± 60 0.0130 30 2004
14679218 AA CYS 4.8± 0.41 7.2± 1.0 0.6667 30 2004
16843487 AA CYS 2.9± 0.1 22± 5 0.1318 37 2006
16843487 AA tRNA 2.5± 0.06 1.2± 0.01 2.0833 37 2006
14679218 AA tRNA 2.9± 0.17 0.64± 0.09 4.5313 30 2004
12662918 AA tRNA 0.9± 0.03 0.35± 0.01 2.5714 37 2003
12974627 AA tRNA 2.46± 0.06 1.16± 0.01 2.1207 37 2003
30642164 AA tRNA 2.9± 0.4 1.4± 0.2 2.0714 37 2019
15489861 AA tRNA 2.46± 0.06 1.16± 0.01 2.1207 37 2004
10860750 AA tRNA 3.47± 0.12 1.54± 0.09 2.2532 37 2000
16843487 ST 14.9± 0.6 37 2006
16843487 SC 15.2± 0.5 37 2006

https://doi.org/10.1371/journal.pcbi.1013353.t001
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Fig 3. Kinetic model of class I cysRS tRNA charging. (A) Range of kcat and Km values determined by in vitro pyrophosphate and aminoacylation assays (black dots) are
compared with the values of the kinetic model (green triangles). (B) Pre-steady state kinetics simulation with starting concentrations of [cys] = 500𝜇M, [ATP] = 5 mM
and [tRNA] = 10𝜇M and [E] = 0.25𝜇M show an initial burst of cys-tRNA charging followed by a slower steady state recapitulating what was observed experimentally in
Ref. [9]. (C) Single turnover simulation of the transfer rate (ktran) and (D) of the overall chemistry step (kchem) show excellent agreement with experimentally observed
values in Ref. [9].

https://doi.org/10.1371/journal.pcbi.1013353.g003

and D in S1 Text, while information on the experimental kcat and Km measurements and the
models fit to them can be found in S1 Spreadsheet.

Optimization and validation of kinetic AARS models
Comparison of in vivo AARS activity with in vitro kcat measurements. An important

and critical question now arises regarding the kcat and Km values that have been measured
experimentally in vitro for the aminoacyl tRNA synthetases. Specifically, are these in vitro
measured kcat and Km values sufficient to support the tRNA charging rates observed in vivo
in a typical exponentially growing E. coli cell. This question is complicated to answer for a
number of reasons. First, bacterial cells undergoing exponential growth will have a cell cycle
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Table 2. In vitro measurements of E. coli hisRS Km and 𝐤cat values. The experimental measurements for three
separate kinetic assays are reported for the Class II hisRS aminoacyl-tRNA synthetase enzyme. PMID denotes
the PubMed ID for the reference source of the data. Abbreviations are, PP = pyrophosphate exchange, AA =
aminoacylation, ST = single turnover transfer, and SC = single turnover overall chemistry. Units for 𝐤cat are in
s–1 and Km are in 𝝁M. nd/ns = not determined/stated.
PMID Reaction Substrate kcat Km (kcat/Km) Kch/Ktr Temp Date
9266856 PP ATP 34± 3 560± 20 0.0607 37 1997
4591623 PP ATP nd 320 nd ns 1974
30642164 PP ATP 145± 37 763± 49 0.1900 37 2019
15751955 PP ATP 130± 5 890± 64 0.1461 37 2005
11329259 PP ATP 203± 5 675± 78 0.3007 37 2001
9131996 PP ATP 120± 4 890± 64 0.1348 37 1997
4591623 PP HIS nd 100 nd ns 1974
30642164 PP HIS 120± 23 32± 4 3.7500 37 2019
15751955 PP HIS 130± 5 30± 5 4.3333 37 2005
11329259 PP HIS 133± 2 35.4± 4 3.7571 37 2001
9131996 PP HIS 142± 5 30± 5 4.7333 37 1997
9266856 AA HIS 7± 2 8± 2 0.8750 37 1997
4591623 AA HIS nd 6 nd ns 1974
30642164 AA tRNA 3.4± 0.5 0.7± 0.2 4.8571 37 2019
15751955 AA tRNA 3.14 0.34 9.1176 37 2005
11329259 AA tRNA 1.71± 0.06 0.34± 0.05 5.0294 37 2001
9131996 AA tRNA 2.6± 0.4 1.4± 0.6 1.8571 37 1997
15751955 ST 18.8± 2.5 37 2005

https://doi.org/10.1371/journal.pcbi.1013353.t002

in which the number of proteins and ribosomes in the cell is increasing up until the point of
cell division, after which the cellular contents are partitioned between the two daughter cells.
Second, given a sample of cells growing at an average rate 𝜇 h–1 in a medium, the distribu-
tion of cells in the medium will be at different stages of the cell cycle, hence the cells will have
different volumes as well as different numbers of ribosomes and proteins present. Finally,
although the average growth rate of cells in the medium is 𝜇, it is not clear that all cells in the
medium will have this growth rate. Estimation of the average tRNA turnover by an AARS
enzyme per cell is directly dependent on the growth rate (which determines tRNA/amino acid
usage) and the number of AARS enzymes in the cell. Use of single cell proteomics measure-
ments [31], which have been noted to contain a high amount of variation in protein num-
bers between cells, may present difficulties in determining the relation between the number
of AARS proteins and the cellular growth rate.

Works by Bremer and Dennis as well as other colleagues in the field have shown that
the macro-molecular composition of an E. coli cell growing exponentially in culture can
be straightforwardly described by simple mathematical relations for the average cell in the
medium [29]. Here I take a similar point of view and use, for instance, the amino acid usage
rate that would occur on average in a exponentially growing culture of E. coli cells at an aver-
age growth rate of 𝜇 h–1. Similarly, I calculate the average number of AARS enzymes that
would be present and thus obtain the average tRNA turnover per enzyme. In order to deter-
mine the in vivo AARS activity from this point of view, one would require estimates of; (1)
the average usage rate per second of each tRNA isoacceptor or alternatively the total rate of
incorporation of each amino acid (ai, i∈ [1, 20]) into protein by ribosomes in the cell, (2) the
average number of aminoacyl tRNA synthetases (ni) in the cell, (3) the average number of
tRNAs in the cell, and (4) the average volume of the cell. The amino acid usage and number
of each AARS in the cell can be used to estimate the enzyme activity (ri), i.e. the rate of tRNA
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Fig 4. Kinetic model of class II hisRS tRNA charging. (A) Range of kcat and Km values determined by in vitro pyrophosphate and aminoacylation assays (black dots)
are compared with the values of the kinetic model (green triangles). (B) Pre-steady state kinetics simulation with starting concentrations of [his] = 500𝜇M, [ATP] = 5
mM and [tRNA] = 10𝜇M and [E] = 0.25𝜇M show no burst of his-tRNA charging as observed experimentally in [17]. (C) Single turnover simulation of the transfer rate
(ktran) and (D) of the overall chemistry step (kchem) show excellent agreement with experimentally observed values in Ref. [17].

https://doi.org/10.1371/journal.pcbi.1013353.g004

turnover, for a single enzyme in vivo,

ri =
ai
ni

. (10)

The volume and number of tRNAs on the other hand can be used to determine if the
resulting concentration of free uncharged tRNAs is sufficient to achieve a velocity (vi) from
the enzyme that is greater than or equal to the tRNA charging rate, vi ≥ ri.

To estimate the number of each tRNA synthetase ni, I have used 12 measurements of
recent proteomics data across five different experimental groups [28,32–35]. These data points
measure average protein abundances in exponentially growing E. coli across a variety of
growth rates (𝜇 = 0.41 to 𝜇 = 1.98 h–1) where the elongation rates of ribosomes are estimated
to vary between 12-22 aa/sec [29,36]. It is important to note that the amino acid and tRNA
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isoacceptor usages are directly related to ribosome elongation rates, which are in turn depen-
dent on the relative concentration of tRNA isoacceptors in ternary complex. Moreover, it has
been observed that slower growing bacteria can undergo an immediate increase in protein
synthesis following nutrient a up-shift [37] (see discussion in Sects 3 and 4 in S1 Text). Thus,
I assume that the AARS numbers present in the cell are able to support the maximal ribosome
elongation rate possible following a nutrient up-shift.

Fig 5 shows the 12 proteomics data points from [28,32–35] for cysRS and hisRS turnover
numbers, which shows a striking amount of variation between experimental groups. The cor-
responding violin plots have been computed using Eq 8, and the peak can thus be thought of
as the most likely value to be observed in an experiment based on the data points and their
errors. This analysis provides the ability to pin-point a “consensus” value for the turnover rate
as the peak in the violin plot. The red line corresponds to the turnover value that has been
used to calculate the number of enzymes via Eq 10 and for the subsequent optimization of kcat
values in the next section. Similar plots for the remaining 18 AARS enzymes can be found in
Fig F and Fig G in S1 Text.

Finally, Fig 6 shows a comparison of the in vivo activity of AARS enzymes (i.e. their calcu-
lated turnover rates) with experimental in vitromeasurements of the their kcat values. Black
bars indicate the range of in vivo activity based on the 12 proteomics data measurements
while red bars indicate the range of kcat measurements. In general, there is some level of over-
lap between the range of in vivo turnover rates and in vitro kcat measurements for 14 of the
enzymes, while 6 (specifically valRS, ileRS, serRS, proRS, thrRS, and alaRS) have measured
kcat ranges below their expected in vivo turnover rates based on the proteomics data. This sug-
gests that some of the experimental kcat measurements will require a shift upwards in order
for the enzyme to support the observed in vivo turnover rates.

Optimized kcat, Km, and tRNA numbers are in reasonable agreement with in vitromea-
surements. We now come to the general problem of reconciling differences between in vitro
measured aminoacylation kcat values and the observed turnover rates of the enzymes in vivo.
We must have the situation that the kcat values for the AARS enzymes are strictly greater than

Fig 5. Average tRNA turnover rates in vivo for CysRS and HisRS. (A) Violin plot of the average tRNA turnover
rates for (A) cysRS and (B) hisRS computed using the 12 proteomics measurements. Red line corresponds to the
consensus turnover rate used for computing average enzyme numbers for use in translation simulations.

https://doi.org/10.1371/journal.pcbi.1013353.g005
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Fig 6. Comparison between in vivo activity verses in vitro kcat measurements in class I and II aminoacyl tRNA synthetases. Black lines with error bars indicate the
range of in vivo activity for each AARS enzyme determined from proteomics data, while black triangles give the turnover rate used to calculate the number or enzymes
for computational simulations. Red lines with error bars correspond to the range of experimental in vitro kcat measurements. Red triangles represent the optimized kcat
values which are able to support maximum ribosome elongation rate that would be possible following a nutrient up-shift. Data for (A) class I tRNA synthetases and (B)
class II tRNA synthetases.

https://doi.org/10.1371/journal.pcbi.1013353.g006

the in vivo turnover rates (kcat > r). Based on the data in Fig 6, it is clear that several of the
AARS enzymes will require an adjustment to their kcat in order for the enzyme to support the
observed in vivo turnover rate. To make the adjustments, I follow the procedure outlined in
Sect 7 in S1 Text. Essentially, this procedure attempts to minimise the discrepancy between
computational simulations of in vivo translation and tRNA aminoacylation and several exper-
imental observations. These observations are; the average numbers of each tRNA in the cell,
proteomics data on the average number of AARS enzymes, and the percentages of charged
tRNA in the cell. See S1 Text for full discussion of the optimization procedure.

The optimized kcat values for all 20 AARS enzymes are shown as red triangles in Fig 6, with
the optimised turnover rates shown as black triangles. Optimized turnover rates can be con-
verted to enzyme numbers using Eq 10. Fig 6, along with Fig F and Fig G in S1 Text, reveal
that all of the optimized turnover numbers are within the range of experimental proteomics
measurements. Moreover, the optimized kcat values in Fig 6 show that 8 of the AARS enzymes
(specifically cysRS, trpRS, metRS, argRS, gluRS, tyrRS, aspRS, and lysRS) have optimized
kcat values within the range of experimental in vitromeasurements. The remaining 12 AARS
enzymes have optimized kcat values which are above the range of in vitromeasurements, devi-
ating on average by a factor of 2.08 from the highest measured value. Specific deviation fac-
tors are; (valRS - 1.65), (ileRS - 2.32), (leuRS - 1.16), (glnRS - 1.23), (serRS - 2.48), (thrRS
- 2.74), (proRS - 3.72), (hisRS - 1.31), (asnRS - 2.07), (alaRS - 6.6), and (pheRS - 1.37). The
class I tRNA synthetases have the smallest deviations, while the class II synthetases have the
largest, with alaRS and proRS deviating by more than a factor of 3. Some of this deviation
maybe explained from macromolecular crowding effects in the cell. Recently Weilandt and
Hatzimanikatis have shown that macromolecular crowding can result in an effective increase
in kcat by a factor of up to 1.6 [38], which suggests that the small deviations in kcat for hisRS,
valRS, glnRS, and leuRS can be potentially explained by this effect. The larger deviations that
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are observed in, for instance alaRS, suggests that either the in vitro kcat measurements and/or
the proteomics measurement of the enzyme abundance in the cell need to be revisited.

The optimized Km values for both amino acid and tRNA as substrate are shown in Fig 7.
Experimental Km measurements are depicted as violin plots (black lines), with the peak in
the violin plot being the most likely value to be observed in an experiment based on the data
points and their errors. All of the optimized Km values, shown as green triangles, fit within the

Fig 7. Experimental in vitro Km measurements in class I and class II aminoacyl-tRNA synthetases. Violin plots of the experimental in vitro Km measurements are
given as black lines. Green triangles represent the optimized Km values used in translation simulations. (A) Ktrna

m values for tRNA as substrate in the aminoacylation
reaction for class I enzymes and (B) class II enzymes. (C) Kaa

m values for amino acid as substrate in the aminoacylation reaction for class I enzymes and (D) class II
enzymes.

https://doi.org/10.1371/journal.pcbi.1013353.g007
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ranges of the experimental in vitromeasurements. Table I in S1 Text summarises the kinetic
parameters for each of the enzymes.

Finally, Table G in S1 Text compares the total number of each tRNA isoacceptor used in
the model with experimental measurements from Dong et al. [30] for E. coli cells growing
at 𝜇 = 0.41 h–1 (doubling time of 𝜏 = 100 min). The average absolute error from the values in
Dong et al. at this growth rate is 0.3, with the majority of the error coming from only a few
tRNAs, specifically metM, his, gln1, gln2, arg3, lys, asn, pro3, and phe. However, when exam-
ining the model fit to different growth rates (see Tab H in S2 Spreadsheet S2), one sees that
there is sometimes better agreement between the model and the measurements. Taking the
minimal absolute error for each tRNA over all growth rates one finds that the error is only
0.18 on average, with the largest errors coming from tRNAs lys, asn, pro3, and phe. Table J
in S1 Text gives the optimal tRNA numbers for growth rates of 𝜇 = 0.41, 0.69, 0.98 and 1.73
which are used in the full model.

Simulations of in vivo tRNA charging kinetics. With optimized kcat and Km values for
the AARS enzymes identified, it now remains to validate that the tRNA charging kinetics of
the enzymes can support the translation and tRNA turnover rates observed in vivo. I have
Incorporated the kinetic reaction scheme for class I and II enzymes (Fig 1) into my stochastic
model of translation [26,27] using the kinetic parameters in Tables B, C, and D in S1 Text. The
values of kcat and Km that result from these parameters are shown in Table I in S1 Text. The
stochastic model of in vivo translational kinetics of E. coli in Refs. [26,27] is capable of sim-
ulating up to 60k ribosomes on 10k mRNAs and takes into account all known biochemical
steps in the translation process. A few examples of features included in the model are; Ef-Tu
recharging by Ef-Ts where Ef-Ts binds to Ef-Tu to increase the exchange rate of GDP for GTP,
competition between tRNAs for the A-site, stalling between ribosomes on the same mRNA,
and initiation, recycling, and termination events on the mRNAs.

Fig 8 shows the charging kinetics of tRNAcys and tRNAhis from a simulation of transla-
tion in vivo at a growth rate of 𝜇 = 0.69 h–1 with a doubling time of 𝜏 = 60 min. At this growth
rate, there are roughly 15000 ribosomes and the total nucleotide content in the cell from the
mRNA transcriptome is roughly 2×106 nucleotides [29]. To insure that the AARS kinetics can
support a nutrient up-shift, I simulate translation post nutrient up-shift by using experimental
estimates for amino acid concentrations that would be found for a minimal media supple-
mented with amino acids (see Table H in S1 Text). The simulation of translational dynam-
ics takes part in two stages. The first stage is a constrained initiation of the system, where
all tRNAs in the system are charged and mRNAs are slowly added to the system (pre-steady
state). This constrained initiation is biologically artificial and is to ensure that the charging
demand of the 20 AARS enzymes do not exceed their maximal capacity during initiation
of the simulation. After 40 seconds, all mRNAs have been added and the simulation now
corresponds to the translational demand that should be observed in exponentially growing
E. coli with a doubling time of 𝜏 = 60 min (steady state). As can be seen in Fig 8, the dynam-
ics of cysRS and hisRS with optimized kcat values of 2.9 and 9.2 s–1, respectively, are sufficient
to support ribosome translation at the maximal average elongation rate of 18.6 aa/sec, which
occurs at this growth rate post nutrient up-shift. The remaining 18 AARS enzymes, with their
kcat values given in Table I in S1 Text, have also been verified to support translational dynam-
ics at these elongation speeds. Finally, all 20 AARS enzymes have been found to support a
maximal average elongation speed of 19.1 aa/sec at the highest growth rate used in this study
of 𝜇 = 1.73 h–1, and are stable for over 30 min of simulation time.

Interestingly, as illustrated in Fig 8C and 8D, a substantial portion of the tRNA remains
bound to AARS enzymes in the steady state. When averaged over all the tRNAs, roughly
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Fig 8. Computational Simulations of tRNA Charging and Translation in vivo. (A) The kinetics of tRNAcys charging by cysRS during translation. (B) The kinetics of
tRNAhis charging by hisRS during translation. (C) The movement of tRNA during the translation cycle. Uncharged tRNAs (black) are charged by AARS enzymes (blue)
and released as aa-tRNA (red). The aa-tRNA then binds to EfTu:GTP to form ternary complex (green) which is recruited to the ribosome. Ribosomes (purple) incorpo-
rate the amino acid into the peptide chain releasing EfTu:GDP and uncharged tRNAs. (D) Partitioning of the total amount of tRNA in the cell. Percentage of total tRNA
as free uncharged tRNAs (black), free charged tRNAs (red), free tRNAs in ternary complex (green), and tRNA bound to either ribosomes (purple) or AARS enzymes
(blue) is shown as a pie chart at a growth rate of 𝜇 = 0.69 (𝜏 = 60 min).

https://doi.org/10.1371/journal.pcbi.1013353.g008

16.2% of the total tRNA in the cell is bound to AARS enzymes either as charged or uncharged
tRNAs. This, as we will see in the next section, has important implications for the use of the
Michaelis–Menten equation when modelling AARS kinetics.

Effect of intracellular amino acid concentration on translational speed and tRNA
charging. It should be noted that I have parametrised the AARS enzyme kcat and Km values
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to ensure that they can support the fastest translational speeds that would occur after a nutri-
ent up-shift in exponentially growing E. coli cells. For instance, I calculate the average transla-
tional speed of ribosomes in cells with a doubling time of 𝜏 = 100 min post nutrient up-shift
is roughly 18.0 aa/sec for all mRNAs and 16.2 aa/sec for the LacZ mRNA.These values are
quite similar to the average translational speeds of 19.1 and 17.3 aa/sec that I calculate over
all mRNAs or the LacZ mRNA at one of the fastest growth rates (doubling time of 24 min),
where nutrients are presumed to be plentiful. However, in minimal media with no supple-
mented amino acids, the average translational speed of the ribosome over all mRNAs have
been experimentally estimated to be roughly 15 aa/sec by Bremer and Dennis at a doubling
time of 100 min [29]. Dai et al. on the other hand measure the average translational speed of
ribosomes on the LacZ mRNA and find values of roughly 12 aa/sec at a cell doubling time of
100 min [36].

To test if my model is capable of recapitulating these lower average ribosome speeds in
nutrient poor conditions, I have calculated the average translational speed of ribosomes at
the growth rate of 𝜇 = 0.41 h–1 in minimal media without supplemented amino acids. Since E.
Coli is capable of synthesising all 20 amino acids, the lack of supplied amino acids must pre-
sumably result in lower intracellular concentrations of at least some of the 20 amino acids.
Experimental measurements of intracellular amino acid concentrations by Bennett et al.
[20], as well as Avcilar-Kucukgoze et al. [39], suggest that the amino acids tryptophan, tyro-
sine, phenylalanine, and serine may be close to the Kaa

M values for their enzymes in minimal
media conditions. Using the intracellular amino acid concentrations given in Table H in S1
Text, I simulate translation at the growth rate of 𝜇 = 0.41 h–1 and find that the average trans-
lational speed of ribosomes are 13.3 aa/sec averaged over all mRNAs and 12.5 aa/sec averaged
over only the LacZ mRNA. Both of these theoretical calculations are in good agreement with
measurements from Dai et al. [36].

Finally, I compare the fraction of charged tRNAs predicted by the model and compare with
the observations from several experiments [39–42]. For tRNAs with more then one isoaccep-
tor, the averages for each are combined and weighted by the number of each tRNA isoaccep-
tor in the model. As can be seen in Fig 9, there is very good agreement with the experimen-
tal observations, with only tRNAile, tRNAhis, tRNAasp, and tRNAasn being outside the range
of experimental measurements. Moreover, the results show that the majority of tRNAs are
charged between 70% and 90% (blue dashed lines in Fig 9), even at this lower growth rate.
A comparison with the results of Avcilar-Kucukgoze et al. [39] by individual isoacceptor is
shown in Fig I in S1 Text.

Development of a Michaelis–Menten Model of AARS kinetics
Simulating the full kinetic model of AARS kinetics, as depicted in Fig 1, will usually have sub-
stantial computational costs. Because of this, it is often useful to simplify the kinetic model in
order to accelerate the computation speed. One of the most popular and highly used mod-
els for enzyme kinetics is the Michaelis–Menten model, which allows for the rate product
formation to be estimated from the equation

v = Vm[S]
Km + [S] . (11)

The rate of product formation v depends on the concentration of free substrate [S] and the
maximal velocity (or maximal rate of product formation) of the enzyme Vm. The quantity Vm
in Eq 11 is related to the total amount of enzyme [E0] and the enzymes kcat via Vm = kcat[E0].
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Fig 9. Theoretical and Experimental Estimates of tRNA Charging Fractions in Minimal Media.The total fraction
of tRNAs charged in exponentially growing E. coli cells. Black lines with error bars indicate the range of experimental
measurement from several different experiments [39–42], while green triangles give the results of the stochastic
translational model with aminoacyl tRNA synthetase kinetics following the reaction scheme in Fig 1 at a growth rate
of 𝜇 = 0.41 h–1.
https://doi.org/10.1371/journal.pcbi.1013353.g009

The Km is the Michaelis–Menten constant which can be thought of in simple terms as the con-
centration of substrate at which the enzyme works at half of Vm. Typically one models the
formation of product and loss of substrate using the ODEs

d[S]
dt
= –v +⋯

d[P]
dt
= +v +⋯ (12)

where the dots denote that there may be additional terms in the ODEs which, for example,
model binding of substrate and product to other proteins.

The Michaelis–Menten (MM) model is one of the most popular models for enzyme kinet-
ics due to its simplicity and has been previously used to examine AARS kinetics in a model
of in vivo E. colimetabolism [10]. However, there are at least two issues when using the MM
equation (Eq 11) to model AARS enzyme kinetics. First, there are several substrates (ATP,
amino acid, and tRNA) and each of these will impact on the speed of product formation. One
potential fix is to say that ATP is saturating, and thus model the velocity using the modified
equation [10]

v(i) = Vm[AA]
Ka
m + [AA]

[Ti]
Kt
m(i)

1 +∑n
j
[Tj]
Kt
m(j)

. (13)

This equation accounts for charging of n different tRNA isoacceptors by a single AARS
enzyme. For instance, glnRS has two tRNA isoacceptors that it charges (tRNAgln1 and
tRNAgln2), and v(i) is the rate of charging for tRNA isoacceptor i with free concentration [Ti].
The second, and more critical issue, is that there are several assumptions about the enzyme
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and substrate that must be true in order for the MM equation to be accurate. The MM equa-
tion is typically derived assuming that; (1) the total amount of enzyme is much less than the
free concentration of substrate and, (2) the enzyme is present as either free enzyme or a com-
plex of enzyme and substrate. The first condition is clearly violated here, as proteomics data
[28,32–35] and measurements of total tRNA concentrations [30] show that the number of
AARS enzymes is often similar to the total tRNA numbers. For example, Refs. [28,33] both
report around 800 cysRS enzymes at a growth rate of 𝜇 = 0.69 h–1, while Dong et al. measure
around 3200 tRNAcys. Most of this tRNA will be in ternary complex or charged, and as can
be seen from the simulation of the full cysRS kinetic model in the presence of translation in
Fig 8A, around 750 tRNAcys are uncharged, similar to the number of cysRS enzymes. Simi-
larly, the second condition is also violated as a substantial amount of aa-tRNA (the product)
remains bound to the enzyme during steady state catalysis (cf. Fig 8).

In one sense these are minor issues as I have found that, in general, the AARS enzyme
kinetics modelled by the reaction scheme in Fig 1 clearly can be approximated by the MM
equation. However potential problems arise when optimising kcat and Ktrna

m values for a MM
model. For example, if the MMmodel does not correctly account for the amount of tRNA
that is bound to the enzyme, then this will result in an over estimation of the quantity of
uncharged tRNAs, or tRNAs in ternary complex, etc. as one tries to reconcile the model with
the total tRNA measurements from Dong et al. [30]. For example, Ktrna

m values may need to
be increased in order to compensate for the extra uncharged tRNA.There are two approaches
that can be used to fit kcat, Km, and overall tRNA numbers for an MMmodel; (1) use the
tRNA numbers from Dong et al. and adjust kcat and Km appropriately, or (2) use the Kcat and
Km values that have been optimised for the full kinetic reaction scheme in Fig 1 (see Table I
in S1 Text for the optimised values) and adjust the tRNA numbers. Since the MMmodel does
not properly account for the amount of charged tRNA product that remains bound to the
enzyme, I have taken the latter approach here and adjusted the tRNA numbers to account for
this issue.

The final optimised tRNA numbers for various E. coli growth rates are given in Table J in
S1 Text. This table gives both the optimised tRNA numbers for the MMmodel as well as for
the full kinetic reaction scheme shown in Fig 1. As can be seen, there is a reduction in the
number of tRNAs for the MMmodel compared to the full kinetic model. This illustrates that
the full kinetics of AARS enzymes, as well as the status and location of the tRNAs (i.e. are they
bound to AARS, bound to ribosome, or in free ternary complex), need to be accounted for
in order to correctly compare with the experimental tRNA numbers from Dong et al. [30].
Details of the amount of tRNA that is bound to ribosome and is present in ternary complex
used for the fitting of the full model can be found in Tab H in S1 Spreadsheet.

Discussion
I have developed an empirical kinetic model for all 20 tRNA synthetase enzymes from E. coli,
where the individual binding and catalytic events that take place in the aminoacylation pro-
cess are explicitly considered. Model predictions for each of the 20 kinetic models have been
validated and shown to support steady state translational kinetics in an average cell under-
going exponential growth with doubling times of 𝜏 = 100, 60, 40, and 24 min. The result-
ing optimised kcat values are in reasonable agreement with in vitro kcat measurements, with
8 out of 20 AARS enzymes having optimized values within the ranged observed in experi-
ments. The remaining 12 AARS have optimised kcat which deviate from experiment by only
a factor of 2 on average. Likewise, the optimized Michaelis–Menten constants for amino
acid and tRNA (Kaa

m and Ktrna
m ) are also within experimental ranges for all 20 AARS enzymes
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(cf. Fig 7). Despite these results, it is still important to note that the kinetic parameters and
overall reaction scheme for the aminoacylation model depicted in Fig 1 should not be con-
sidered as definitive, but instead should be thought of as a starting point for refinements as
further experimental data are obtained in future. For instance, the model currently assume the
highest measured values for intracellular concentrations of AMP and PPi of 250 and 500 𝜇M,
respectively. However, it is possible that the concentrations of these metabolites are actually
much lower in the cell. If this was to be confirmed experimentally, it would enable a further
lowering of kcat values in the model since both AMP and PPi are predicted by the model to be
inhibitors of aminoacylation. Regardless, several important conclusions can be drawn based
on these empirical kinetic models.

One of the important conclusions from the analysis of this work is that the total tRNA in
the cell is partitioned as free uncharged/charged tRNA as well as bound tRNA, and that a sub-
stantial fraction (approximately 16% of the total tRNA) remains bound to AARS enzymes
during steady state translation. Dong et al. [30] have previously noted that while the amount
of tRNA in ternary complex required for optimal elongation rate should be proportional to
the square root of the codon frequency (see Sect 4 in S1 Text), the total tRNA abundances
measured roughly scale with the square of the codon frequency. By taking into account the
number of tRNAs bound to the ribosome, Dong et al. showed that the resulting total tRNA
abundances more closely fit to the square of the codon frequency. However, they assumed
that tRNA was only either in free ternary complex or bound to ribosomes. Based on the
kinetic model in Fig 1, I have shown that the fraction of charged and uncharged tRNA that
is bound to AARS enzymes will likely also represent a substantial portion of the total tRNA.
This has important consequences for the fitting of parameters for Michaelis–Menten models
of AARS kinetics and their subsequent validation with experimental observations as discussed
in the results.

A second conclusion is that most of the in vitro experimental measurements of kcat and
Km values are fairly close to what are needed to support the estimated tRNA aminoacylation
rates in the cell. In this work, I have found that 8 out of the 20 AARS enzymes (cysRS, trpRS,
metRS, argRS, gluRS, tyrRS, aspRS, and lysRS) have in vitromeasured kcat values which are
within the range of expected turnover rates determined by proteomics measurements (cf.
Fig 6). The remaining 12 AARS enzymes have optimised kcat values which deviate on aver-
age by a factor of 2 from experimental in vitromeasurements. This is in contrast to recent
work by Choi and Convert [10] which parameterised a Michaelis–Menten model of AARS
kinetics for all 20 AARS enzymes and found that their optimised values deviated from in vitro
kcat measurements on average by roughly a factor of 7 [10]. There are several reasons for the
discrepancy with my work here.

First, Choi and Covert do not seem to distinguish between the kcat for aminoacylation ver-
sus that for pyrophosphate exchange. For example, the kcat for pyrophosphate exchange for
cysRS (see Table 1) tends to be measured around 90 s–1, about 30 times faster than the kcat
measurements for aminoacylation (around 2.9 s–1). Instead, their fitting procedure appears
to consider both values when optimising the aminoacylation kcat. It is important to note that
the pyrophosphate exchange kcat is measuring the exchange of ATP and pyrophosphate on
an adenylate bound enzyme. Thus, it is a proxy for the rate of the first catalytic event, i.e. acti-
vation of the amino acid. In contrast, the aminoacylation kcat measures the entire process of
amino acid activation plus transfer of the amino acid to the tRNA and is the only one that
has a relation to the measured in vivo turnover rates. Their higher reported aminoacylation
kcat for cysRS (69.44 s–1 [10]) is potentially due to their fitting algorithm being allowed to
search up to 90 s–1. As a result, they report a factor of ≈ 3 deviation from an experimental
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average of 23.1± 35.9 s–1, where this average includes the pyrophosphate exchange kcat mea-
surements. Comparing to only experimental aminoacylation kcat values in Table 1, the value
69.44 deviates from the average of 2.96 s–1 by over a factor of 23.

Second, there seems to be a substantial difference between AARS numbers that I have
calculated here versus what Choi and Covert have calculated. To calculate AARS numbers,
Choi and Covert use their Parca E. colimodel [43] to estimate protein numbers in the cell.
They then compare the average protein numbers with those from Schmidt et al. [34] and with
single cell proteomics data from Taniguchi et al. [31]. Next, they estimate amino acid usage
in the cell by calculating the number of proteins to be doubled, and use the codon compo-
sition of the protein’s mRNA and doubling time of the cell to determine the codon reading
rate for each codon. In contrast, I have used averaged proteomics data from 12 different mea-
surements to estimate consensus AARS numbers and have used my ribosome translational
model which simulates translation on the full transcriptome in the cell to estimate amino acid
usage. My transcriptome was constructed using mRNA-seq measurements from Li et al. [28]
(see Methods) to estimate the number of each mRNA present in the cell. Remarkably, we are
both in very good agreement on the amino acid usage / codon reading rates. Choi and Covert
report for E. coli with ≈ 26000 ribosomes in minimal media supplemented with amino acids
a usage rate for the amino acid cysteine of 4.478 𝜇M s–1 (or 2696.6 s–1 in the average cell vol-
ume of 1 𝜇m3 at this growth rate). I find a very similar result using a transcriptome based on
mRNA-seq data from Li et al. [28] of 4.508 𝜇M s–1 (or 2714.8 s–1). Despite the good agree-
ment on amino acid usage rates, we substantially differ on AARS numbers. For example, I
have calculated an optimal value of 1610 enzymes for cysRS, similar to the 1409 measured by
Mori et al. [33] for bacteria with a growth rate of approximately 𝜇 = 1.04 h–1. In contrast, Choi
and Covert estimate 606 on average at a very similar growth rate [10]. As a result, my average
turnover rate for cysRS is 1.68 s–1 versus 4.44 s–1 for Choi and Covert, roughly 3 times lower.
There is a similar trend over the remaining AARS enzymes (see Table K in S1 Text). Choi and
Covert report that, since their simulation of average protein numbers from the Parca model
are within a factor of 10 from Schmidt et al. [34] and had a coefficient of determination of
R2
= 0.63, there was satisfactory agreement with the measured proteome values of Schmidt

et al. [10]. However, as Fig 5 shows, if we perform a meta analysis by including additional pro-
teomics measurements from several different groups, we see that there is substantial variation
amongst these measurements. Although this suggests that relying on a single proteomics data
point may be potentially problematic, a consensus value does seem to emerge when weighted
over multiple measurements from different groups.

Finally, Choi and Covert report optimised values of kcat = 69.44 s–1 and Ktrna
m = 10.6 𝜇M

for cysRS [10]. This is in contrast to the optimised values that I find here of kcat = 2.9 s–1 and
Ktrna
m = 1.05 𝜇M. Given Choi and Covert’s estimated turnover rate of r = 4.44 s–1 for cysRS,

one can solve for the amount of free uncharged tRNA in their model using the MM equation
(Eq 11) and find [Tu] = 0.724 𝜇M.Thus in a quasi-steady state, their translational model with
a MMmodel of aminoacylation should have each cysRS enzyme averaging a turnover of 4.44
tRNAs per second, with a free concentration of uncharged tRNAcys of 0.724 𝜇M in the cell.
But in the Michaelis–Menten model, kcat and Ktrna

m satisfy the relation

kcat =
r
[Tu]K

trna
m + r . (14)

This relation implies that, given the enzyme turnover rate r and the amount of free
uncharged tRNA [Tu], a re-scaling of kcat and Ktrna

m is possible. This re-scaling procedure does
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not seem to have been applied in their fitting procedure, or it was applied to values that incor-
rectly included the pyrophosphate exchange kcat values, which tend to be an order of magni-
tude higher. For example, applying this re-scaling to Choi and Covert’s cysRS parameters, one
can obtain new values of kcat = 8.36 s–1 and Ktrna

m = 0.64 𝜇M, which are much closer to the two
experimental in vitromeasurements of kcat = 4.8 s–1 and Ktrna

m = 0.64 𝜇M reported in Table 1.
In summary, the models I have developed here provide a basis for examining tRNA

charging that occurs in vivo by aminoacyl tRNA synthetases in E. coli cells. The analysis has
revealed that for 8 out of the 20 AARS enzymes, the in vitromeasurements of kcat and Ktrna

m
are in line with the enzyme turnover rates that would be expected in vivo based on average
proteomics measurements, with the remaining 12 requiring a small adjustment by a factor of
2 on average. However, a few class II enzymes, in particular, serRS, thrRS, proRS, and alaRS,
deviate more substantially. More experimental data will be needed to elucidate the origin of
this discrepancy, and refine the kinetic models appropriately in these cases. Regardless, the
models I report on here should hopefully be an important tool for the community to the-
oretically investigate, for example, the effects of amino acid supply on the cellular transla-
tional machinery in bacteria. Moreover, they present a new opportunity to explore the energy
charge model of Brenner et al. [44], or model the effects of tRNA over-expression as potential
therapies for Charcot-Marie-Tooth disease [45].

Supporting information
S1 Spreadsheet.
(XLSX)

S1 Text.
(PDF)

Fig A. Kinetic reaction scheme for the pyrophosphate exchange reaction. State S0 repre-
sents the AARS enzyme, while S1 and S2 are the amino acid and ATP bound enzymes, respec-
tively. State S3 is the enzyme with both amino acid and ATP bound, S4 is the adenylate and
pyrophosphate bound state, while state S5 is the adenylate bound enzyme state.

Fig B. Effect of parameter variation on pyrophosphate exchange kinetics. (A-C) Effect
on Michaelis–Menten constant Km and pyrophosphate kcat as the amino acid and ATP
dissociation constant is varied. (D-F) Effect on the Michaelis–Menten constant Km and
pyrophosphate kcat as the amino acid activation rates k5f and k5b are varied. (G-I) Effect on the
Michaelis–Menten constant Km and pyrophosphate kcat as the pyrophosphate release rates k6f
and k6b are varied.

Fig C. Kinetic reaction scheme for Class I aminoacyl tRNA synthetases. Reaction scheme
diagram labelling the individual kinetic reactions in the aminoacylation reaction for the class
I aminoacyl tRNA synthetase enzymes. Individual kinetic rates for each reaction can be found
in Table B. The states of the enzyme Si are given in the legend on the right with abbrevia-
tions E = AARS enzyme, T = ATP, M = AMP, P = PPi, D = AA Adenylate, R = tRNA, and
R* = AA-tRNA denoting the charged tRNA. For example, state S0 corresponds to the enzyme
free of all substrates while S5 corresponds to the enzyme with bound amino acid adenylate.

Fig D. Kinetic reaction scheme for Class II aminoacyl tRNA synthetases. Reaction scheme
diagram labelling the individual kinetic reactions in the aminoacylation reaction for the
class II aminoacyl tRNA synthetase enzymes. Individual kinetic rates for each reaction can
be found in Tables C and D. The states of the enzyme Si are given in the legend on the right
with abbreviations E = AARS enzyme, T = ATP, M = AMP, P = PPi, D = AA Adenylate, R =
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tRNA, and R* = AA-tRNA denoting the charged tRNA. For example, state S0 corresponds to
the enzyme free of all substrates while S5 corresponds to the enzyme with bound amino acid
adenylate. States with substrate bound in the first and second site are separated by a slash, e.g.
state S15 with charged tRNA in the first site and AA is bound to the second catalytic site is
denoted as ER*/A.

Fig E. The dependence of the translation elongation rate on total ternary complex concen-
tration. Stochastic simulations of translation in vivo are used to calculate the average elon-
gation rate of ribosomes in E. coli for different cellular volumes verses the percentage of the
total amount of tRNA in ternary complex. The fractions of each tRNA isoacceptor in ternary
complex set to the optimal values listed in Table G (see section 4 for further details).

Fig F. Estimated average tRNA turnover rates for class I aminoacyl tRNA synthetases.
Violin plots for the AARS tRNA turnover rates are shown for each of the class I enzymes, with
cysRS shown in Fig 5 of the main text. Each of the individual proteomics data points used to
construct the violin plot are shown (black dots) along with the value used for optimization
(red line).

Fig G. Estimated average tRNA turnover rates for class II aminoacyl tRNA synthetases.
Violin plots for the AARS tRNA turnover rates are shown for each of the class II enzymes,
with hisRS shown in Fig 5 of the main text. Each of the individual proteomics data points
used to construct the violin plot are shown (black dots) along with the value used for opti-
mization (red line).

Fig H. Average tRNA usage rates for the three proline tRNA isoacceptors.Theoretical
average tRNA usage rates for tRNApro1 (black line), tRNApro2 (red line) and tRNApro3 (green
line) are shown using a fixed ratio of tRNApro2 to tRNApro3 of y = 1.25 in ternary complex. The
graph is plotted as a function of the ratio of tRNApro1 to tRNApro3 in ternary complex.

Fig I. Theoretical and Experimental Estimates of tRNA Charging Fractions in Minimal
Media.The total fraction of tRNAs charged in exponentially growing E. coli cells. Black lines
with error bars indicate the range of experimental measurement from Avcilar-Kucukgoze
et al. [39], while green triangles give the results of the stochastic translational model with
aminoacyl tRNA synthetase kinetics following the reaction scheme in Fig C and Fig D at a
growth rate of 𝜇 = 0.41 h–1.
Table A. Classification and Properties of Aminoacyl tRNA Synthetases from E. coli. For
each of the 23 genes encoding an aminoacyl tRNA synthetase, the class, number of subunits
which make up the functional enzyme, and if the enzyme has been observed to have burst
kinetics or editing, is shown.

Table B. Kinetic parameters for Class I aminoacyl tRNA synthetase models. Labels of the
reactions correspond to those shown in Fig C.

Table C. Kinetic parameters for Class II aminoacyl tRNA synthetase models. Part 1 of 2.
Labels of the reactions correspond to those shown in Fig D.

Table D. Kinetic parameters for Class II aminoacyl tRNA synthetase models. Part 2 of 2.
Labels of the reactions correspond to those shown in Fig D.

Table E. Estimates of AARS Activity in vivo. For each of the AARS enzymes, the activity
(i.e. tRNA turnover rate r) of a single enzyme is estimated in E. coli cells growing at 𝜇 = 0.69
h–1 based on amino acid usage and the number of AARS. Amino acid usage for the Mori
et al. data [33] was calculated computationally using a model of in vivo translation [26] and
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the fractional amount of tRNAs in ternary complex needed for optimal translation, while
the amino acid usage for Jakubowski was taken from their experimental amino acid radio-
labelling measurements [46].

Table F. Average Number of Proteins, tRNA, and Ribosomes in E. coli Cells at Different
Growth Rates. Protein numbers are taken from proteome measurements from several groups
[28,32,33] and reported here as number per cell. The specific data for each growth rate are;𝜇 = 0.41 h–1 Valgepea et al. 2013 [32], 𝜇 = 0.69 h–1 and 𝜇 = 1.04 h–1 Mori et al. 2021 [33], 𝜇 =
1.98 h–1 Li et al. 2014 [28]. The number of tRNA and Ribosomes (per cell) are taken from
Dennis and Bremer [29]. The doubling time in minutes is computed from the growth rate
using 𝜏 = 60 ln(2)/𝜇.
Table G. Average number of tRNAs per cell and their codon recognition. Data for the num-
ber of tRNAs that are in free ternary complex at a growth rate of 𝜇 = 0.41 h–1 (𝜏 = 100 min).
The numbers that give the optimal translation rate have been computed from Eq 3 and the
procedure outlined in section 4, and the total tRNA numbers are taken from Dong et al. [30].
The values used in the model are the result of the fitting procedure in section 7.

Table H. Concentrations of Amino Acids in E. coli. Experimental measurements of intra-
cellular amino acid concentrations are shown for Bennett et al. [20], and minimal media
(MM) and minimal media plus amino acids (MM+AA) from Avcilar-Kucukgoze [39]. The
values used in the model for the MM+AA scenario is shown in the final column. (n.d. = not
determined).

Table I. Optimized numbers of Aminoacyl tRNA Synthetases in Exponentially Growing
E. coli and optimized kcat and Km values.The optimized average number of AARS enzymes
are shown for different growth rates, 𝜇 = 0.41 h–1 (𝜏 = 100 min), 𝜇 = 0.69 h–1 (𝜏 = 60 min),𝜇 = 1.04 h–1 (𝜏 = 40 min), and 𝜇 = 1.73 h–1 (𝜏 = 24 min). Corresponding optimized kcat and
Michaelis–Menten parameters for tRNA (Kt

m) and amino acid (Ka
m) are given in the right

hand columns.

Table J. Optimized numbers of tRNAs per cell and their codon recognition.The optimized
total tRNA numbers are shown for the Michaelis–Menten model and the full kinetic model
where AARS enzymes are modelled as having reaction scheme according to Fig C for Class I
enzymes or Fig D for class II enzymes.

Table K. Model predictions of AARS Activity in vivo. For each of the AARS enzymes, the
activity (i.e. tRNA turnover rate) of a single enzyme r per second is estimated in E. coli cells
growing at 𝜇 = 1.04 h–1 (𝜏 = 40 min) based on amino acid usage and the number of AARS.
Amino acid usage for the data in this work was calculated computationally using a model of
in vivo translation [26], while the amino acid usage and AARS numbers for Choi and Covert
were taken from supplementary material Tables 8 and S3 [10].
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