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A B S T R A C T

This study presents a novel hybrid framework that leverages machine learning to enhance the performance of 
nanofluid-based solar collectors (NBSCs). The framework is designed to identify the optimal control variables 
required to meet multiple performance criteria (such as simultaneously maximizing outlet temperature, thermal 
efficiency, and optical efficiency). This study introduces an end-to-end multi-criteria optimization framework 
that combines numerical simulations with a Gaussian process regression (GPR) and genetic algorithm (GA) for 
designing optimized NBSCs. In this approach, a minimal number of random samples are selected using Monte- 
Carlo sampling to perform numerical simulations. The control variables of the system are varied within prac
tical ranges, and key performance metrics such as outlet temperature [To (◦C)], thermal efficiency (ηt), and 
optical efficiency (ηo) are recorded. The input and output data are utilized to develop a computationally efficient 
GPR model. The generalization capability of the developed explainable machine learning (xML) models allowed 
for various data-intensive analyses, including sensitivity analysis, uncertainty quantification, interactive influ
ence of control variables, and multi-objective optimization. The proposed computational framework helped 
explore previously unknown territory, leading to the identification of optimal settings for simultaneously 
maximizing all the responses. The optimal parameters led to a simultaneous improvement in the responses, with 
a 23.44 ◦C rise in outlet temperature, a 37.48 % increase in thermal efficiency, and a 28.62 % boost in optical 
efficiency, compared to the base dataset. The developed framework is rigorously tested to ensure its robust 
generalization and its applicability to calibrate other physical systems. The results of this study offer valuable 
insights for designing optimal NBSCs with improved operational performance.

Nomenclature

A Aperture area (m2)
Aλ Spectral absorption coefficient (m− 1)
Aλ,water Absorption coefficient of base fluid (water)
C0 Speed of light in vacuum (3 × 108 m/s)
Cp Specific heat (J/kg.K)
D Diameter (nm)
Eλ Spectral extinction coefficient
GT Total incident radiation (W/m2)
H Collector depth(m)
H Planck’s constant (6.6256 × 10− 34 J s)
hconv Heat transfer coefficient for convection (W/m2)
Ibλ Spectral black body radiation (W/m2 strμm)

(continued on next column)

(continued )

Ioλ Spectral incident intensity (W/m2 strμm)
K Thermal conductivity (W/m2)
kB Boltzmann constant (1.38 × 10− 23 J/K)
L Collector length (m)
M Complex refractive index (n+ικ)
ṁ Mass flow rate (kg/s)
Q̇ Radiative heat flux
Qeλ Extinction efficiency
R2 Correlation coefficient
Smax Maximum value of the parameter
Smin Minimum value of the parameter
Sr Random sample generated within a parametric Range
Sλ Spectral scattering coefficient
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(continued )

T Temperature (◦C)
Tfinal Average final temperature (◦C)
Ts Solar surface temperature (5526.85 ◦C)
Vf Volume Fraction (%)
y Mean value of the response from the initial dataset
yi Individual true response corresponding to the ith sample
ŷi Individual predicted response corresponding to the ith sample
% error percentage relative error
Greek symbols
А Absorption coefficient
ꝩ Particle size (πD/λ)
Н Efficiency (%)
κ Index of absorption
Λ Wavelength
μx Mean response corresponding to variations in x
Р Density (kg/m3)
σx Standard deviation of the response that arises from changes in x
Φ Flux (W/m2)
Ω Solid angle (steradian)
Abbreviations
2D 2-Dimensional
ANN Artificial Neural Network
BIPVT Building-Integrated Photovoltaic-Thermal
COVx The coefficient of variation related to the input feature ‘x’(where x is an 

individual input)
DASC Direct Absorption Solar Collector
FDM Finite Difference Method
GA Genetic Algorithm
GP Gaussian Process
GPR Gaussian Process Regressor
LINMAP Linear Programming Technique for Multidimensional Analysis of 

Preference
MCCV Monte-Carlo cross validation
MCS Monte-Carlo sampling
ML Machine Learning
ML- 

MOGA
Machine Learning-Multi Objective Genetic Algorithm

NBSC Nanofluid-based Solar Collector
Pdf Probability Density Function
PSO Particle Swarm Optimization
RCV Relative Coefficient of Variation
RTE Radiative Transfer Equation
SHAP Shapley Additive Explanation
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
UQ Uncertainty Quantification
xML Explainable Machine Learning
SUBSCRIPTS
A Ambient
Conv Convection
F Final
Min Minimum
Max Maximum
O Optical
T Thermal

1. Introduction

Energy is an essential need for modern society, as the quality of life 
heavily depends on it. Currently, the primary sources of energy (coal, 
oil, and natural gas) are depleting rapidly and causing long-term envi
ronmental damage. According to the IEA report for 2021, global con
sumption of coal, oil products, and natural gas was 38 million TJ, 160 
million TJ, and 71 million TJ, respectively. This usage results in sig
nificant carbon dioxide emissions: 15,000 MtCO2 from coal, 11,000 
MtCO2 from oil, and 7500 MtCO2 from natural gas [1]. These emissions 
contribute to global warming and environmental changes, including 
desertification and increased frequency of severe weather events such as 
hurricanes, floods, and fires [2]. The unsustainable reliance on fossil 
fuels accelerates the depletion of fossil reserve and resulting in detri
mental effects on the ecosystem. To address these issues, it becomes 
necessary to exploit renewable energy sources, such as solar energy, 
wind energy, geothermal energy, ocean thermal energy, and hydro
electricity, alongside existing fossil fuels. Renewable energy will not 
only help society meet its energy needs but also improve overall quality 

of life. Motivated by this, the present study focuses on harnessing solar 
energy, a fundamental source of energy. Other renewable sources like 
wind, biomass, and hydropower are ultimately driven by solar energy 
including fossil fuels, derived from solar energy captured millions of 
years ago and stored in the Earth’s crust. Thus, effectively harnessing 
solar energy is essential for environmental sustainability.

1.1. Nanofluid based solar collectors (NBSC)

Most solar thermal technologies utilize an absorbing surface that 
captures solar radiation, heats up, and transfers the heat to a heat 
transfer fluid [3]. In power generation, solar thermal collectors are 
employed to run the Rankine cycle, which requires heating a fluid to 
high temperatures. These absorbing surfaces are specifically designed to 
have high absorptivity and low emissivity within the solar spectrum, 
optimizing their efficiency in capturing and transforming solar energy 
[4]. Despite the advanced optical properties of these absorbing surfaces, 
they still face inherent thermal barriers [5], which can reduce their ef
ficiency below expectations. To improve thermal efficiency, one 
approach is to eliminate the absorber surface and allow the heat transfer 
fluid to directly absorb the solar radiation. However, a major challenge 
is that common heat transfer fluids, such as water, ethylene glycol, 
propylene glycol, toluene, silicone oil, and paraffin oil, are transparent 
to the solar spectrum (visible light) and thus have low solar absorptivity 
[6,7]. To enhance the absorptive properties of heat transfer fluids, it was 
suggested to develop nanofluids by incorporating nanomaterials. These 
nanofluids improve the efficiency of solar collectors by enhancing their 
ability to absorb solar radiation. Various approaches for direct absorp
tion have been explored, including gas-particle suspensions [8–10] and 
liquid-film suspensions [11]. Solar collectors that utilize these nano
fluids are known as nanofluid-based solar collector (NBSC). The per
formance of NBSCs are significantly influenced by the type of 
nanoparticles used. A range of materials, including metals, metal oxides, 
semiconductors, core-shell structures, and graphite-based nanoparticles, 
have been investigated for their ability to enhance solar energy ab
sorption [12]. Metallic nanoparticles and carbon-based nanoparticles, in 
particular, are notable for their strong absorption in the visible spec
trum, which improves both thermal and optical efficiency. Among these, 
specific metallic nanoparticles such as gold, silver, and copper have 
gained significant attention due to their plasmonic properties, which 
offer enhanced absorption and scattering capabilities.

Extensive numerical and experimental studies have demonstrated 
that nanofluid-based collectors, particularly those using metallic nano
particles, exhibit higher thermal efficiency compared to traditional 
surface absorption solar thermal collectors [13–16]. For example, Taylor 
et al. [17] investigated the optical properties of various nanoparticles, 
including Al, Ag, TiO2, Cu, and C, suspended in water. They found that 
silver (Ag) nanoparticles had a peak extinction coefficient around 400 
nm, while aluminum (Al) and copper (Cu) nanoparticles demonstrated 
peaks around 300 nm. In contrast, carbon (C) nanoparticles displayed a 
broad and flat absorption spectrum. In experimental studies, Chen et al. 
[18,19] compared the efficiency of silver (Ag), zinc oxide (ZnO), and 
titanium dioxide (TiO2) nanoparticles and found that Ag nanoparticles 
provided significantly higher thermal efficiency than ZnO and TiO2. 
Their research indicated that variations in volume fraction, collector 
height, total exposure time, and solar irradiation improved the perfor
mance, outlet temperature, and thermal efficiency of direct absorption 
solar collectors (DASCs). Similarly, Bhalla et al. [20] evaluated the 
performance of nanofluid-based asymmetric parabolic concentrators 
using Al, Ag, and C nanoparticles and concluded that Ag nanoparticles 
delivered the highest thermal efficiency among the tested materials. 
Filho et al. [21] conducted experiments with Ag nanoparticle-based 
solar collectors under ambient conditions, testing three different con
centrations (1.62, 3.25, and 6.5 ppm). The authors observed that these 
concentrations resulted in higher bulk temperatures compared to water, 
with thermal energy storage enhancements of 52 %, 93 %, and 144 %, 
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respectively. Several other contemporary studies also reported increases 
in thermal efficiency with higher concentrations of Ag nanoparticles 
[22–24].

1.2. Machine learning based predictive frameworks

The literature highlights that silver (Ag)-laden nanofluids can 
significantly improve the performance of solar collectors. However, the 
effectiveness of a solar collector depends on more than just the material 
and volume fraction of nanoparticles; various other factors also play a 
crucial role. For example, Baro et al. [25] investigated how different 
variables, such as channel dimensions (length, width, and height), vol
ume fraction, mass flow rate, diameter, and inlet temperature, affect the 
performance of solar collectors using aluminum nanofluid. Similarly, 
Qin et al. [26] studied the impact of factors like the absorption coeffi
cient (α), mass flow rate per unit width (ṁ), collector depth (H), and 
collector length (L) to optimize solar collector performance. Under
standing the comprehensive influence of these variables can be chal
lenging, either through large-scale experiments or numerical 
simulations. To address these complexities, researchers have increas
ingly turned to computational intelligence methods, such as 
meta-heuristic algorithms, for optimization [26,27]. Some studies have 
applied machine learning (ML) frameworks to predict the performance 
of NBSC [42,43,48,49]. For instance, Shahsavar et al. [28] compared the 
accuracy of various ML models to develop an effective predictive 
framework for Building-Integrated Photovoltaic-Thermal (BIPVT) col
lectors. The authors utilized geometrical parameters (length, width, and 
height) as input and energy gain as the output parameter. While several 
studies have focused on constructing predictive models using ML 
frameworks [29–34], few have explored methods for deploying these 
models in data-intensive investigations. Li et al. [35] proposed an arti
ficial neural network (ANN)-based framework for high-throughput 
screening to identify optimal solutions for enhancing solar water heat
er performance. Similarly, Liu et al. [36] developed an ANN-based 
high-throughput screening framework to optimize intrinsic input fea
tures (such as tube length, number of tubes, tube center distance, tank 
volume, collector area, angle between tubes and ground, and final 
temperature) to improve heat collection rates. The proposed 
high-throughput screening methods [35,36] used trial and error-based 
sorting algorithms to find the best solutions, and hence lacked a sys
tematic approach for design optimization. In contrast, Salari et al. [37] 
integrated numerical simulations with the ANN framework to develop a 
prediction mechanism that includes more robust optimal sample selec
tion methods, such as TOPSIS, LINMAP, and Shannon entropy. Meta
heuristic algorithms like Genetic Algorithms (GA) and Particle Swarm 
Optimization (PSO) are effective at exploring search spaces to find 
global optimal solutions. However, while metaheuristics excel at 
exploring large search spaces nevertheless, they can be computationally 
expensive and may struggle with complex relationships without exten
sive parameter tuning.

1.3. Performance challenges

Despite the predictive capabilities of ML-based algorithms, most 
studies in the domain of solar-physical systems have primarily focused 
on constructing and validating ML models, rather than fully exploiting 
the computational power these models offer [50–53]. A key gap in the 
literature is the lack of robust mechanisms to leverage ML models for 
more comprehensive analyses. Traditional soft computing methods such 
as Design of Experiments, Response Surface Methods, and Taguchi 
techniques have been predominantly used for process optimization, and 
parametric sensitivity analysis [54–56,58–61]. These methods often 
struggle with generalizability, limiting their ability to accurately capture 
the full range of parametric variations. To address this limitation, we 
propose a computationally efficient ML-based framework. This frame
work effectively applies ML models to various downstream tasks, 

including uncertainty quantification, sensitivity analysis, 
multi-objective optimization, and model explainability. Specifically, we 
introduce a novel multi-criteria optimization framework that combines 
numerical simulations (algorithmically selecting a minimal set of sim
ulations), an efficient Gaussian Process Regression (GPR)-driven ML 
model, and Genetic Algorithms (GA) for designing NBSC systems with 
enhanced performance. By integrating machine learning with meta
heuristic optimization, this framework benefits from the strengths of 
both approaches, enabling faster, more accurate, and adaptable solu
tions. The proposed solution makes a significant contribution by pre
senting a novel, explainable, machine learning-driven closed-loop 
optimization framework designed to enhance the operational perfor
mance of NBSC systems. This framework not only identifies optimal 
solutions but also substantially reduces the computational costs associ
ated with large-scale numerical simulations. It’s simple, flexible design 
allows it to be applied to optimize a wide variety of physical systems and 
processes.

2. Modelling and simulation

2.1. Monte Carlo simulation

This investigation utilizes Monte Carlo simulation (MCS) based 
randomly sampled dataset (consisting the input features, i.e., volume 
fraction (Vf), flux (φ), height (H), mass flow rate (ṁ), ambient temper
ature (Ta), and heat transfer coefficient for convection (h)), and the 
desired quantities of interest (outlet temperature (To (◦C)), thermal ef
ficiency (ηt), and optical efficiency (ηo) obtained from numerical simu
lations performed for MCS driven random samples). The investigation 
starts by randomly generating 125 nos. of samples by utilizing the MCS 
technique, wherein the random data instance (random set of 6 control 
variables presented in Table 1) is generated by using the following 
formulation [38]: 

Sr = Smin +X × (Smax − Smin) (1) 

where, Sr denotes one of the random samples generated in between the 
range of parametric variation (Smax − Smin), Smin is the minimum value of 
the parameter, Smax is the maximum value of the parameter, and X de
notes the randomly generated value in between 0 and 1. This generates 
125 unique values of X in between 0 and 1. The unique feature of such 
sample-space generation is that it captures the complete continuous 
domain of parametric variation, which helps in constructing an efficient 
predictive model by using relatively lower number of samples. The 
randomly sampled 125 numbers of input samples are fed to the nu
merical simulation mechanism (refer to subsection 2.2) for obtaining the 
desired quantities of interest such as outlet temperature [To(◦ C)], 
thermal efficiency (ηt), and optical efficiency (ηo). Finally, the MCS 
driven finite difference method (FDM) simulations prepare the dataset 
to be utilized for the formation of computationally efficient ML model.

Table 1 
The control variables and their parametric range of variation [21,46,47].

Control variables Minimum 
value

Maximum 
value

Range of 
variation

Volume fraction, Vf (%) 0 0.004 0.004
Flux, φ (W/m2) 500 3000 2500
Depth of the channel, H (m) 0.001 0.015 0.014
mass flow rate, ṁ (kg/sec) 100 600 500
Ambient temperature, Ta (ᴼC) 25 30 5
Convective heat transfer 

coefficient, h (W/m2)
1 10 9

A. Sankar et al.                                                                                                                                                                                                                                 



Energy 320 (2025) 135212

4

2.2. Numerical model of the nanofluid-based solar thermal collector 
(NBSC)

This subsection explores the underlying physics of NBSC operation 
and performance, focusing on the key governing equations of radiative 
heat transfer. Fig. 1 illustrates the schematic of the NBSC system.

The following assumptions are made for the numerical modelling [5,
7,13]: 

1. The bottom surface of the collector is considered adiabatic to avoid 
the thermal losses from the collector to the environment [3].

2. The nanoparticles are evenly dispersed in the base fluid, making the 
nanofluid a single-phase fluid.

3. There is no scattering of radiation between the nanoparticles.

The numerical model is based on a 2-D rectangular channel with 
constant length (L = 1 m) and depth H, where H ranges from 0.001 to 
0.015 m. The fluid flows from left to right through the channel. For 
simplification, it is assumed that the fluid velocity is uniform across the 
channel’s cross-section and that no boundary layer forms within the 
pipe. Additionally, solar irradiation is assumed to be incident perpen
dicularly on the top surface of the collector. To simulate the incident 
solar intensity, the black body radiation relationship is applied using 
equation (2): 

Ibλ =
2.h.Co

2

λ5
1

exp
(

h.Co
λ.KB .Ts

− 1
) (2) 

where Ibλ is spectral black body radiation, h is Planck constant (6.6256 
× 10− 34 J s), Co is the speed of light in vacuum (3 × 108 m/s), λ is the 
wavelength in (nm), KB is the Boltzmann constant (1.38 × 10− 23 J/K), Ts 
is the solar surface temperature (5800 K).

During the numerical simulations, the attenuation of incident solar 
radiation in the outer atmosphere is disregarded. It is worth to mention 
that 96.3 % of the total radiation falls within the range of 300–2500 nm, 
and only this range is considered in the analysis. When the irradiation 
incidents on the nanofluid, the intensity of the radiation attenuates. This 
attenuation is assumed to vary in one dimension (along the depth), and 
the rate of intensity change along this depth is calculated using the 
Radiative Transfer Equation (RTE) [39], and is given in eq. (3). 

dIλ(Ω)

dy
= − (Sλ + Aλ) Io,λ(Ω)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

A

+ AλIbλ⏟̅⏞⏞̅⏟
B

+
Sλ

4π

∫

4π

I(Ωʹ) X(Ωʹ→Ω)dΩ

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
C

(3) 

The left-hand side of equation describes the rate of change of intensity 
along the depth of the collector, which depends on the sum of terms A, B, 
and C. Here, Sλ represents the spectral scattering coefficient, Aλ is the 
spectral absorption coefficient, Io,λ is the spectral incident intensity, Ω 
denotes the solid angle, Ib,λ is the spectral black body radiation, and X (Ω 
′ → Ω) is the phase function. In Equation (3), terms A, B, and C represent 
the extinction term, scattering term, and in-scattering term, respec
tively. To solve the RTE, following assumptions are made: 

(a) The size parameter (ꝩ = πD/λ), ꝩ ≪1 and the base fluid used is 
water, having moderate refractive index (ꝩ|m-1|), due to which 
Rayleigh scattering has been considered. Where, m is the complex 
refractive index (m = n + iκ). n is the index of refraction and κ is 
the index of absorption. The values of the n and κ have been taken 
from Ref. [39].

(b) The temperature rise of the fluid in the collector will be less than 
427 ◦C, thus the emission from the fluid to the ambient is 
negligible.

By considering these assumptions, the term B and C becomes zero 
and equation (3) reduces to equation 4

dIo,λ

dy
= − (Eλ)Io,λ (4) 

where Eλ is the spectral extinction coefficient and can be evaluated as Eλ 
= Sλ + Aλ. In the case of the nanofluid, the intensity decay results from 
both the base fluid and the nanoparticles. This intensity decay is rep
resented by equation (5). 

dIo,λ

dy
= −

(
Aλ,water + Eλ,nanoparticle

)
Io,λ (5) 

For the pure fluid, the absorption coefficient is calculated by equa
tion 6

Aλ,water =
4πκ

λ
(6) 

The values of κ for water is considered from Ref. [39]. The extinction 
of the irradiation in the nanofluid is calculated by equation 7

Eλ =
1.5 × Vf × Qeλ(α,m)

D
(7) 

where Vf is the volume fraction and Qeλ is the extinction efficiency, D is 
the hydrodynamic diameter of the nanoparticle. The extinction effi
ciency depends on the size parameter and the complex refractive index. 

Fig. 1. Schematic of nanofluid-based solar thermal collector.
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The extinction efficiency is calculated by equation 8

Qe,λ = 4
(

πD
λ

)

Im
{

m2 − 1
m2 + 2

[

1 +
(πD)2

15λ2

(
m2 − 1
m2 + 2

)(
m4 + 27m2 + 38

2m2 + 13

)]}
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞

(A)

+
8
3

(
πD
λ

)4⃒⃒
⃒
⃒

(
m2 − 1
m2 + 2

)⃒
⃒
⃒
⃒

2

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
(B)

(8) 

where term A represents the absorption efficiency and term B represents 
the scattering efficiency. On substituting equation (8) in equation (7), 
the extinction coefficient can be calculated and given by equation 9

Ee,λ = 6
(

π × Vf

λ

)

Im
{

m2 − 1
m2 + 2

[

1 +
(πD)2

15λ2

(
m2 − 1
m2 + 2

)(
m4 + 27m2 + 38

2m2 + 13

)]}
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞

(C)

+
8
3

(
π4D3 × Vf

λ4

)⃒
⃒
⃒
⃒

(
m2 − 1
m2 + 2

)⃒
⃒
⃒
⃒

2

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
(D)

(9) 

where term C represents the absorption coefficient and term D repre
sents the scattering coefficient. From equation (9), it can be observed 
that the extinction coefficient depends on the volume fraction, hydro
dynamic diameter, and complex refractive index.

In the following stage, the temperature rise (due to absorption of the 
irradiation) of the nanofluid has been evaluated. For this evaluation, 1-D 
transient heat transfer equation has been used (refer to equation (10)) 
[40]. 

k
∂2T
∂x2 −

∂Q
∂y

= ρCpu
∂T
∂x

(10) 

where k, ρ and Cp are the thermal conductivity, density, and specific heat 
of the nanofluid respectively, and Q is the radiative heat flux. The 
radiative heat flux is calculated by using equation (11). 

Q=

∫

λ

∫

Ω

Iλ dΩ dλ (11) 

The thermo-physical properties of the nanofluid (refer to Table 2) are 
calculated by using following set of equations. 

(ρ)nanofluid = ρnanoparticle.Vf +
(
1 − Vf

)
.ρbasefluid

(
Cp

)

nanofluid = Cpnanoparticle .Vf +
(
1 − Vf

)
.Cpbasefluid

knanofluid

kbasefluid
=

knanoparticle + 2kbasefluid + 2
(
knanoparticle − kbasefluid

)
Vf

knanoparticle + 2kbasefluid −
(
knanoparticle − kbasefluid

)
Vf

(12) 

The optical efficiency (ηol) is obtained by utilizing the fraction of 
solar irradiance intensity reaching the nanofluid (refer to equation 13) 
[12]: 

ηol =
Gnanofluid

Gaperture
(13) 

While, thermal efficiency (ηt) of the collector is calculated by using 
equation 14

ηt =
ṁCpnanofluid

(
Tfinal − Tinitial

)

A.GT
(14) 

where ṁ is the mass flow rate (kg/s), Cp is the specific heat of nanofluid, 
Tfinal is the average final temperature, A is the aperture area and GT is the 
total incident radiation.

2.3. Machine learning driven predictive framework

The dataset, consisting of 125 samples generated through Monte 
Carlo simulation (MCS) (refer for subsection 2.1), is used to develop the 
ML models. The prediction capability of different ML models including 
Decision Trees (DT), Linear Regression (LR), Single Layer Neural 
Network (SLNN), Support Vector Regression (SVR), and Gaussian Pro
cess Regression (GPR) is compared for selecting the best suited ML al
gorithm for modelling the FDM simulations derived NBSC dataset. The 
choice of the GPR model is based on its ability to effectively capture 
nonlinear interactions and uncertainties within the data. Unlike tradi
tional regression methods that assume linear relationships between 
variables, GPR models are flexible and can accommodate complex in
teractions between input features and output predictions. Recent studies 
by Gupta et al. [37–39] have demonstrated that GPR models provide a 
high-fidelity predictive framework, requiring only a minimal number of 
initial samples, which can be applied to large-scale predictions. The 
detailed mathematical foundation of the ML models used in this study is 
presented in section SM1 of the supplementary material. This investi
gation developed and utilized three different models for individual 
output responses: outlet temperature (To (◦C)), thermal efficiency (ηt), 
and optical efficiency (ηo). These models establish the relationships 
between the input features, i.e., volume fraction (Vf), flux (φ), height 
(H), mass flow rate (ṁ), ambient temperature (Ta), and heat transfer 
coefficient for convection (h) and predict their respective output re
sponses. Initially, the dataset was randomly divided into a training set 
(90 %) and a test set (10 %). The training dataset was used to construct 
the machine learning models. The training and test performance mea
sures (R2 and RMSE values) are compared for obtaining the best suited 
for the NBSC dataset. The best model (GPR in this case) is further 
improved by employing Bayesian optimization for hyperparameter 
tuning. This process utilized the Bayesian framework to identify the 
optimal set of hyperparameters for the GPR models (refer to Table SM3
in the supplementary material), ensuring minimal mean square error in 
the predicted responses, while training [45]. The hyperparameter tuning 
process iteratively selected the combinations of different covariance 
(Kernel) functions and the prediction capability of the developed GPR 
models is assessed on the basis of correlation coefficient (R2) and per
centage relative error (%-error) in the prediction. The evaluation of R2 

and % error is carried out by using equation (15) [40]: 

R2 = 1 −

∑
(yi − ŷi)

2

∑
(yi − y)2

% error =

(
ytrue − ypredicted

)

ytrue
× 100

(15) 

where, yi denotes the individual true response corresponding to the ith 
sample, ŷi denotes the individual predicted response corresponding to 
the ith sample, y denotes the mean value of the response from the initial 
dataset. The evaluation of % error utilizes a difference in true response 
(ytrue) and corresponding predicted response (ypredicted) for finding the 
error in prediction. Once satisfactory predictive accuracy was achieved 
during training, the models were validated using the out-of-fold test 
samples (16 samples, out-of-the-fold, separately generated by perform
ing FDM simulations). It is important to note that the generalization 
capability of the developed models was ensured by performing Monte- 
Carlo cross validation using a separate (test) dataset that was not 

Table 2 
Thermophysical properties of base fluid and nanoparticles [40].

Thermophysical property Water (base fluid) Silver (nanoparticle)

Density (kg/m3) 1000 10,470
Thermal conductivity (W/m.K) 0.6 429
Specific heat (J/kg.K) 4180 235
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included in the training process. To perform MCCV, randomly 8 samples 
are selected from the out-of-the-fold test samples (16 samples) in each 
iteration, and R2 and RMSE is evaluated; this process is performed for 25 
iterations. Such cross-validation mechanism establishes the generaliza
tion capability of the ML model by ensuring that developed model is 
capable in handling the variance in the unknown data.

2.4. Deployment of the machine learning model

With the sufficient confidence established in the predictive capabil
ities of the developed ML models, the models are further deployed for 
data-intensive investigations such as sensitivity analysis, uncertainty 
quantification, interactive parametric influence, and multi-objective 
optimization. In this regard, at first the large parametric space (with 
10000 randomly generated samples) is generated using the MCS 
framework (refer to subsection 2.1). The generated (through MCS) large 
sample space is fed to developed ML models for obtaining the pre
dictions for target variables (To, ηt, and ηo). For performing the sensi
tivity analysis, relative coefficient of variation (RCV) is evaluated as 
following [41,42]: 

(RCV)x =
COVx

∑6

x=1
COVx

where,COVx =
σx

μx

(16) 

In this context, COVx represents the coefficient of variation related to the 
input feature ‘x’ (where x is an individual input). Here, σx indicates the 
standard deviation of the response that arises from changes in x alone, 
while μx refers to the mean response corresponding to variations in x. 
For example, when the volume fraction (Vf) changes from 0 % to 0.004 
%, with all other input features held constant at their mean values, σVf 
and μVf are determined for the output responses To, ηt, and ηo, which are 
then used to calculate COVVf. Similarly, the coefficients of variation 
COVφ, COVH, COVm, COVTa, and COVh are evaluated individually, 
allowing for the calculation of RCVx.

The GPR models are used for multi-objective GA optimization to 
improve the performance of the NBSC system. For a comprehensive 
understanding of the GA-based multi-objective optimization, refer to 
section SM2 in the supplementary material. The optimization process is 
implemented using MATLAB with a population size of 100, a cross-over 
rate of 0.8, and an adaptive mutation function. This multi-criteria 
framework employs the ML models as fitness functions to predict solu
tions for selected generations from the search space. A cross-over rate of 
0.8 ensures an 80 % probability of directional changes in the solutions, 
aiding in achieving optimal results.

Generally, the ML models act as black boxes for exploring the range 
of parameter variations needed for the desired properties. In this 
context, the models assess how variations in parameters affect the per
formance measures of the NBSC. Although the models’ efficient pre
diction capabilities can be utilized directly, the exact mechanisms 
behind their functioning are not fully transparent. To address this 
inherent issue, the prediction capability of ML models developed in this 
study are analyzed using Shapley Additive exPlanations (SHAP) [41,43,
44]. The SHAP analysis investigates the individual effects of input fea
tures on the prediction process, providing more interpretability to the 
ML results. The complete computational approach utilized to perform 
the present investigation is illustrated as the flow-diagram in Fig. 2.

3. Results and discussion

The desired quantities of interest such as outlet temperature [To 
(◦C)], thermal efficiency (ηt), and optical efficiency (ηo) are evaluated by 
performing the numerical simulations (FDM) for the randomly sampled 
input space of 125 samples (refer to Fig. 3). The input space for 

numerical simulations is made up of randomly perturbed input features 
(volume fraction (Vf), flux (φ), height (H), mass flow rate (ṁ), ambient 
temperature (Ta), and heat transfer coefficient for convection (h)) that 
are within the specified parametric range of variation (see Table 1).

Prior to the data-driven modelling of the NBSC system is carried out, 
the results of the numerical simulation are validated with the experi
mental findings reported elsewhere [13]. The comparison of the col
lector’s thermal efficiency (experimental vs. numerical simulation) 
demonstrates the close match (refer to Figure SM1 in the supplementary 
file). While performing the validation study, the same parameters were 
utilized to perform the numerical simulations.

To understand the one-on-one cross-correlation among input fea
tures and the responses (in the original FDM derived dataset), Pearson’s 
correlation analysis is performed (refer to Fig. 4). It is evident from the 
Pearson’s correlation that flux (φ) and mass flow rate (ṁ) have a 
moderately positive correlation with the To, whereas the depth (H) of the 
channel demonstrates a negative correlation with the To. When it comes 
to the efficiencies (thermal (ηt) and optical (ηo), the volume fraction (Vf) 
and the depth (H) of the channel exhibits moderately positive correla
tion. The statistical correlation among responses (To, ηt, and ηo) in
dicates, that there exists strong negative correlation between To and ηt, 
and To and ηo, whereas ηt, and ηo shows mutually positive correlation. 
This preliminary understanding is obtained by the training data 
(without using the ML models) to assess the general trend and influence 
of the parametric variation. The complete dataset derived after 

Fig. 2. Flow diagram of the presented computational framework.
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performing the numerical simulations (for 125 samples, 6 input features 
and 3 responses) is utilized to construct different ML models. The dataset 
utilized for training the models is provided in Table SM1 of the Supple
mentary file.

The ML models are trained by utilizing 90 % of the samples, while 10 
% samples are utilized for testing the performance of the ML models. The 
prediction capability of different ML models including Decision Trees 
(DT), Linear Regression (LR), Single Layer Neural Network (SLNN), 
Support Vector Regression (SVR), and Gaussian process regression 
(GPR) is compared for selecting the best suited ML algorithm for 
modelling the FDM simulations derived NBSC dataset. The comparison 
of the evaluation metrics (R2 and RMSE) is illustrated in Fig. 5, which 

indicates that among all the considered ML models the performance of 
GPR is consistent during training and testing regardless, of the target 
responses. Once the prediction capability of the GPR is ascertained, the 
performance of GPR is further improved by hyperparameter tuning, in 
this process, the sample-size to train the GPR models are varied in be
tween 70 % and 100 %, by simultaneously varying the hyperparameters 
of the GPR model (presented in Table SM3 of the supplementary file). To 
understand the influence of individual hyperparameter on the predictive 
performance of developed GPR models, the most important hyper
parameters (such as Kernel function, sigma values, and standardization 
status) [57] are individually varied. It is observed that squared expo
nential kernel function yielded the best R2 and the lowest RMSE for 
predictions of To. However, for predicting efficiencies (ηt and ηo), the 
rational quadratic and Matérn 5/2 kernel functions provided the best 
performance, respectively (refer to Figure SM3 in the supplementary file). 
Apart from kernel function, the combination of sigma values and stan
dardization status revealed to have a drastic influence on the perfor
mance of GPR models. The observations presented in Figure SM4 of the 
supplementary file revealed that performing standardization of the 
input features is essential to obtain best performance of GPR models. 
When the standardization status is considered false, the drastic reduc
tion in the prediction performance of the GPR models is observed (refer 
to Figure SM4 in the supplementary file). The consideration of stan
dardization of the input features makes the GPR models effective, irre
spective of the sigma values considered.

The performance of these models (which are subjected to the vari
ation in training samples size) is assessed by utilizing the out-of-the-fold 
16 samples (refer to Table SM2 of supplementary file), which were 
separately derived from the FDM simulations (refer to Fig. 6). To ensure 
the proper generalization capability of the developed optimized GPR 
model, the variance is provided to the test dataset, by performing Monte- 
Carlo cross validation (MCCV) mechanism. To perform MCCV, randomly 
8 samples are selected from the out-of-the-fold test samples (16 samples) 
in each iteration, and R2 and RMSE is evaluated; this process is per
formed for 25 iterations. Such cross-validation mechanism establishes 
the generalization capability of the ML model by ensuring that devel
oped model is capable in handling the variance in the unknown data. 
The observations of the MCCV are illustrated in Figure SM5 of the sup
plementary file, which indicates that the distribution of R2 and RMSE 
values during MCCV remains conserved, i.e. for majority of the iterations 

Fig. 3. Randomly (using Monte Carlo sampling) distributed input features considered in the present study for performing 125 numbers of numerical simulations 
(green points used for training and testing the ML models). The large-scale (10000) random samples (yellow points) are considered as virtual samples to get the 
predictions out of the ML models.

Fig. 4. Pearson’s correlation analysis: Utilized to assess the individual para
metric influence on the desired quantities of interest suggested by the initial 
(numerical simulations driven) dataset.
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Fig. 5. Comparison of the performance of different ML models such as decision tree (DT), linear regression (LR), single layer neural network (SLNN), support vector 
regression (SVR), Gaussian process regression (GPR), (A) comparison of R2 values, (B) comparison of RMSE values.

Fig. 6. Validation of developed GPR models: (A, C, E) Scatter plots between actual and predicted responses (To, ηt, and ηo) for training and test samples (B, D, F) 
probability distribution of sample wise percentage error in prediction while training and test the ML models for the responses (To, ηt, and ηo).
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R2 remains close to 1 and RMSE remains minimum (statistical descrip
tion of the performance measures obtained from MCCV are provided in 
Table 3), regardless of the target response. This highlights the predictive 
accuracy and generalization capability of the developed GPR model.

The validation of the hyperparameter tuned GPR models is illus
trated in Fig. 6 with the help of scatter plots (comparison between actual 
responses and GPR predicted responses) and sample-wise percentage 
error in the prediction with the help of probability density function 
(PDF) plots. It is evident from the scatter and error plots presented in 
Fig. 6, that regardless of the ML model (for To, ηt, and ηo) the GPR pre
dicted observations are exceptionally close to the actual (FDM derived) 
responses, at the same time the high likelihood of the percentage error 
lies within ±5 %, it is to be noted that these observations are obtained 
for the out-of-the-fold validation samples, which were not involved 
during the training process of the model.

After establishing the generalization capability of the developed GPR 
models (GPR_To, GPR_ηt, and GPR_ηo), the models are deployed for large- 
scale data-intensive investigations including sensitivity and uncertainty 
quantification analysis, and are presented in Fig. 7. The bar plots pre
sented in Fig. 7(A) highlights the statistical significance of the variation 
in an individual input feature with respect to the desired quantities of 
interest (To, ηt, and ηo), which reflects the RCV-based sensitivity of the 
responses over an individual input feature. The sensitivity analysis re
veals that the variation in depth of the channel (H), flux (φ), and mass 
flow rate (ṁ) exhibits significant statistical influence over outlet tem
perature (To). Whereas thermal efficiency and optical efficiency are 
observed to be highly sensitive to the variation in depth of the channel 
(H) and volume fraction (Vf). With this understanding, the uncertainty 
analysis is performed by inducing the intentional uncertainty (ε = ±2.5 
%, ±5 %, ±7.5 % and ±10 %) in the mean value of statistically 
important features (obtained through sensitivity analysis). For instance, 
the uncertainty is induced in the mean values of H (0.08), φ (1746), and 
ṁ (346.4), using which the sample space of 10000 samples is con
structed by similar random sampling approach (refer to Fig. 3). It is to be 
noted that rest of the input features are maintained at their corre
sponding mean values. The developed GPR model corresponding to 
outlet temperature (GPR_To) is utilized to make the predictions for such 
large-scale unknown samples. The predicted outlet temperature values 
of uncertainty induced (in H, φ, and ṁ) dataset are illustrated in terms of 
probability density function (PDF) plots in Fig. 7(B). It is evident from 
the 7(B) that with the increase in the magnitude of uncertainty, the 
spread of PDF plot increases which reveals the expected variation in the 
To corresponding to the uncertain H, φ, and ṁ. The same investigation is 
conducted for ηt, and ηo, wherein the intentional uncertainty is induced 
H and Vf, while considering mean value of the rest of the features. The 
observations associated with the uncertainty analysis conducted for ηt, 
and ηo are illustrated in Fig. 7(C) and (D), respectively. Similar to the 
uncertainty analysis of To, the increase in magnitude of uncertainty can 
result in a drastic variation in the desired thermal and optical effi
ciencies as well. It should be highlighted that the reported sensitivity 
and uncertainty analysis is carried out as part of the deployment of the 
developed GP models, highlighting the effective utilization of ML 
models in data-intensive studies that would otherwise go unexplored.

To understand the interactive influence of the simultaneous varia
tions in the statistically important features (H, φ, and ṁ for To, and H and 
Vf for ηt, and ηo (obtained from Fig. 8(A)), the simultaneous variation in 

the pair of features (two features at a time), while maintaining other 
features at their mean values is introduced to generate MCS driven 
10000 samples, such unknown dataset is fed to the developed ML 
models and the prediction for desired output responses (To, ηt, and ηo) is 
made. The interactive influence of the simultaneous variations in the 
selected features is illustrated in Fig. 8, wherein Fig. 8(A–C) highlights 
the variation in outlet temperature subjected to simultaneous variation 
in H and φ, φ and ṁ, and ṁ and H, respectively. The observations ob
tained from the original data based on the Pearson’s correlation (pre
sented in Fig. 4) are further fortified by the interactive influence of H, φ, 
and ṁ on outlet temperature To (refer to Fig. 8(A–C)), wherein with the 
increase in H, the significant decline in To is evident. At the same time, 
the increase in φ and ṁ demonstrated significant increase in outlet 
temperature. This behavior is directly correlated with flux (φ) and the 
input irradiation intensity. Concurrently, a decrease in channel depth 
results in a reduction of the nanofluid volume (assuming a constant heat 
transfer coefficient, h). With less nanofluid volume, the same amount of 
input power is concentrated in a smaller fluid volume, thereby 
increasing the outlet temperature. It is evident from Fig. 8(B) that 
simultaneous increase in φ and ṁ leads to rapid increment in the outlet 
temperature. Further, increment in depth of the channel (H) at fixed flux 
(φ), and mass flow rate (ṁ) leads to drastic decline in the outlet tem
perature, which corroborates with the negative correlation of H over To 
illustrated in Fig. 4. The interpretation of this pattern explains that the 
fluid volume is directly correlated with the height of the channel. 
However, an increase in the mass flow rate results in a shorter exposure 
time of the fluid within the channel. Therefore, with a constant flux, 
increasing both the channel height and the mass flow rate leads to a 
decrease in the outlet temperature of the fluid. The influence of cross- 
interaction of variations in φ and ṁ (refer to Fig. 8(B)) revealed that 
simultaneous increase in φ and ṁ leads to significant increase in To. 
Since, H and Vf are observed to be having relatively higher statistical 
significance over thermal and optical efficiency (refer to Fig. 7(A)), the 
variation in ηt (refer to Fig. 8(D)), and ηo (refer to Fig. 8(E)) is recorded 
corresponding to the simultaneous variation in H and Vf. It is evident 
that, simultaneous increase in H and Vf leads to a rapid and drastic 
increment in thermal and optical efficiency. The reason for increase in 
thermal and optical efficiency is due to the volume fraction increase 
which prompts to increase the absorption capability of the nanofluid the 
optical efficiency. Furthermore, the increase in height and volume 
fraction leads to increase in outlet temperature of the fluid and the in
crease in outlet temperature is directly proportional to the thermal ef
ficiency (eq. (14)). From eq. (14), it can be observed that the mass flow 
rate, specific heat of the nanofluid and the temperature difference be
tween the outlet temperature and the inlet temperature are directly 
proportional to the thermal efficiency. Thus, the increase in mass flow 
rate led to higher outlet temperature, thus higher thermal efficiency. As 
the volume fraction of the nanoparticles increases the specific heat of the 
fluid decreases and the temperature difference depends on the height of 
the channel (volume of the fluid in the channel). Due to these reasons, 
the thermal efficiency of the DASC system is increasing.

So far, the constructed ML models are deployed to reveal the deep 
insights into the parametric perturbations and corresponding stochastic 
evaluation of the solar collector’s thermal and optical performance. 
However, it is to be noted that the efficient design of silver nanoparticle 
based solar collector system should reflect appropriate trade-off be
tween outlet temperature and efficiencies (since there exist a negative 
correlation between To and ηt, and To and ηo (Refer to Fig. 4)). Therefore, 
the developed models are utilized as the objective functions to perform 
the multi-objective GA-based optimization. In this regard, initially the 
combination of two responses (To and ηt, and To and ηo) are individually 
explored for obtaining the optimal input feature settings to ensure suf
ficiently maximized responses. Thereafter, all the three responses (To, ηt, 
and ηo) are considered together to obtain the optimal input features for 
ensuring the simultaneous maximization of all the considered responses. 
The Pareto solutions obtained from the multi-objective optimization are 

Table 3 
Statistical description of the models’ performance measures obtained from 
MCCV for 25 iterations.

Model R2 RMSE

mean Standard deviation Mean Standard deviation

GPR_To 0.9434 0.0681 2.02 1.222
GPR_ηt 0.9296 0.1019 1.03 0.4382
GPR_ηo 0.9862 0.0153 0.328 0.1291
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Fig. 7. Uncertainty analysis of the performance of NBSC. (A) ML driven sensitivity analysis for illustrating the statistically most significant parameters in terms of 
each target response (To, ηt, and ηo) (B) Intentional uncertainties (±2.5 %, ±5 %, ±7.5 %, ±10 %) introduced to mean values of φ, H, and ṁ for their collective 
influence on To (C) Intentional uncertainties (±2.5 %, ±5 %, ±7.5 %, ±10 %) introduced to mean values of Vf, and H for their collective influence on ηt (D) 
Intentional uncertainties (±2.5 %, ±5 %, ±7.5 %, ±10 %) introduced to mean values of Vf, and H for their collective influence on ηo.

Fig. 8. Interactive influence of the most significant (suggested by sensitivity analysis) input variables on (A–C) outlet temperature (To), (D) thermal efficiency (ηt), 
(E) optical efficiency (ηo).
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illustrated in Fig. 9, wherein Fig. 9(A) highlights the Pareto solution 
corresponding to the simultaneous maximization of To, and ηt. Similarly, 
Pareto solution corresponding to simultaneous maximization of To, and 
ηo is presented in Fig. 9(B). It is noted from Fig. 9(A) and (B) that all the 
solutions obtained from the ML-MOGA optimization does not qualify for 
the simultaneous maximization of the responses, but some of the points 
lying within the Pareto solution provides a suitable trade-off between To, 
and ηt (refer to Fig. 9(A)) and To, and ηo (refer to Fig. 9(B)).

These optimal input feature settings proposed by ML-MOGA are 
further validated by performing the numerical (FDM) simulations as 
depicted by a few points highlighted with different colour in Fig. 9. The 

similar understanding can be obtained from the Pareto solution pre
sented in Fig. 9(C) corresponding to the simultaneous maximization of 
To, ηt and ηo. The optimal solutions along with the corresponding re
sponses suggested in Fig. 9(A), (B) and 9(C) are presented in Table SM5
of the supplementary file. The Pareto solutions (in Fig. 9) proposed by the 
ML-MOGA framework represent the best solutions. However, to ensure 
the simultaneous maximization of To, ηt and ηo, the trade-offs between 
To, and ηt, as well as between To, and ηo, must be carefully considered. 
The optimal parameters identified were Vf = 0.0037 %, φ = 2712.95 W/ 
m2, H = 0.003 m, ṁ = 542.79 kg/s, Ta = 27.62 ◦C, and h = 4.38 W/m2. 
Predictions from the ML-MOGA approach closely matched those from 
the numerical simulations (FDM), with slight deviations in temperature 
gain and efficiencies: ML-MOGA predicted To = 117.27 ◦C (FDM To =

119.05 ◦C), ηt = 87.62 % (FDM ηt = 85.22 %), and ηo = 77.79 % (FDM ηo 
= 77.82 %). It is important to note that the initial dataset used to 
construct the machine learning model, which was derived from the FDM 
simulations, recorded a maximum outlet temperature of 93.83 ◦C, along 
with a thermal efficiency of 50.14 % and an optical efficiency of 49.17 
%. This highlights how the proposed ML-MOGA framework enabled the 
exploration of previously uncharted territory, facilitating the identifi
cation of optimal settings that simultaneously maximize all the key 
performance responses. Optimizing the design of a Nanofluid-Based 
Solar Collector (NBSC) requires careful consideration of the trade-offs 
between temperature, thermal efficiency, and optical efficiency, as 
represented by the presented Pareto solutions. This involves navigating 
a complex interplay between these factors, and the practical implica
tions extend beyond the immediate performance metrics. The optical 
efficiency represents the fraction of incident radiation absorbed by the 
nanofluid and is defined by Equation (13). This equation indicates that 
optical efficiency is directly proportional to absorbed irradiation. A 
higher optical efficiency results in greater absorption of irradiation, 
leading to an increased temperature rise in the nanofluid. However, the 
temperature increase also intensifies re-radiation losses, which can 
reduce overall energy gain rather than enhancing thermal efficiency. 
The thermal efficiency as described in Equation (14), is directly pro
portional to the temperature difference (Tout – Tin). Although, when 
optical efficiency is high, the nanofluid temperature rises, subsequently 
improving thermal efficiency. Nevertheless, excessive temperature in
crease may necessitate the use of high temperature-resistant materials, 
potentially increasing material costs. Therefore, for practical imple
mentation of NBSC system, several factors need to be considered, 
including the cost of nanofluids, the development of high-temperature- 
resistant designs, scalability, and nanoparticle stability. Currently, 
commercially available nanoparticles are expensive and often face sta
bility challenges. Utilizing naturally occurring materials such as carbon 
soot or carbon dust presents a cost-effective and scalable alternative. 
Chemical treatment of these materials can further enhance their stabil
ity, making them more viable for solar energy applications. By 
leveraging these sustainable nanomaterials, solar energy harnessing can 
become more cost-effective and contribute to UN Sustainable Develop
ment Goal especially SDG 7 (Affordable and Clean Energy) and SDG13 
(Climate Actions).

To properly understand the underlying mechanism for the pre
dictions offered by the developed GPR models, the models are inter
preted in terms of SHAP values. The agnostic approach of model’s 
explanation, such as SHAP helps understanding the deep insights about 
the individual parametric influence on the prediction mechanism of the 
developed model. SHAP is a powerful tool for explaining complex ma
chine learning models, providing both local and global interpretability, 
and can handle non-linear relationships. Such assessment on the inter
pretability of ML models is of great importance, to ensure a meaningful 
deployment of the ML models. The SHAP based summary plots for model 
explanation are illustrated in Fig. 10.

The SHAP analysis concerning the GP model for outlet temperature 
(refer to Fig. 10(A)) revealed that the model given prime importance to 
the variation in depth of channel (H), followed by flux (φ), and mass 

Fig. 9. Pareto analysis of machine learning driven multi-objective genetic al
gorithm (ML-MOGA) optimization framework. (A) Maximization of To, and ηt, 
suggested by ML-MOGA framework, proposed best solutions are validated by 
performing a set of numerical simulations (green points) (B) Maximization of 
To, and ηo, suggested by ML-MOGA framework, proposed best solutions are 
validated by performing a set of numerical simulations (orange points) (C) 
Simultaneous maximization of To, ηt and ηo suggested by ML-MOGA framework, 
proposed best solutions are validated by performing a set of numerical simu
lations (red points).
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flow rate (ṁ). The GPR model for To does not give much importance to 
the variation in volume fraction of nano particles (Vf), heat transfer 
coefficient for convection (h) and ambient temperature (Ta), while 
making the predictions. It is also revealed that while making the pre
diction for To, higher values of H, negatively impact the predicted 
response and is vice-versa for the lower value of H. In contrast, the lower 
values of φ and ṁ negatively impact the prediction of To, and vice-versa. 
The SHAP analysis for the GPR model corresponding to the thermal 
efficiency is illustrated in Fig. 10(B), where it is revealed that higher 
values of depth of channel (H) and volume fraction (Vf) have a positive 
impact on the prediction of ηt, same observations can be drawn from the 
SHAP analysis for GPR model of ηo (refer to Fig. 10(C)). It is to be noted 
that the observations obtained from the SHAP analysis presents the 
corroboration of Pearson’s correlation analysis (refer to Fig. 4) and data- 
driven sensitivity analysis (refer to Fig. 10(A)).

In summary, this study presents a machine learning (ML) model 
deployed for large-scale predictions to perform downstream tasks such 
as sensitivity analysis (illustrated in Fig. 7(A)), uncertainty quantifica
tion (illustrated in Fig. 7(B–D)), interactive influence of important fea
tures (illustrated in Fig. 8), and multi-objective optimization (illustrated 
in Fig. 9). These downstream tasks utilized randomly generated samples 
via Monte Carlo sampling (MCS), enabling large-scale predictions (for 
approximately 500,000 unknown samples) to be made instantaneously 
with the help of the computationally efficient Gaussian Process 
Regression (GPR) model. These tasks would have remained unexplored 
without the deployment of the computationally efficient ML-based 
framework. The comparison of the computational cost incurred in 
large-scale FDM simulations and large-scale predictions through ML 
model is illustrated in Figure SM2 of the supplementary file. The FDM 
simulations and ML modelling is performed using the laptop with the 
configurations of 6 core processor, 8 GB RAM, and 1.20 GHz clock- 
speed. It is evident from Figure SM2 that with the increase in number 
of simulations the computational time linearly increases, whereas for 
the increment in number of simulations the time for prediction through 
ML model remains a fraction of second. This shows that conducting 

conventional numerical simulations or lab experiments for such a large 
number of samples would have been time- and resource-intensive, 
demonstrating how the proposed framework is significantly faster 
than traditional approaches.

4. Conclusions

This paper introduces a data-driven multicriteria optimization 
approach for nanofluid-based solar thermal collectors (NBSCs) and uti
lized silver nanoparticles as a medium to enhance the performance 
metrics such as outlet temperature (To), thermal efficiency (ηt), and 
optical efficiency (ηo). The study systematically integrates three distinct 
modelling techniques: the Numerical Model (FDM), the Machine 
Learning Model (Gaussian Process Regression or GPR), and the Multi- 
objective Genetic Algorithm (GA) for optimal parameter setting. The 
important insights and findings from the study are as follows: 

1. Pearson’s correlation analysis shows that flux (φ) and mass flow rate 
(ṁ) have a moderate positive correlation with outlet temperature 
(To), while channel depth (H) has a negative correlation with To. 
Volume fraction (Vf) and channel depth (H) positively correlate with 
both thermal (ηt) and optical efficiency (ηo). There is a strong nega
tive correlation between To and both ηt and ηo, with ηt and ηo being 
positively correlated.

2. Gaussian Process Regression (GPR) models were validated using out- 
of-the-fold samples, ensuring robust generalization capability. The 
models demonstrated high accuracy, with R2 values ranging from 
0.96 to 0.99 and prediction errors within ±5 %.

3. Sensitivity analysis identified key factors influencing the outlet 
temperature (To): depth of the channel (H), flux (φ), and mass flow 
rate (ṁ). Additionally, thermal efficiency (ηt) and optical efficiency 
(ηo) are most sensitive to depth (H) and volume fraction (Vf). The 
simultaneous increase in H and Vf lead to substantial improvements 
in ηt and ηo.

Fig. 10. SHAP based summary plots to explain the prediction mechanism of ML models corresponding to (A) To (B) ηt and (C) ηo.
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4. The optimal parameters identified were Vf = 0.0037 %, φ = 2712.95 
W/m2, H = 0.003 m, ṁ = 542.79 kg/s, Ta = 27.62 ◦C, and h = 4.38 
W/m2. Predictions from the ML-MOGA approach closely matched 
those from the numerical simulations (FDM), with slight deviations 
in temperature gain and efficiencies: ML-MOGA predicted To =

117.27 ◦C (FDM To = 119.05 ◦C), ηt = 87.62 % (FDM ηt = 85.22 %), 
and ηo = 77.79 % (FDM ηo = 77.82 %).

5. SHAP-based explanations of the developed ML models confirm the 
findings from Pearson’s correlation and sensitivity analysis. They 
highlight the importance of channel depth (H), flux (φ), and mass 
flow rate (ṁ) in predicting outlet temperature (To), and show that 
higher values of H and volume fraction (Vf) positively impact pre
dictions for thermal efficiency (ηt) and optical efficiency (ηo).

In summary, this study successfully demonstrates that the integra
tion of ML and GA paradigm with numerical simulations can signifi
cantly enhance the design and performance of NBSCs by avoiding the 
preliminary computational cost of performing large scale simulations. 
The developed optimization framework provides a practical and effec
tive method for developing highly efficient NBSCs, contributing valu
able insights for future advancements in the field.
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