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AbstractÐSecondary electron hyperspectral imaging (SEHI) is
an emerging technique that allows experimental investigation of
the chemical properties of material surfaces at the nanoscale. De-
spite advancements in automated image registration, registering
SEHI images across different spatial scales remains a challenging
task, and it is still typically performed manually in practice.
Many image registration approaches often lead to inadequate
registration in SEHI due to primarily focusing on spatial features,
and do not capture the rich spectral information in SEHI. To fill
in this gap, we propose a multi-scale spatio-spectral approach
based on the scale-invariant feature transform (SIFT) to auto-
mate SEHI image registration. The main novelty of this work
lies in the proposed multi-scale SIFT spatio-spectral descriptors
that effectively integrate both the SIFT spatial descriptor and
differentiate the spectral signal profile as a function of electron
energy. A new spatio-spectral descriptor matching algorithm is
designed, achieving accurate image registration, with an accuracy
error of less than 0.44 pixels. Results over real SEHI datasets
show that the proposed approach performs better than other
state-of-the-art registration methods. Two performance metrics
are used for evaluation, including normalized cross correlation
(NCC) for examining spatial alignment and cosine similarity
regarding spectral alignment. The results show that our proposed
approach achieves good accuracy, with an NCC of above 82%,
and a cosine similarity of over 93%. This work offers a promising
solution for automated multi-scale image registration, which is
an essential step for SEHI analysis tasks for material surface
chemical composition and accelerating materials discovery.

Index TermsÐscanning electron microscopy, image registra-
tion, hyperspectral imaging, materials analysis and discovery,
scale-invariant feature transform.

I. INTRODUCTION

Scanning electron microscopy (SEM) is extensively used

to understand composition and microstructure in micro- and

nano-scale imaging, supporting a broad spectrum of industries

and research areas, such as manufacturing, nanotechnology,

and materials science [1]. A novel extension of SEM is sec-

ondary electron hyperspectral imaging (SEHI), which employs

energy filtering within an SEM to produce a three-dimensional

hyperspectral dataset [2]. SEHI data comprises high-resolution

sequential images generated by secondary electrons emitted

from the same sample area, with each image corresponding to

a specific energy range that passes through a low-pass energy

filter. SEHI has been demonstrated to be a valuable technique

for advanced material applications such as surface chemical

characterization, characterizing organic/inorganic material, and

segmenting material surfaces [3], [4]. However, the advance-

ments in imaging techniques from micro to nanoscale are

still constrained by reliance on predominantly manual image

registration. SEHI datasets across different magnifications rely

on individual expertise for registration due to the absence of a

reliable automated registration method, which is not only time-

consuming but also inconsistent. To address this challenge,

there is a need to develop an automated registration technique

to enable precise, high-throughput characterization for both

research and industrial purposes.

A. Related Works

Image registration refers to the transformation of different

image datasets into one coordinate system with matched imag-

ing contents. Image registration can be mainly divided into

two main parts: learning based registration and classical-based

registration [5]. In recent years, learning based registration

methods have integrated deep learning, which can be broadly

categorized as end-to-end deep learning and feature extraction-

based methods. Firstly, end-to-end methods can be divided

into supervised and unsupervised learning. Supervised deep

learning methods, such as [6]±[8], can directly predict trans-

formation parameters but require extensive annotated training

datasets comprising many image pairs with transformation

parameters for network training. However, it is a costly task

for SEHI images. Furthermore, training a deep convolutional



neural network (CNN) with limited data may not generalize

well or may still need improvement. On the other hand,

unsupervised learning techniques estimated transformation

parameters by reducing the difference between image pairs

[9]±[11]. These methods demonstrate superior performance

in image registration and do not require extensive labeled

datasets. However, they often struggle to register images with

significant geometric distortions. Secondly, many researchers

utilized deep neural networks as a feature extractor for image

registration tasks [12]±[16]. Zhou et al. [16] proposed a multi-

task unified deep CNN for remote sensing image registration

and change detection. Quan et al. [15] introduced a deep

wavelet learning network (DWNet) for feature learning. Zhao

et al. [12] proposed an image registration algorithm based on

a deep residual network (ResNet) and a traditional algorithm.

SIFT and ResNet34 feature extraction were fused to improve

the image registration. Ye et al. [14] fused traditional SIFT

and convolutional neural network features to improve feature

extraction and representation. Deep feature extractor methods

have attained competitive registration accuracy by extracting

high-level features in a nonlinear way. However, the problem

of registration between images acquired from differing fields

of view (FoV) cannot be handled by current methods.

Conventional registration methods can be divided into

intensity-based registration and feature-based registration.

Intensity-based registration worked directly with image inten-

sity, such as the Fourier transform [17], phase correlation [18],

and mutual information [19]. The primary constraint of this

method is the lack of consideration for the spatial relation-

ships across pixels, making it less appropriate for significant

geometric changes. Feature-based image registration typically

consists of four primary stages: detecting features, matching

corresponding features, estimating the transformation model,

and applying the transformation to align the images [20].

Numerous image registration methods have been proposed

that leverage automated feature extraction to identify and

align corresponding structures across images, such as the

scale-invariant feature transformation (SIFT) [21], KAZE [22],

Oriented Features from Accelerated Segment Test (FAST)

and Rotated Binary Robust Independent Elementary Features

BRIEF (ORB) [23], and many other algorithms. SIFT, which is

invariant to scale, rotation, illumination, distortion, and view-

point changes, is one of the most common feature detection

and description algorithms. It can correctly locate key-points

in noisy, cluttered, and occluded environments, which is the

case of the SEHI images based on SEM for materials. SIFT

offers superior accuracy and robustness compared to other

methods, such as ORB and KAZE [24], leading to extensive

application in the literature [24]±[28]. For example, a gradient

definition and a robust matching strategy were introduced to

improve the SIFT algorithm [27]. Besides, Zhang et al. [28]

proposed a modified ratio of exponentially weighted averages

(MROEWA) operator, and the traditional differences in the

Gaussian (DoG) are replaced by Harris scale space to improve

the SIFT algorithm for better detection of stable keypoints.

This encourages us to inherit the powerful robustness of SIFT

to SEHI registration. However, the feature based methods are

primarily designed to extract feature points from grayscale

images, and when applied to hyperspectral imaging (HSI),

they often operate on a single band from each image [29]±

[31], or apply to images produced by dimension reduction,

e.g, principal component analysis(PCA) [32]±[34].

Ordonez et al. [29] proposed HSI±KAZE method, which

built a keypoint descriptor based on the spectral information

and a nonlinear diffusion filter, to register hyperspectral remote

sensing images. Liu et al. [35] proposed a remote sensing

image registration framework based on ORB feature and

optical flow theory for acousto-optic tunable filter (AOTF)

spectrometer data. Zhang et al. [32] proposed a registration

framework based on PCA for dimension reduction alongside

global and local features of remote sensing HSI.

While the methods mentioned above can achieve good

registration accuracy, they are not suitable for registering

SEHI images. This is because the varying morphological

characteristics of SEHI make it challenging to construct robust

spatial and spectral descriptors, thus resulting in inaccurate

feature matching, particularly when registering SEHI acquired

under differing FoVs from diverse materials, and at a high

spatial nano-resolution. In such cases, the registration process

might be highly sensitive to small misalignment. Therefore,

beyond the spatial features, the spectral information in SEHI

should be well analyzed to enhance registration accuracy

and material characterization. For instance, derivative spectral

information with respect to the energy electron [36], [37]

has been utilized effectively to construct a spectral descriptor

in our proposed method, as shown in Fig. 1. To the best of

our knowledge, the problem of registering SEHI data has not

been previously investigated, and this paper is a preliminary

study that introduces multi-scale spatio-spectral registration

into SEHI images. Inspired by the prior research listed above,

a multi-scale spatio-spectral registration approach is proposed

for real-world SEHI applications towards automated materials

characterization.

B. Contributions

The main contributions of this work are as follows:

1. To the best of our knowledge, for the first time,

we propose a multi-scale and spatio-spectral approach for

SEHI image registration with different FoVs. Our approach

adopts SIFT-based spatio-spectral descriptors, which allow

fine-grained features in high-magnification images and coarse

structures in low-magnification images to be well aligned.

2. Derivative-enhanced spectral data with respect to the

energy electrons is first presented to construct the spectral

descriptor, which effectively preserves material spectral sig-

natures in SEHI data. This work also presents a new spatial-

spectral descriptor matching algorithm that jointly integrates

spatial and spectral information, achieving accurate SEHI

image registration.

3. This study provides a comprehensive performance evalu-

ation of the proposed approach on real-world cases, compared

with other closely related registration methods. SEHI datasets



under four levels of magnification in SEHI imaging, covering

FoV ranging from 30 µm to 100 µm, were utilized to validate

the proposed approach and evaluate the performance.

4. The proposed approach can contribute to data-driven

materials analysis and discovery by automating the process of

nanoscale materials characterization for diverse applications,

such as materials chemical composition analysis and materials

discovery.

The rest of the paper is organized as follows: Section II

introduces the proposed approach. Section III demonstrates

the effectiveness of this approach for SEHI image registration.

Finally, Section IV concludes this work.

II. THE PROPOSED APPROACH

The proposed spatio-spectral SIFT registration approach has

several stages which are detailed in Fig. 2 and consists of key

steps summarised below.

A. Smoothing

The 3D Gaussian filter used for smoothing the SEHI dataset

in both spectral and spatial domains is expressed as:

G(x, y, λ, σ1, σ2) =
1

2πσ2
1

·
1

√

2πσ2
2

· e
−

(

x2+y2

2σ2
1

+ λ2

2σ2
2

)

, (1)

where x, y, λ, σ1, σ2 are spatial coordinates, spectral coordi-

nates, the standard deviation for spectral smoothing, and the

standard deviation for spatial smoothing, respectively.

B. Selected Band

The selected band image was obtained by selecting the band

with the maximum entropy.

Hb = −
255
∑

i=0

Pb(i) · log2 (Pb(i) + ε) , (2)

where Hb is the entropy of band b, Pb(i) is the probability

of intensity level i in band b estimated from the normalized

histogram , ε is small constant (e.g., 10−8) added to avoid

log(0). The maximum entropy band is selected because it

captures the richest spatial and textural information and re-

duces the computational cost, making it well-suited for robust

SIFT keypoint extraction. Bands with lower entropy tend to

be more homogeneous or noisy, providing fewer distinctive

features for matching. The use of maximum-entropy bands

for initiating feature detection has also been reported in

hyperspectral registration methods such as [25].

C. Spatial Descriptor

Spatial feature extraction is achieved by the SIFT algorithm,

and its primary steps are outlined next. The first is to define the

local spatial feature based on the predefined band. Gaussian

filters at different scales are used to blur the image, and

then difference-of-Gaussian (DoG) images are generated by

subtracting one blurred image from another. Stable keypoints

L(x, y, σ2) across multiple scales are identified in this process

L(x, y, σ2) =

(

1

2πσ2
2

e
−

x2+y2

2σ2
2

)

∗ I(x, y), (3)

where ∗ indicates the convolution operation of x and y pixel

coordinates and I represents an image. The DoG D(x, y, σ2)
is represented by:

D(x, y, σ2) = (G(x, y, kσ2)−G(x, y, σ2)) ∗ I(x, y) (4)

Local maxima and minima in the DoG images are chosen

as initial keypoints. Additionally, keypoints located in low-

contrast regions or along edges are removed to improve

stability and repeatability. Based on local image gradients,

an orientation histogram is computed around the keypoint.

The most dominant orientation is assigned to a keypoint to

ensure rotational invariance. A region around the keypoint

is divided into smaller subregions. Within each subregion,

gradient magnitudes and orientations are computed to form

histograms. These histograms are concatenated into a feature

vector, which captures the local spatial structure and gradient

patterns around the keypoint as presented in Fig. 3.

D. Spectral Descriptor

The main steps for constructing the spectral descriptor are

outlined next. mean spectral signature for each keypoint k

located at coordinates (xk, yk), the region of interest (ROI)

is defined as: ROIk = SEHIx,y,λ, where x ∈ [xk − r, xk +
r], y ∈ [yk−r, yk+r], r = t∗ms, which represents the size of

the region in pixels. A dynamically scaled size r proportional

to the median keypoint size ms from SIFT multiplied by tile

size t, is implemented to ensure consistent and reliable ROI

across varying magnifications. The mean spectral signature

meank for the ROI around each keypoint is computed as:

meank(λ) =
1

N

∑

x,y∈ROIk

SEHIx,y,λ, , (5)

where N is the total number of pixels in the region, λ

is the spectral band index, and SEHIx,y,λ represents the

hyperspectral intensity at band λ and spatial coordinates

(x, y). The spectral difference descriptor is computed using

central-difference spectral differentiation across spectral bands

with respect to energy electron [36], [37], which can mainly

enhance material spectral signatures in SEHI data while simul-

taneously attenuating stochastic noise and compensating drift

distortions. We incorporate these into our spectral descriptor

to improve feature matching in downstream registration tasks

across varied magnifications:

∆meank(λ) =
1

2

(

meank(λ+ 1)− meank(λ)

∆eV

+
meank(λ)− meank(λ− 1)

∆eV

)

,

(6)

where ∆eV is the energy step size between adjacent spectral

bands, which is defined as: ∆eV = eV [i + 1] − eV [i],
where eV[i] is the energy electron value associated with

the i-th band. The eV is computed from mirror electrode

voltage (MV ) according to the calibration equation: eV =
MV · (−0.4446) + 6, [36].



Fig. 1. a) SEHI data volume at 30µm (reference stack) and SEHI data volume at 100µm( target stack) b)Differentiate spectral information as a function of
Secondary Electron (SE) energy Values (eV) derived from ROI of the SEHI data volumes.

Fig. 2. Framework for multi-scale spatio-spectral registration of SEHI.

To align the spectral difference descriptors with the original

spectral signature length, a zero padding is added to the start

of the array:

Dk(λ) =

{

0 if λ = 0,

∆meank(λ− 1) if λ > 0.
(7)

Finally, the descriptors are normalized for each keypoint:

D̂k(λ) =
Dk(λ)

max (|Dk(λ)|) + ϵ
. (8)

E. Spatial-Spectral Descriptor

We retrieved a spatial descriptor that includes 128 features

by applying SIFT and a spectral descriptor of 48 elements

through secondary electron spectra emission, with the method-

ologies described in sections C and D, respectively. The

spatial-spectral descriptor is constructed by the concatenation

of the spatial and spectral descriptors.

d =

[

x̂s

x̂e

]

∈ R
176, (9)

where x̂s ∈ R
128 is the L2-normalized SIFT vector, x̂e ∈ R

48

is the normalized spectral vector. This fusion captures both the

local image structure and the local secondary-electron energy

signature in a single descriptor and is effective for downstream

tasks, particularly SEHI descriptor matching.

F. Spatial-Spectral Descriptor Matching

Descriptor matching follows two fundamental steps, as de-

tailed in Algorithm 1. Initially, Given the set of d-dimensional

spatial descriptors D
(1)
s from the reference image and D

(2)
s



Fig. 3. Feature points of two SEHI images 30µm and 100µm calculated with SIFT.

from the target image, we first construct a k-d tree over

D
(2)
s . For each descriptor di ∈ D

(1)
s , the tree is queried

to retrieve its k = 5 nearest spatial neighbors (j1, d1) and

(j2, d2),(jk, dk) ∈ D
(2)
s , ranked by Euclidean distance. How-

ever, some descriptors may be missing in the target image,

which causes erroneous matches. To address this, a Lowe’s

ratio test technique with a threshold of τ = 0.7 is implemented

to filter out incorrect matches. Only descriptor pairs satisfying

d1 < τ ·d2 are retained as valid spatial matches. Secondly, for a

descriptor to be accepted as a good match, the cosine similarity

between the spectral descriptors D
(1)
p from the reference image

and D
(2)
p from the target image at the coordinate center of

the corresponding spatial descriptor must exceed the spectral

threshold Tp = 0.90. This step leverages spectral information

to eliminate false matches effectively, ensuring higher accuracy

in the final matching process, as shown in Figure 4.

G. Fine Registration

In the fine registration stage, a full histogram-based search

is carried out to register SEHI datasets with different magni-

fications. The approach determined a potential transformation

for each pair of spatial-spectral descriptors matched. Subse-

quently, a selection is conducted based on all the rotation

angles, transition, and scaling factors that have been obtained.

III. EXPERIMENTS AND RESULTS

This section presents experiments to validate and examine

the efficiency of the proposed approach. We evaluate our

framework performance on four SEHI datasets as presented in

the Table I namely 30µm, 40µm,75µm, and 100µm whose

volume are 1000 × 1500 × 49, and energy electron values

(eV) start from -2 to 8. All experiments were conducted on

a PC with an Intel 13th Gen Core-i7(24CPUs) @ 3.40 GHz,

32 GB RAM, and the algorithms were implemented in Python

Algorithm 1: Detailed procedure of the spa-

tial±spectral matching algorithm

Input: (D
(1)
s , D

(1)
p ), (D

(2)
s , D

(2)
p ): spatial and spectral

descriptors for SEHI dataset 1 and 2, k:number

of neighbors, τ :ratio-test threshold , Tp:spectral

similarity threshold

Output: Mgood: list of good matches passing both τ

and Tp

KD2 := BuildKDTree(D
(2)
s )

Ms := ∅
foreach i in indices of D

(1)
s do

[(j1, d1), . . . , (jk, dk)] := KD2.KNN(D
(1)
s [i], k)

if d1 < τ d2 then

Ms :=Ms ∪ {(i, j1)};

Mgood := ∅
foreach (m,n) ∈ Ms do

if cos
(

D
(1)
p [m], D

(2)
p [n]

)

> Tp then

Mgood := Mgood ∪ {(m,n)};

return Mgood;

3.10 with OpenCV’s SIFT 4.8.0, NumPy 1.24, and SciPy 1.11

libraries.

A cross-FoV registrations were performed, resulting in six

distinct registration pairs, including (100µm, 75µm), (100µm,

40µm), (75µm, 40µm), (100µm, 30µm), (75µm, 30µm), and

(40µm, 30µm). For each pair, we computed four performance

metrics, namely registration error (pixels), NCC, cosine simi-

larity, and spectral angle mapper (SAM).

We define the registration error as the mean Euclidean

distance between matched feature points in the reference



Fig. 4. [a±d]: Feature points on SEHI datasets (30µm, 100µm) calculated with our proposed method, HSI-ORB, HSI-KAZE, and HSI-SIFT-ResNet,
respectively,[a1±d1]: Good matches from multi-scale spatio-spectral descriptor.

Fig. 5. a) SEHI data volume at 100µm (reference stack) b) SEHI data volume at 30µm( target stack) c) Registration target stack to align with reference stack
d)Differentiate spectral information as a function of Secondary Electron (SE) energy Values (eV) derived from aligned regions of the SEHI data volumes.

image and their corresponding transformed points in the target

image:

Reg. Error =
1

M

M
∑

i=1

∥

∥r⃗i − t⃗i
∥

∥

2
, (10)

where r⃗i ∈ R
2 is the centre (pixel coordinates) of match

feature point i in the reference image, t⃗i ∈ R
2 is the

corresponding matched feature point in the target image after

applying the estimated transform, M is the number of matches

and ||.||2 denotes the Euclidean norm.

The NCC between the aligned images is defined as

NCC(R, T ) =
1

N σR σT

N
∑

k=1

(

rk − µR

) (

tk − µT

)

, (11)

where R = {rk}
N
k=1 and T = {tk}

N
k=1 are intensity values of

the reference and aligned target images, respectively, µR, µT

are their means, and σR, σT are their standard deviations.

For spectral similarity at the same spatial location, the

cosine similarity and the SAM are identified as :

cos sim(sr, st) =
s
⊤
r st

∥sr∥2 ∥st∥2
, (12)



SAM(sr, st) = arccos

(

s
⊤
r st

∥sr∥2 ∥st∥2

)

, (13)

where sr, st ∈ R
E are spectral vectors of reference and

aligned target images with E energy channels which are

presented in Fig. 5. Each pair of reference and aligned target

images is treated as an independent experiment, and the overall

performance for each metric is computed by the mean

m̄ =
1

6

6
∑

j=1

mj , (14)

where mj denotes the metric value for the j-th registration

pair. Table II presents the results for the cross-FoV regis-

tration pairs alongside the mean. Across all heterogeneous

FoV combinations, NCC for checking spatial alignment and

cosine similarity for assessing spectra emissions alignment are

greater than 82% and 93%, respectively, and the registration

error is less than 0.44 pixels. The method achieved a mean

registration error of 0.378 px, an NCC of 0.845, a cosine

similarity of 0.973, and a SAM of 0.220 rad. The results

demonstrate that the proposed approach effectively registers

SEHI images across different FoVs and scales. The high values

of NCC and cosine similarity measures, along with the low

registration error, indicate that the framework is well-suited

for registering SEHI images, particularly in complex materials

and advanced manufacturing applications requiring precise

alignment of SEHI images.

TABLE I
DESCRIPTIONS OF FOUR SEHI DATASETS

Dataset Height Width Slices HFW Pixel size eV Ranges

(px) (px) (µm) (nm) (eV)

100µm 1000 1500 49 100 66.7 −2.0 ± 8.2

75µm 1000 1500 49 75 50.0 −2.0 ± 8.2

40µm 1000 1500 49 40 26.7 −2.0 ± 8.2

30µm 1000 1500 49 30 20.0 −2.0 ± 8.2

TABLE II
METRICS FOR THE SIX CROSS-FOV REGISTRATIONS, AND THEIR MEAN

Registration Pair Reg. Error (px) NCC Cos* SAM (rad)

(100µm, 75µm) 0.26 0.86 0.97 0.26

(100µm, 40µm) 0.29 0.84 0.93 0.36

(75µm, 40µm) 0.44 0.85 0.99 0.16

(100µm, 30µm) 0.41 0.82 0.96 0.33

(75µm, 30µm) 0.44 0.83 0.99 0.16

(40µm, 30µm) 0.43 0.87 1.00 0.05

Mean 0.378 0.845 0.973 0.220

*: represents cosine similarity

We compared our method with HSI registration methods,

including HSI-KAZE [29], HSI-ORB [35], and HSI-SIFT-

ResNet [12], to verify the performance of the proposed

method. To ensure a fair comparison, all baseline methods

were configured with their optimal parameter settings on SEHI

data. Tables III and IV present number of detected keypoints,

good match count, registration error (in pixels), NCC, and run-

time on the SEHI dataset. The experimental results presented

in these tables demonstrate that our proposed method sig-

nificantly outperforms HSI-ORB, HSI-KAZE, and HSI-SIFT-

ResNet in terms of registration precision and feature matching

quality across both SEHI dataset settings (100µm, 30µm) and

(100µm, 40µm). Specifically, the proposed method achieves

the lowest registration error (0.41 px and 0.29 px) and the

highest normalized cross-correlation (0.82 and 0.84), indicat-

ing superior alignment precision and structural consistency.

While the runtime is slightly higher than HSI-KAZE, it

remains comparable to HSI-ORB and significantly faster than

HSI-SIFT-ResNet. Additionally, the proposed method achieves

more matched keypointsÐapproximately 8.7× and 16.8× more

than HSI-KAZE, 9× and 1.7× more than HSI-ORB, and

3.5× and 6× more than HSI-SIFT-ResNet, demonstrating its

robustness and effectiveness for accurate registration in SEHI-

based materials analysis.

TABLE III
COMPARISON OF DIFFERENT REGISTRATION ALGORITHMS ON SEHI

DATASET (1000µM, 30µM)

Method Keyp1 Keyp2 Match Err(px) NCC Time(s)

HSI-ORB 20000 20000 29 0.57 0.77 24.66

HSI-KAZE 10357 10785 30 16.64 0.67 19.32

SIFT-ResNet 14094 28185 75 338.71 0.75 104.20

Proposed 14094 28185 262 0.41 0.82 27.25

TABLE IV
COMPARISON OF DIFFERENT REGISTRATION ALGORITHMS ON SEHI

DATASET (100µM, 40µM)

Method Keyp1 Keyp2 Match Err(px) NCC Time(s)

HSI-ORB 20000 20000 194 0.62 0.77 26.46

HSI-KAZE 10911 10785 20 0.46 0.61 19.51

SIFT-ResNet 23063 28185 56 220.11 0.76 153.31

Proposed 23063 28185 335 0.29 0.84 25.30

IV. CONCLUSION

A multi-scale spatio-spectral registration approach of SEHI

images is proposed, which can be applied for automating

micro- and nano-structured materials analysis. This work

designs SIFT-based spatio-spectral descriptors. Beyond the

spatial descriptors, it includes spectral differentiation based on

electron energy variations. The results on different real datasets

demonstrate that the proposed approach can achieve accurate

registration compared with other methods. This framework

is expected to promote accurate image registration with the

SEHI technique towards automated material chemical charac-

terization down to the nanoscale, particularly for investigating

complex carbon-based materials. It would be beneficial to

deploy this framework across various material applications

and integrate it with digital twins to enhance the advanced

manufacturing process.
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