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Abstract—Secondary electron hyperspectral imaging (SEHI) is
an emerging technique that allows experimental investigation of
the chemical properties of material surfaces at the nanoscale. De-
spite advancements in automated image registration, registering
SEHI images across different spatial scales remains a challenging
task, and it is still typically performed manually in practice.
Many image registration approaches often lead to inadequate
registration in SEHI due to primarily focusing on spatial features,
and do not capture the rich spectral information in SEHI. To fill
in this gap, we propose a multi-scale spatio-spectral approach
based on the scale-invariant feature transform (SIFT) to auto-
mate SEHI image registration. The main novelty of this work
lies in the proposed multi-scale SIFT spatio-spectral descriptors
that effectively integrate both the SIFT spatial descriptor and
differentiate the spectral signal profile as a function of electron
energy. A new spatio-spectral descriptor matching algorithm is
designed, achieving accurate image registration, with an accuracy
error of less than 0.44 pixels. Results over real SEHI datasets
show that the proposed approach performs better than other
state-of-the-art registration methods. Two performance metrics
are used for evaluation, including normalized cross correlation
(NCC) for examining spatial alignment and cosine similarity
regarding spectral alignment. The results show that our proposed
approach achieves good accuracy, with an NCC of above 82%,
and a cosine similarity of over 93%. This work offers a promising
solution for automated multi-scale image registration, which is
an essential step for SEHI analysis tasks for material surface
chemical composition and accelerating materials discovery.

Index Terms—scanning electron microscopy, image registra-
tion, hyperspectral imaging, materials analysis and discovery,
scale-invariant feature transform.

I. INTRODUCTION

Scanning electron microscopy (SEM) is extensively used
to understand composition and microstructure in micro- and
nano-scale imaging, supporting a broad spectrum of industries
and research areas, such as manufacturing, nanotechnology,
and materials science [1]. A novel extension of SEM is sec-
ondary electron hyperspectral imaging (SEHI), which employs
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energy filtering within an SEM to produce a three-dimensional
hyperspectral dataset [2]]. SEHI data comprises high-resolution
sequential images generated by secondary electrons emitted
from the same sample area, with each image corresponding to
a specific energy range that passes through a low-pass energy
filter. SEHI has been demonstrated to be a valuable technique
for advanced material applications such as surface chemical
characterization, characterizing organic/inorganic material, and
segmenting material surfaces [3]], [4]. However, the advance-
ments in imaging techniques from micro to nanoscale are
still constrained by reliance on predominantly manual image
registration. SEHI datasets across different magnifications rely
on individual expertise for registration due to the absence of a
reliable automated registration method, which is not only time-
consuming but also inconsistent. To address this challenge,
there is a need to develop an automated registration technique
to enable precise, high-throughput characterization for both
research and industrial purposes.

A. Related Works

Image registration refers to the transformation of different
image datasets into one coordinate system with matched imag-
ing contents. Image registration can be mainly divided into
two main parts: learning based registration and classical-based
registration [Sf]. In recent years, learning based registration
methods have integrated deep learning, which can be broadly
categorized as end-to-end deep learning and feature extraction-
based methods. Firstly, end-to-end methods can be divided
into supervised and unsupervised learning. Supervised deep
learning methods, such as [6]]—[8], can directly predict trans-
formation parameters but require extensive annotated training
datasets comprising many image pairs with transformation
parameters for network training. However, it is a costly task
for SEHI images. Furthermore, training a deep convolutional



neural network (CNN) with limited data may not generalize
well or may still need improvement. On the other hand,
unsupervised learning techniques estimated transformation
parameters by reducing the difference between image pairs
[O-[11]. These methods demonstrate superior performance
in image registration and do not require extensive labeled
datasets. However, they often struggle to register images with
significant geometric distortions. Secondly, many researchers
utilized deep neural networks as a feature extractor for image
registration tasks [[12]-[16]. Zhou et al. [16] proposed a multi-
task unified deep CNN for remote sensing image registration
and change detection. Quan et al. [15] introduced a deep
wavelet learning network (DWNet) for feature learning. Zhao
et al. [12]] proposed an image registration algorithm based on
a deep residual network (ResNet) and a traditional algorithm.
SIFT and ResNet34 feature extraction were fused to improve
the image registration. Ye et al. [14] fused traditional SIFT
and convolutional neural network features to improve feature
extraction and representation. Deep feature extractor methods
have attained competitive registration accuracy by extracting
high-level features in a nonlinear way. However, the problem
of registration between images acquired from differing fields
of view (FoV) cannot be handled by current methods.
Conventional registration methods can be divided into
intensity-based registration and feature-based registration.
Intensity-based registration worked directly with image inten-
sity, such as the Fourier transform [17]], phase correlation [[18]],
and mutual information [[19]. The primary constraint of this
method is the lack of consideration for the spatial relation-
ships across pixels, making it less appropriate for significant
geometric changes. Feature-based image registration typically
consists of four primary stages: detecting features, matching
corresponding features, estimating the transformation model,
and applying the transformation to align the images [20].
Numerous image registration methods have been proposed
that leverage automated feature extraction to identify and
align corresponding structures across images, such as the
scale-invariant feature transformation (SIFT) [21]], KAZE [22],
Oriented Features from Accelerated Segment Test (FAST)
and Rotated Binary Robust Independent Elementary Features
BRIEF (ORB) [23]], and many other algorithms. SIFT, which is
invariant to scale, rotation, illumination, distortion, and view-
point changes, is one of the most common feature detection
and description algorithms. It can correctly locate key-points
in noisy, cluttered, and occluded environments, which is the
case of the SEHI images based on SEM for materials. SIFT
offers superior accuracy and robustness compared to other
methods, such as ORB and KAZE [24], leading to extensive
application in the literature [24]—[28]]. For example, a gradient
definition and a robust matching strategy were introduced to
improve the SIFT algorithm [27]]. Besides, Zhang et al. [28]]
proposed a modified ratio of exponentially weighted averages
(MROEWA) operator, and the traditional differences in the
Gaussian (DoG) are replaced by Harris scale space to improve
the SIFT algorithm for better detection of stable keypoints.
This encourages us to inherit the powerful robustness of SIFT

to SEHI registration. However, the feature based methods are
primarily designed to extract feature points from grayscale
images, and when applied to hyperspectral imaging (HSI),
they often operate on a single band from each image [29]-
[31], or apply to images produced by dimension reduction,
e.g, principal component analysis(PCA) [32]—[34].

Ordonez et al. [29] proposed HSI-KAZE method, which
built a keypoint descriptor based on the spectral information
and a nonlinear diffusion filter, to register hyperspectral remote
sensing images. Liu et al. [35] proposed a remote sensing
image registration framework based on ORB feature and
optical flow theory for acousto-optic tunable filter (AOTF)
spectrometer data. Zhang et al. [32] proposed a registration
framework based on PCA for dimension reduction alongside
global and local features of remote sensing HSI.

While the methods mentioned above can achieve good
registration accuracy, they are not suitable for registering
SEHI images. This is because the varying morphological
characteristics of SEHI make it challenging to construct robust
spatial and spectral descriptors, thus resulting in inaccurate
feature matching, particularly when registering SEHI acquired
under differing FoVs from diverse materials, and at a high
spatial nano-resolution. In such cases, the registration process
might be highly sensitive to small misalignment. Therefore,
beyond the spatial features, the spectral information in SEHI
should be well analyzed to enhance registration accuracy
and material characterization. For instance, derivative spectral
information with respect to the energy electron [36], [37]]
has been utilized effectively to construct a spectral descriptor
in our proposed method, as shown in Fig. I} To the best of
our knowledge, the problem of registering SEHI data has not
been previously investigated, and this paper is a preliminary
study that introduces multi-scale spatio-spectral registration
into SEHI images. Inspired by the prior research listed above,
a multi-scale spatio-spectral registration approach is proposed
for real-world SEHI applications towards automated materials
characterization.

B. Contributions

The main contributions of this work are as follows:

1. To the best of our knowledge, for the first time,
we propose a multi-scale and spatio-spectral approach for
SEHI image registration with different FoVs. Our approach
adopts SIFT-based spatio-spectral descriptors, which allow
fine-grained features in high-magnification images and coarse
structures in low-magnification images to be well aligned.

2. Derivative-enhanced spectral data with respect to the
energy electrons is first presented to construct the spectral
descriptor, which effectively preserves material spectral sig-
natures in SEHI data. This work also presents a new spatial-
spectral descriptor matching algorithm that jointly integrates
spatial and spectral information, achieving accurate SEHI
image registration.

3. This study provides a comprehensive performance evalu-
ation of the proposed approach on real-world cases, compared
with other closely related registration methods. SEHI datasets



under four levels of magnification in SEHI imaging, covering
FoV ranging from 30 um to 100 um, were utilized to validate
the proposed approach and evaluate the performance.

4. The proposed approach can contribute to data-driven
materials analysis and discovery by automating the process of
nanoscale materials characterization for diverse applications,
such as materials chemical composition analysis and materials
discovery.

The rest of the paper is organized as follows: Section
introduces the proposed approach. Section demonstrates
the effectiveness of this approach for SEHI image registration.
Finally, Section [[V| concludes this work.

II. THE PROPOSED APPROACH
The proposed spatio-spectral SIFT registration approach has
several stages which are detailed in Fig. [2| and consists of key
steps summarised below.
A. Smoothing

The 3D Gaussian filter used for smoothing the SEHI dataset
in both spectral and spatial domains is expressed as:

22492 | A2
T\ 207 + 203 1
- € ) ( )

where z,y, A, 01, 02 are spatial coordinates, spectral coordi-
nates, the standard deviation for spectral smoothing, and the
standard deviation for spatial smoothing, respectively.

B. Selected Band

The selected band image was obtained by selecting the band
with the maximum entropy.

1 1
2mo?
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where Hj, is the entropy of band b, P,(i) is the probability
of intensity level ¢ in band b estimated from the normalized
histogram , € is small constant (e.g., 10~8) added to avoid
log(0). The maximum entropy band is selected because it
captures the richest spatial and textural information and re-
duces the computational cost, making it well-suited for robust
SIFT keypoint extraction. Bands with lower entropy tend to
be more homogeneous or noisy, providing fewer distinctive
features for matching. The use of maximum-entropy bands
for initiating feature detection has also been reported in
hyperspectral registration methods such as [25].

C. Spatial Descriptor

Spatial feature extraction is achieved by the SIFT algorithm,
and its primary steps are outlined next. The first is to define the
local spatial feature based on the predefined band. Gaussian
filters at different scales are used to blur the image, and
then difference-of-Gaussian (DoG) images are generated by
subtracting one blurred image from another. Stable keypoints
L(z,y, 02) across multiple scales are identified in this process

Lo = (

1 _12+y2

26 273 ) *I(x7y)7 (3)
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where * indicates the convolution operation of z and y pixel
coordinates and I represents an image. The DoG D(x,y, 02)
is represented by:

D(.T, y702) = (G(I:% kUQ) - G(xvya 0-2)) * I(Jj,y) (4)

Local maxima and minima in the DoG images are chosen
as initial keypoints. Additionally, keypoints located in low-
contrast regions or along edges are removed to improve
stability and repeatability. Based on local image gradients,
an orientation histogram is computed around the keypoint.
The most dominant orientation is assigned to a keypoint to
ensure rotational invariance. A region around the keypoint
is divided into smaller subregions. Within each subregion,
gradient magnitudes and orientations are computed to form
histograms. These histograms are concatenated into a feature
vector, which captures the local spatial structure and gradient
patterns around the keypoint as presented in Fig.

D. Spectral Descriptor

The main steps for constructing the spectral descriptor are
outlined next. mean spectral signature for each keypoint k
located at coordinates (x,yx), the region of interest (ROI)
is defined as: ROl = SEHI, , \, where © € [z}, — r, 2 +
r], y € [yx —7, yr+7], r = txmg, which represents the size of
the region in pixels. A dynamically scaled size r proportional
to the median keypoint size mg from SIFT multiplied by tile
size t, is implemented to ensure consistent and reliable ROI
across varying magnifications. The mean spectral signature
meany, for the ROI around each keypoint is computed as:

1
meang(\) = =

Z SEHI, . , (5)

z,y€ROI},

where N is the total number of pixels in the region, A
is the spectral band index, and SEHI, , » represents the
hyperspectral intensity at band A and spatial coordinates
(z,y). The spectral difference descriptor is computed using
central-difference spectral differentiation across spectral bands
with respect to energy electron [36], [37], which can mainly
enhance material spectral signatures in SEHI data while simul-
taneously attenuating stochastic noise and compensating drift
distortions. We incorporate these into our spectral descriptor
to improve feature matching in downstream registration tasks
across varied magnifications:

1

Ameany()\) = = (meank()\ + 1) — meang ()

AeV

2
(6)

+meank()\) — meang (A — 1)
AeV ’

where AceV is the energy step size between adjacent spectral
bands, which is defined as: AeV = eV[i + 1] — eV]i],
where eV[i] is the energy electron value associated with
the i-th band. The eV is computed from mirror electrode
voltage (MV') according to the calibration equation: eV =
MYV - (—0.4446) + 6, [36].
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Fig. 2. Framework for multi-scale spatio-spectral registration of SEHI.

To align the spectral difference descriptors with the original
spectral signature length, a zero padding is added to the start
of the array:

0 if A=0,
Dy(A) = . @)
Ameang(A—1) if A >0.
Finally, the descriptors are normalized for each keypoint:
- Dy (A

max (|Di(A)]) + €
E. Spatial-Spectral Descriptor

We retrieved a spatial descriptor that includes 128 features
by applying SIFT and a spectral descriptor of 48 elements

through secondary electron spectra emission, with the method-
ologies described in sections C and D, respectively. The

spatial-spectral descriptor is constructed by the concatenation
of the spatial and spectral descriptors.

d= {X] eR'

Xe

©)

where %, € R128 is the L2-normalized SIFT vector, X, € R*8
is the normalized spectral vector. This fusion captures both the
local image structure and the local secondary-electron energy
signature in a single descriptor and is effective for downstream
tasks, particularly SEHI descriptor matching.

F. Spatial-Spectral Descriptor Matching

Descriptor matching follows two fundamental steps, as de-

tailed in Algorithm 1. Initially, Given the set of d-dimensional

spatial descriptors Dgl) from the reference image and D§2>



Fig. 3. Feature points of two SEHI images 30um and 100um calculated with SIFT.

from the target image, we first construct a k-d tree over
D§2). For each descriptor d; € Dgl), the tree is queried
to retrieve its kK = 5 nearest spatial neighbors (ji,d;) and
(J2,d2),(Jk, di) € D, ranked by Euclidean distance. How-
ever, some descriptors may be missing in the target image,
which causes erroneous matches. To address this, a Lowe’s
ratio test technique with a threshold of 7 = 0.7 is implemented
to filter out incorrect matches. Only descriptor pairs satisfying
di < T-dy are retained as valid spatial matches. Secondly, for a
descriptor to be accepted as a good match, the cosine similarity
between the spectral descriptors Dz(,l) from the reference image
and D,(,z) from the target image at the coordinate center of
the corresponding spatial descriptor must exceed the spectral
threshold T}, = 0.90. This step leverages spectral information
to eliminate false matches effectively, ensuring higher accuracy
in the final matching process, as shown in Figure [

G. Fine Registration

In the fine registration stage, a full histogram-based search
is carried out to register SEHI datasets with different magni-
fications. The approach determined a potential transformation
for each pair of spatial-spectral descriptors matched. Subse-
quently, a selection is conducted based on all the rotation
angles, transition, and scaling factors that have been obtained.

III. EXPERIMENTS AND RESULTS

This section presents experiments to validate and examine
the efficiency of the proposed approach. We evaluate our
framework performance on four SEHI datasets as presented in
the Table [[| namely 30 xm,40 pm,75 pm, and 100 um whose
volume are 1000 x 1500 x 49, and energy electron values
(eV) start from -2 to 8. All experiments were conducted on
a PC with an Intel 13th Gen Core-i7(24CPUs) @ 3.40 GHz,
32 GB RAM, and the algorithms were implemented in Python

Algorithm 1: Detailed procedure of the
tial-spectral matching algorithm

Input: (Dgl)7 DI(,I)), (Df), D§,2)): spatial and spectral
descriptors for SEHI dataset 1 and 2, k:number
of neighbors, T:ratio-test threshold , T,:spectral
similarity threshold

Output: Myo0q: list of good matches passing both 7

and T},

KD2 := BuildKDTree(D{?)
My =10
foreach i in indices of Dgl) do
[(1,d1), - -, (G, di)] 1= KD2.KNN(D{V[i], k)
if d; < 7d> then
| M, =M, U{(i,5)};

Mgood =10

foreach (m,n) € M; do

if cos(Dz(yl)[m], D [n]) > T, then
I_ Mgood = Mgood U {(m) n)}’

spa-

return Myoo4q;

3.10 with OpenCV’s SIFT 4.8.0, NumPy 1.24, and SciPy 1.11
libraries.

A cross-FoV registrations were performed, resulting in six
distinct registration pairs, including (100pm, 75um), (100um,
40um), (75um, 40pm), (100pm, 30um), (75um, 30pm), and
(40pm, 30um). For each pair, we computed four performance
metrics, namely registration error (pixels), NCC, cosine simi-
larity, and spectral angle mapper (SAM).

We define the registration error as the mean Euclidean
distance between matched feature points in the reference
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image and their corresponding transformed points in the target
image:

1M
Reg. Error = MZHF} —ti||2, (10)

i=1

where 7; € R? is the centre (pixel coordinates) of match
feature point i in the reference image, #; € R2? is the
corresponding matched feature point in the target image after
applying the estimated transform, M is the number of matches
and [|.||2 denotes the Euclidean norm.

The NCC between the aligned images is defined as

N

Z(Tk —pr) (tk — pr),

k=1

1

(an

where R = {r;}_, and T = {t;}2_, are intensity values of
the reference and aligned target images, respectively, ug, ur
are their means, and or, o are their standard deviations.

For spectral similarity at the same spatial location, the
cosine similarity and the SAM are identified as :

T
S, S¢

COS sim(sr, St) = m,
T

(12)
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where s,,s;, € RF are spectral vectors of reference and
aligned target images with E energy channels which are
presented in Fig. [5] Each pair of reference and aligned target
images is treated as an independent experiment, and the overall
performance for each metric is computed by the mean

1 6
j=1

where m; denotes the metric value for the j-th registration
pair. Table [lI| presents the results for the cross-FoV regis-
tration pairs alongside the mean. Across all heterogeneous
FoV combinations, NCC for checking spatial alignment and
cosine similarity for assessing spectra emissions alignment are
greater than 82% and 93%, respectively, and the registration
error is less than 0.44 pixels. The method achieved a mean
registration error of 0.378 px, an NCC of 0.845, a cosine
similarity of 0.973, and a SAM of 0.220 rad. The results
demonstrate that the proposed approach effectively registers
SEHI images across different FoVs and scales. The high values
of NCC and cosine similarity measures, along with the low
registration error, indicate that the framework is well-suited
for registering SEHI images, particularly in complex materials
and advanced manufacturing applications requiring precise
alignment of SEHI images.

SAM(s,,s;) = arccos< (13)

(14)

TABLE I
DESCRIPTIONS OF FOUR SEHI DATASETS

good match count, registration error (in pixels), NCC, and run-
time on the SEHI dataset. The experimental results presented
in these tables demonstrate that our proposed method sig-
nificantly outperforms HSI-ORB, HSI-KAZE, and HSI-SIFT-
ResNet in terms of registration precision and feature matching
quality across both SEHI dataset settings (100 pm, 30 um) and
(100 pem, 40 pm). Specifically, the proposed method achieves
the lowest registration error (0.41 px and 0.29 px) and the
highest normalized cross-correlation (0.82 and 0.84), indicat-
ing superior alignment precision and structural consistency.
While the runtime is slightly higher than HSI-KAZE, it
remains comparable to HSI-ORB and significantly faster than
HSI-SIFT-ResNet. Additionally, the proposed method achieves
more matched keypoints—approximately 8.7x and 16.8x more
than HSI-KAZE, 9x and 1.7x more than HSI-ORB, and
3.5% and 6x more than HSI-SIFT-ResNet, demonstrating its
robustness and effectiveness for accurate registration in SEHI-
based materials analysis.

TABLE III
COMPARISON OF DIFFERENT REGISTRATION ALGORITHMS ON SEHI
DATASET (1000uM, 30uM)

Method Keypl Keyp2 | Match Err(px) | NCC | Time(s)
HSI-ORB 20000 | 20000 29 0.57 0.77 24.66
HSI-KAZE 10357 | 10785 30 16.64 0.67 19.32

SIFT-ResNet | 14094 | 28185 75 338.71 0.75 104.20

Proposed 14094 | 28185 262 0.41 0.82 27.25

TABLE IV

COMPARISON OF DIFFERENT REGISTRATION ALGORITHMS ON SEHI
DATASET (100uM, 40um)

Dataset | Height | Width | Slices | HFW | Pixel size | eV Ranges
(@x) (px) (pm) (nm) V)
100pm | 1000 | 1500 49 100 66.7 —2.0-82 Method Keypl | Keyp2 | Match | Err(px) | NCC | Time(s)
75 pm 1000 1500 49 75 50.0 —2.0-8.2 HSI-ORB 20000 20000 194 0.62 0.77 26.46
40 pm 1000 1500 49 40 26.7 —2.0-8.2 HSI-KAZE 10911 10785 20 0.46 0.61 19.51
30 pm 1000 1500 49 30 20.0 —2.0-8.2 SIFT-ResNet | 23063 28185 56 220.11 0.76 153.31
Proposed 23063 | 28185 335 0.29 0.84 25.30
TABLE II IV. CONCLUSION
METRICS FOR THE SIX CROSS-FOV REGISTRATIONS, AND THEIR MEAN
Registration Pair | Reg, Error (px) | NCC | Cos® | SAM (rad) . A mul.tl-scale spatlo-sp.ectral reg1strat101? approach of SEHI
(100um, 75um) 0.6 086 | 097 026 images is proposed, which can be applied for automating
(100um, 40um) 0.29 0.84 | 093 0.36 micro- and nano-structured materials analysis. This work
(75um, 40um) 0.44 085 | 0.9 0.16 designs SIFT-based spatio-spectral descriptors. Beyond the
(100pm, 30um) 0.41 0.82 0.96 0.33 tial d . it includ 1 diff tiation based
(75um, 30um) 04q 083 T 0.9 016 spatial descriptors, '1t includes spectral di eren iation based on
(40um, 30um) 0.43 0.87 1.00 0.05 electron energy variations. The results on different real datasets
Mean 0.378 0.845 | 0.973 0.220 demonstrate that the proposed approach can achieve accurate

*: represents cosine similarity

We compared our method with HSI registration methods,
including HSI-KAZE [29]], HSI-ORB [35]], and HSI-SIFT-
ResNet [12f], to verify the performance of the proposed
method. To ensure a fair comparison, all baseline methods
were configured with their optimal parameter settings on SEHI
data. Tables [[1I] and [IV| present number of detected keypoints,

registration compared with other methods. This framework
is expected to promote accurate image registration with the
SEHI technique towards automated material chemical charac-
terization down to the nanoscale, particularly for investigating
complex carbon-based materials. It would be beneficial to
deploy this framework across various material applications
and integrate it with digital twins to enhance the advanced
manufacturing process.
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