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Abstract: The presence of unavoidable background noise limits the signal-to-noise ratio in measured room impulse responses

(RIRs). A common solution is to crop the RIR to the time interval where the signal dominates the background noise, but find-

ing the correct onset and truncation points is challenging. It usually requires estimating the sound decay rate and noise floor,

which is burdened with uncertainty. In this study, we propose an RIR cropping method based on the covariance between two

repeated RIRs and its inherent monotonicity. Evaluation on measured RIRs shows the proposed method is highly robust in

different scenarios and outperforms state-of-the-art algorithms. VC 2025 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

[Editor: Stefan Bilbao] https://doi.org/10.1121/10.0038960

Received: 24 June 2025 Accepted: 29 July 2025 Published Online: 13 August 2025

1. Introduction

Measured room impulse responses (RIRs) naturally exhibit a limited signal-to-noise ratio (SNR); at a certain point in the

response, the noise energy exceeds that of the decaying RIR. To prevent erroneous estimation of acoustic parameters—

such as reverberation time (RT)1–3—or energetic measures like clarity and the direct-to-reverberant energy ratio, the noise

beyond this point must be removed. Additionally, convolving an RIR containing such noise with an anechoic source signal

can result in an audible artifact sometimes referred to as “frozen reverb.”4 When generating training data for machine

learning algorithms related to room acoustics, this artifact may also hinder generalization to real-world data. To mitigate

issues associated with limited SNR, the most straightforward solution is to crop the RIR at the point where the noise

energy begins to dominate over the decaying reverberation,1,5,6 i.e., the time t when the instantaneous SNR, SNRðtÞ, is
non-positive.

Many solutions to the RIR cropping problem have been proposed; however, they typically require estimating the

noise floor level and the decay rate of the RIR, followed by an iterative process to determine the optimal truncation

point.2,4–8 These methods often assume a single-sloped exponential decay2,9 or require spatial RIRs measured with a micro-

phone array.4,10 In addition to truncation, determining the onset time of an RIR is a nontrivial task, and errors in onset

detection can lead to inaccurate estimation of decay parameters11 and impair the performance of the aforementioned trun-

cation point detection algorithms.

During acoustic measurements, it is common practice to record RIRs multiple times to mitigate the effects of errors

or unpredictable noise events. The literature shows that such repeated measurements are required in various tasks, including

non-stationary noise detection12,13 and removal,14 assessment of RIR variability,15–17 speed of sound estimation,18,19 and

anomaly detection.20,21 Although never strictly identical, consecutively measured RIRs display high similarity to each other

where SNRðtÞ is high and very low similarity for non-positive SNRðtÞ.12,17 In this study, we leverage this relationship to dis-

tinguish the time interval containing the RIR from the portion dominated by background noise.

This letter proposes a method for RIR cropping using a pair of consecutively measured responses. By analyzing

two signals instead of one, we leverage their covariance to distinguish the useful portion of the RIR from background

noise. To stabilize the covariance over time and derive a reliable threshold, we apply smoothing via unimodal regression.

The proposed method is evaluated against several baseline approaches for both truncation and onset detection. Compared

to state-of-the-art techniques, our method relies on fewer assumptions about the onset or decay behavior of RIRs, making

it broadly applicable—even to RIRs that comprise fade-in effects, multi-sloped decay, or very low SNR.

a)Author to whom correspondence should be addressed.

JASA Express Lett. 5 (8), 081601 (2025) VC Author(s) 2025. 5, 081601-1
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2. Methodology

This section presents the proposed methodology for estimating onset and truncation points, discusses RIR and background

noise covariance, and explains the smoothing procedure using unimodal regression.

2.1 Covariance and noise energy

Two repeated acoustic measurements x and x0 are modeled as follows:12,17

xðt; f Þ ¼ hðt; f Þ þ uðt; f Þ and x0ðt; f Þ ¼ h0ðt; f Þ þ u0ðt; f Þ; (1)

where h and h0 are RIRs and u and u0 are stationary background noise terms at time t and frequency f. The covariance

between x and x0 is

rx;x0ðt; f Þ ¼ covðx; x0
�
Þ ¼ jE ðhþ uÞðh0 þ u0Þ�

� �

j ¼ jE hh0
�½ � þE hu0

�½ � þE h0
�
u½ � þE uu0

�½ �j; (2)

where E is the expected value and ðÞ� denotes the complex conjugate. Note that in this work, we omit the time-frequency

dependency where appropriate for conciseness. For discrete signals, E is approximated by a short-time average. The short-

time covariance can be estimated through the averaged sample covariance

r̂x;x0ðt; f Þ ¼ wðtÞ � jxðt; f Þ x0
�
ðt; f Þj ¼

X

k

wðt � kÞjxðk; f Þ x0
�
ðk; f Þj; (3)

where wðtÞ ¼ 1=T for �T=2 < t < �T=2 and 0 otherwise, T is the window length, and � is the convolution operator.

We assume that the RIR and background noise are uncorrelated; thus, E½hu0�� ¼ E½h0�u� ¼ 0. Ideally, the back-

ground noise terms are also assumed to be uncorrelated with each other, resulting in E½uu0�� ¼ 0,12,17 and thus rx;x0ðt; f Þ
would tend to 0 before the onset of the RIR and after the RIR energy decays below the noise floor. Hence, in such an ideal

scenario, the onset point tO and the truncation point tT would be found at

tO ¼ argmin
t

rx;x0ðt; f Þ � �; tT ¼ argmax
t

rx;x0ðt; f Þ � �; (4)

i.e., the earliest and the latest point where the covariance exceeds a threshold value �, respectively, such that tO < tT.

However, it is possible for the measured background noise terms u and u0 to exhibit some correlation, e.g., aris-

ing from electric humming.12 The two most extreme cases are when the noise terms are fully correlated or fully anticorre-

lated, u ¼ 6u0, resulting in E½uu0�� ¼ 6E½u2� ¼ 6E½u02�. In this study, the case of fully correlated background noise is

treated as the worst-case scenario, representing the highest possible noise covariance values. Hence, we set the threshold

for onset and truncation point estimation as the first and last time, respectively, when the covariance curve exceeds the

covariance of correlated noise terms, � ¼ E½u2�:

tO ¼ argmin
t

rx;x0ðt; f Þ � E u2½ �; tT ¼ argmax
t

rx;x0ðt; f Þ � E u2½ �: (5)

To obtain the threshold values in Eq. (5), it is necessary to consider parts of the measured signal where only

background noise is present. In acoustic measurements, it is recommended that a certain recording time is allowed before

or after the excitation signal is emitted to estimate the background noise energy. Depending on the measurement condi-

tions and the procedure, the length of the noise signal will vary. However, under the assumption of stationary background

noise, this should not have a significant impact on E½u2�, which is evaluated in Sec. 3.2. Additionally, noise energy can be

robustly estimated using median of the noise samples.12,14

2.2 Unimodal regression

As the short-time covariance curve of a pair of measured RIRs reflects their natural noisiness, choosing the right window

size to obtain a good compromise between the level of detail in the covariance curve and its smoothness is crucial.

Depending on the signal sparsity in time, the optimal window size may vary between measurements or even throughout

the RIR duration; thus, finding the best parameters is challenging. Hence, we propose using unimodal regression for

smoothing, as it does not require choosing the window size.

As the RIR energy decays over time and reaches the noise floor, so does the covariance.17 At this point, it is cer-

tain that the RIR energy will not increase anymore above the noise level; thus, the covariance cannot grow either, and any

high rx;x0 values from the noisy RIR parts stem from the background noise and do not indicate a useful portion of the sig-

nal reappearing. Similarly, the covariance values are low before the onset of the RIR, as in that region, the measurement

consists solely of the background noise. Thus, a covariance curve of a pair of RIRs will exhibit only one global maximum.

Exploiting this property, we propose covariance smoothing with unimodal regression, which seeks to minimize a

weighted least squares error:

min
~rx;x0

X

t

wtð~rx;x0ðt; f Þ � r̂x;x0ðt; f ÞÞ
2; (6)
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subject to the constraint that for each f, there exists one tmax such that22

~rx;x0ðti; f Þ � ~rx;x0ðtj; f Þ � ~rx;x0ðtmax; f Þ; where ti � tj � tmax; and

~rx;x0ðtmax; f Þ � ~rx;x0ðtk; f Þ � ~rx;x0ðtl; f Þ; where tmax � tk � tl;
(7)

where ~rx;x0 is the covariance curve r̂x;x0 smoothed using unimodal regression and weights wt are strictly positive.23

The advantage of this approach is that for each part of Eq. (7), all functions are chosen from a class of isotonic

(non-increasing or non-decreasing) functions, without assuming any shape of the target function, as opposed to linear

regression,24 for example. In terms of room acoustics, this means no other model assumption about RIRs need to be made,

apart from having a single maximum. Hence, the presence of single- or multi-sloped decays, fade-in effect, or the RIR

dynamic range does not violate this assumption. This is in contrast to other truncation methods, which seek to fit a decay

model with a single slope to find the truncation point.5,6 Unimodal regression also does not assume direct sound to be the

highest energy component of an RIR, unlike some of the onset finding methods.11

Smoothing using unimodal regression is illustrated in the left pane of Fig. 1. The peaks and troughs of the decay-

ing covariance curve are efficiently equalized, forming a steadier trend. Similarly, the covariance values of the noise floor

region are evened out.

3. Validation

The proposed method was first validated on a set of simulated RIRs. We used two test cases: in the first one, the RIRs

were synthesized by multiplying white Gaussian noise with a decaying exponential function, so that a frequency-

independent RT of 1 s was achieved; in the second one, the fade-in effect was simulated by combining two decaying RIRs,

one of which was multiplied with a negative gain, imitating a measurement where the source and receiver are in different

rooms.25,26 The fade-in RIRs had a frequency-independent RT of 2 s.

To simulate a typical measurement, we added non-decaying random noise to each of the RIRs to mimic back-

ground noise. To consider different scenarios, the background noise terms were identical (fully correlated noise), identical

with flipped signs (anticorrelated noise), different random sequences (uncorrelated noise), or different sequences with a

correlation of 0.2 (weakly correlated noise). The fully correlated noise condition represents the situation in which both

measurements are the same, x ¼ x0, i.e., one measurement is used instead of two, and the autocovariance is calculated in

Eq. (3). For each condition, the background noise gain was varied to achieve SNRs (maxtSNRðtÞ ¼ maxtE½hðtÞ�=E½uðtÞ�)
between 10 and 30 dB.

3.1 Onset and truncation points

In this case, the energy of noiseless RIRs and the noise energy are known; therefore, the ground truth (GT) onset and

truncation points are determined as the times at which the SNRðtÞ ¼ 0 dB before increasing (onset) and after decaying

(truncation). The determination of tO and tT using the proposed method is illustrated in the right pane of Fig. 1 for the

example of 30 dB of SNR. The ~rx;x0ðt; f Þ values are almost identical for all RIR pairs when the SNRðtÞ is positive—between

around 0.5 and 1 s—but differ for non-positive SNRðtÞ depending on the correlation of the noise terms.

The relation between noise terms correlation and the onset and truncation point estimation is shown in Table 1.

The results are displayed as the difference between the GT onset or truncation point and the estimate given by the pro-

posed method, according to the formula DtX ¼ 100%� ĵtX � tXj=tX, where X 2 fO;Tg and t̂X signifies values obtained

with the proposed method, for onset and truncation point determination, respectively.

The validation results show that in cases of uncorrelated, weakly correlated, and anticorrelated noise, the estima-

tion errors do not exceed 8.2% for tT and 4.2% for tO, proving the method is successful for typical and atypical RIRs and

in low SNRs. However, the differences grow significantly when the simulated background noise is fully correlated, as the

transition from the covariance of the RIR to background noise is less steep, as shown in the right pane of Fig. 1. To rem-

edy this, we reduced the correlation of the noise terms by adding a random noise sequence to one of the RIRs from the

Fig. 1. Left: Covariance of a pair of RIRs and smoothing with unimodal regression. Right: Onset and truncation point estimation using RIR

covariance and noise variance.
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pair. The results in Table 1 for the correlated plus uncorrelated case show that such a trick can offer improvements, espe-

cially in the onset point detection, where the errors were reduced to 3–4%. This highlights that the proposed method typi-

cally requires two separate measurements instead of a single one.

3.2 Noise covariance

Under the assumption of stationary background noise, the length of the noise signal should not have an impact on the

threshold in Eq. (5). Here, we evaluate this hypothesis for the simulated RIRs.

The E½u2� of the RIRs was calculated for the noise lengths of 100ms, 200ms, 500ms, 700ms, and 1 s and used

in the case of uncorrelated background noise. The resulting onset and truncation times were then compared to the GT in

the same way as in Sec. 3.1. The DtO and DtT values for each SNR condition were averaged over all analyzed noise lengths

and are shown in Table 2, with standard deviations indicated only when they were greater than zero. The results show

excellent agreement with the numbers for the uncorrelated noise cases in Table 1, proving that the length of noise signal

for threshold estimation has minimal impact on the accuracy of the proposed method, as long as the assumption of sta-

tionary background noise is met.

4. Evaluation

We evaluated the proposed method on two datasets: Arni, which contains RIRs measured repeatedly in the same room

over a long period of time27 and the multi-room transition dataset (MRTD),28 which contains RIRs from multi-room sce-

narios, and three repetitions of each measurement. The details of the measurement setups are described elsewhere.27,29

Naturally, no GT data are available for real, measured RIRs. Thus, the evaluation focuses on whether any plausible estimate

is returned and on the spread of these estimated values.

As shown in Sec. 3, the proposed method works best with a pair of RIRs. Therefore, in the case of Arni, we used

two consecutive measurements to determine the onset and truncation points. Repetitions in MRTD often contained non-

stationary noise, such as transients or speech,14 which could hinder the evaluation. Therefore, in this study, we used the

output of the Mosaic-TF method,14 as it removes such noise, and the RIR which had the highest correlation to the Mosaic

RIR, as this indicated that it contained the least noise of the three repetitions.12 For both datasets, the threshold E½u2� was
determined from the first RIR from each pair by calculating the variance of 0.5 s of the measurement, where only the back-

ground noise was present.

4.1 RIR truncation

To the authors' best knowledge, there exists no method prior to the proposed one that estimates the onset and the trunca-

tion point of an RIR at the same time. Therefore, we split the evaluation into two parts.

First, we assess the estimation of the truncation point. For this purpose, the most established approach found in

the literature is the Lundeby method,5 which determines the decay by finding a single slope and the background noise level

by fitting a constant to a short-time averaged RIR. The fit is performed iteratively. The truncation point is then established

as an intersection point between the energy decay curve and the noise floor level, but it is recommended to leave 5–10 dB

of safety margin above the noise floor level before truncation,1,5 which is consistent with the suggestion from standards

that describe RT estimation.30,31 In this work, we use the Lundeby method implementation provided in the pyfar library.32

Figure 2(a) presents the results of the truncation point estimation on 595 RIRs from the Arni dataset. Since all of

the RIRs were measured in the same room under the same conditions, we expect very similar truncation times, subject to

Table 1. Onset and truncation time differences between GT and proposed method for simulated RIRs with and without fade-in affect, SNRs

between 10 and 30 dB, and different correlation of background noise terms. All DtO and DtT are expressed as percentages of the true times.

Test case

SNR (dB)
10 15 20 25 30

DtO DtT DtO DtT DtO DtT DtO DtT DtO DtT

No fade-in Uncorrelated 2.6 4.3 3.8 4.5 4.0 5.1 4.2 5.4 4.2 4.5

Weakly correlated 3.0 1.1 3.9 2.6 4.2 3.7 4.2 3.6 4.2 3.1

Anticorrelated 3.2 4.6 3.9 4.3 4.2 4.9 4.2 4.3 4.2 3.9

Correlated 80.3 176.4 80.3 145.7 80.3 121.1 80.3 101.0 80.3 84.3

Correlated þ uncorrelated 4.0 24.3 4.2 43.6 4.2 73.9 4.2 58.1 4.2 44.9

Fade-in Uncorrelated 0.9 0.4 1.6 0.9 3.2 0.1 3.9 1.1 4.2 0.2

Weakly correlated 0.1 4.1 2.2 2.1 3.3 3.6 3.9 2.8 4.2 1.0

Anticorrelated 0.3 8.2 2.0 1.4 3.2 1.8 3.9 0.0 4.2 0.6

Correlated 80.3 121.1 80.3 84.3 80.3 58.3 80.3 38.8 80.3 32.1

Correlated þ uncorrelated 3.3 73.8 3.9 84.7 4.2 58.3 4.2 48.5 80.3 32.1
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variations due to time variance and fluctuations in the background noise level. The results show that the truncation point

values are very similar for both methods, with the proposed approach consistently resulting in a later truncation. The

observed differences between frequency bands are expected because of different decay times and background noise levels.

However, since we do not know the GT tT, we cannot assess which method was more accurate in estimating it.

Figure 2(a) shows that in lower frequencies, 250–500Hz, the proposed method shows more variability than

Lundeby, but starting from 1 kHz, the standard deviations of both distributions are almost identical, showing that the per-

formance of the proposed method is comparable to the baseline in such typical conditions. An example of an Arni RIR

envelope with both truncation points marked is depicted in Fig. 2(c), confirming that both methods result in similarly

plausible values.

Figure 2(b) presents the outcome of the evaluation on 50 RIR pairs from the MRTD dataset. As each RIR pair

was captured at a different location, consistent tT values are not expected. The proposed method produced a truncation

point for every evaluated condition, with similar values over different measurements, suggesting the absence of large esti-

mation errors. The Lundeby method, on the other hand, failed in 84% of the test cases, resulting in tT of 0 s. This is likely

due to the low SNR in many RIRs, and the presence of multi-sloped decays. Both of those issues violate the model

assumptions of the Lundeby method and make the noise floor level and decay slope estimation difficult. The examples of

RIR envelopes from MRTD are illustrated in Fig. 2(d) and 2(e), showing that the proposed method works well even in

very low SNR conditions, as well as in a scenario where finding a single decay slope is challenging.

4.2 Onset point determination

Next, we compare the proposed method to four onset time detection approaches presented in Ref. 11: using the time of

the maximum absolute value of the RIR (M), reducing it by 5ms (M5), mean over time (DE), and threshold (E). We use

RIRs from the MRTD dataset—the same 50 pairs as in Sec. 4.1—which include both line-of-sight scenarios and those with

occlusions that introduce a fade-in effect.25,26

Figure 3 presents the results for onset point detection using the five compared methods. As with truncation point

detection in measured RIRs, GT tO is unavailable, so no method's result can be definitively deemed correct. However,

Fig. 3a shows that the proposed method and DE yield the most consistent onset estimates across six frequency bands.

Since the speed of sound in air is assumed frequency-independent, we expect tO to remain constant or nearly constant

across frequencies—an outcome that indicates robustness. In contrast, both M and M5 display significant variability across

Table 2. Effect of noise length in onset and truncation point determination. All DtO and DtT are expressed as percentages. Standard deviations

are only indicated when they are nonzero.

SNR (dB)
10 15 20 25 30

DtO DtT DtO DtT DtO DtT DtO DtT DtO DtT

No fade-in 2.7 4.36 0.1 3.8 4.56 0.1 4.0 5.1 4.2 5.4 4.2 4.5

Fade-in 0.9 0.4 1.6 0.9 3.2 0.1 3.9 1.1 4.2 0.2

Fig. 2. Top: Truncation points over frequency for (a) Arni dataset and (b) MRTD dataset. (a) The white circles mark the medians of tT
distributions. Bottom: Examples of RIR envelopes with indicated truncation points for (c) Arni and (d, e) MRTD.
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frequencies, suggesting less reliable estimates. Additionally, the distributions of tO values within each frequency band are

much wider for M and M5, further indicating a lack of robustness. While DE and E show improved stability, both meth-

ods—particularly E—yield erroneously low onset times for a subset of RIRs.

These concerns are further illustrated in Fig. 3(b) and 3(c), which show RIR envelopes with the fade-in effect.

For these signals, the maximum values occur after the true onset, leading to large errors when using M and M5. In

Fig. 3(b) both DE and E predict onset times that are clearly too low, likely due to very low SNR. Figure 3(c) shows

that the proposed method and DE perform similarly, estimating tO near the correct point. However, the slightly rising

noise floor prior to the onset causes E to underestimate the tO. The proposed method accurately identifies the onset

time, demonstrating superior robustness.

5. Conclusion

This study presents a method for RIR cropping based on the covariance between a pair of RIRs, smoothed using unimodal

regression. The threshold for estimating onset and truncation points is set as the variance of the background noise term—

covariance values above this indicate a positive instantaneous SNR and thus the useful portion of the signal. The method

assumes only that the covariance has a global maximum and that the background noise is stationary, eliminating the need

to estimate the decay slope.

Validation on simulated data shows the proposed method achieves errors below 8% even at very low SNRs, pro-

vided the background noise terms in the RIR pair are not fully correlated. When noise is fully correlated, i.e., when covari-

ance is calculated from a single RIR, large errors occur, demonstrating that using a pair of consecutively measured RIRs

yields more robust estimates.

Evaluation on measured RIRs shows the proposed method performs comparably to baseline truncation methods

on high-SNR, single-sloped RIRs. In low-SNR, multiple-slope conditions, it proves significantly more robust. For onset

detection, the proposed method outperforms the baselines, demonstrating strong robustness and resistance to fade-in

effects as well as slight increases in noise floor energy immediately before the RIR onset.

In conclusion, the proposed approach is the most robust and reliable among all considered methods for both

onset and truncation detection. This letter demonstrates that using the unimodal covariance of a pair of RIRs is an effec-

tive and reliable strategy for RIR cropping and highlights the value of repeated RIR measurements.
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