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Sourced metric perturbations of Kerr spacetime in Lorenz gauge

Barry Wardell ®,! Chris Kavanagh ®,' and Sam R. Dolan ®2

LSchool of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Irelamd:
2 Consortium for Fundamental Physics, School of Mathematics and Statistics,
University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S8 7TRH, United Kingdom.

We derive a formalism for solving the Lorenz gauge equations for metric perturbations of Kerr
spacetime sourced by an arbitrary stress-energy tensor. The metric perturbation is_obtained as a
sum of differential operators acting on a set of six scalars, with two of spin-weight £2, two of spin-
weight +1, and two of spin-weight 0. We derive the sourced Teukolsky equations satisfied by these
scalars, with the sources given in terms of differential operators acting on the stress-energy tensor.
The method can be used to obtain both linear and higher-order nonlinear metric perturbations, and
it fully determines the metric perturbation up to a time integral, omitting only static contributions

which must be handled separately.

I. INTRODUCTION

Black hole perturbation theory has proved to be a
highly effective approach to the two-body problem in
general relativity. Waveform models based on black hole-
perturbation theory are expected to be a key ingredient
in the study of extreme mass-ratio inspirals (EMRIs) by
the European Space Agency’s forthcoming LISA mission.
In the context of black hole perturbation theory, in order
to extract the maximum science gain from observations
of EMRIs by LISA it is necessary to incorporate effects
through second order in perturbation theory [1-4]. This
has recently been achieved in the relatively simple case
of a binary where both black holes are non-spinning.and
the inspiral is quasi-circular [5]. However,/1t is highly
unlikely that LISA will observe such simple EMRIs"so it
will be important to incorporate black hole spins, orbital
precession and eccentricity into models. »For black hole
perturbation theory, this translates into the need to solve
the second-order linearised Einstein equations oma/ Kerr
background spacetime.

Perturbations of Kerr spacetime aresignificantly more
challenging than those of Schwarzschild spacetime. No-
tably, the reduced symmetry means'that the equations
for metric perturbations are mot known to admit sepa-
rable solutions. Teukolsky [6] overcame this problem by
instead deriving an equation for certain components of
the perturbed Weyl tensor instead of the metric. It turns
out that those Teukolsky equations are both decoupled
(so one can solve a single equation for a scalar instead
of solving 10 coupled eguations forl0' components of the
metric tensor) and that they admit a separable solution,
making it a highly, efficient’ approach to perturbations of
Kerr spacetime. However, this introduces another prob-
lem: the Teukolsky equations yield solutions representing
components:of thesperturbed Weyl tensor, but many ap-
plications require the actual metric perturbation. For
examplej the first-order metric perturbation is an essen-
tial ingredient-that appears in the source for the second-
order perturbation equations, even when working with a
second-order’ Teukolsky formalism [7].

One solution that achieves the best of both worlds is

based on metric reconstruction, in which one reconstructs
a metric pertarbation™frem solutions of the Teukolsky
equation. Chrzanowski; Cohen and Kegeles [8, 9] showed
that the meétrie,perturbation in Kerr spacetime can be re-
constructed by applying a differential operator to scalars
that are related to the Weyl scalars by separable “inver-
sion relations™.  Unfortunately, there are several draw-
backs to their, reconstruction procedure: (i) the metric
perturbation is in a radiation gauge, which necessarily
means that it can’t represent a full solution to a sourced
equation unless certain components of the stress-energy
tensor are zero [10]; (ii) the “inversion” relation between
the Hertz potential and the Weyl tensor requires the so-
lution of a fourth-order equation, introducing technical
complexity; (iii) the reconstructed metric perturbation
typically has extended string-like gauge singularities [11—
14]. These gauge singularities, in particular, make the
metric perturbation unsuitable for constructing a source
for the second-order perturbation equations.

In this paper, we develop a metric reconstruction pre-
scription that addresses all of those deficiencies. For al-
ternative, complementary approaches (some of which are
not in Lorenz gauge) see Refs. [15-22].

The prescription has three key ingredients that make
it an efficient approach to perturbations of Kerr:

e It is based on solving (decoupled, separable)
Teukolsky equations;

e The inversion relations are simple time integrals;
e It is in Lorenz gauge.

In addition to the obvious benefit of the first two of these,
the use of Lorenz gauge brings further advantages:

e The singularity arising from a point-particle source
is isotropic, and there are well-established numeri-
cal methods for handling the singularity in a robust
way;

e The extended singularities that unavoidably appear
in, e.g. radiation gauge, do not appear in Lorenz
gauge.
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e All existing calculations at second order in pertur-
bation theory have made use of Lorenz-gauge;

e The asymptotic behaviour towards the horizon and
infinity is well-understood and free of divergences;

e The equations of motion derived within gravita-
tional self-force theory typically rely on Lorenz
gauge for their regularization schemes.

The results are a natural extension of earlier work on
homogeneous solutions [23] and for the specific source of
a point mass on a circular, equatorial orbit of the Kerr
black hole [24]. The approach to obtaining inhomoge-
neous solutions is very different to that of Ref. [24], which
fundamentally relied on the properties of the solution for
a particle by “glueing” together homogeneous solutions
at the circular-orbit radius. In addition to being appli-
cable to much more general sources, this new approach
also avoids the necessity to project from spheroidal onto
spherical harmonic modes and, in fact, does not even re-
quire a mode ansatz at all.

This paper is organised as follows. In Sec. II we review
some key results from black hole perturbation theory on
which this work is based. In Sec. III we derive our main
result: a set of sourced Teukolsky equations for pertur-
bations of Kerr spacetime in Lorenz gauge. We conclude
in Sec. IV with a summary and discussion of future work.
In Appendix A we review some further background ma-
terial, extending that given in Sec. II. We introduce a
number of operators throughout this paper; thé'most.rel-
evant of these are listed in Table I, and all operators are
given explicitly as GHP expressions in Appendix B!

Description Equation

& |Linearised Einstein Eap P (hys)h= 87 Tas
To |s = +2 Linearised Weyl Scalar |10 = T,*" (hag)

T2 |s = —2 Linearised Weyl Scalar |0y = T (hag)

So | s = 42 Decouplin a

O(;, s =42 Teukolzkyg Qothg'= S78; B(T“/B)
S4|s = —2 Decoupling
O4|s = —2 Teukolsky

N |AAB corrector

A |AAB vector

To | s = +1 Maxwell Scalar
T2 |s = —1 Maxwell Scalar
So |s = +1 Decoupling
Oo|s = +1 Teukolsky

S5 |s = —1 Decoupling

Oz |s = —1 Teukolsky

Outpy = SWSEﬁ(Tag)
Naﬁ’yo (Tvé)

A (hs-)

¢o =To" (6a)

P2 = 7—2046(5&)

Oopo = S (Jo)

O2¢p2 = S5 (Ja)

TABLE I. Summary of eperators appearing in this paper and
the equation in which they appear. For all of the listed cases
the spin and.boostyweights are equal, s = b.

Throughout this work we follow the conventions of
Misner, Thorné and Wheeler [25]: a “mostly positive”
metric_signature, (—,+,4+,+), is used for the space-
time metric; the connection coefficients are defined by
I‘//)V A %gA"(gUW, + 9ov.u — Yuv,0); the Riemann tensor

2

is Ry, =175, , —17%,, + 15,05, — 17,13, the Ricci
tensor and scalar are R,, = R",;, andpld’ = R/, and
the Einstein equations are G, = R, — %gle = 87T},,.
Standard geometrised units are used, with ¢ =G = 1.
We use Greek letters for spacetime indices; Latin letters
for tetrad indices, and capital letters for spinor indices.
Symmetrisation of indices is‘denoted using round brack-
ets [e.g. T(ap) = 3 (Tup + Tpa)] and anti-symmetrisation
using square brackets [e.g. Tiap = 5(@ws — Tpa)], and
indices are excluded from symmetrisation by surrounding
them by vertical bars [e.g. T(a|siap=3 (Tasy +Tysa)]- A
tensor without indices deénotes the trace, e.g. T =T,
and a caret denotes trace reversal, Tns = Tup — 39apT.
The adjoint of an operator. is dénoted using f.

II. PERTURBATIONS OF KERR SPACETIME

The sourced Teukolsky equations derived in Sec. III
build on key existing results from black hole perturbation
theory. /Werbegin with a review of the most pertinent of
thosepresults; presenting them in an operator notation
consistent, with the rest of this paper. A more detailed
review is given in Appendix A and the references therein.

A. Linearised Einstein equations

We start by considering an expansion of the metric
tensor in a small parameter, €, as

gfff,aCt =g + ehf}V) + €2h221,) +O(é%). (1)
The metric perturbations hf}l,), hf?l,), ..., all satisfy lin-
ear systems of partial differential equations that take the
form

(gh(i))w - Slgil}(h(i—l)7 . 7h(1),Ta5), (2)
where

(ERYyy = —1 [DEW—&-QRQMQVBW +guyv(,z"_2v(uzu)}
(3)

is the linearised Einstein operator with Z,, = V"h,,,

where h,, = hy, — %gm,h is the trace-reversed metric

perturbation. The source S,(f,z on the right hand side
depends on the the stress-energy tensor 7),, and on all
lower-order metric perturbations, A=Y ... R, Here,
we focus on linear perturbations (for equivalent equations
in the non-linear case see, e.g., Refs. [7, 26]), in which case
we drop the (i) superscripts for simplicity and assume
T, ~ €. Then, the linearised Einstein equation is

(ER)y = 87 Ty (4)

Further specialising to Lorenz gauge, Z* = 0, this sim-
plifies to the Lichnerowicz tensor wave equation,

Dhy + 2R 5 Jhas = —167T,. (5)
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B. Teukolsky equations

Four of the five Weyl scalars (¢, ¢ € {0,1,3,4}) are
zero on the Kerr-NUT background, and hence their lin-
ear perturbations are invariant under infinitesimal gauge
transformations. Furthermore, ¢y and 14 are invariant
under infinitesimal tetrad transformations. These max-
imum spin scalars are obtained from the metric pertur-
bation by applying the operators 7y and 7y:

Yo = 6Caprsl“mPlIm? = Toh, (6a)
Wy = 6Ca575n0‘m5n7m5 = Tih. (6b)

where 0Cyg+5 is the linearised Weyl tensor.
The maximum-spin Weyl scalars satisfy the Teukolsky
equations,

Oothg = 8 SoT, (7a)
Outpy = 8w S4T, (7b)

where Oy and O4 are the Teukolsky operators and Sy
and 84 are decoupling operators that give the source to
the Teukolsky equation in terms of the stress-energy 7, .
(Recall that these operators, along with others, are given
as explicit GHP expressions in Appendix B.)

These operators satisfy Wald’s operator identities /27]

SoEh = OoToh, SiEh = O4Tah, (8)
along with the adjoint identities
ES) (W =TI 100, ES]CH = T ¢* 000 (9)
where the first identity is understood /to,act on objects
U, of GHP type {—4,0} (the same as ty)pand where
the second identity is understood to act gn objects ¥ of
GHP type {4,0} (the same as 1g). They also satisfy the
operator identities [22, 28]
T8¢! a = 0, (10a)
—_
ToSicAw, = 113444@47 (10b)
3
TaSo¢ e = M L1
1
+ 7[00 - A(pP" —78)( A4 81204 Ty, (10c)
— 1. ££S
S T 16’4&\114, (10d)
3
ToSi¢ctw, = M £3 0

+ JIGONgP — D) + 802 100Ts,  (100)

—_ 1 o
ToSichto = 0" Ty, (10f)
TaSi¢ 0y =0, (10g)
TaS1C Wy = ip”‘@@o, (10h)

AUTHOR SUBMITTED MANUSCRIPT - CQG-113598

3
along with the adjoint identities
STy Wy =0, (11a)
ST Wa = 1 (P~ p— p)'Ts, (11b)
SoT,] Wy = ZM(“‘,,ET\IIO
+ 70000 +4(o(P' — ) @ 7(3"g)) + W] o,
(11c)
SoT Wy = %(6 AP, (11d)
SuT) Wy = —2M§*4£T\1/4
10404 + 4@E ) 70— 7)) + 4] W,
(11e)
ST U AGD [ - 7)., (11f)
SyT,Wy=0, (11g)
STy = (P~ — )", (11h)

C. Aksteiner, Andersson and Backdahl metric
perturbation

Aksteiner, Andersson and Béackdahl (AAB) [29] de-
rived the operator identity (see also [22, Eq. (K.6)])

(M £ph)as =
[(GSICT0 — 281 T+ NEYR]  — 29 (AR,
374 370 B (@ )
(12)
where

NT = %[CTC“IG(P?’/Q —p2)c - 3¢2<4/c1} S (13)

with Sy, = Ty — %gWT a symmetric, trace-free ten-
sor, and where A is a third-order differential operator.
The curl (C), curl-dagger (Ct), spin-projection (P?) and
sign-flipping (K!) operators are defined in Appendix A,
as is the Killing spinor coefficient, . There is also the
corresponding adjoint identity

(M £1T)op =
. [(gfrgc‘*& - gﬁg‘*so EN + 2,4@)7’} (14)

af
where AT is the adjoint of A.

Both operator identities hold when acting on an arbi-
trary symmetric rank-2 tensor. Note that since Sl and
7? only have ll, Im and mm components, and SS and
7BT only have nn, nm and mm components, the tetrad
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components of these identities decouple:

{nn,nm,mm} : (15a)
[(5N+ gﬁc‘*so - 2,4*@) T} Ly = (MLT)a,

(U, Im, mm}) - (15b)
[(5/\/ - gﬂ cisy — 2AT@) T} oy = (MLT)as,

{ln, mm, lm,nm} : (15¢)
[(5/\/ - 2A*9)T} oy = (MLT)as.

These are understood as tensor identities that apply for
the components listed in the curly braces.

Finally, related to the identities (12) and (14) there are
the operator identities

ToNT = —%[&OO —4(p'P — 7'3)¢* + 8¢S, T

+ By 2T, (16a)
TNT = %[4404 — (P — 70')¢H + 8ynCHSAT

along with the adjoint identities
NTJWs = =V (o (Bi¥a)g)

1
+ 585 [On + 4 (P = p) = 7/(8 = 7)) + 4] W,
(17a)
NTIWy = =V (Bi¥)s)

~ 2SI 00+ 4(p(P' — ) 7D — 7)) + 4] Ty
(17b)

Here, By and B, are second-order differéntial operators
and B(JS and Bl are their adjoints.
We now define a metric perturbation

2 .
hap? = =3 VIOV C o) + BTN T)ap

4
= 5(Si¢"0 = SiCHag + 8T T)ag,  (18)

which is just Eq. (12) with the Lie derivative absorbed
into the definition on thelleft-hand side, with the replace-
ments Toh — ¢o, Tah — ¥y and (Eh)ap — 87T, on the
right-hand side, andswith the omission of the gauge term
involving the vector (Ah),. \This metric perturbation is
trace-free (AP = 0).and if satisfies

VAV = 8nVIVH(NT)ap = —87M £1T.  (19)

Provided ¢y andy4 are the perturbed Weyl scalars corre-
spondingsto a solution to the linearised Einstein equation
(or, equivalently that they satisfy the Teukolsky equa-
tions (7)) then this “AAB” metric perturbation is a com-
plex solution of the linearised Einstein equation with a
sourceé which.is the time derivative of the stress energy:

(ERAAB) ,, = 8T M £1T,,. (20)

4

This is a consequence of the operator identity (12) (or,
equivalently, the operator identity (14))s /Since &£, £
and T}, are all real, the complex conjugate of the AAB
metric perturbation is also a solution of.the same‘equa-
tion, and we can take the real part to obtain areal metric
perturbation.

As expected from the fact that the AAB_metric per-
turbation is the time derivative ofta solutiomof the Ein-
stein equation, the identities (10) and (16) along with the
Teukolsky equations for 1y and 14 imply that the Weyl
scalars derived from it satisfy “circularity relations”

Toh B = Mo, (21a)

Tah M B M ET1)y. (21b)
If we instead consider‘the complex conjugate of the AAB
metric perturbation then we find

TohAAB A %(64(_41/70 C DA + 8TTINT,  (22a)
T.ARE -3(6’4541/74 _ Do) + STTINT.  (22D)

Combining these, we obtain Teukolsky-Starobinsky iden-
tities for sourced perturbations [22, 30]:

B!ty = 8" My — M Lty + 247 ToNT,  (23a)
Pichpy = 8'Chy + 3M Ly — 24 TuNT.  (23b)

III. LORENZ GAUGE METRIC
PERTURBATION

The AAB solution is not in Lorenz gauge. We now
transform to Lorenz gauge by making a gauge transfor-
mation,

MLrhls = hag® — 28 a.p)- (24)
such that
M£pV*hls =0. (25)
This implies that the gauge vector &, must satisfy
Oéa = VPhosP. (26)

We write the solution to this equation as a sum of pieces
and will derive equations for each of the pieces.

A. Trace piece

We first seek to ensure that the trace of the metric
perturbation is in Lorenz gauge. This trace piece satisfies
the trace of Eq. (5),

OhY = 167T. (27)

Page 4 of 20
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Introducing the gauge vector
Trace 1 B1L
fa = ifoz h;ﬁ + Kia, (28>

and recalling that the AAB metric perturbation is trace-
free, hAAB = 0, we obtain an equation for s by requiring
—2veaglace — \rLppb,

Ok = M £rh". (29)

A straightforward calculation shows that we then have

Dgg‘race — 871 [Vﬁ(faﬁT) — TaT] = jg\race’ (303)
vajaTrace — —87TM£TT~ (30b)

B. Trace-free piece

By construction, the remainder of the gauge vector,

gEF —_ ga _ Eg‘race7 (31)

satisfies V(TP = 0. Equations (26) and (30a) imply
that ¢IF satisfies the vector wave equation,

D& = Jo = o +a (32)
with source given by

2
-C dx—v p— C
jo =3V C s = Ve (33)

jo = VPNT)ap — jar, (33b)
where
T = SV, = PO (3)
af ™ 3 ydaB T g yéaB

and U, = V,(log (). Note that ‘70(56 hasréomponents

T =5 (R, (352)
Je - —%(p’al Y (35D)

Furthermore, Eqs:(19) and (30b) imply that the two
pieces of the source avesséparately conserved, Vj$ =
0 = VL sol we have a Maxwell-type problem in vec-
tor Lorenz gauge for &IF. We can solve this using a
circularity-reformulation of the methods of Green and
Toomani [31, 32] and Dolan, Kavanagh and Wardell
(DKW) {[23, 24]/ In doing so, it is convenient to fur-
ther split €XF+ifito a piece sourced by Capys and a piece
sourced only by the stress-energy,

&' =&t (36)

AUTHOR SUBMITTED MANUSCRIPT - CQG-113598

1. Weyl-sourced piece

We can use the existing DKW gauge vector for source
free perturbations [23] to solve for £$ byswritingit as

o =6 — VaxPENT (37)

where £DKW _ (205 HE[I;W ~Qy PE (38)
ith

W;THBEW = %(l[amﬁ]H4C4w4_m[anﬁ]HOC4¢0)u (39)
d

N £25PKWV — %(X4C47//4 — x0¢*o). (40)

Here, we havedntrodueed+the operators xo, x4, Ho, Ha,
which are defined by
Yo=37C2P"?, M, =03/CP, (41a)
x4 =0°C2P%  H, =3CP. (41b)
In the case where vy and v, satisfy sourced Teukolsky
equations, the DKW gauge vector on its own does not

satisfy the, homogeneous Lorenz gauge equation or the
Lorenz gauge condition,

Oe*W —je #0,  VoeEWV 20, (42)
nor does it satisfy the homogeneous Maxwell equation,
VAV e — S = GREWT £, (43)

The source jPXW-T has tetrad components

M £ jDKWT = %(naé’ — maP)CHICH(ST)

4
+ Q(laé — maP)CHICH(SAT), (44a)
and the Lorenz gauge violation is given by
1
(M £2)20RY = S (SiT) = xicH(SoT)]. (45)

Note that we have written these such that they mani-
festly involve the adjoints of the operators appearing in
Egs. (39) and (40). We also note the operator identities’

pné.né/n _ 6/714—7;:@”7 (47)

1 The last two of these follow as a trivial consequence of the fact
that the spin-1 Teukolsky operator can be written in factorised
form [33] (see also Egs. (3.39) and (3.43) of Ref. [34]):

Oogo = 480¢ 2832 ¢o,

Oa¢o = 482(728342(252
The spin-1 decoupling operator Sp and the Teukolsky operator
Op here are not to be confused with the spin-2 decoupling oper-
ator and the Teukolsky operator appearing in Eq. (7). There is
no ambiguity as the choice of whether they represent the spin-1
or spin-2 operators is clear from the object on which they are
acting.
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(OxaCt = XEC Ou)hs — (Ox0C* = XE¢O0)th0
=3MLrVs(fP55),  (48)

285 (V" Tap) =
S5 (Ve Tup) =

OOu7lm7 (49)
02 jﬁznv (50)

which are useful in deriving these expressions.
By demanding that V¢S = 0 we then get an equation
for XDKW’T:

DXDKW,T — VagBKW (51)

Since this is an equation sourced only by the stress-
energy, it is natural to incorporate it into the stress-
energy sourced piece, and we will ultimately do so in
the final grouping of terms given in Sec. I1I C.

2. Stress-energy sourced piece: solution via circularity

The remaining piece of the gauge vector satisfies a com-
pactly supported vector wave equation in Lorenz gauge,

0¢r = jo — josW T (62)

This can be efficiently solved using a circularity formula-
tion in which the solution is given by

E=VPHL + £.°TF = VaxT, (53)

where
MerTy =g — ot (54)
is chosen such that Hgﬁ satisfies the circularity relation

T T
M-’{:TH(XB = f[oz’y]rhmp ]:aﬁ 26[[3 al» (55)

and where we require
OnT = V02 75 (56)

to enforce the Lorenz gaugeicondition, V(I = 0. The
tetrad components ofithe two-form ’HTﬁ satisfy the spin
+1 Teukolsky equations,

Oy = Spl@® — FREWT)

— S0 — g(M,eT) 20M1¢H(SoT)  (57a)
Osy = Sa(j " — jP*WT)

= S + = (MfT) 20.HICHST).  (57h)

where Hg and HZ are adjoints of the operators defined
inEq. (41).

6
C. Spin decomposition

In summary, we have obtained a Lorenz gauge metric
perturbation that satisfies (up to a time derivative) the
linearised Einstein equation with a source.”The metric
perturbation is given by Eq. (24) jalong with Eq. (18)
and the gauge vector £ that transformstoLorenz gauge.
Gathering the final result together, we have

2 y
M £1hgs = —gv“&vuc oty T NT)ap — 2(as0)

(58)
with

1
b = CVPHDEY L AT, + 15 (TF + 5V5h")

7Vo¢(XDKW + XDKW,T + XT . Ii). (59)

The metrieperturbation is given in terms of differential
operators actingon@ set of six Teukolsky scalars, two of
spin-2 (g and 14), two of spin-1 (¢¢ and ¢4 ), and two of
spin-0,(h" and the combination x := YPEWT 4 T — k).
These satisfy six sourced Teukolsky equations: Egs. (7)
formpg and ¥; Egs. (57) for ¢¢ and ¢4; Eq. (27) for hY;
and Egs. (29), (51) and (56) for the scalars appearing
in y. Collecting those equations together, we must solve
the sixTeukolsky equations

Obtbo = 878, T, (60a)

Oppy = 87 84T, (60b)

st = Sof — SOMLD) 2O HICHST) (600

020} = S25" + S (M£r) 2OMICST)  (60d)

O = 167T (60e)
Ox = (M£1)'Va(f*55) — MLrh"

— (0 £2) 725 ¢ S4T) — xo¢ (S0T)] - (601)

It is convenient to rearrange the metric reconstruction
expression, grouping terms by the spin-weight of scalar
from which they are derived:

Lohly = hl +hlTY 7Y+, (61)

where

s=2 2 v—
hog ) = VIV )

— 2V [CVIHRV] + 2V VaxPEY,  (62a)

WY = -2V VIHT (62b)
ha " = ~V(afp) Vsh"

+2Va V(T 4T — k), (62¢)

hzﬁ = (NT)aﬁ - 2v(o¢ [fﬁ)’yj”/T]' (62d)

Page 6 of 20
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D. Solutions to sourced Teukolsky equations

We have reduced the problem of solving the linearised
FEinstein equation for the metric perturbation to the
problem of solving six sourced Teukolsky equations. The
solutions to these are readily obtained via the Green func-
tion method, which reduces to the standard variation-of-
parameters method when working with a decomposition
into mode solutions of the radial Teukolsky equations.

J
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Then, since we have written everything in terms of oper-
ators we can write the solutions in termsyof the adjoints
of those operators, i.e. for a scalar ¥(x) and a Green
function G(z,2') for the equation satisfied by W(z) we
have

Vo) = [P T g (63)

Applying this to the case at hand, we get

Yo = 87 / Top(S1Go)*P /=g d'a’, (64a)
Yy =87 / Top(SIG) P /=g d*a’, (64b)
oT = / Ty (87 fapg”® — NI 10)VP + 81970 T,) (S} Go)*v/=g d*z" = g(M£T)‘2H$C4(SOT), (64c)
2
oF = / Ty (87 fapg™® — NI 10 )VP + 87970, ) (S3Go)ofmg d' 2"+ §(M£T)—2H1g4(s4:r), (64d)
ht = 167T/G(ac,x')T\/—g d*a, (64e)
X = / [(M£T)71T75((87Tfa5g"5 —NaTﬁ'V‘S)V’B + 877975Ta)f7°‘V7G(x,x’)
1 « «
= Gla, )M £rh® — o (M £r) s (8 ¢V = 81 7¢ ) G, a)] V=g d'a’. (64f)

9

FIG. 1. Absolute value of the asymptotic amplitudes of the
(¢,m) = (2,2) spin-weighted spheroidal harmonic mode of
the solutions to Eqs./(64) for, a point particle an a circular
orbit of radius ro = pM in Kerr spacetime with a = 0.6M.
The coefficients of the dominant behaviour towards infinity
are shown by selid lines and towards the horizon by dashed
lines.

As a check of these expressions, we have implemented
them in'the Teukolsky [35] package of the Black Hole
PerturbatiomnToolkit. Our code will be released publicly
along with a follow-on paper describing the implementa-
tion for the case of a point particle on a generic, bound
orbit’ in Kerr spacetime [36]. In short, for each of the

(

six fields in W € (g, 4, dg , da , AL, xPEWT 44T, our
implementation considers their decomposition into spin-
weighted spheroidal harmonic modes,

TS ()
U= / Z Z ﬁ sSem (0, ¢; aw)e dw,
T t=|s| m=—t

(65)
where the functions U (r) and ,S¢, (0, ¢; aw) satisfy
the radial Teukolsky and spin-weighted spheroidal har-
monic equations, respectively. We then use variation of
parameters to determine the radial function in terms of
a linear combination of unit-normalised “in” and “up”
homogeneous solutions [28],

gH Rin (7‘) r<rp
\Ijﬁmw —_ st UUmw — ’ 66
(T) {\IIOOSR;‘TI:LUJ (’I") T 2 To, ( )

where for simplicity we have suppressed the fact that the
asymptotic amplitudes ¥ and ¥ depend on (¢,m,w).

A sample of results for the case of a point mass on a
circular orbit of radius rg = pM in the equatorial plane
of Kerr spacetime are shown in Fig. 1, and given as a data
table in the supplemental material to this paper. These
agree to all significant digits with values obtained using
the code described in Ref. [24]. Finally, it is clear from
the plot that we can read off the power-law behaviour of
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these asymptotic amplitudes (corresponding to the lead-
ing term in a post-Newtonian expansion). Doing so, we

find
w?‘[ ~ —§Z zp73/2 ¢oo ~ —8; zp75/2
4 4 5 ’ 4 5 )

1 /|« 16 . |«
H ~_. /= 0 N - [ 1/2
2 5 5 ) ¢2 3 ? 5p )
6 /27 11 /27
H o~ 0 0 2
XE sV st EV Y
32 /27 2
H -3 s} —1
N —1)— h>* ~ — —
2%\ 157 SV 1P

32 s T
H o : 0 00 o gs [ L T/2
~ ~ 4
%o 1251\/;1) ’ % ! 5p ’

2496 |7 T
’Hz, n—3/2 © o _9; |1 7/2.
lffo 625 5p ) 1/}0 32\/;]7

IV. CONCLUSIONS

We have developed a formalism for solving the Lorenz-
gauge linearised Einstein equation in Kerr spacetime.
The formalism involves solving only (decoupled, sepa-
rable) Teukolsky equations and reconstructing the met-
ric perturbation by applying differential operators to the
solutions. It builds on previous work for homogeneous
solutions [23], extending those results to the case where
there is a non-zero source. Unlike the method developed
in Ref. [24] it does not rely a special property/of the solu=
tion, so this new approach is expected to be muchymore
widely applicable.

The main limitation of the prescription.is that, because
it determines the time derivative of the metric perturba-
tion, it cannot be used to obtain static (Zero-frequency)
solutions. This is a common issue, alsolencountered by
other approaches [24, 37]. As was foundin, those cases,
we anticipate it will be possible toise a separate treat-
ment by specialising to the zero-frequéncy case. Indeed,
in addition to the AAB solution given in Eq. (18) there
is another “symmetric” metrie perturbation,

ht, = 3(SICURSICY) (67)

which satisfies the homogeneous linearised Einstein equa-
tion

(ER ) =0 (68)

and where the/potentials satisfy “circularity relations”
Toh™ = 3*C' ¥, (69a)
Taht =840, (69D)

This has theradvantage of also being valid in the zero-
frequency case. However, a sourced version (i.e. a cor-
rector tensor equivalent to N'T) is not yet known in this
casefand there is also additional subtlety related to the

8

complex conjugates of the potentials: the metric pertur-
bation in Eq. 67 is complex, and taking fhe real part
then introduces extra terms into the circularity relations
in Eq. (69). These issues will be addressed in a-future
work.
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Appendix A: Irreducible decompositions, null tetrad
projections and symmetries of Kerr spacetime

In this work we have considered perturbations of space-
times in the Kerr-NUT class (i.e. non-accelerating Petrov
type-D). These perturbations are quite naturally ex-
pressed using the spinor formalism, as it efficiently han-
dles simplifications that arise from the use of irreducible
decompositions of tensors. In this Appendix, we provide
a review some concepts tensorial expressions for the key
results of interest to this paper and direct the reader to
Refs. [29, 34, 40] for a more thorough exposition in the
language of spinors.

1. Null tetrads

We introduce an orthonormal basis of null vectors,
{I1*,n% m*, m*} where [* and n” are real and are aligned
with the principal null directions, m* is a complex and
mY is its complex conjugate. The tetrad satisfies the
orthonormality conditions I#n, = —1 and mtm, = 1,
with all other inner products being zero. In this basis
the spacetime metric is

g = 21" 4 2mmY), (A1)

2. Geroch-Held-Penrose derivatives

Using the null tetrad, we next define the Geroch-Held-
Penrose (GHP) directional derivatives [41] (see Sec. 4.1.1

Page 8 of 20
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of Ref. [28] for a review):

b= (I*V, — pe — qé), P’ := (n%V, + pe’ + ¢&),
3:= (m"Va —pB+qf), 8 :=(m*Va+ps —qp),

(A2)
where
1
5= Lo, ), (A3
1
€= 5([“m”vumy — 1MV L), (A3b)

along with their primed variants 8 and € that are ob-
tained by interchanging the tetrad vectors [® <> n® and
m® « m®. Here {p, q} represents the GHP type of the
object on which the derivatives are acting; they are re-
lated to the spin-weight s = (p — ¢)/2 and boost-weight
b= (p+ q)/2. We also introduce the remaining 8 spin
coefficients, defined to be the directional derivatives of
the tetrad vectors:

k=—=l'm"V,l,, o=-m'm"V,l,,
p= —Fn“m’jvulu, T = —numyv/_tlu» (A4)
along with their primed variants, ', o', p’ and 7" (for
a tetrad aligned to the principal null directions of Kerr

spacetime we have k = k¥’ = 0 = ¢/ = 0). Finally, the
GHP derivative operators have adjoints given by

Df = —(¢O)7'P(¢(), D e{P,P3,07, " "~ (A5)

where ( is the Killing spinor coefficient (see Sec. A 5):

3. Tetrad projections and self-dual decompesitions

Any antisymmetric rank-2 tensor.(i.e. @astwo-form)
Fop = Flap) can be projected onto/thenullytetrad,

FQ,B =2 ((1)1 + él)n[alﬁ] =+ ((I)l — 51)m[am5]

+ (I)ofn[ang] + éom[ang] - <I>gl[am5] + @2[[amﬁ]:| .
(A6)

Such tensors can alsesbe decomposed into self-dual and
anti-self-dual parts) Fiyp = Fop +Fag, where

1
]:a,@ = i(Faﬁ - i*FozB)> (A7a)
— 1
}—aﬂ = §(Fa,8 +i*FaB)7 (A7b)

where *Fp = %eag”f‘st; is the Hodge dual of F,g, and
where the (anti-)self-dual property means that *F,p =
iFag.and *F,5 = —iF,5. The self-dual part only has
components ©y, ®; and P, while the anti-self-dual part
only/has cemponents ®y, ®; and Ds.
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Similarly, the 10 independent components of the Weyl
tensor can be represented by 5 complex Weyl scalars

Yo = Cimims V1 = Cinim,  Y2.=Cimmms
1;[}3 = Olnﬁnu ¢4 = Cnﬁqnfn (AS)

where Cimim = Cagvglamﬂl'ym‘s, etc. The-Weyl tensor
can also be decomposed into self-dual and amnti-self-dual
parts, Cagys = Capys + Capysy Where

1 .
Caﬁfyé = i(caﬁwé -1 CaB“/é)a (Aga’)
_ 1 -
Caﬁ'yé = §(Oaﬁ'y6 41 Ca,B'yé)a (Agb)

and *Cogys = %Gaﬁ‘“'cuw& is the Hodge dual of Cypys
(N.B. the left sand right duals of the Weyl tensor are
identical). The (anti-)self-dual property means that
*Cag,yg = Z'Caﬁ-ws and *C_ag-ws = —Z'C_agnﬂs. The self-dual
part only has eomponents g, 11, 9, ¥3 and ¥4, while
the anti=self-dual part only has components o, 1, o,
3 and 4.

4. “Irreducible decompositions and covariant
derivatives

The irreducible decomposition of a tensor reduces it to
a sum of trace, symmetric-trace-free, and anti-symmetric
pieces. For example, a rank-2 tensor can be decomposed
as Wop = W[ag] + [W(ag) — igoﬁW] + igagW. The
antisymmetric part can be further decomposed into self-
dual and anti-self-dual pieces, Wia5 = Wias + W[aﬁ].
Similarly, the Riemann tensor can be decomposed into
Weyl, trace-free Ricci and trace pieces, Ragys = Cagys +
9alyS)618] + 9515S)aly] + §9alr 91515 R, Where Sap = Rap —
%gaﬁR is the trace-free Ricci tensor. The Weyl tensor
can be further decomposed into self-dual and anti-self-
dual pieces. These irreducible decompositions are natu-
rally represented using their correspondence to symmet-
ric spinors.

The covariant derivative V, = V4 of a symmetric
spinor can be decomposed into four irreducible parts: the
divergence 2, curl €, curl-dagger €', and twistor .7
operators. For example, the derivative of a vector can be
decomposed as

Vals = 5(E)as + 3(6"E)as + 1005(26) + (T1)ap
(A10)

where
(€€)ap = (1 —i")V(adp
(€1€)as = (14i*)Vials
(2¢) = Vo, (Alle

1
(T1€)as = Vials) — Zga,ﬁvafa (Al1d
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We are particularly interested here in the curl of a
symmetric, trace-free rank-2 tensor S, g, which in tensor
form is

1 1. s
(€S)apy = ) [(VS)[TQF/sh - 52 Gaﬂ6 (VS):SFGFW
1. s
+(VS)hhs — 3 oy (VS)3s]  (A12)
where

1
(VS)ak, = VaSs, — g(goéﬁv‘ss&y + Gary V°S55). (A13)

We are also interested in the curl-dagger of this rank-3
tensor, which is given by

. 1. .
(€€ S)ap = 526(0475 Vo (€9)5e1)- (A14)

5. Symmetries, Killing spinors and Killing-Yano
tensors

The Kerr—-NUT spacetime admits a valence (2,0)
Killing spinor satisfying

VA’(AﬁBC) =0. (A].5)

The Killing spinor also satisfies the integrability condi-
tion

VYapc”kpE) =0 (A16)
and the tensor wave equation
Okap = Yapopr®™, (A17)

where ¥ pcop is the Weyl spinor. In terms of ‘aspinor
dyad {oa,tp} the Killing spinor is kap = —20(atp),

where ¢ x w;l/g is the Killing spinor coefficient.
The Killing spinor is equivalent to the self-dual 2-form

1 - _ -
Rapg = §<faﬁ —1 fozﬁ) = C(m[am[ﬁ] - l[anﬁ]) = Cﬂaﬁ~
(A18)
Here, fop is a conformal Killing-Yano tensor satisfying

fapiy = 98+ Tap=Gas T (A19)

where

1
T, = gvﬂ fup (A20)
|
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is the time-translation Killing vector. As a consequence,
when differentiating expressions involving, the conformal
Killing-Yano tensor we will often encounter time deriva-
tives represented by the Lie derivative.along this time-
translation Killing vector, £1. This fcommutes with all
other operators, and in Boyer-Lindquist coordinates it
is simply a partial derivative with respeet. to/coordinate
time ¢.

Finally, the Hodge dual of the conformal Killing-Yano
tensor, * fop = %eaﬁ””fm,, is a Killing-Yano tensor satis-
fying

“as) 0 (A21)

6. _Spin decomposition

The tensor &q3 can be used to define spin-raising
(K9), sign-flipping, (K1) and spin-lowering (K?) opera-
tors. Thesefan, in turn, be used to define spin-projection
operators P, which/pick out spin-i components and set
all other components to zero. Here, we are especially
interested in thesspin-2 projected and sign-flipped self-
dual Weyl tensor (i.e. the Weyl tensor with only self-dual,
maximum spin-weight components and with the sign of
the negative spin-weight components flipped), which is
given by

Cogys = (K'P?Capys
= —2R." Cuprs + ("%pocwuﬂrfvé + ’%pacpoﬁ’%uﬁ)]

= 4(tho njampnyms) — Yaliamglyyms). (A22)

7. Kerr spacetime

In Kerr-NUT spacetimes 15 is the only non-zero Weyl
scalar, and in the Kerr case it is given by

err M
= (A23)

where
¢(=r—iacosf (A24)

is the Killing spinor coefficient in Kerr spacetime.

Appendix B: Operators in GHP form

In this Appendix we give the operators appearing in this paper in GHP form. These operators act on symmetric
tensors, hag or Tog, on vectors j, or &, or on scalars: ¥y of GHP weight {4,0}, U4 of GHP weight {—4,0}, ®¢ of
GHP weight {2,0}, ®5 of GHP weight {—2,0}, or ® of GHP weight {0,0}. The adjoint operators, denoted with T,

Page 10 of 20
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are defined such that
X1 0m (DY ) gy ey, — (DIX)PPnYy 5 = V0°

for some vector v® and where the GHP weights of X and Y are such that the products X (DY) and (PX )Y are GHP
weight {0, 0}.
These operators are also given electronically as a Mathematica notebook in the supplemental material to this paper.

oNOYTULT D WN =

1. Lie derivative along the timelike Killing vector

The Lie derivative along the time-translation Killing vector T acting on an object_of GHPweight {p, ¢} is

13 £1=—C(=p'P+pP + 73— 13) - Pewy - Lowy, (B1)

2. Decoupling operators

The decoupling operators for gravitational perturbations are given by
SoT' = %(6 — 7' —47)[(P = 2p) T4y — (8 — 7')Tu] + %(p —4p = PO — 28T 11y — (P — p) Tom] (B2a)
SuT = %(6’ ) [(P — 25 Ty — (B — ) Ton] + %(p’ By — O — 27 Ty — (' — )T, (B2D)
and their adjoints are given by
26 (S08)as = [~ 5lals(@ ~ 7 + 37 S mams(p A p)(P + 30)
28 + %z(amﬁ)((p )R8 + O+ ) (P +3p)] W, (B2c)

1 1

30 (51%0)as = [~ gnans(@ AV TERYD Simams (P — )(P' +37)
1

gg + 5 (B = ) (8 +37) + (8 — '+ 7) (P’ + 30)) | Wo. (B2d)

34 For spin-weight s = +1 fields they are givemby

1

36 Soj =3[0 =27 —7)ji — (P = 2p— p)jm], (B2e)

N | — NI

38 Sj = <[\ (0 =21 = F)jn + (P = 20" — )], (B2f)

40 and their adjoints are given by

42 (S102)0 = = [~ la(@+7) +ma(P + p)] s, (B2g)

N —= N =

44 (S3®0)a = = [nu(d +7') — (P’ + p')] B (B2h)

47 3. Linearised Einstein operator

49 Five of the components of the linearised Einstein operator are given by symmetries,
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The other five are given by
(ER)u = —[(0' )+ p(P' +p =) = (P=p)p' +1h2]hu — [ — (p+ p)(P + p+ p) + 4pp)lii
-[-(P- 3P _7'+T)+Tp_ﬁ6/]hlm—[—(p—3p)(5+7—?/)+TP—p6]hlm
[p (P—p—p)+ QPP] B s (B3f)
1

(ERJin = =5 [P/ ("= p) + /(P — ﬁ’)]hu—%[p(P—pHﬁ(P—ﬁ)}hm—%[—(6’+T'+f)(a—f—f')
— (034377 +377) +2(7 + )0+ (P —2p)p" + (P — 20" )p — i/ (P + p) # p(R + 1) — s — o] hun

(P
- %[(P —20)@ =7+ 7P+ o'+ p) =7 (P = p') = (20" = 7) [ - %[(p/—Qp/)(a—?’)
+7(P 4+ ) =T (P =) = (20— 7)p ]hzm—%[<P—2p>(6’—ﬂ+(T’+f)(P+ﬁ)
— 23 —)p - 27|, %
- 1[— O =)@ =)+ 77 —7")] hrm —

[(P—=2p)0—7)+ (F +7)(P+p) =200 —7)p—27P| hpu

S [~ @—7)® 27) + Mg )]

2
- %[(5' + 7 =)@ =74+ 7) = 2P'P + (80 — 77" — 77 Amm7) — (b3t o)
+(P' =20 )p + (P = 2p)p’ + p(3P" — 27) + p' (3P —2p) + 2pp/ - 2(3'7) — 77] B, (B3g)

(ERmn = —5 [P/ (P — ' — )+ 200 bt — 5 [P(P — p— ) 2] ¥ 5 [~ (B + = )P~ p 4 )
~DP'(P+p)+pP +p —5)— g+ (B T)O2 7 — 7Y+ 8D~ (D27 ) —F(20+7)

1 / — — !/ / —/ 1=/
— 5[ = (L2900 —27) + 7(P" + 20" — 2') — 27 um

[— (P —20)(d—27) + 7(P" +2p.— 2p") % 27 /| by, —

I
[\
3

0 —7) + 277 + pp | hun

1 —rx/ — s !
5[—7’(6 —7) =70 = )] himm

[— (P —2p)(0 —27") + 7' (P — 2p =2p) — 207 + 47'p] honyrn, — %[ —7(@—7) =70 =) hinm

|
N =N~ DN

[~ (P~ 20)(® — 27') /B — 25— 2) £ 257 + 47l — 3 [2D'P — (B — )5 — (P — p)y/ — (")
—p(P' = p +7) = (P+g—p)e(d —2r )7 +7(0 +27) =T @ —7) + 7B+ T) — t2 — Yo hmm,
(B3h)
(ERYim = —5 (B = )@~ 7) + (8 I — (B~ )l +7(B' + )| — 5[~ (B = p+ p)@+ 7~ 7)

— (0 =37 +7)p2pT Yime= % [— (P + 7 )(P = 2p) + p(P" + 20" — 20') — 4p'p + 3¢
(@ +7)(0 —27) @+ ' —27) — (7 — A7) B — %[ 80— 2r) — 27 (r — )] hum
[P(P —2p) 4 25(p = )] hnim % [— (P =p)@ 7" +7) +27p] honm
[(P#p=p)O@+F—7)+27(P —2p) = (O —7—7)p+ 27| by, (B3i)
OO T —7) =277 [y — [(P = p)O—7) =B —7—F)p' +7(P +p — p) — 7 (Pl + 7)) hutmn
(6 —7) =@ -7 )p—1P+p)+ 7P —p+p)|hum — [(T+7)3+ (T = 7)?|
)(p p) (6 - T)T/ - 7(6/ + 7—/ - 77_) + ¢2} hmm~ (B3J)

+
1
)
1
)
(ER)m = —[ -
-k
- %

The linearised Einstein operator is self-adjoint,

ET=¢. (B3k)
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4. Lorenz gauge vector

Defining the operator Z by (Zh), = V¥hqy, two of its components are given by symmetries,
(Zh)n = (Zh)],
(Zh)im = (Zh)m,
and the other two components are given by
(Zh)i = ~(P = p = pYhun — (P' = p' = )by + (8 — 7 — 27 i + (8 — 7" = 27) s ({0 + 9
(Zh)m = —(P = 2p — Py — (P' — p' = 20V hum + (D — 7 = T)hunm + (' — 7' — 7) homn— (7 +7 ) g f

5. Vector wave operator

Two of the components of the vector wave operator are given by symmetrieg,
(08): = (D)},
(@8 m = (E)m,

and the other two components are given by
(C6) = 2[(0' = )@ = 7) — (P — p)(P" = 1) + pp'|& + 2pp, +2[p0" — TP]&y +2[pd — 7P,
(08 =2[0—7)( —7) — (P' = p)(P = p) — 77| &m — 277 &m + 2[p/0 — 7'P'|& +2[pd — 7P]¢,.

The vector wave operator is self-adjoint.

6. Lorenz gauge ' scalar

The divergence of a vector field, V*&,, is given by
9t =—(P' —p = p)a A R _p=@a+ (0 — 7' — ) + @ =7 — T )ém.

7. Teukolsky operators

The Teukolsky operators for spin-weight s = #2fields are given by
Oulo = [(P — dp p) (B — ') — (8~ dr — ) (3 — 7') — 3uso] W,
040y = [(P" =4pl—p')(P—p)— (8 — 47" —7) (D —7) — 3up2] Uy,
and their adjoints are given by
004 = ("04( "0y,
Ol = (1O,
For spin-weight s = +1 they are given by
Oe® = [(P—2p—p) (P/ —p)—(0-2r-7) (6' —7')] @0,
020, = |(B' — 20 — ) (P —p) — (0 + 27 —7)(d - 7)] s,
and their adjoints,are given by
OfP; = (O2( 20y,
Oldy = C20u¢ 0.
For spin-weight s = 0 the operator is given by
00 =[(B— ) (P~ ) (3~ 7)(3 ) — ],
and itsradjoint is given by
0'd = 09.
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(B4a)
(B4b)

(B4c)
(B4d)

(Bba)
(B5b)

—~

B5c¢)
(B5d)

(B7a)

(B7h)

(B7¢)

(B7d)
(B7e)
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8. Linearised Weyl operators
The linearised Weyl operators are given by
Toh = —5 @~ 7)@ ~ )i + (P = D)(P — D — (P~ 7)® —2) + @~ 7)(P —20)) hhy | (BSa)

Tah = —% [(6’ — ) = A + (P = 5 )P = )i, — (B = 57)(d' — 27) + (&' — 7)(Ph= 2ﬁ’))h<nm>} (B8b)
and their adjoints are given by
(T Wa)as = — [lals(® 7@ —7) + mama(P — p)(P — p)
~liamp (@ =7+ 7)P = p) + (P — p+ p)(d T))] 0y, (BSc)
(TiW0)as = — 5 [1ana® =)@ — ') + marms(P' — ) (Pggp

— o (0 = '+ 7)(P' = o)+ (B Wbt YO — )] wo. (BSd)

9. Maxwell scalar operators

The operators that give Maxwell scalars in terms of a vector field E€gare given by

Tof = —(0 7 78+ (P =p)ém, (B9a)
Tof = (S 0)& — (Pl )em, (B9D)
and their adjoints are given by
(T ®2) /= 12O =R @2 — m* (P — p) s, (B9c)
(75 ®0)* = —n™@ — 7/) @0 + m® (B’ — /). (B9d)

10. AAB corrector N

Five of the components of the operator \ are/given by symmetries:

NT)mm = NT)in, (B10a)
(NT)pn = —(NT)}, (B10b)
NT)mm = —(NT) s (B10c)
NT)pm = —(NT) 15 (B10d)
NT)pm = —(NT),- (B10e)

The other five are given, by

T = 5[3OE )@+ a7 £7) + (B = )P + 45/ — ) — 205 = 9] C*Tiu — 2 PCPT + Sp[20 — p] 4T
£5[72 3 00+ 47| Tis - 528 = 7)(2P + 60— 39) — 807’ 57| Ty + BCH T, (B0
W) 2 ST~ ) +p =)+ (0 = (O 4 —7) =207 4 90| (VT — 210D — r[or — 7 ]C°T
£ 2 [P — (0 = 47)] VT + 5[ (2B — )20 + 67 = 37) = 870’ — 57| Ti + 3-0CH P T,
(B10g)
(W)= g[8 = 47" +37)@ + Tr — 4') = (B' 4/ +39')(B + Tp — 47) — 14y + 25 — 26pp' + 3209’ —~ 107'p
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— 3277 + 2677 + 10%%’] T + 1—18 [TP - pé} ¢'T - % [7(27 - %’)} T + % [p(?p — p)} T

1 o _ , ., 1 . ) / -
+ 1—8{(213 +p)(20+67—7F")—8mp — 5PT}C4TH - E{@é +7)(2P +6p — p) — 8pr _5PT]C4Tmm

- % [(6 +ACP 4 (P + ﬁ)C46} T+ 2i7 [p + ﬁ] CHDT)m + 2i7 [6 + f’} (2T, (B10h)
(NT )i = —?17 [(6’ —57)(D+ 87— 7) +3(P — p)(P' +4p — F) — 6pp’ + 1877’} T — 2i7 [ID ¥ p] .

— = [0 7@ - [0 - )@+ 95— 20) — 957 VT~ [odo — )| AT

+ o8 [(6’ + 7P + (P + ,o)<46’}T + ﬁ [(26’ + 27 — 37)(2P + 4p — @) 9T 24pr} AT

- % [,o(a +87) —7(P + 4p)} CTomm + % [(6’ 47 = 37) (8 +7) — 3%7'] T (B10i)

(NT)in =~ =620 = )P — (2= )P/ — (2"~ 7)3+ (27 — 7)0'| T

17,0 ;- r ’ 4 1 —/ —/ 4
+ w1 _(6 27" +7)(0 — T+ 67 )}C T — a{(6—27’—|—r)(6—7’ —|—67')}C T
L / / —~/ / / —~/ 4 1 N — 4
— 21 [(® =20+ )+ 60 = )| ¢'Th + = | (P — 20+ )i 69— )| ¢ T
@4 4 20) — 27— 67| i — o (@~ V@A 27) — (2 — 7P+ 20)] ¢V
+ 237 (@ + ) (P +2p) — 2p7 — 6p7’l} T + % [(2,; P&+ 2r) — (2r — ) (P + 2p)] . (B10))

where T' = 2(T},m — Tin) is the trace, T := 2(Tom + L), and (21, /= V*T,, is the divergence of T, 3. The operator
N is anti-self-adjoint,

Ni= - (B10k)
11.% AAB vector A

The AAB vector operator A itself is not used in the Lorenz-gauge construction, but is included here for completeness.
Two of the components of the operator A-aréigiven by symmetries:

(Ah), = —(Ah); (Blla)
(AR) = —(Ah);, (B11b)
The other two are given by
4
(Ah), = %{ [P'P'P + 63'0P" <6pP'D’ + 2 (2p' — §') P'P +2(7 — 167) 0P’ + 2 (1 — 47') 8D’ + 6 (30 — p/) '

+ (4™ (5 — 3p) + 8p" (AT — 7'7) + 49/ (T'7 + 577 — 4p'p) + 1445 (p' — p') — 202(p' + 5p") — 12p'12( /()
+2p" (3p" — 29" )Pt (18p'p — 200" p — 89/ p + 87'7 — 477 + 2677 — 5hy — 5thy — 20a( /¢ + 4ho (% /CP) P
— (7807 FRpIF + 12p'7).0 + 2 (907 + 85'7) &' | huy

+ [~ 2P'PDP,#80'3P + 3270P —2(p' — p') PP +4(2p+ p) P'P+ 4 (57 —37) 3P +4(p+p)d'd
+ (4p'5p* —Tp%) + 4p(50' 5 — Tp'p) + 8p7 (57" — 37) + 8p7 (57 — 37) — 8¢ba(Tp + 3p) + 42 — 12p12( /)
+ (4p(5p' — 3p') — 4pp’ + 16(77" + T7') — 56TT — 61hy + 12(8 + 6¢/¢ — 12¢% /(%)) P + 4 (5% + p* — 6pp) P’
£4 (Tpr"F4p7 + 3p7) D+ 16 (o7 + 7' ) &' | iy

+[— 8PP - 6303+4(7+77)P'P—-8(2p —p)dP+4(p+3p) 3P +4(7+57)3d
+2(77 — 47) '8 + 4 (1007 + 59’7 +4p'7) P + 4 (87 p + TpT + 4p7) P + 4 (1377 +27% — 97'7) D
+ (472 (77 — 107) + 487 (p'p + 7'7) + 400’7 (p + p) + 47(140'p — 197'7) + 8uho (7' — 47) + 4Tho(1 — 5C7/(?)

— 475 [C) + (8¢ (p — 2p) + 28(5'p — 77) + 12277 — 77') + 2 + 6B + 12050/ — 2092 /¢2) 3T
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[40P'P + 6830 + 4 (1 — 27 ) P'P — 4 (5 — 29') 3P + 4 (p — 6p) DD’ +2(27 — 177') 3D + 16 (1 — 7) d'D

+ (47%(87 — 57') + 47/ (20 p — 77) — 407 (pp' + pp’) + 169 pr + 4o (67 + 107) + daho (7' — TP 2079oC/C
—47"poC?/C?) + 4 (30T +20'T) P — 4 (4pT + 5p7) P’ + 4 (72 + 572 — 67'7) &

+ (320 (p — p) — 160’ p + 47 (177 — 1277) — 127'F — 3612 — 10thy — 812 /¢ + 6¥2C7/C?) B hurm

[PPP —2(p+p) PP —2(7p* + p* — 4pp) P + 4 (505 — 6p° — pp?) | A

[100'PP — 16p0'P — 2 (157 + 27) PP — 4 (50> + 1p° — 2pp) &'

— 12 (57'p* 4+ 2p°7 + pp7) — 8 (57" p + 4pT + 2p7) P hm,

[ — 20PD + 8p0P +2 (37 — 27) PP + 8 (F'p + p7 + 2p7) P + 4 (50 + p* — 4pp) O

+12 (7 + 4p°7 + 20°7 — ppT) | i,

(70'0'P -8 (27 +7)'P +2(p—3p) 3 — (467" + 67 — 287'7) P — 2 (7p + 2p7 + 4p7) &

+4 (4p7* = 127"%p — 77/ p7) | humm

[ —2P'PP — 88'8P +327'8P — 2 (¢ — /) PP +4(2p+p) P'P +4 (57=37)dP + 4 (p+p) '3

+ (4pp' (5p — 7p) + 4p° (59" — Tp) + 4p7 (107" — 67) + 4p7 (107" ~67)t 8U3(2p — 3p) + 4ptpa — 12p12(/C)

+ (4p(50" = 3p") — 4p'p + 16(T7" + 7'7) — 56T + 423 + 8thy #A6ep2(/¢ = 12¢52(%/C*) P

+4 (50% + p* — 6pp) D + 4 (77'p + 4p7 + 3p7) O + 16p (7 7). | hmia

(08P +4 (1 —7/) 3P +2(p — 3p) 3D + 2 (7% + 372 — 47!q) P —2(e/p + 10p7 + 2p7) B

— 4 (6p7° +2p7> + 7' pr) ]hmm}, (Bllc)

%{ [70P'P’ — 6(27 + 7)P'D’ — 2(p' + 4p))OP" +Up'r — Tp'r — 20'7 )P’ + (2050’ — 48p"* — 65%) &

+4 (49T — 187p"* = 3p'1p) | i

[ —20'83 — 83P'P + 12(r + 7)P'P + 24p'3P % 12(p=0)dP’ + 2(7 — 7/)3d + 4(27 + 7)d'd

+ (20(77% + 7°7") 4+ 40(pp'T + pp' ') —24pr(p.= p') — 2877 (T + ') — 8uba (27 — 37) — 47'eho(1 + 3% /(7))

+4(90'7 + 100’7 + 557 )P + 4(3pT — Tpred 4p7 )P’ +4 (572 — 677 + 72) &'

+ (4pp’ — 12pp’ + 8pp’ — 47T — Ar7’ + 1277 20y — dho + 692 /¢ — 8922 /C?) By,

[—6P'DP'P —83'0P" +4(50"+ pYR'P + 2(7p — 4p)P'P’ + 16(7 — 7)0P" + 12(1 + 7)3'P’ + 4(50' — p')d'd

+ (49" (16p — 23p) + 4pp' (77" £ 10p") 2567 (T — 27") + 8p'7(57 + T7") + 45 (8¢ — 2) — 320'¢2(/()

+4 (130" — 95 p +2p?) P — 4Bp/T —2p'7 — 4p'7)D + 4(12p'7 + 8p'T + Tp'7)D

— (4pp’ +36pp’ — 24pp #1277 =877 — 1677 — 202 + 6ths — 82/ C + 2002C7 /) P hupm,

[1008P" — 4(57 + 47" )P 2(50" + 25')88 — 4 (572 — 677 + 7%) P’ — 8(5p'7 + 2’7 + 2p'7')

—4(150'7% + 6p'7° ¥3p/7'7) [ hum,

[OPP + 2(2p — p)dP= 67BP — 4(507 — 2p7 + p7')P + 2 (3p> — 2pp) & — 4 (67p° — 2p7p — 39°T) | hn

[40'3P + 6P'DP + 2(2p"— 17p")PP + 16(p — p)P'P + 4(1' — 7)0P — 2470'P + 4(2p — p)d'd

+ (4p'p(85 — 5p) FBTp(2T — 57') + 4p%(p' — 27) + 24pTT — 8tba(5p + 35) + 28¢ap — 8ptha — 20p1haC/C)

+4 (5p% + 6pp + p°) P"4dbpr'd — 8(507 — 2p7 + p7')d

+ (24p/ (3p=2p).~ 16pp’ + 87(37 — ') — 1677 + 3612 + 81 — 812 /¢ + 822 /C?) Pl hnim,

[—200P +4 (572 — 67'7 + 7%) P + 8(pr — pr + p7')d + 4(27 + 7)IP + 2(p — 2p)33

+12((dpr> # pr* — 2p7'T + p7"%) | huin

(0’08 + 60'P'P + 12(7' — 7)P'P + 8(p' — 4p")d'P + 8(p — p)d'P’ +2(27' — 7)8'd — 675’8

+ (36p/7(p — 2p) — AT (477 + 3pp’) + 87/ (17 — 6pp’) — 202 (77 — 47") + 27ehg + 27"102(5 — 9(/())

+2(80'7 — 35'7 — 2607 )P + 2(4pT + 4pT + 15p7") P’ 42 (377 —277) &

F(180' (25 — p) — 12pp’ + 47 (37 — 27') — 1477 + 243 + 5 — 582( /¢ + 492C7 /%) & | hmim
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+ [ —83P'P — 28’30 + 12(7 + 7)P'P + 24p'3P + 12(p — p)OP’ + 2(7 — 7)33 + 4(27 + 7)d'D
+ (20(77% + 7°7) + 40(pp'T + pp'T') + 24p7(p — p') — 2877 (T + ') + 8ubo(T1 + 37) — 47/l + 3(%/¢?))
+4(90'T + 1007 + 507 )P + 4(3pr — Tpr + 4p7 )P’ + 4 (57° — 677 + 7%) &
+ (40'(p — 3p) +8pp’ —A7(T +7') + 1277 + 62 — A2 + 6¢2(/C — 8¢2C*/C*) B hynm,

+[030 — 2 (772 — 477+ 72) 3 — 2(7 + 7)33 — 4 (67° — 5777 + 7%7) ]hm} (B11d)

The adjoint operator has four components given by symmetries:

(ATf)nn = *(Aig);la (Blle)
(-ATf)mm = _(Atg)innw (B11f)
(ATE)pm = —(ATE)},n, (Bllg)
(ATg)nm = _(A]Lg);mv (Bllh)

and a fifth component which is simply relate to another component
1 M, _ .
(ATE) s = —(ATE) 1, — 61/)2 (2P +p =20 )¢* G — (2P +p—2p)¢ "¢ — (20/+ 7 —27)¢ &+ (20+7—27') (Y6 ] (B11)

The other five components are given by

4
(ATE)y = %{ [— P'PP — 65'0P + 6(7p — p)d'd + 14pP'P + (p" =0 )PDB — 2(7 — 77)3'P — 2(7 — 197')3P

+ (12pp" —26p'p + 14p'p — Ar7" — TATT + 1277 # dehgt 8Py + 2 /¢ — T02(? /(?) P — 42D’
+ (67(2p + 9p) + 8p7)d — 2(90pT" + 9p7Ft 4p7)8+ (6pp"(14p — 5p) — 2p%(31p" — 4p)
+ 4p7 (57" +437) + 127 (7 + T') — 16pthy +27ptpy +Apiha — 27pha — 10p2(/C) ] &
+ [PPP — (13p+ p)PP + 2 (7Tpp + 15p° — p° )P + 2(15p° — 21p%p + Tpp”° — p°) | &,
+ [T8'PP — 6(9p + p)d'P — (377 +T)PP=2(9p7T + 4p7 — 86p7")P + 6 (Tpp + 5p* — p*) &
+ 2 (15pp7 + 48p°7 — Tp°T + 5p°7') | &
+ [ = 3PP +2(7p — p)dP + (37 — 7)PP + 2(6p7 + 13p7 + 257 )P — 2 (21p> — Tpp+ p*) D

—2 (37 (505 + 50° — 2°) = PR m | (B11j)
4
(ATE)m = 1%{ [ — 730P" + (23p" + p')3 + (687 + 67 )OP' + 4(3p'T — 26p'7 +2p'7)d + 6 (7° — 877 — 147%) P’

—2(45p' 7 + 159" 77 25/ —Tp'7%) | &
+ [00P + (p — )33 — 1450P + 4(37(p — p) — p7')d + 427°P + (307%(p — p) + 26p77 — 6p77°) |&,
+ [60P'D + 8'30 —487P'P — 1473’8 + 2(p — 4p)OP’ + 2(p' — 16p')dP + (7' — 7)3d
+ (4p(7p" — P )6pp" AT (37" — 5T) — 8T'T + 41by + 5ibg — 1haC/C + 44h2(?/(*) D
+2(31p7 — Tpr — TpTh) P’ + 147(120" — §')P + 42778 + (672(57 — 147) + 277 (347 — 77)
— p'T(22p +164p) # 5 (207 + 267') — tho (167 — 277") — 379h2(9 — 2C/C) + 772 (1 + C2/C*))]ém
+ [ =033 + (1374 7Y+ 2 (72 — 777 — 157%) D + 2 (7 — 777 + 21727 — 157°) ]gm}, (Bl1k)

4
(ATE) = 1%5{ [ —48P'P — 3530 + 4(7p — p)OP' +2(7p' — p')OP + 2(57 + 37 )P'P + 4(57 + 7)d'D

+(197" — A7)0 + (2p(2p" — p') — 56pp’ — 27(AT — 7') — 9277 + 2uhy + 32 — 21452(/() D

4 (87(3p — 8p) + 2p7)P’ + 2(6p'T + 1297 + 797 )P + (—2877 + 67 + 472) &' + (69'p(47 + 37)

—4plT(12p + p) — 4277(F — 27) + 10777 + 12727 — dpo (27 + 37) — b2 (357 — 27') + 37¢2( /() |&
+[OPP — 6p0P — 77PP + (67(6p + p) — 27 )P — 2 (3p® — 4pp + p*) d + 6p7(5p — 6p) — 2p° (47 + 37')| &,
+.[3D'PP + 48'3P — 2878'D — 4(5p + p)P'P — 2(3p + p)3'd + (45’ — 199')PP + 2(7 — 97')3P

+ (4p'(23p +3p) — 6p'p + 27(57 — 27) + 8477 + 205 + o + 2192( /¢ + 202( /C*) P
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+ (47(9p + 5p) — 6p7)0" — 2(7(5p + 4p) + 2p7")d + (28pp — 6p° — 4p*) P + (4p7 (57 + 27)
+ p7(387 — 287') — 2pp’ (42p + 5p) + 2p° (239" — 87') — 42(2p + 3p) — pb2(35 — 9C/C)) Jm
+ [ = 30P + (7p — 2p)3d + (67 + 27)dP + 127(5 — 3p)d + 2 (372 — 777 + 72) P
+ (4p7 — 672(5p + 6p) — 2p77") ]gm}, (B111)

4
N fﬁ{ [20'P'P + 338’0 — 12p3'P’ — 147'P'P + 2(p" — )P + (27 — 57)3'3 + 27 — 197980

+(20'(9p — 4p) — 109’ p + 27(257 — 47") — 8F'F — 20002 — Yo (5 + 2( /¢ — 5C?/¢?Y) &

— 4307 +3p'7 + p'T)P + 56p7'D’ + 2 (51772 — 77’7 + 72) D

+ (40pp/ (7' + 27) — 6p7(3p' + 2p') + 672 (67 — 7') — 1077/ (97 + 27') + 4eho (57 + 877) — 9o (7 — 37)) &
+ [ = 58'PP + 2(20p + p)d'P + (207 + 37)PP + (8p7 — T0p7’ — 18p7)P +2 (p* —6pp — 25p°) &’

+ (27 (8p® — 16pp + 5p%) — 50p°7') |&,
+ [ = 580D + (10p + 3p)D'D +2(257" + 7)'P — 4(10p7" — 5p7 — 2pE) + 2/(7% — 4577 — 77'7) P

+ (27%(16p + 5p) — 20p7"* — 14p7'7) | &1y
+ [3P'PP +28'8P + 2(p — 6p)3'd — 36pP'P — 35'PP + 2(47 467 )0'P + (67 — 207')3P

+ (20'(p+19p) — 10p'p — 27(97" — 207) — 47'7 + 22¢ho —aba (8 + ¢fC— 5¢° /(%)) P

— 8(p7 +57(p+ p))d + (86p7" — 18p7 + 8p7)d + 900> P’ + (8p2(6p" — 5') — 10pp (95 + p)

+ 10p7(67" — 77) + 4p7 (21 — 7') — 1042 (5p + 2) 4 p2(23 + 9C/¢) — 4,61/32)]£m}, (Bllm)
C4

= 2= {[P'P'P +43/8D" — 6pP'D’ — 65'P'B+ 2(ps- 7p)38 - 4(27 + 7)3'P +2(7 — 137)3P'

+2(20'(5p+3p) — 20’ p + 2377 + 877 — T F 2aha (1 —4C/¢ — (P/¢%)) P =2 (3p2 —4p'p + p%) P
—2(6p'T + Tp'T + 507 )0 — p/ (67 — 7470 % (202(8p — 21p) + 20/ p(18p" — 5p') + 279/ (117 — 87)
+20'7(97 — 327) — (280 +B3p N8P (1 + 5C/C) — 55'10)]&
+ [~ DP'PP —43'3P + 2(p + 2p)P'P + 2(p — p)0'd + 2(5p" — 25/)PP + 2478'P + 2(57 + 7)3P
+ (4p'p +2p'p — 34pp’ — 4477’ — 187T + ATIF — by + ha(1 — 8(/C — 2¢*/¢)) P
—2(1(35p + p) — p7 )0 +(8pTh= 10pT + 8p7)D + 4 (50 — 6pp + p°) P’ + (2pp' (225 — 15p)
—2p°(11p" — 4p") — pr (207" — 62F)= 2p7 (97 — 107") + 2 (17p + 35p) + pp2(17 — 15¢/()) ] &n
+ [~ 43'P'P - 883+ 4(p + p)' P’ +(26p' — 6p)0'P + 678’8 +2(97' + 7)P'P + 678
+ (6pp' — 24pp’ — 14pp) — 2477 — 877 + 477 — 22¢hy — 2o (1 + 3(/C + (%/¢?)) &
+2(4p7’ + 5p7 + 3p7) B— 12/(87" + 7)P + 2 (372 — 47’7 + 72) D + (2070 p — 279/ (29p + 9p)
—27%(187 — 57) =277/ (107" — 237) — 442(97 — 587) — 574he + 37"ha(1 — (/€)) ] ém
+ [40DP'D + 8'33#4(p — 6p)OP" — 2(3p’ + p')OP — 2(97 + 7)P'P — 2(7 + 27)d'd + 2(27 — 577)3d
+ (49" (5p +Bp) — 20"p + 3477’ — 87T + 277 + 230y — Y + 82(/() O
+ (94p7 — 6p7 +2p79) P + (20 (27 — 57') — 8p'T)P — 4 (57% — 677 + 72) & + (27% (157" — 227)
+ 271797 — 27') — 207 (2p + 29p) — 20/ p(67 + T7') — o (677 — 117) + Taha (17 + 7(/C) — 2%’1/72)]gm}.
(Blln)
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12. By and B, operators

The operators By and By appearing in Eq. (16) are given by

Boé = %{4 [roP — pd° — 2r7'P + 2p7"%)& + %C4 [pPd — P? — 2pp0 + 270%|&m,

B4§ — _%<4 [Tlalp/ _ p/6/2 _ 27_/77_]::)/ + 2p/7¢2] gn _ %C4 [p/p/6/ _ 7_/:[)/2 _ 2Plﬁlal + 27',[3/2]677‘1 — _86

Their adjoints, appearing in Eq. (17), are given by
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