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Bioinspired trajectory modulation for 
effective slip control in robot manipulation

 

Kiyanoush Nazari    1, Willow Mandil1,2, Marco Santello    3, Seongjun Park    4 & 

Amir Ghalamzan-E    5 

Ensuring a stable grasp during robotic manipulation is essential for 

dexterous and reliable performance. Traditionally, slip control has relied on 

grip force modulation. Here we show that trajectory modulation provides 

an effective alternative for slip prevention in certain robotic manipulation 

tasks. We develop and compare a slip control policy based on trajectory 

modulation with a conventional grip-force-based approach. Our results 

demonstrate that trajectory modulation can significantly outperform grip 

force control in specific scenarios, highlighting its potential as a robust 

slip control strategy. Furthermore, we show that, similar to humans, 

incorporating a data-driven action-conditioned forward model within 

a model predictive control framework is key to optimizing trajectory 

modulation for slip prevention. These findings introduce a predictive 

control framework leveraging trajectory adaptation, offering a new 

perspective on slip mitigation. This approach enhances grasp stability  

in dynamic and unstructured environments, improving the adaptability  

of robotic systems across various applications.

Slippage of objects (we call it ‘slip’) during robotic manipulation tasks 

can result in instability and task failure1,2. Robotic systems are still far 

behind human-level dexterity in handling slip3. Improving slip control-

lers can be attributed to enhancing tactile sensors4–6 for reliable slip 

detection7–9 and intelligent control strategies for slip prevention10. In 

this study, we focus on the latter and present a bioinspired11 approach 

for slip control. Current slip controllers primarily rely on increasing grip 

force in response to detected slip events10. However, it is still unclear 

whether grip force modulation is the only means of slip control. Inspired 

by the inherent dynamics of slip events indicating rapid adjustments 

in motion trajectories can stabilize the physical interaction12,13 and 

findings in ref. 11 showing humans deploy hand acceleration adapta-

tion besides grip force modulation for slip prevention, we explore the 

effectiveness of trajectory modulation as an alternative control policy 

in robotic pick-and-place tasks where grip force control is not always 

possible or effective. The code can be found at https://github.com/

imanlab/bgf, and our dataset and other information are available at 

https://proactive-control.github.io/.

Grip force control in robotics (based on detected14–19 or predicted10 

slip instances) is inspired by neurophysiological studies on humans’ 

control policies (for example, refs. 20–22). These studies have shown 

that humans optimally adjust the grip force to be slightly larger than 

the required amount for preventing object slip. However, grip force 

control may not be effective or possible in many robotic scenarios, for 

example, when the maximum grip force is already applied23 or when 

handling delicate objects24. Moreover, many robotic architectures do 

not permit real-time grip force control, for example, the Franka Emika 

arm25. Hence, our hypothesis involves a robot controller using hand 

trajectory modulation that can be as effective in preventing object slip 

as a controller using grip force modulation.

We introduce a predictive trajectory modulation approach for 

slip control, which dynamically adjusts planned motions in real time to 

prevent anticipated slippage during robotic manipulation tasks, with 

supplementary insights from human studies11. Although our results 

show that reactive trajectory modulation reduces slip instances, it is 

suggested that humans’ dexterity is owed to a predictive control system 
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slip where grip force control is not either possible or sufficiently  

effective in robotic manipulation. We evaluated the generaliza-

tion capabilities of proactive control for trajectory modulation.  

We observed the controller generalizes well to unseen object classes, 

robot trajectories and motion start/end poses.

Our contribution is manifold: we propose a robotic slip control 

approach that utilizes reference trajectory modulation. Inspired by 

the proactive control strategy used by humans36,11, we introduce a 

proactive control framework that uses a forward model to predict slip 

incidents and ensure task success in physically interactive scenarios. 

The proposed approach offers a substantial improvement over current 

slip control methods.

Results
We aimed to explore the role of trajectory modulation in slip control. 

Our predictive control strategy uses a forward model, in contrast to  

the reactive grip force control that is commonly used in robotics, 

to predict the consequence of its action and select future trajec-

tory points, yielding no slip during manipulative movements. Our  

findings in our previous study11 indicate that humans rely on trajec-

tory modulation, when grip force control is insufficient, for slip con-

trol. This insight motivated the development of our proactive control  

policy that modulates trajectories to prevent slip. Ref. 11 demonstrates 

that participants use hand acceleration modulation as a strategy  

to minimize task completion time and prevent slip occurrences. 

Building on this insight, we have developed a slip control approach 

for robotic manipulation. This innovative method involves optimiz-

ing the robot’s predetermined trajectory through the application  

of its tactile forward model, directly addressing our second hypothesis 

and representing a notable advancement in the field of robotic slip 

control.

relying on internal forward models26,27. Forward models (Fig. 1) are 

thought to enable the prediction of sensory consequences of motor 

actions and allow bypassing unavoidable delays due to latency associ-

ated with sensorimotor loops27–30, whereas the motor cortex defines 

optimal actions to achieve the task goal31. Hence, our next hypothesis 

is to test whether a predictive controller can yield better performance 

in slip control. Learning a forward model in physical robot interaction 

with the high-dimensional state space32,33 is challenging and has limited 

the robotic systems to benefit from predictive controllers in cases  

such as slip prevention.

We, therefore, proposed a six-dimensional proactive control  

for trajectory modulation to avoid slip, relying on a learned tactile 

forward model that predicts slip instances within a prediction horizon.

A predictive controller adjusts the reference trajectory based 

on a predicted slip signal to minimize the likelihood of future  

slips. This extends our previous one-dimensional controller34 to a six- 

dimensional velocity controller and leverages our state-of-the-art 

action-conditioned tactile prediction (ACTP) model35 for slip pre-

diction. Proactive control closes the control loop with the predicted 

system states and outperforms current reactive grip force controllers 

by achieving a smaller likelihood of slip control failure. Proactive slip 

control also benefits from a slip classification on the ACTP prediction 

signals, making it superior to that of a simple long short-term memory 

(LSTM)-based classification34, contributing to the improved perfor-

mance of the proactive controller.

We conducted a series of experiments using the Franka Emika  

arm to demonstrate the effectiveness of reference trajectory  

modulation. We implemented and tested both reactive and proactive 

controls. Our experiments include a variety of objects, trajectory classes 

and robotic manipulation tasks, in which slip may cause task failures. 

Our results show that trajectory modulation is effective in controlling 
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Fig. 1 | Tactile forward model in sensorimotor loop. Block diagram50 illustrating 

the predictive control architecture in humans based on the internal forward models 

that are learnt in the cerebellum of the human brain52,53, as a design motivation for 

our proposed proactive controller. The forward model predicts future sensory 

states based on the current state and a copy of potential motor commands 

(efference copy) to enable predictive movements without relying on delayed 

sensory feedback54,55. The internal representation in the cerebellum is learnt via 

neuronal connections with the sensory and motor cortices in the cerebral cortex.
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Trajectory modulation for object slip control
Hypothesis. A robot controller using reference trajectory modulation 

can be effective in slip control: we attached a pair of uSkin37 tactile 

sensors to Franka Emika robotic arm’s fingers for closing the loop  

for trajectory modulation. Our proactive controller involves lifting 

an object from a top grasp pose by a parallel gripper and moving it 

to the target pose by modulating a given reference trajectory. Object  

slip is predicted in real time within a specified prediction window using 

a tactile forward model. The trajectory optimization pipeline (Fig. 2) 

then leverages these predicted slip values to learn how to dynami-

cally adjust the Cartesian reference trajectory, thereby minimizing 

the likelihood of future slip events. If the tactile forward model does 

not predict a positive slip event during the trial, the predefined refer-

ence trajectory will be executed without modification. Figure 3 shows 

the robot Cartesian-space acceleration for a linear movement from  

(0.4, –0.3, 0.3) to (0.1, 0.25, 0.3) in the robot base frame (Table 1). This 

result obtained with the Domino object, which is a sample object  

from our test objects set (see the list of ten objects used for training 

and three objects used for testing the tactile forward model, namely, 

the train object set and test object set; Table 2). The object’s in-hand 

pose is measured using a wrist-mounted Intel RealSense camera and 

a visual marker attached to the object. The threshold for switching  

the contact state from stick to rotational slip was chosen as 6°. The 

small deformation of the tactile sensor taxels allowed <6° object  

rotation without slip.

We show the results of trajectory modulation for three reference 

velocity trajectories (Fig. 3): trapezoid (panel a), cubic (panel c) and 

quintic (panel e), and the object rotation achieved by the proactive  

controller in panels b, d and f, respectively. For each test case, we 

repeated each task execution five times. Variations are due to the  

nonlinear nature of the slip, variability in initial contact and stochastic 

nature of the forward model used in our proactive controller. The onset 

of the predicted slip is shown with a green-shaded band in Fig. 3a,c,e. 

This shows that the proactive controller effectively controls slips 

regardless of the onset time and nature. Figure 3b,d,f shows the object 

rotation (blue line) without the proactive controller where the refer-

ence trajectory is executed without modulation.

The data shown in Fig. 3 demonstrate that the object rotations 

obtained by proactive control are significantly smaller than those 

obtained with the open-loop controller and remain within the set slip 
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Fig. 2 | Proactive slip control architecture. a, Proactive control system, 

consisting of ACTP, slip classifier and predictive controller. The system aims to 

minimize the likelihood of future slip by minimum deviations from a reference 

trajectory. At each optimization iteration, the objective function is evaluated 

by passing the constructed robot actions by trajectory weights to the tactile 

forward and slip classification models. The signals shown by solid lines are 

received/commanded in real time (20 Hz), and the ones with dashed lines are in 

the optimization loop (100 Hz). 1D, one dimensional. b, At each time t, a context 

and prediction window of size c is used by the ACTP model, where the entire 

context and prediction window has H = 2 × c time samples; hence, the context 

and prediction times are {t − (c − 1)Δt…t − Δt, t} and {t + Δt…t + cΔt} assuming a 

fixed sampling frequency Δt in the dataset. For c = 3, the context is {t − 2Δt, t − Δt, 
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boundaries. These achievements can be attributed to the deviations  

of the generated trajectories from the reference trajectory. Pro active 

control can effectively minimize slip incidents by modulating the 

robot’s trajectory despite a constant grip force applied, which is  

within a safety margin for forming a stable grasp and lifting the  

object. These are in agreement with the human slip control strategy 

presented in ref. 11.

The rows showing the mean value for DRT (Table 2) explain that  

the deviation from the reference trajectory remains comparatively 

close between the train and test objects, illustrating the effectiveness 

of our proposed approach in generalizing to unseen objects during 

training. Nonetheless, the ROV has an 8% increase for the test objects 

compared with the train set objects, showing that a reach object set 

(representing a variety of object classes) can enhance the performance.

We also tested the proactive control in three classes of manipula-

tive movements, each with a varying number of degrees of freedom 

(DOFs) and quantitatively compared its results with a baseline slip 

control model, that is, a reactive grip force control with an MHZ2 SMC 

gripper. For each motion class, we fix a few DOFs in Cartesian space 

and generate a reference trajectory for the remaining DOFs to set the 

robot’s velocity. This allows us to examine the relationship between 

specific movements and slip instances. We focus on test movements 

relevant to common pick-and-place tasks, including linear motions 

in a horizontal plane (TM-1), motions in a horizontal plane with wrist 

rotation (TM-2) and lifting motions in a vertical plane by moving an 

object up and down (TM-3).

As a baseline, we use a reactive (grip force) control, which is the 

common approach in the literature, using the MHZ2 SMC gripper to 

modulate the grip force in real time. By attaching uSkin sensors to the 

fingers, we created a setup that is comparable with one with the default 

Franka Emika gripper, which cannot be controlled in real time. The grip 

force slip control method is a reactive control system that tightens the 

grip whenever a positive slip signal is detected. We repeated each test 

case ten times and report the mean and standard deviation for each 

performance metric. Table 1 presents the average performance of 

reactive control for test objects set on various reference trajectories 

and classes of motion. Both RTS and MOR values in Table 1 indicate that 

the trapezoid reference trajectory is the most challenging for control-

ling the slip in all three classes of test motions. This is due to the jerk in 

the phase of switching from linear to constant velocity and vice versa. 

Although the quintic reference has the lowest RTS in all test motions, 

the cubic reference has the smallest MOR in TM-2. This table shows 

that the average MOR for reactive grip force control is 11.51°, which is 

5.51° larger than the slip threshold. We conduct the same test cases for 

our proposed proactive controller and present the results in Table 1. 

On the basis of RTS and MOR values, similar to reactive control, the 

trapezoid reference trajectory is the most challenging for proactive 

control for slip avoidance. However, proactive control showed notable 

improvement for both metrics in each test motion with all reference 

trajectories compared with reactive control. Although the quintic 

reference has the lowest RTS and MOR in TM-1 and TM-3, in TM-2, the 

cubic reference has the best RTS and MOR values. The mean value 

for MOR for proactive control is 6.48°, which has 82% improvement 

with respect to reactive control. The mean RTS value for proactive 

control is also 780% smaller than the mean RTS for reactive control. 

We also present three other metrics specific to proactive control for 

its optimization performance evaluation. ET shows the execution time 

in seconds. Table 1 shows that the deviation from the quintic reference 

is the largest for all classes of test motions. ROV values agree with RTS 

and are indicative of the convergence of the optimization loop. ET is 

close for all three classes of test motions.

These results elucidate our hypothesis, proving that slip control 

with robot trajectory modulation can be significantly more effective 

than the common grip force slip controllers in certain scenarios. Fur-

thermore, the use of the tactile forward model for trajectory modula-

tion increases the slip controllers’ reaction time, resulting in better 

performance than the reactive grip force modulation for slip control.

Slip control generalization to novel trajectory start and end poses. 

We examined the impact of the robot movements within the robot’s 

workspace on the model’s performance by testing the model to pick the 

objects and place them with start and end points unseen during train-

ing. The coordinates are as follows: the original (x, y, z)start = (0.4, –0.3, 

0.3) and (x, y, z)goal = (0.1, 0.25, 0.3), and new points (x, y, z)start = (0.3, 

0.4, 0.3) and(x, y, z)goal = (0.15, –0.2, 0.3) in the robot base frame, 

respectively. This helps us understand how much the variance in the 

task-space start and end poses could affect the model’s performance. 

Table 3 presents the mean performance of the controllers with ten 

repetitions for the three test objects with new start and goal points. 

A comparison of the results in Table 1 and Table 3 illustrates that the 

controller is robust to changes in the motion zones in the task space 

and it can effectively adapt to different start and end points within the 

robot’s workspace.

Hypothesis. Proactive slip control can outperform reactive slip con-

trol with trajectory modulation: we show the advantages of proactive 

trajectory modulation compared with reactive trajectory modulation 

in a pick-and-place task. Although the former utilizes the tactile for-

ward model consisting of ACTP and slip classification model for slip 
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prediction, the latter uses only a slip classification model to detect 

slip at the current time. We use TM-1 and Domino as the comparison 

task motion and object (Table 1), respectively. In the ten trials of the 

test, the proactive trajectory modulation significantly reduced the 

object’s in-hand rotation (35% reduction in MOR) and the number of slip 

instances (63% reduction in RTS) compared with the reactive trajectory 

modulation. The proactive approach starts the trajectory modula-

tion before a real slip incident occurs, whereas the reactive method 

Table 1 | Comparison of proactive control by trajectory modulation with grip force control as the baseline model on different 
reference trajectories and classes of test motions averaged over three test objects

Control Test motion Reference trajectory RTS↓ MOR (°)↓ DRT (cm s−1) ROV↓ ET↓

Grip force slip control 

(reactive)

TM-1

Trapezoid 29.32 ± 5 15.45 ± 1 – – –

Cubic 26.11 ± 4 8.68 ± 0.8 – – –

Quintic 23.52 ± 2 8.22 ± 1.2 – – –

TM-2

Trapezoid 31.08 ± 8 14.23 ± 1.1 – – –

Cubic 26.04 ± 4 9.43 ± 0.3 – – –

Quintic 25.25 ± 5 13.43 ± 1.8 – – –

TM-3

Trapezoid 28.64 ± 4 13.65 ± 0.9 – – –

Cubic 30.41 ± 3 11.43 ± 1.1 – – –

Quintic 26.00 ± 3 9.10 ± 1.3 – – –

– Mean 27.37 ± 2 11.51 ± 2.5 – – –

Trajectory modulation 

slip control (proactive)

TM-1

Trapezoid 3.6 ± 2.0 7.44 ± 1.9 1.62 ± 0.1 0.81 ± 0.1 0.10 ± 0.03

Cubic 1.8 ± 3.6 6.66 ± 1.5 1.64 ± 0.1 0.62 ± 0.1 0.10 ± 0.03

Quintic 1.0 ± 2.0 5.60 ± 1.2 1.71 ± 0.2 0.47 ± 0.2 0.10 ± 0.02

TM-2

Trapezoid 8.5 ± 3.3 6.92 ± 1.1 1.38 ± 0.1 0.68 ± 0.2 0.10 ± 0

Cubic 0 ± 0 5.81 ± 0.9 1.67 ± 0.1 0.35 ± 0.1 0.10 ± 0.03

Quintic 2.0 ± 2.5 6.74 ± 0.9 1.69 ± 0.1 0.51 ± 0.2 0.10 ± 0.02

TM-3

Trapezoid 5.3 ± 3.0 6.04 ± 1.3 1.60 ± 0.1 0.71 ± 0.2 0.10 ± 0.03

Cubic 4.6 ± 4.9 7.73 ± 2.2 1.30 ± 0.1 0.70 ± 0.2 0.11 ± 0.03

Quintic 1.9 ± 1.5 5.44 ± 1.4 1.74 ± 0.2 0.54 ± 0.2 0.11 ± 0.03

– Mean 3.1 ± 1.5 6.48 ± 1.7 1.59 ± 0.1 0.59 ± 0.1 0.10 ± 0

The test motions (TM-1, TM-2 and TM-3) are three common pick-and-place tasks. The definitions of the RTS, MOR, DRT and ROV metrics are provided in Table 2. ET, execution time in 

milliseconds indicating the computation cost. ↓ or ↑ shows a lower or higher value is better, respectively. The best performance metrics for RTS and MOR for each test motion are highlighted 

in bold. The mean and standard deviation values are computed over five repeated executions of the same manipulation trial.

Table 2 | Proactive controller performance on the object transport task with trapezoidal velocity for individual train and test 
set objects

Test object RTS↓ MOR (°)↓ DRT (cm s−1) ROV↓

Train

01 BreadSticks 0 ± 0 4.87 ± 0.27 1.60 ± 0.14 0.33 ± 0.08

02 CORNFLOUR 2.8 ± 2.48 7.33 ± 0.69 1.59 ± 0.21 0.51 ± 0.19

03 Ravita THINS 0 ± 0 4.62 ± 0.44 1.69 ± 0.08 0.82 ± 0.24

04 PUFF pastry 8.2 ± 7.41 7.11 ± 1.65 1.47 ± 0.15 0.36 ± 0.12

05 GRISSINI 5.0 ± 5.93 7.00 ± 1.41 1.70 ± 0.18 0.44 ± 0.16

06 Batter Mix 0 ± 0 5.03 ± 1.21 1.59 ± 0.12 0.59 ± 0.17

07 Jaffa cake 7.8 ± 6.73 8.02 ± 1.20 1.69 ± 0.15 0.82 ± 0.25

08 KLEENEX 5.0 ± 6.13 7.62 ± 1.45 1.42 ± 0.06 0.48 ± 0.17

09 CHEEZEIT 0 ± 0 2.62 ± 0.46 1.61 ± 0.16 0.49 ± 0.17

10 RICE 0 ± 0 4.54 ± 0.90 1.43 ± 0.11 0.76 ± 0.19

Mean 3.22 ± 3.09 5.98 ± 1.73 1.57 ± 0.10 0.58 ± 0.01

Test

11 CUPa SOUP 0 ± 0 3.75 ± 1.17 1.52 ± 0.12 0.53 ± 0.17

12 Carrs 10.4 ± 6.08 8.89 ± 1.75 1.54 ± 0.16 0.71 ± 0.09

13 Domino 0 ± 0 5.09 ± 0.73 1.69 ± 0.09 0.66 ± 0.21

Mean 3.46 ± 4.90 5.91 ± 2.17 1.58 ± 0.07 0.63 ± 0.02

RTS, the number of time steps in which object rotation is >6°; the higher the number is, the higher probability that the task fails; MOR, maximum amount of object rotation; DRT, the sum of 

Euclidean distances between the reference and adapted trajectories over the task execution time; ROV, the value of the objective function after optimization; ↓ or ↑ show lower or higher 

values are better, respectively. Full slip prevention trials (for example, RTS = 0) and the best performance metrics for MOR and ROV across the train and test set objects are highlighted in bold. 

The mean and standard deviation values are computed over five repeated executions of the same manipulation trial.
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starts the modulation of the reference trajectory after observing a 

slip instance. This helped the proactive approach result in better slip 

control performance. This observation addresses our third hypothesis, 

which states that proactive trajectory modulation is more effective  

in slip control than reactive trajectory modulation.

Discussion
Our research investigated the slip control mechanisms during mani-

pulation, revealing that trajectory modulation, not just grip force, is  

crucial in slip control, especially during long-range movements. This is 

in line with findings in human slip control11. We proposed an approach 

that uses predictive controllers, to enhance robot interaction with com-

plex environments. Traditional reactive control methods are limited by 

their reliance on the observed states, whereas our proactive controller 

uses predicted slip states to control object slip during object transport 

tasks. Our method demonstrated substantial improvements in slip 

control without requiring increased grip force, outperforming tradi-

tional grip force control methods. It proved effective across various 

trajectories, objects and motions, making it versatile and adaptable.

Proactive control offers broader benefits to robotics by enhancing 

the robots’ ability to operate in unstructured environments, potentially 

revolutionizing robotic deployment. However, future work should 

address limitations such as the controller’s neglect of prediction errors, 

reliance on offline training, limited object set and computational com-

plexity. Furthermore, extending our approach beyond tasks with pre-

defined reference trajectories would further improve its applicability.

Conclusion
In conclusion, we have tested two hypotheses for designing a control-

ler for robot physical interaction in the context of slip control. First, 

these results were instrumental in proposing our trajectory modula-

tion slip control approach, which offers a promising solution to cope 

with complex interactive tasks and dynamics. Second, by integrating 

an action-conditioned forward model into a predictive control archi-

tecture to modulate the reference trajectory, our approach allows 

robots to use the predicted slip events and adjust their trajectory in 

real time to avoid those cases in contrast to reactive control policies 

that activate after the slip occurrence. Our results show a substantial 

reduction in the likelihood of task failure and an increase in the robot’s 

success rate compared with traditional reactive control policies. Using 

the data-driven forward model improved the slip state estimation and 

slip controller performance. We believe that our approach has notable 

potential in a variety of industrial and service robotic applications, and 

our work opens up new opportunities to bring robots into our daily 

life. We hope that our findings will inspire future research in this area 

and further advance the field of robotics.

Methods
Here we delve into the implementation of proactive trajectory modula-

tion as a means of slip control, which addresses our first hypothesis.  

We present the methodology and experimental setup used to examine 

the effectiveness of trajectory modulation in preventing slip inci-

dents during robotic manipulation tasks. Furthermore, we introduce  

the concept of incorporating a forward model in proactive control, an 

approach aimed at slip avoidance, as per our second research hypo-

thesis. We outline the key aspects of proactive control, its implementa-

tion and the experimental framework used to evaluate its performance 

in slip prevention.

Experimental setup
Traditional parallel jaw grippers are still widely used in many robotic 

manipulation tasks, such as bin picking 38. Usually, a motion planning 

module generates a reference trajectory for the robot by minimizing, 

for example, time or jerk before motion execution. Then, the robot exe-

cutes them in an open-loop manner with respect to task failure/success 

due to a slip in real time. This limits the robot’s success, and solutions  

in the literature suggest increased grip force on the fly, which may not  

be feasible in many cases39–41. We address this issue using our data- 

driven predictive control concept, referred to as proactive control.

First, we collected a dataset of open-loop trajectory executions 

in which the robot manipulates an object included in our train objects 

set shown in Supplementary Table 2. We equipped the fingers of a 

Franka Emika robotic arm with a pair of 4 × 4 uSkin tactile sensors 

and performed moving tasks with multiple objects. The uSkin tactile  

sensor has 16 sensing points (taxels) that measure triaxial forces, 

including shear x, shear y and normal z (Fig. 1). To create various  

types of reference trajectory, we used two main motion strategies 

during data collection: (1) kinaesthetic robot motions, where a  

human user performed moving tasks with qualitative fast and slow 

motions; (2) automatic robot motions, where trapezoidal reference 

trajectories with various acceleration/deceleration values were sent 

as a reference Cartesian velocity. A D435i camera manufactured by 

Intel RealSense mounted on the robot’s wrist measures the pose of 

an ArUco marker attached to the top of the object. The pose data are 

then post-processed to create binary slip labels based on the object’s 

in-hand displacement.

ACTP. In this work, tactile data are referred to as frames, representing 

single time-step readings of the respective sensing modality. Given  

(1) a set of context frames f0:c−1 = {f0…fc−1}, which are the previously 

observed frames with a context sequence length of c, and (2) a predic-

tion horizon of length H – c (that is, the number of future frames  

to predict); here we assume equal context and prediction window size, 

that is, H = 2c, where i
c

∈ {0,… , c − 1} ∈ ℤ

c , i
p

∈ {c,… ,H − 1} ∈ ℤ

c  and 

i ∈ {0,… , c − 1} ∪ {c,… ,H − 1} ∈ ℤ

H  (Fig. 3b shows details of the samples 

in the context and prediction horizons). Although here we show  

the formulation for one time step f(t), generalization for training for 

the entire trajectory, that is, t = 0:T, is straightforward. A tactile predic-

tion model can be defined as f (we use *i:i+n = {*i, *i+1…*i+n}; Fig. 3b) to 

denote variables representing the set of frames and ̂f  to denote the 

corresponding predicted values:

̂

f

c∶H−1

= ℱ (f

0∶c−1

) , (1)

where ̂

f

c∶H−1

 represents a set of predicted frames ̂

f

i

∈ ℝ

48  (tactile 

images). The goal is to optimize equation (2), for each time step in the 

prediction horizon counted by ip:

Table 3 | Proactive controller’s performances with novel 
Cartesian start and goal points for TM-1 with trapezoid 
reference trajectory

Test 

motion

Reference 

trajectory

RTS↓ MOR↓ DRT ROV↓

TM-1

Trapezoidal 6.0 ± 1.51 7.91 ± 0.35 1.61 ± 0.16 0.85 ± 0.07

Cubic 4.8 ± 2.93 6.77 ± 2.67 1.71 ± 0.16 0.56 ± 0.08

Quintic 3.9 ± 1.81 6.07 ± 0.19 1.83 ± 0.35 0.41 ± 0.10

TM-2

Trapezoidal 5.2 ± 3.61 7.25 ± 1.26 1.49 ± 0.17 0.71 ± 0.19

Cubic 1.6 ± 0.74 6.09 ± 1.11 1.83 ± 0.06 0.44 ± 0.21

Quintic 2.2 ± 0.90 6.54 ± 0.56 1.72 ± 0.12 0.46 ± 0.11

TM-3

Trapezoidal 5.9 ± 1.46 7.64 ± 0.50 1.58 ± 0.31 0.78 ± 0.14

Cubic 3.0 ± 1.3 6.94 ± 0.96 1.53 ± 0.23 0.58 ± 0.09

Quintic 2.9 ± 2.5 6.03 ± 1.52 1.80 ± 0.19 0.51 ± 0.17

Mean 3.94 ± 1.52 6.80 ± 0.65 1.67 ± 0.12 0.59 ± 0.14

The scores are the average of three test objects. The definitions of the RTS, MOR, DRT and 

ROV metrics are provided in Table 2. The best performance metrics for RTS and MOR for each 

test motion are highlighted in bold. The mean and standard deviation values are computed 

over five repeated executions of the same manipulation trial.
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min

H−1

∑

i=c

𝒟𝒟 (

̂

f

i

, f

i

) , (2)

where 𝒟𝒟 denotes the loss function in the tactile reading space or pixel 

space, such as ℒ
1

 or ℒ
2

, measuring the difference between the predicted 

and observed frames.

In a physical robot interaction, we aim to develop a cause–effect 

understanding of the robot’s actions. Thus, we condition the prediction 

model on the past context frames f0:c−1, the past robot trajectory  

x0:c−1 and planned robot actions ac−1:H−2 to output future frames ̂f
c∶H−1

 

(which are known in our physical robot interaction datasets but 

unknown during the inference time). Here x
i

c

∈ ℝ

6  represents the  

robot trajectory at past steps, and a
i

p

∈ ℝ

6  represents the planned 

future robot actions at time t. The model assumes a known and nearly 

constant sampling frequency (typically around 10 Hz with less than 

10% variance), and we work with discrete values. The prediction model 

can be expressed as

̂

f

c∶H−1

= ℱ (f

0∶c−1

,x

0∶c−1

,a

c−1∶H−2

) , (3)

where f denotes tactile frames. In model predictive control, which 

commonly uses forward prediction models like those described here, 

future robot actions are considered as a batch of candidate actions. 

The optimal action is selected by a discriminator based on the most 

desirable predicted tactile frames34,42.

Our model aims to maximize the p ( ̂

f

c∶H−1

|f

0∶c−1

, {x

0∶c−1

,a

c−1∶H−2

},   

z

0∶c

) to predict tactile frame ̂f
c∶T

 by applying stochastic assumption to 

the prediction model. Our objective is to sample from

p (

̂

f

c∶H−1

|f

0∶c−1

, {x

0∶c−1

,a

c−1∶H−2

}) . (4)

The network can then be trained with the frame prediction model 

by maximizing equation (4).

ℒ

θ

(f ) = ∑

H−1

i=c

− [ logp

θ

(

̂

f

i∶H−1

|f

0∶i−1

, {x

0∶c−1

,a

c−1∶i−1

})]

(5)

For more information about action-conditioned prediction 

models, see refs. 35,43,44. The LSTM classifier takes the predicted 

tactile frames and classifies each predicted time step as either slip  

or non-slip. The resulting slip signal, where the binary value of 0  

indicates no slip and 1 indicates slip, is then used in the model 

pre dictive control framework to adjust the robot’s movements 

accordingly.

Slip classification model. To classify tactile frames as slip and non- 

slip signals, we leverage the temporal processing capabilities of  

LSTM networks, which have been shown to significantly enhance  

the classification performance by incorporating historical tactile 

features, compared with traditional classification methods such as 

support vector machines45,46.

Formally, we define the slip classification task as mapping the 

predicted tactile state sequence ̂f
c∶H−1

 to a sequence of slip clas si-

fications ̂s
c∶H−1

, where each ̂s
i

∈ {c

slip

, c

non-slip

}  denotes the slip status  

at time step i within the prediction window. The LSTM model is  

trained to learn the temporal dependencies in the tactile data, ena bling 

it to effectively differentiate between slip and non-slip conditions.

Given a sequence of predicted tactile states ̂f
c∶H−1

, the LSTM-based 

slip classifier processes these states sequentially, with the LSTM unit 

updates defined as follows:

h

i

, c

i

= LSTM (

̂

f

i

,h

i−1

, c

i−1

) , i = c ∶ H − 1, (6)

where hi and ci are the hidden and cell states at time step i, respec-

tively. The output of the LSTM at each time step is passed through a  

fully connected layer to produce the slip classification logits, which  

are then converted into probabilities using a sigmoid activation 

function:

s

i

= σ(W

s

h

i

+ b

s

), i = c ∶ H − 1, (7)

where σ is the sigmoid function, and Ws and bs are the weight and bias 

of the output layer, respectively. The final slip classification ̂

s

i

 is 

obtained by thresholding the probability output, assigning it to either 

the slip or non-slip class.

The architecture of the LSTM-based slip classification model is 

depicted in Fig. 2. Building on the work in ref. 34, which demonstrated 

that a simple LSTM-based tactile forward model combined with a  

slip classifier outperforms classifiers labelled with future slip instances, 

we use a state-of-the-art tactile forward model35 to estimate tactile 

states over the future prediction horizon and classify these predicted 

states accordingly.

To determine the stability of the object in the robot’s grip, the  

slip classification model primarily utilizes the shear force components 

from the predicted tactile states. To enhance the model’s generalization 

ability, we incorporate two dropout layers with a dropout probability 

of 0.5.

The slip classification dataset is imbalanced, comprising 16% 

slip instances and 84% non-slip instances. To address this imbalance, 

we train the classification model using the binary cross-entropy loss 

function, with a weighting scheme that penalizes slip instances more 

heavily than non-slip cases, using a relative weight of 3:1. This approach 

helps ensure that the classifier is conservative, with a strong tendency 

to predict actual slip instances as positive, leading to high recall rates, 

as reflected in the metrics in Supplementary Table 1 (right) for most of 

the train and test objects.

Slip control using trajectory modulation. Our proactive control 

approach, based on our previous work34, consists of a tactile forward 

model, a slip classifier and a predictive controller. A detailed presenta-

tion of model architecture and hyperparameters settings of ACTP and 

the slip classification models is included in Supplementary Section 1. 

We have made several improvements to the original approach that 

have led to substantial performance gains. First, we have incorporated 

our ACTP model to improve the accuracy of the slip classifier (Sup-

plementary Table 1 provides the results). Second, we have extended 

the control variable from one DOF to six DOFs. This control strategy 

regulates the distance to the reference trajectory (which we call resid-

ual values), rather than learning the Cartesian velocity, as that in  

ref. 47. This results in improved optimization and better convergence 

and generalization. Additionally, we have expanded the object and 

trajectory sets, further improving the generalization of the approach. 

We denote the Cartesian-space velocity vector of the robot as 
⃗

V = (V

x

,V

y

,V

z

, W

x

,W

y

,W

z

).

In the trajectory modulation loop, the first three components of 

the control vector represent the translational velocities along the 

Cartesian coordinate axes, whereas the last three components repre-

sent the angular velocities around those axes. Our goal is to minimize 

the future slip likelihood L(s
c,…,H−1

|α,β,x,a) = ∏

H−1

i=c

f(s

i

|α,β,x

0∶i

,a

i

)   

by learning the optimal deviation from the reference velocity profile, 

where α, β, x and a represent the tactile forward model and slip classifier 

parameters, past tactile states and planned robot actions, respectively. 

si indicates the ith observed slip value within a prediction horizon  

of length c. We choose spherical coordinates as the robot’s input  

{ac−1…aH−2} to adapt a given reference trajectory. As such, we modify 

the reference velocity vector by separately adjusting its norm and 

direction. To facilitate this modification, we represent the translational 

and angular velocities in spherical coordinates as follows.

ρ

v

=

√

V

2

x

+ V

2

y

+ V

2

z

; θ

v

= tan

−1

V

y

V

x

; ϕ

v

= cos

−1

(

V

z

√

V

2

x

+V

2

y

+V

2

z

)
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ρ

w

=

√

W

2

x

+W

2

y

+W

2

z

; θ

w

= tan

−1

W

y

W

x

; ϕ

w

= cos

−1

(

W

z

√

W

2

x

+W

2

y

+W

2

z

)

(8)

The variables ρ, θ and ϕ correspond to the norm, polar angle and azi-

muthal angle, respectively, in spherical coordinates. The relation-

ship between the spherical and rectangular coordinates is illustrated  

in Extended Data Fig. 1. Using spherical coordinates enables the  

optimization process to separately learn the modifications needed  

for the norm and direction of the velocity vector in space. The  

optimization process returns the residual values, which are added 

to the components in equation (8) to modify the reference velocity 

profile.

ρ

∗

v

= ρ

v

+ ζ

ρ

v

; θ

∗

v

= θ

v

+ ζ

θ

v

; ϕ

∗

v

= ϕ

v

+ ζ

ϕ

v

ρ

∗

w

= ρ

w

+ ζ

ρ

w

; θ

∗

w

= θ

w

+ ζ

θ

w

; ϕ

∗

w

= ϕ

w

+ ζ

ϕ

w

(9)

We express the residual values of equation (9) in the matrix form as 

ζ

d

= (ζ

ρ

v

, ζ

θ

v

, ζ

ϕ

v

, ζ

ρ

w

, ζ

θ

w

, ζ

ϕ

w

) . The residual trajectory values form the 

difference between the executed robot trajectory ζe and the reference 

trajectory ζr are ζ d

c∶H−1

= ζ

e

c∶H−1

− ζ

r

c∶H−1

 and ζe
c∶H−1

= {a

c−1

…a

H−2

} , where 

a ∈ ℝ

6 and ζ ∈ ℝ

6×c.

Parameterized residual learning for trajectory adaptation. To opti-

mize the robot’s trajectories over a future time horizon (that is, 

i

p

∈ {c,…H − 1} ∈ ℤ

c), we represent the residual values using a parametric  

action representation48 that includes a weight parameter matrix w  

to be computed by the optimizer using Gaussian basis functions49, 

which is denoted by Φ: ζ d

c∶H−1

= w

T

×Φ, where Φ ∈ ℝ

n×c and w ∈ ℝ

c×6. For 

the sake of simplicity, we express ζc:H−1 by ζ.

The parameterized action space representation reduces com-

putation complexity compared with direct search in continuous  

action space48. The benefit is more effective when the action is opti-

mized in a future time horizon rather than a single time step due to 

the fewer search parameters in the optimization problem. We close 

the loop for the slip prevention controller by solving the constraint 

optimization in equation (10).

argmin

w

∥ ζ

d

(w,Φ) ∥
2

Subject to 𝔼𝔼

f

c∶H−1

|(f

0∶c−1

,ζ

e

c∶H−1

,ζ

e

0∶c

)

[s

c∶H−1

(ζ

e

(w,Φ))] = 0

lb <

̇

X

i+1

−

̇

X

obs

i

< ub

, (10)

where ζe = ζd(w, Φ) + ζr, and f denotes the tactile state vector ∈ ℝ

48×c. 

The first nonlinear constraint in the optimization formulation is based 

on the expected value of the slip signal over the prediction horizon c, 

given by 𝔼𝔼[s
c∶H−1

(ζ

e

(w,Φ))], where s is a function of the robot’s future 

trajectory. The second constraint limits the difference between the 

generated robot velocities and the observed velocity (measurement) 

to ensure compliance with the robot’s low-level controller maximum 

acceleration limit. The optimization problem seeks to minimize the 

expected slip over the prediction horizon and remaining close to the 

provided reference trajectory.

The resulting spherical velocity components are transformed 

back to rectangular coordinates before being sent to the robot’s 

Cartesian-velocity controller as per equation (11). The Vx, Vy, Vz, Wx, Wy 

and Wz values are used to update the robot’s Cartesian-velocity control-

ler, which regulates the robot’s motion along the desired trajectory 

and avoiding slipping.

V

x

= ρ

v

sin(ϕ

v

) cos(θ

v

), V

y

= ρ

v

sin(ϕ

v

) sin(θ

v

), V

z

= ρ

v

cos(ϕ

v

),

W

x

= ρ

w

sin(ϕ

w

) cos(θ

w

), W

y

= ρ

w

sin(ϕ

w

) sin(θ

w

), W

z

= ρ

w

cos(ϕ

w

).

(11)

We provide a detailed presentation of the grip force control 

method as the baseline controller for benchmarking our proactive 

controller in the Supplementary Information.

Training and testing. We trained our ACTP model and slip classifica-

tion model offline using a dataset of pick-and-move tasks. Figure 2 

illustrates the forward model and its architecture within a predictive 

control pipeline50.

The manipulation dataset consists of 420,000 data samples col-

lected from 600 manipulation trials involving 13 box-shaped objects. 

Each object (including both train and test set objects; Supplementary 

Tables 1 and 2 list the dataset details) was involved in an equal number 

of trials, with three objects reserved as test objects, which were not seen 

during training. The performance of the ACTP and slip classification 

models was validated by analysing the mean absolute error and F-score 

values for the unseen objects, respectively. All models were trained on 

a Ubuntu machine equipped with an AMD Ryzen Threadripper CPU, 

NVIDIA GeForce RTX 2080 GPU and 64 GB of memory. The training 

was conducted using the PyTorch v. 1.13.1 library with CUDA v. 11.7. 

The trained ACTP and slip classification models are then used with 

fixed-weight parameters for real-time control tests.

During testing, the trajectory modulation module utilizes the 

inference from these two models in an online optimization loop to 

determine the optimal next robot action that minimizes the likeli-

hood of slip occurrence in a receding horizon framework. We will now 

present the design details for each building block of the proactive 

control system (Fig. 2).

Objects, metrics and comparison method. Table 2 presents the 

objects used for training and testing our controller (Supplementary 

Table 1 provides the pictures of each object). It also details the perfor-

mance metrics for both train and test objects. The train and test sets are 

based on the data collection for training the underlying tactile forward 

model and slip classifier in the proactive control, consisting of ten 

train objects and three test objects. The performance metrics for the 

slip controller include rotation of >6°, time steps (RTS) and maximum 

object rotation (MOR) in degrees. RTS represents the number of time 

steps during which the object’s rotation exceeded the slip classifica-

tion threshold (6°). Smaller RTS values indicate better slip avoidance 

performance. The proactive control achieved excellent performance 

with no slip instances (RTS = 0) for five objects in the train set and 

two objects in the test set (boldface values in the RTS column). The 

MOR values show that for five objects, the maximum rotation slightly 

exceeded 6°, the threshold set for slip classification. This may be attrib-

uted to the imprecision of the forward model, the classifier (Supple-

mentary Table 1) or the threshold we set on the number of iterations 

in the controller computations to find the optimal actions (as we allow 

only ten optimizer iterations due to real-time constraints). Nonethe-

less, MOR remains below 9°, preventing failure despite slip instances. 

Comparing the mean values of MOR and RTS for the train and test sets 

demonstrates that our proposed controller generalizes well to unseen 

objects during training and effectively avoids slip instances on aver-

age. DRT denotes the distance to the reference trajectory, calculated 

by summing the Euclidean distance between the reference and opti-

mized trajectories across all task time steps (measured in m s−1). ROV 

represents the resulted optimality value, indicating the convergence 

of the optimization process at the final iteration.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The experimental data used in this work including the robotic experi-

ments are available at https://proactive-control.github.io/.
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Code availability
The code used for training and testing the slip prediction models, 

as well as implementing the slip controller, is publicly available  

via GitHub at https://github.com/imanlab/bgf and via Zenodo at 

https://doi.org/10.5281/zenodo.14524629 (ref. 51).
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Extended Data Fig. 1 | Residual Learning in spherical coordinate. Our trajectory modulation method learns residual to be added to the reference trajectory in 

spherical coordinate.
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Extended Data Fig. 2 | Task maneuvers. Task maneuvers in Table 1 and 3.
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