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ABSTRACT: Microbially mediated transformations, such as nitrification and
biodegradation, play a crucial role in removing pollutants from rivers. Although in-
stream removal rate coefficients are often assumed to be spatially and temporally
constant, they are likely affected by the channel shape and size because these factors
control contact between the water column and fixed biofilms. Here, we test the
hypothesis that transformation rate constants are inversely proportional to the hydraulic
radius (R: ratio of the channel cross-sectional area to wetted perimeter) in dye tracing
experiments conducted in two U.K. rivers with contrasting morphologies: (1) the River
Maun (shallow: mean bankfull R = 1.25 m) and (2) the River Calder (deep: mean
bankfull R = 3 m). In each case, a slug of rhodamine WT was injected upstream of a
wastewater outfall, and samples were collected downstream, staggered by the rhodamine
travel time. Rate constants were derived for sucralose, ammonium, caffeine, and linear alkylbenzenesulfonate. Sucralose (persistent,
hydrophilic, and exclusively of wastewater origin) was used as a conservative tracer to adjust model fits for dilution. Higher rate
coefficients were observed for all biotransformed pollutants in the Maun compared to the Calder, supporting the hypothesis and
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highlighting the need to consider geomorphology in models of chemical behavior.

KEYWORDS: wastewater, dye tracing, geomorphology, chemical exposure, biodegradation, nitrification

B INTRODUCTION

The emission of pollutants into riverine environments poses a
potential risk for aquatic organisms, and for human health, if
river water is used for water supply. Wastewater represents an
important pollutant source. Although wastewater treatment is
often able to remove a high proportion of many pollutants,
residual concentrations in river water downstream of sewage
treatment plants (STPs) can still pose substantial ecotoxico-
logical risks."”” Pollutants associated with wastewater include
organic compounds, such as those found in pharmaceuticals and
personal care products, inorganic contaminants, such as
ammonia, nitrite, and heavy metals, and nonspecific degradable
organic matter, which can impose a biochemical oxygen demand
on receiving waters." To quantify exposures of wildlife and
humans to these contaminants for environmental risk assess-
ments, we need to understand how they dissipate in receiving
environments under different conditions. In rivers, a number of
mechanisms can contribute to pollutant removal, including
microbially mediated transformations (e.g, nitrification and
biodegradation), sorption to sediment, volatilization, and
photodegradation.” > The relative importance of these mech-
anisms depends on (1) intrinsic properties of individual
chemicals (e.g, partition coefficients and chemical structure)
and (2) environmental conditions, such as temperature, pH,
dissolved oxygen concentration, and short-wave radiation flux
density.”

© XXXX The Authors. Published by
American Chemical Society
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Microbially mediated transformations are a dominant
removal mechanism for many wastewater pollutants. These
are performed by both suspended organisms and microbes in
fixed biofilms, growing on boundary sediment and on the
surfaces of vegetation.”*”’ Biofilms are believed to be much
more significant for the processing of chemicals in most rivers
and streams, compared with suspended organisms, because their
biomass is typically much higher and their communities are
more diverse.”'”"" Sediments at the sediment—water interface,
and in the hyporheic zone, are therefore often termed
“bioreactors” due to their high potential to degrade wastewater
pollutants.'>~"*

The high importance of biofilms at the sediment—water
interface implies that microbially mediated transformations
should be affected by contact between the water column and
sediment surfaces. This will be controlled to some extent by the
channel shape and size.'”'>'® Specifically, hydraulic radius (R:
ratio of the channel cross-sectional area to the wetted perimeter,
P) can be used as a measure of the volume of streamwater
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available for processing by a unit area of bed sediment. R is often
used to describe the efficiency of a channel to transport water
and sediment.'” In many natural channels, P is approximately
equal to the channel width (w)."”"® R can then be approximated
by the flow depth (d)."”"® Although local channel characteristics
can vary substantially, catchment scale changes tend to be
systematic and controlled by river discharge.'®"” In most rivers
in humid catchments, river discharge typically increases with the
drainage area (i.e., with distance downstream). This increase in
discharge is usually associated with systematic increases in
channel width and depth, as well as a progressive decline in
channel gradient."®'" In parallel, there is often an increase in
mean velocity associated with an increase in R and a systematic
decrease in channel roughness due to progressive decreases in
the mean sediment caliber.'’ > Empirical relationships
between channel characteristics and discharge are often referred
to as hydraulic geometry equations.'*"”

We hypothesize that rate constants for microbial trans-
formations (k) will be inversely proportional to R (i.e., microbial
transformations will be quicker in shallow rivers, with low R,
compared to deep rivers, with high R):**'

k o L
(1)

Transformation rates are also expected to be affected by
temperature and light penetration, which will both be higher in
shallow compared to deep rivers.”” > In addition, increased
stream turbulence in shallow rivers is expected to increase
vertical mixing and the delivery of contaminants to the
streambed for processing, thereby increasing k.””*® These
broadly applicable and systematic controls have important
implications for both (1) exposure to contaminants locally (and
associated ecotoxicological risk) and (2) the flux of contami-
nants to the coastal zone.

These factors have been invoked to explain observations of
reduced nitrification rates with increasing depth in rivers and
free surface constructed wetlands>”>° for denitrification in lakes,
reservoirs, and rivers'>>' 7** and for chemical biodegradation in
rivers.”'? Previous work that attributes reduced rates of
microbial transformations to differences in depth were
conducted under controlled laboratorzf conditions or by fitting
models to monitoring data.%'%'>2°=** However, it is widely
recognized that laboratorly—derived rate constants often differ
from those in the field.>'%*° Furthermore, derivation of rate
constants in the field are most reliably obtained using dye tracing
techniques in which the travel time of an external tracer is used
to guide the timing of sample collection at downstream stations,
such that the same parcel of water is sampled.”**” Such studies
are rarely conducted, so reliable field-derived rate constants for
many contaminants do not exist. In this paper, we derive, for the
first time, rate constants for a suite of wastewater contaminants
in two rivers with contrasting hydraulic geometries in order to
test the hypothesis that the rate constant should be inversely
proportional to R.

B METHODS

Study Areas. Dye tracing experiments were conducted in
two rivers with contrasting channel morphologies: (1) the River
Maun, which receives wastewater from Mansfield STP,
Nottinghamshire, U.K,, and (2) the River Calder, which receives
wastewater from Dewsbury (Mitchell Laithes) STP, West
Yorkshire, UK. (Figure 1). The criteria for choosing each
study site were (1) the presence of a strong wastewater signal
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Figure 1. Location of study catchments, sampling points, and major
STPs along the sampled reaches of the Rivers Maun and Calder. Data
are from the UK. National River Flow Archive. OS data © Crown
Copyright and database right 2023. Data are from OS Zoomstack.

from a wastewater treatment works, with several kilometers of
downstream reach before the next significant wastewater outfall,
and (2) a significant contrast in the channel geometry
characteristics between sites (relatively shallow in the case of
the Maun and much deeper for the Calder).

Mansfield STP (53°09'22.6"N 1°10'54.6"W) serves a
population of 97000 people.”® It discharges into the River
Maun, a shallow river which flows through Mansfield before
joining the River Idle. The approximate bankfull width and
depth in the study reach are 5 and 1.25 m, respectively.’” Land
cover in the catchment upstream of the effluent discharge point
is predominantly urban (63%) with arable farmland (17%) and
grassland (14%)."" Mean river discharge (Q) at the effluent
discharge point is 0.457 m® s™" and the catchment area is 28.8
km>"" Wastewater effluent makes up a high proportion of flow
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in the River Maun, with an estimated average dilution factor
(DF: ratio of total discharge to effluent discharge) of 4.4

Dewsbury STP (53°40720.7"N, 1°36'21.3"W) serves a
population of 380000 people®® and discharges into the River
Calder. The Calder rises in the Pennine Hills and has many
tributary inputs before reaching Dewsbury. Downstream of
Dewsbury, the Calder flows through Wakefield before joining
the River Aire at Castleford. The approximate bankfull width
and depth in the study reach are 27 and 3 m, respectively.”” Land
cover in the Calder catchment upstream of Dewsbury is
predominantly grassland (46%) with significant areas of
heathland (18%), woodland (15%), and urban land (15%).*'
The floodplain is heavily urbanized and industrialized. The
mean Q and catchment area at Dewsbury are 16.3 m® s and
697 km?, respectively.*' The estimated DF of Dewsbury STP at
mean flow is 22.** Although this is not as low as for the Maun at
Mansfield STP, a previous monitoring exercise indicated that
pollutant concentrations could be detected and tracked.”"** It
should be noted that there are some potential interactions
between the River Calder and the Calder and Hebble canal
system in the monitored reach (e.g, via sluice gates to supply
water to the canal and weirs to impound water). However, the
majority of flow is retained within the main river channel.

In each field experiment, water samples were collected from
one point upstream and several points (five for the Maun and six
for the Calder; see Table S2) downstream of the main STP
effluent outfall over distances of 7.8 and 13.7 km for the Maun
and Calder, respectively. There were no other known discharges
of municipal wastewater in the monitored reach on the Maun.
There was, however, another municipal STP discharging to the
Calder downstream of Dewsbury at Horbury (population
served, 16000 people; DF, 504).>® We calculated that this
would have a negligible effect on the concentrations of the
contaminants of interest due to high dilution (explored in more
detail later).

Hydraulic Geometry. Although channel dimensions
changed continuously with distance downstream in each river,
there were fundamental differences in geometry between the
two monitored reaches. Three approaches were used to
characterize R, all of which assume that R is approximated by
d (see the Supporting Information for justification). The first
approach estimated d using the simple relationship

Q = wdv (2)

where v is the velocity (m s™')."” Q and v were obtained through
dilution gauging (using numerical integrals of dye concen-
trations at each station)” and solute travel time (see below),
respectively, while w was measured using satellite imagery.

The second approach utilized gridded estimates of bankfull d
from the UK Centre for Ecology and Hydrology.” This data
product was derived from a hydraulic geometry relationship
between d and the product of catchment area (A, km?) and mean
annual rainfall (R; mm), which is a proxy for Q:

d = 0.02643A7R "+ 3)

This relationship was calibrated against historical survey data,
with full details available in Davies et al.*” The final approach to
estimate d involved using stage data from the Environment
Agency (environment.data.gov.uk/hydrology). River stage
represents the height of a river relative to a fixed point on or
near the river bed (local datum). Gauging stations were located
between Sites 2 and 3 in the River Maun and at Site B in the
River Calder.

Sample Collection. A Lagrangian sampling approach was
employed in which the collection of water samples was staggered
to coincide with the solute travel time. This is important because
any changes in pollutant concentrations can then be attributed
to transformation, losses from or gains to the water column,
rather than simply the sampling of different parcels of
water.”**?”** The fluorescent dye rhodamine WT (Town
End, Leeds, U.K.) was used as a conservative tracer to determine
the solute travel time (eq S1).* This was introduced as a slug
injection (50 mL to the Maun and 1000 mL to the Calder) in the
midchannel upstream of the main STP in each river (200 m for
the Maun and 2000 m for the Calder). Rhodamine WT was also
used to estimate river discharge at each station via dilution
gauging (eq $2).*

A single dye tracing campaign was conducted in each river
reach. Sampling on the River Maun was conducted on August 2,
2023. In the River Calder, dye tracing was conducted overnight
on February 19, 2024, and water samples were collected the
following day, February 20, 2024, using travel times determined
from the dye trace. This approach is acceptable under steady-
flow conditions. This was confirmed with the stage data at Site B
from the Environment Agency (Figure S2). Although sampling
was conducted in different seasons, we accounted for the effects
of temperature in our analyses (see below).

Fluorescence was measured at each sampling site using
Cyclops-7F submersible fluorimeters (Turner Designs, San Jose,
CA). Fluorescence data were recorded with Cyclops-7 loggers
(Precision Measurement Engineering, Vista, CA) to enable the
calculation of the tracer centroid (center of mass). In the Maun,
a hand-held Cyclops-7F was employed to collect water samples
around the peak dye concentration, with the aim of capturing
samples at the tracer centroid. Water samples were collected in
triplicate in 60 mL HDPE plastic bottles and stored on ice for up
to 24 h before being frozen, prior to analyses. HDPE plastic
bottles were new and rinsed with river water prior to sample
collection. In situ water quality parameters were also measured,
including temperature and pH (measured with Electronic
Temperature Instruments 8100 Plus pH meter, Worthing,
U.K.), dissolved oxygen (DO; measured with a YSI ProODO
DO meter, Yellow Springs, OH) and electrical conductivity
(EC; measured with Mettler Toledo FiveGo F3 EC meter,
Columbus, OH).

Note that samples were collected at Sites C and E on the
Calder (Figure 1), but no fluorometers were installed at these
stations. Instead, sampling times were estimated from solute
travel times using linear interpolation between Sites B and D (for
Site C) and between Sites D and F (for Site E).

Sample Analyses. Water samples were analyzed for a suite
of chemicals typically found at detectable concentrations in
wastewater with a range of reported transformation profiles and
expected rates: sucralose (persistent), ammonium (NH4+;
oxidized to nitrite and then nitrate through nitrification),
caffeine (rapidly biodegradable by a range of heterotrophic
microorganisms47) , and linear alkylbenzenesulfonate (LAS;
biodegradable by a range of heterotrophic microorganisms***”).
LAS is a multiconstituent substance composed of alkyl chain
homologues of varying length (C;,—C;,) and positional
isomers. For our analyses, the sum of all LAS homologues was
used. All samples were filtered through 0.45 ym PTFE syringe
filters prior to any analyses. NH,” concentrations were
determined colorimetrically with a method equivalent to ISO
15923-1 using a SEAL AQ2 discrete analyzer. The ammonium
sulfate standard (molecular biology grade, >99%) used was
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supplied by Sigma-Aldrich (Gillingham, U.K.). All other
chemicals were ACS reagent grade (>95%) or better.

Caffeine, LAS, and sucralose concentrations were determined
using liquid chromatography with tandem mass spectrometry
and electrospray ionization (Agilent 1290 series LC-MS/MS
system with 6495 triple quadrupole mass spectrometer and
electrospray ionization source). Analyses were conducted over
two separate runs: one in positive-ion mode for caffeine and one
in negative-ion mode for LAS and sucralose. Caffeine (>99%)
and sucralose (>98%) standards were obtained from Sigma-
Aldrich. The dodecylbenzenesulfonic acid standard (LAS;
97.3%) was obtained from Cepsa (Madrid, Spain). Caffei-
ne-"3Cg (98.2%; Sigma-Aldrich) was used as an internal standard
for positive-ion mode analyses. Sodium dodecyl-d25-sulfate
(98.3%; Sigma-Aldrich) was used as the internal standard for
negative-ion mode. Limits of quantification (LOQs) were 0.1 ug
L™" for caffeine, 0.5 ug L™" for sucralose, 0.9 ug L™" for C,, LAS,
2.2 ug L™ for C;; LAS, 1.6 ug L™" for C;, LAS, and 0.01 mg N
L™ for ammoniacal N. Further information about LC-MS/MS
conditions, as well as information on method development and
validation, are provided as Supporting Information.

Curve Fitting. We assume that the dominant transformation
mechanism for all contaminants investigated is microbially
mediated, based on a wide range of literature, although we do
recognize that other processes operate. For example, NH," can
be lost as un-ionized ammonia to the atmosphere via
volatilization and immobilized via plant uptake and net
microbial assimilation. In all cases, first-order kinetics was
assumed. To fit first-order transformation rate coefficients (k)
while accounting for downstream dilution, the following
equation is typically used:

Q,
C, = ¢, exp(—kt)
Q °°F @)

where C, and Q, are the concentration and discharge
immediately after mixing downstream of the main STP input
and C, and Q; are the concentration and discharge at time ¢
(coinciding with the tracer centroid), respectively. We
considered three different ways of estimating dilution (Qp/
Q.): (1) flow accumulation between gauging stations, (2)
reductions in the numerical integral of dye concentrations at
each station (dilution gauging), and (3) chemical benchmarking
using the sucralose concentration at each station. The paucity of
gauging stations in each river reduced the practicality of using
gauged data. Dilution gauging was performed, but potential
abstractions from the River Calder introduced potential errors in
estimates of Q.. Benchmarking involves measuring the relative
behavior of different chemicals (one of which has known
properties and the other unknown), rather than their absolute
values.*® Here, dilution at each sampling site was accounted for
using the ratio of the sucralose concentration at the sampling site
to the sucralose concentration immediately downstream of the
main STP on each river, after mixing:

CipEc = ﬂco,DEG exp(—kt)

Co,pER (5)
where the subscripts PER and DEG refer to persistent
(sucralose) and degradable (NH,", caffeine, LAS) compounds,
respectively. Sucralose (CAS: 56038-13-2) is an artificial
sweetener that is widely used in food products and that is now
commonly detected in wastewater.””*" It is hydrophilic
(estimated log Koy = —1)°" and has been shown to be very

persistent to biodegradation in both wastewater treatment and
in receiving water bodies, "3 making it an ideal benchmark-
ing contaminant for this study. If we assume that it is perfectly
persistent with zero net sorption (reasonable for a steady-state
emission) reductions in sucralose concentrations will be
proportional to dilution resulting from hillslope and ground-
water contributions to flow accretion. This approach is similar to
that previously employed using boron as a persistent tracer.”’
Boron used to be a common ingredient in laundry detergents,
but its use has decreased significantly in recent years, making it
impractical as a benchmarking tracer.”* k was fitted by iterative
optimization to reduce the root-mean-square error (RMSE)
between observed and modeled concentrations using the
generalized reduced gradient algorithm.™

Temperature Correction. To account for the effect of
temperature on nitrification and biodegradation, fitted rate
constants were normalized to a reference temperature, T, (K),
using the Arrhenius equation:***’

k(T)

eXPL%(% - %)} 6)

where k(T.) is the rate constant (h™') at the reference
temperature, k(T,) is the rate constant (h™') at the environ-
mental temperature, T, (K), R, is the universal gas constant
(8.3145 J mol™ K™'), and E, is the activation energy. An
activation energy for nitrification of 162 k] mol ™" has previously
been reported in riverbed sediment cores.”®"” In the absence of
substance-specific E, values for biodegradation, a generic value
of 65.4 kJ] mol™" was used, as recommended by REACH
regulation (EC 1907/2006).%° This corresponds to the median
value of E, data available for pesticides, which were measured in
50il.%" There is some doubt about the universal application of the
Arrhenius equation to normalize k(T,). For example, Tian et al.”
measured the biodegradation rates of 96 compounds during
different seasons and found deviation from the Arrhenius
equation for most of the studied compounds. However, this
equation remains the most widely accepted method for
temperature correction and has been incorporated into
regulatory opractice in Europe for both pesticides®” and general
chemicals.”

kK(T) =

B RESULTS

Hydraulic Geometry. To characterize R in the monitored
river reaches, three approaches were used, each of which assume
that R is approximated by d (Table 1). Estimates of d ranged

Table 1. Estimates of R, Assuming That R Can Be
Approximated by d

approach Maun (m)  Calder (m)  dypun'dcatder
hydraulic geometry depth 0.34 1.4 0.23
Environment Agency stage 0.34 0.85 0.40
UK CEH bankfull depth 1.25 3 0.42

from 0.34 to 1.25 m in the Maun and from 0.85 to 1.45 m in the
Calder. Predictably, the estimates of d from UK CEH were the
highest, as this method estimated bankfull d rather than d on the
day sampling was conducted. The ratio of dy,, to dc,ge ranges
from 0.23 to 0.42.
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Solute Travel Time. Total solute travel times for the Rivers
Maun (Sites 1—5) and Calder (Sites A—F) were 6.8 and 8 h,
respectively (Figure 2).

. (a) River Maun
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Figure 2. Rhodamine WT concentrations against time since injection at
sampling sites downstream of (a) Mansfield STP in the River Maun and
(b) Dewsbury STP in the River Calder. Dashed lines indicate sampling
sites where the centroid time was linearly interpolated from adjacent
stations. Distances are from the STP outfall locations.

Sucralose. Immediately downstream of Mansfield STP (Site
1), the concentration of sucralose in the River Maun was S1 ug
L™, which decreased to 37 ug L™ at Site 5 (Figure 3). The
observed concentrations of sucralose closely match (R* = 0.95)
predicted concentrations based on dilution with discharge
obtained through dilution gauging, assuming no degradation (k
= 0) over the study period (eq 4). This confirms the assumption
that sucralose is not significantly degraded or lost from the river
water and strongly supports its use as a persistent tracer to
account for dilution effects (eq S).

In the River Calder, sucralose concentrations decreased
slightly from 11 ug L™ immediately downstream of Dewsbury
STP (Site A) to 9.4 ug L™" at Site F, suggesting a 17% increase in
Q (Figure 3). Agreement between dilution estimates based on
sucralose concentrations (C,pgr/Coper) and those based on

60 12

5 g
e
N
%
] N
1
:'
b B
/
/
/
1
/
4
’l
—%—
]
9o
H bd
2 =
o

N

o
T

i

Sucralose Concentration (ug L
w
o
o

Sucralose Concentration (ug L™1)

o

o
T

N

X River Maun
X  River Calder

0 T T T T T T T T T 0
0 1 2 3 4 5 6 7 8

Time Since First Sample (h)

Figure 3. Sucralose concentrations in the River Maun (red) and River
Calder (blue) against the solute travel time. The dashed line indicates
predicted concentrations of sucralose in the River Maun based on
dilution with measured flow data obtained through dilution gauging,
assuming no degradation (k = 0) over the study period. An equivalent
line is not shown for the River Calder due to hydrological uncertainties
in this river (see the text).

dilution gauging (Qy/Q;) were poorer for the Calder than for the
Maun (R* = 0.79). This may be the result of apparent
abstractions in the Calder. In both catchments, flow accretion
would be expected due to baseflow contributions (groundwater
discharge) and hillslope runoff. However, in the Calder
estimates of Q from dilution gauging decreased by ~5%
between Site A (Q = 25.3 m>s™!) and Site F (Q =23.9 m*s™").
Although, this apparent reduction in Q is within the error
typicallz reported for dilution gauging (approximately
10%°*°"), the fact that an increase in Q was not detected
suggests that some water may have been abstracted from the
river along the study reach to augment the Calder and Hebble
canal, which is replaced by approximately equivalent baseflow
contributions with distance downstream. With the exception of
NH,", baseflow and hillslope contributions to discharge are
unlikely contain wastewater contaminants. Contributions from
decentralized wastewater treatment systems, such as septic
tanks, are believed to be minimal because the vast majority
(~96%) of the population of England and Wales is served by
centralized wastewater collection and treatment.”> This
complexity supports the use of chemical benchmarking with
sucralose (eq S) as the most appropriate approach for adjusting
values of k for NH,*, caffeine, and LAS for dilution.

NH,*, Caffeine, and LAS. In all samples, concentrations of
sucralose, NH,", caffeine, and LAS were significantly greater
than their respective LOQs. The in-stream removal of NH,,
caffeine, and LAS differed substantially between the two rivers
(Figure 4). Concentrations of NH," in the River Maun
decreased from 0.48 mg N L™ at Site 1 to 0.16 mg N L™" at
Site S. This results in a fitted first-order nitrification rate constant
(k) 0f0.177 h™' (employing chemical benchmarking to account
for dilution), corresponding to a first-order half-life (t,,,) of 3.9
h. Model accuracy was high, with an RMSE value of 4.27 X 1072
mg N L7". This halflife is consistent with nitrification rate
constants in other shallow streams. For example, a half-life of 2.4
h was reported for the Red Beck, a small tributary stream in the
Calder catchment.”” Similarly, a value of 2.97 h was reported by
McAvoy et al** for nitrification in a shallow river in the
Philippines.
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Figure 4. Concentrations of ammonium (a and b), caffeine (c and d), and linear alkylbenzenesulfonate (e and f) in the River Maun (left panels) and
River Calder (right panels) against the solute travel time. Dashed lines show dilution-corrected first-order models (eq 5). The fitted rate constants (k),
first-order half-lives (¢, ,,), and RMSE of fitted first-order transformation models are also shown. Error bars represent standard errors.

Table 2. In Situ Water Quality Parameters Measured in the Rivers Maun and Calder (Mean for All Sites + Standard Error)

river Q (m’s™) temp (°C) pH
Maun 094 + 0.1 16.7 + 0.29 7.96 + 0.02
Calder 242 +0.3 9.5 +£0.06 8.63 + 0.04

DO (mgL™) DO (%) EC (uS cm™)
8.44 +0.12 89.8 + 1.1 686 + 35
11.0 + 0.05 96.6 + 0.4 288 +2.8

In contrast, NH,* concentrations in the River Calder
decreased only slightly from 0.31 mg N L™" at Site A to 0.27
mg N L7 ! at Site F. When accounting for dilution, these data
imply no net loss of NH," over the monitored reach in this
period (i.e., a fitted value for k of 0 and a model RMSE value of
1.08 X 107> mg N L™"). The difference in nitrification rates was
partially explained by differences in the river water temperature
during sampling (Table 2). In order to enable a fair comparison
between nitrification rates, k values in the River Maun were

normalized to a reference temperature, T}, of 9.5 °C (the average
water temperature in the River Calder). The temperature-
corrected value of k for NH," oxidation in the Maun was 3.19 X
1072 h7! (¢, = 21.7 h).

Caffeine concentrations in the River Maun decreased from
0.51 ug L™ at Site 1 to 0.20 ug L™" at Site S. The fitted
biodegradation rate constant (k) was 0.152 h™" (¢, = 4.5 h).
When normalized to T, (9.5 °C), the adjusted value for k was
7.61 X 107> h™" (t;;, = 9.1 h). In contrast, caffeine
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concentrations in the River Calder decreased from 0.30 ug L ™" at
Site A to 0.24 ug L™" at Site F. This decrease was not sufficient to
imply any biodegradation, after allowing for dilution (fitted
value for k = 0). Again, the model performance for both rivers
was good, with RMSE values of 4.99 X 107> and 0.104 ug L™" in
the Rivers Maun and Calder, respectively. The slightly higher
RMSE in the River Calder was caused by an unexplained spike in
the caffeine concentration at Site B (0.53 ug L™"). Note that
there were no known sources of domestic wastewater between
Sites A and B, and combined sewer overflows were unlikely to
have been in operation (dry weather). It is possible that this may
have been the result of an analytical artifact. To the best of our
knowledge, in-stream removal rates for caffeine have not been
previously measured elsewhere. However, rapid biodegradation
of caffeine is expected. Bradley et al.’® reported half-lives for
caffeine between 5.3 and 24 h in a laboratory microcosm
experiment (usually longer than those observed in the field'**°).
This arises from a combination of factors including the
acclimation and increased complexity of natural biofilms,
which generally enhances their ability to degrade perennially
present contaminants (e.g., from steady-state emission of
wastewater) 5768

LAS concentrations in the River Maun decreased from 28 pg
L' at Site 1 to 14 ug L™" at Site S. The fitted biodegradation rate
constant (k) was 6.68 X 107> h™" (t;,, = 10.4 h), which is
equivalent to 3.35 X 10~ *h™" (¢,,=20.7h) at T, (9.5 °C). In the
River Calder, LAS concentrations decreased from 14 ug L™ at
Site A to 12 ug L' at Site F. Despite the minor decline in
concentration, the first-order fit (eq S) was significant (p < 0.05)
with a derived rate constant of 1.67 X 107h™" (t,,=42h). The
model performance was acceptable, with RMSE values of 1.92
ug L7" in the River Maun and 2.52 ug L™ in the River Calder.
The slightly higher RMSE in the Calder was largely caused by
high residuals at Sites B and C resulting from lower LAS
concentrations compared with the overall trend. This may have
been influenced by the discharge of treated wastewater from
Horbury STP (Figure 1), which could have slightly elevated
riverine concentrations between stations C and D. This was
explored using a simple mixing calculation in which the load at
Horbury was estimated from the population served (16000),
assuming a domestic water use of 150 L cap™' day™', a mean LAS
use of 3.18 g cap™! day !, and a 99% removal rate of LAS during
the wastewater treatment process (see the Supporting
Information).®””° This calculation suggested that the increase
in the LAS concentration downstream of Horbury would be in
the region of 0.2 ug L™". This minor influence is consistent with
data for sucralose (Figure 3), NH,", and caffeine (Figure 4),
which do not indicate a significant wastewater input from
Horbury. The first-order half-lives reported for LAS in both
rivers (10.4—41.6 h) were similar in magnitude to those
reported in other rivers. For example, half-lives between 0.9 and
36 h have been reported for rivers in the UK, Uusa, "7
Italy,”*”* Japan,'' Laos’® and the Philippines.** It should be
noted that these rate constants are biased toward easily
accessible (wadable) streams, which we anticipate to be lower
than those for larger rivers.

Discussion. Microbially mediated transformation rates
(nitrification and biodegradation) were consistently faster in
the River Maun, which is a small and shallow stream, compared
to the River Calder. The ratio of normalized LAS half-lives
between the Maun (20.7 h) and Calder (41.6 h) was 0.49,
closely aligning with the range of estimated depth ratios (0.23—
0.42). This supports the proposed hypothesis that microbial

transformation rate coeflicients are inversely proportional to R.
Note that the half-life ratios of NH," and caffeine could not be
calculated since k was not significantly different from zero in the
River Calder. However, this also supports the proposed
hypothesis qualitatively. Of course, the difference in observed
rates may not be entirely attributable to differences in R.
However, (1) we accounted for the effects of temperature, and
(2) measured DO concentrations (Table 2) were above the
thresholds that limit aerobic nitrification and biodegradation (4
mg L ™" at most).””~”® The small difference in pH (Table 2) was
also unlikely to have affected the microbial function.””™"'
However, there are likely to have been differences in biofilm
community composition and function in each river, which may
have affected microbial transformation rates.”***** Unfortu-
nately, it was beyond the scope of this work to characterize the
biofilm in each river, but further work should be directed to
assessing biofilm community composition.

While we did not observe significant nitrification or caffeine
biodegradation in the River Calder, these processes will certainly
have been operating in this system and may have been
measurable over a longer travel time. This would have required
sampling over a greater distance, which is often challenging due
to increased likelihood of additional tributary and wastewater
inputs along the river. For example, in the Calder, monitoring
was curtailed upstream of Wakefield STP, the next major STP on
the system (Figure 1). That said, sucralose was shown to be a
good marker for domestic wastewater contribution and
downstream dilution, which suggests that benchmarking could
be used to disentangle the complexities of pollutant degradation
tracking over larger spatial scales.

It is important to note that the reported values for k represent
removal from all potential loss mechanisms, including micro-
bially mediated transformation, volatilization, and sorption to
sediment. For caffeine and LAS, volatilization is likely to be
negligible due to their very low Henry’s law constants (3.63 X
107 and 6.35 X 1073 Pa m® mol™, respectively). For NH,",
volatilization of free (un-ionized) ammonia (which coexists with
NH," as part of total ammoniacal nitrogen) is possible.
However, we calculated that only 3% and 7% of total
ammoniacal nitrogen would have been in the form of free
ammonia in the Maun and Calder, respectively (see the
Supporting Information). Similarly, some water column losses
of NH,", caffeine, and LAS due to sorption are possible.
However, sorption is generally not considered a significant net
removal mechanism for wastewater pollutants in most rivers and
streams because the discharge of these pollutants is approx-
imately continuous, allowing for the establishment of
thermodynamic equilibrium partitioning between the aqueous
phase and suspended and bed sediment.”**~%°

For NH,*, removal could also be influenced by plant uptake
and the conversion of mineral nitrogen to organic nitrogen
(immobilization).**”*® However, rates of plant uptake are
predicted to be low in lotic systems, and there was limited in-
stream vegetation in each river.5° Moreover, we assume that
rates of immobilization were less than or equal to rates of
mineralization (the conversion of organic nitrogen to mineral
nitrogen) resulting in no net immobilization. This will depend,
at least in part, on the C:N ratio of organic matter in the water
column and in the sediment substrate.””* It should also be
acknowledged that diffuse sources of NH,", unrelated to
wastewater, such as agricultural runoff, could have entered
both rivers, potentially affecting the reported values for k.””*
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Figure S. Predicted removal of (a) NH,*, (b) caffeine, and (c) LAS at different channel depths (0.5, 1, 2, and S m).

DO concentrations in both rivers were always relatively high
(>7.97 mg L™ in the Maun and >10.91 mg L™" in the Calder,
corresponding to high levels of saturation: >86% in the Maun
and >95% in the Calder). These levels are unlikely to inhibit
either nitrification (DO thresholds for nitrification inhibition as
high as 4 mg L™" have been reported but are more typically <2
mg L™ or biodegradation (inhibition thresholds for
biodegradation are typically <1—2 mg L™")"°""® in the water
column or at the sediment—water interface. However, DO
concentrations are usually depressed in river sediments,” and
this could influence overall system behavior if hyporheic
exchange is important.%

Our assumption of temperature-adjusted first-order kinetics
to describe in-stream contaminant transformations is commonly
adopted in both operational river water quality models, such as
SIMCAT,”” iSTREEM,”® and GREAT-ER,” and in field and
laboratory studies of biodegradation.”” However, for some
contaminants, concentration-independent rates (zero-order
kinetics) may be observed at high concentrations, necessitating
the use of saturation (Michaelis—Menten) kinetics. This does
not appear to be required in our case. Similarly, describing
kinetic dependence on microbial growth is not appropriate in
our systems because microbial populations in riverine biofilms
can be assumed to be in steady state.

Environmental Implications. In our study, each moni-
tored river reach is considered to be a relatively homogeneous
system with a similar hydraulic geometry along the whole reach.
We expect the effects of hydraulic radius between stations in
each reach to be relatively minor at the scales investigated here,
which allows a single rate constant to be derived for each river.
Rather than explaining small differences between stations, we
argue here that the effects of the channel geometry are
manifested at the macro (whole-system) level, explaining the
differences between highly contrasting reaches in different river
systems (in this case the Maun and Calder) or between different
stages in the whole river long profile at the catchment scale. Such
differences will be most apparent at the large catchment scale.
Our data suggest that the channel geometry significantly affects
the in-stream transformation rate constants and, by extension,
environmental exposure profiles for contaminants and pollutant
exports from fluvial to marine systems. Channel geometry
characteristics could be incorporated into models, predicting
pollutant behavior in rivers quite easily. For example, the

nitrification and biodegradation rate constants (k) could be
modified by depth, such that

k:&

(7)

where k. is a reference value for k (which may be derived from
measured rates obtained in flume or laboratory experiments or
from dye tracing studies, such as those reported here). The
implications of this modification to k can be illustrated via a
simple first-order model describing chemical removal (r, %)
downstream of a point source:

( kref )
r=1—exp|——t
d (8)

For simplicity, this model assumes no dilution or change in
depth with distance downstream. We used this model to predict
the removal of NH,*, caffeine, and LAS in hypothetical rivers
with different channel depths. k¢ values were calculated from
rate constants measured in the River Maun (normalized to T,)
and the UK CEH bankfull estimate of d (1.25 m; Table 1).
Illustrative results showing chemical removal over 24 h for four
different depth profiles ranging from 0.5 to S m are presented in
Figure 5. This range of de3pths was based on the range of UK
CEH bankfull d estimates.”

There was a substantial difference in the predicted removal of
NH,", caffeine, and LAS with different assumed channel depths.
The largest difference in chemical removal occurred when k.
was high. For example, k. for caffeine was 9.51 X 107> h™",
which resulted in a predicted removal of 99% over 24 h in the 0.5
m channel and 37% in the S m channel. In comparison, k. for
NH," was 3.98 X 107> h™", which results in predicted removals
of 85% in the 0.5 m channel and 17% in the 5 m channel. These
calculations support our conclusions from field-based observa-
tions in the Rivers Maun and Calder that major reductions in
chemical loss rates are likely as the scale of channel dimensions
increases. These differences will be most pronounced in very
large river basins with long residence times and large systematic
increases in channel dimensions from the headwaters to the tidal
limit.

Conclusions. Our data demonstrate clear differences in
microbially mediated wastewater pollutant transformation rates
in two rivers with contrasting morphologies. These differences
support the hypothesis that transformation rate constants for
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many pollutants will be inversely proportional to R. Although
evidence for such geomorphological controls exists for
nitrification and denitrification, there has been, hitherto, a
paucity in field data comparing the biodegradation rate
constants for organic contaminants in rivers. Similar hydraulic
geometry controls can be expected for other removal
mechanisms such as photodegradation (which will decrease
with depth due to the extinction of light) and volatilization
(which occurs only across the air—water interface, implying that
the overall rate constant will also decrease as the water depth
increases). These findings highlight the need to consider river
channel geomorphology in higher-tier chemical exposure
models and associated risk assessments. Most in-stream
exposure models employ a single rate constant (k) for different
loss mechanisms across all reaches in a channel network. This
assumption is unlikely to be appropriate at the large catchment
scale because k will be modified by systematic and major changes
to the channel shape and size. Further research on other rivers in
different seasons is needed to refine this understanding. Many
rivers have suitable reaches in which this type of tracing exercise
could be conducted in order to supplement the data reported
here and reinforce the generality of our findings. In addition,
such research would benefit from characterizing the structure
and functional capabilities of biofilm communities, which is
beyond the scope of the work presented here.
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